4.153 Problems 15201 to 15300

Table 4.305: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

15201

\[ {}y^{\prime \prime } = \sqrt {-{y^{\prime }}^{2}+1} \]

15202

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

15203

\[ {}y^{\prime \prime } = \sqrt {1+y^{\prime }} \]

15204

\[ {}y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]

15205

\[ {}y^{\prime \prime }+y^{\prime }+2 = 0 \]

15206

\[ {}y^{\prime \prime } = y^{\prime } \left (1+y^{\prime }\right ) \]

15207

\[ {}3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \]

15208

\[ {}y^{\prime \prime \prime }+{y^{\prime \prime }}^{2} = 0 \]

15209

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]

15210

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

15211

\[ {}3 y^{\prime } y^{\prime \prime } = 2 y \]

15212

\[ {}2 y^{\prime \prime } = 3 y^{2} \]

15213

\[ {}{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

15214

\[ {}y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2} \]

15215

\[ {}y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

15216

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

15217

\[ {}y^{3} y^{\prime \prime } = -1 \]

15218

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} y^{\prime } \]

15219

\[ {}y^{\prime \prime } = {\mathrm e}^{2 y} \]

15220

\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2} \]

15221

\[ {}y^{\prime \prime \prime } = 3 y y^{\prime } \]

15222

\[ {}y^{\prime \prime }-y = 0 \]

15223

\[ {}3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

15224

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

15225

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

15226

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

15227

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 0 \]

15228

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

15229

\[ {}y^{\left (6\right )}+2 y^{\left (5\right )}+y^{\prime \prime \prime \prime } = 0 \]

15230

\[ {}4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

15231

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

15232

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+10 y^{\prime \prime }+12 y^{\prime }+5 y = 0 \]

15233

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

15234

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

15235

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }-5 y = 0 \]

15236

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-6 y^{\prime }-4 y = 0 \]

15237

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]

15238

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0 \]

15239

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

15240

\[ {}y^{\left (5\right )} = 0 \]

15241

\[ {}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

15242

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0 \]

15243

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

15244

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 \]

15245

\[ {}y^{\prime \prime }-7 y^{\prime } = \left (-1+x \right )^{2} \]

15246

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x} \]

15247

\[ {}y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x} \]

15248

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \left (1-x \right ) {\mathrm e}^{4 x} \]

15249

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 x} \]

15250

\[ {}4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}} \]

15251

\[ {}y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x} \]

15252

\[ {}y^{\prime \prime }+25 y = \cos \left (5 x \right ) \]

15253

\[ {}y^{\prime \prime }+y = \sin \left (x \right )-\cos \left (x \right ) \]

15254

\[ {}y^{\prime \prime }+16 y = \sin \left (4 x +\alpha \right ) \]

15255

\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right ) \]

15256

\[ {}y^{\prime \prime }-4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )-\cos \left (2 x \right )\right ) \]

15257

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = {\mathrm e}^{-3 x} \cos \left (2 x \right ) \]

15258

\[ {}y^{\prime \prime }+k^{2} y = k \sin \left (k x +\alpha \right ) \]

15259

\[ {}y^{\prime \prime }+k^{2} y = k \]

15260

\[ {}y^{\prime \prime \prime }+y = x \]

15261

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 1 \]

15262

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 \]

15263

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 3 \]

15264

\[ {}y^{\prime \prime \prime \prime }-y = 1 \]

15265

\[ {}y^{\prime \prime \prime \prime }-y^{\prime } = 2 \]

15266

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 3 \]

15267

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = 4 \]

15268

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 1 \]

15269

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{4 x} \]

15270

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{-x} \]

15271

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{-x} \]

15272

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

15273

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \cos \left (x \right ) \]

15274

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) x \]

15275

\[ {}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = a \sin \left (n x +\alpha \right ) \]

15276

\[ {}y^{\prime \prime \prime \prime }-2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (n x +\alpha \right ) \]

15277

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (x \right ) \]

15278

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

15279

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = x \,{\mathrm e}^{x} \]

15280

\[ {}y^{\prime \prime }+2 y^{\prime }+y = -2 \]

15281

\[ {}y^{\prime \prime }+2 y^{\prime } = -2 \]

15282

\[ {}y^{\prime \prime }+9 y = 9 \]

15283

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 1 \]

15284

\[ {}5 y^{\prime \prime \prime }-7 y^{\prime \prime } = 3 \]

15285

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = -6 \]

15286

\[ {}3 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 2 \]

15287

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 1 \]

15288

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]

15289

\[ {}y^{\prime \prime }+8 y^{\prime } = 8 x \]

15290

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

15291

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 8 \,{\mathrm e}^{-2 x} \]

15292

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 9 \,{\mathrm e}^{-3 x} \]

15293

\[ {}7 y^{\prime \prime }-y^{\prime } = 14 x \]

15294

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x} \]

15295

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 10 \left (1-x \right ) {\mathrm e}^{-2 x} \]

15296

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 1+x \]

15297

\[ {}y^{\prime \prime }+y^{\prime }+y = \left (x^{2}+x \right ) {\mathrm e}^{x} \]

15298

\[ {}y^{\prime \prime }+4 y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

15299

\[ {}y^{\prime \prime }+y = 4 x \cos \left (x \right ) \]

15300

\[ {}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \sin \left (n x \right ) \]