4.49 Problems 4801 to 4900

Table 4.97: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

4801

\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

4802

\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

4803

\[ {}y^{\prime \prime \prime }+y = 0 \]

4804

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-6 y^{\prime } = 0 \]

4805

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }-5 y = 0 \]

4806

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

4807

\[ {}y^{\prime \prime }-4 y^{\prime } = 10 \]

4808

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 16 \]

4809

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{2 x} \]

4810

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 24 \,{\mathrm e}^{-3 x} \]

4811

\[ {}y^{\prime \prime }+y = 2 \,{\mathrm e}^{x} \]

4812

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 12 \,{\mathrm e}^{-x} \]

4813

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]

4814

\[ {}y^{\prime \prime }-16 y = 40 \,{\mathrm e}^{4 x} \]

4815

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \]

4816

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 6 \,{\mathrm e}^{3 x} \]

4817

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 100 \cos \left (4 x \right ) \]

4818

\[ {}y^{\prime \prime }+4 y^{\prime }+12 y = 80 \sin \left (2 x \right ) \]

4819

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right ) \]

4820

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 120 \sin \left (5 x \right ) \]

4821

\[ {}5 y^{\prime \prime }+12 y^{\prime }+20 y = 120 \sin \left (2 x \right ) \]

4822

\[ {}y^{\prime \prime }+9 y = 30 \sin \left (3 x \right ) \]

4823

\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \]

4824

\[ {}y^{\prime \prime }+2 y^{\prime }+17 y = 60 \,{\mathrm e}^{-4 x} \sin \left (5 x \right ) \]

4825

\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 40 \,{\mathrm e}^{-\frac {3 x}{2}} \sin \left (2 x \right ) \]

4826

\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = 30 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {5 x}{2}\right ) \]

4827

\[ {}5 y^{\prime \prime }+6 y^{\prime }+2 y = x^{2}+6 x \]

4828

\[ {}2 y^{\prime \prime }+y^{\prime } = 2 x \]

4829

\[ {}y^{\prime \prime }+y = 2 x \,{\mathrm e}^{x} \]

4830

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 12 x \,{\mathrm e}^{3 x} \]

4831

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 16 x^{2} {\mathrm e}^{-x} \]

4832

\[ {}y^{\prime \prime }+y = 8 x \sin \left (x \right ) \]

4833

\[ {}y^{\prime \prime }+y = x^{3}-1+2 \cos \left (x \right )+\left (2-4 x \right ) {\mathrm e}^{x} \]

4834

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{x}+6 x -5 \]

4835

\[ {}y^{\prime \prime }-y = \sinh \left (x \right ) \]

4836

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right )+4 x \cos \left (x \right ) \]

4837

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{x}+\left (1-x \right ) \left ({\mathrm e}^{2 x}-1\right ) \]

4838

\[ {}y^{\prime \prime }-2 y^{\prime } = 9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \]

4839

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

4840

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

4841

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

4842

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

4843

\[ {}y^{\prime \prime }+2 x y^{\prime } = 0 \]

4844

\[ {}2 y y^{\prime \prime } = {y^{\prime }}^{2} \]

4845

\[ {}x y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

4846

\[ {}{y^{\prime \prime }}^{2} = k^{2} \left (1+{y^{\prime }}^{2}\right ) \]

4847

\[ {}k = \frac {y^{\prime \prime }}{\left (1+y^{\prime }\right )^{\frac {3}{2}}} \]

4848

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = 0 \]

4849

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

4850

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

4851

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+6 y = 0 \]

4852

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 8 x^{4} \]

4853

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x -\frac {1}{x} \]

4854

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 2 x^{3} \]

4855

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 6 x^{2} \ln \left (x \right ) \]

4856

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

4857

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 2 x \]

4858

\[ {}x^{2} \left (2-x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

4859

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

4860

\[ {}x y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+\left (2+x \right ) y = 0 \]

4861

\[ {}3 x y^{\prime \prime }-2 \left (3 x -1\right ) y^{\prime }+\left (3 x -2\right ) y = 0 \]

4862

\[ {}x^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = 0 \]

4863

\[ {}x \left (1+x \right ) y^{\prime \prime }-\left (-1+x \right ) y^{\prime }+y = 0 \]

4864

\[ {}x^{2} y^{\prime }-x y = \frac {1}{x} \]

4865

\[ {}x \ln \left (y\right ) y^{\prime }-y \ln \left (x \right ) = 0 \]

4866

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime } = 0 \]

4867

\[ {}r^{\prime \prime }-6 r^{\prime }+9 r = 0 \]

4868

\[ {}2 x -y \sin \left (2 x \right ) = \left (\sin \left (x \right )^{2}-2 y\right ) y^{\prime } \]

4869

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \,{\mathrm e}^{x}+6 \cos \left (x \right ) {\mathrm e}^{-x} \]

4870

\[ {}3 x^{3} y^{2} y^{\prime }-x^{2} y^{3} = 1 \]

4871

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

4872

\[ {}y^{\prime }-2 y-y^{2} {\mathrm e}^{3 x} = 0 \]

4873

\[ {}u \left (-v +1\right )+v^{2} \left (1-u\right ) u^{\prime } = 0 \]

4874

\[ {}y+2 x -x y^{\prime } = 0 \]

4875

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

4876

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 26 \,{\mathrm e}^{3 x} \]

4877

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \cos \left (x \right ) {\mathrm e}^{-2 x} \]

4878

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 6 \,{\mathrm e}^{2 x} \]

4879

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{2 x} \]

4880

\[ {}\left (y+2 x \right ) y^{\prime }-x +2 y = 0 \]

4881

\[ {}\left (x \cos \left (y\right )-{\mathrm e}^{-\sin \left (y\right )}\right ) y^{\prime }+1 = 0 \]

4882

\[ {}\sin \left (x \right )^{2} y^{\prime }+\sin \left (x \right )^{2}+\left (x +y\right ) \sin \left (2 x \right ) = 0 \]

4883

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 5 x +4 \,{\mathrm e}^{x} \left (1+\sin \left (2 x \right )\right ) \]

4884

\[ {}y^{\prime }+x y = \frac {x}{y} \]

4885

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+13 y^{\prime \prime }-18 y^{\prime }+36 y = 0 \]

4886

\[ {}\sin \left (\theta \right ) \cos \left (\theta \right ) r^{\prime }-\sin \left (\theta \right )^{2} = r \cos \left (\theta \right )^{2} \]

4887

\[ {}x \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right ) = y y^{\prime } \]

4888

\[ {}3 x^{2} y+x^{3} y^{\prime } = 0 \]

4889

\[ {}-y+x y^{\prime } = x^{2} \]

4890

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 6 \]

4891

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+4 = 0 \]

4892

\[ {}x y^{\prime } = x y+y \]

4893

\[ {}x y^{\prime } = x y+y \]

4894

\[ {}y^{\prime } = 3 x^{2} y \]

4895

\[ {}y^{\prime } = 3 x^{2} y \]

4896

\[ {}x y^{\prime } = y \]

4897

\[ {}x y^{\prime } = y \]

4898

\[ {}y^{\prime \prime } = -4 y \]

4899

\[ {}y^{\prime \prime } = -4 y \]

4900

\[ {}y^{\prime \prime } = y \]