4.140 Problems 13901 to 14000

Table 4.279: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

13901

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (-1+t \right ) \]

13902

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2\right ) \]

13903

\[ {}y^{\prime \prime }-16 y = \delta \left (t -10\right ) \]

13904

\[ {}y^{\prime \prime }+y = \delta \left (t \right ) \]

13905

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t \right ) \]

13906

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t -3\right ) \]

13907

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \delta \left (t -4\right ) \]

13908

\[ {}y^{\prime \prime }-12 y^{\prime }+45 y = \delta \left (t \right ) \]

13909

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (-1+t \right ) \]

13910

\[ {}y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right ) \]

13911

\[ {}y^{\prime }-2 y = 0 \]

13912

\[ {}y^{\prime }-2 x y = 0 \]

13913

\[ {}y^{\prime }+\frac {2 y}{2 x -1} = 0 \]

13914

\[ {}\left (x -3\right ) y^{\prime }-2 y = 0 \]

13915

\[ {}\left (x^{2}+1\right ) y^{\prime }-2 x y = 0 \]

13916

\[ {}y^{\prime }+\frac {y}{-1+x} = 0 \]

13917

\[ {}y^{\prime }+\frac {y}{-1+x} = 0 \]

13918

\[ {}\left (1-x \right ) y^{\prime }-2 y = 0 \]

13919

\[ {}\left (-x^{3}+2\right ) y^{\prime }-3 x^{2} y = 0 \]

13920

\[ {}\left (-x^{3}+2\right ) y^{\prime }+3 x^{2} y = 0 \]

13921

\[ {}\left (1+x \right ) y^{\prime }-x y = 0 \]

13922

\[ {}\left (1+x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

13923

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y = 0 \]

13924

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

13925

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

13926

\[ {}y^{\prime \prime }-3 x^{2} y = 0 \]

13927

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }-5 x y^{\prime }-3 y = 0 \]

13928

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

13929

\[ {}y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

13930

\[ {}\left (x^{2}-6 x \right ) y^{\prime \prime }+4 \left (x -3\right ) y^{\prime }+2 y = 0 \]

13931

\[ {}y^{\prime \prime }+\left (2+x \right ) y^{\prime }+2 y = 0 \]

13932

\[ {}\left (x^{2}-2 x +2\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }-3 y = 0 \]

13933

\[ {}y^{\prime \prime }-2 y^{\prime }-x y = 0 \]

13934

\[ {}y^{\prime \prime }-x y^{\prime }-2 x y = 0 \]

13935

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\lambda y = 0 \]

13936

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\lambda y = 0 \]

13937

\[ {}y^{\prime \prime }+4 y = 0 \]

13938

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

13939

\[ {}y^{\prime \prime }+{\mathrm e}^{2 x} y = 0 \]

13940

\[ {}\sin \left (x \right ) y^{\prime \prime }-y = 0 \]

13941

\[ {}y^{\prime \prime }+x y = \sin \left (x \right ) \]

13942

\[ {}y^{\prime \prime }-y^{\prime } \sin \left (x \right )-x y = 0 \]

13943

\[ {}y^{\prime \prime }-y^{2} = 0 \]

13944

\[ {}y^{\prime }+\cos \left (y\right ) = 0 \]

13945

\[ {}y^{\prime }-{\mathrm e}^{x} y = 0 \]

13946

\[ {}y^{\prime }-\tan \left (x \right ) y = 0 \]

13947

\[ {}\sin \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-{\mathrm e}^{x} y = 0 \]

13948

\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-{\mathrm e}^{x} y = 0 \]

13949

\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \sin \left (x \right ) = 0 \]

13950

\[ {}{\mathrm e}^{3 x} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+\frac {2 y}{x^{2}+4} = 0 \]

13951

\[ {}y^{\prime \prime }+\frac {\left (1+{\mathrm e}^{x}\right ) y}{-{\mathrm e}^{x}+1} = 0 \]

13952

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+\left (x^{2}+x -6\right ) y = 0 \]

13953

\[ {}x y^{\prime \prime }+\left (-{\mathrm e}^{x}+1\right ) y = 0 \]

13954

\[ {}\sin \left (\pi \,x^{2}\right ) y^{\prime \prime }+x^{2} y = 0 \]

13955

\[ {}y^{\prime }-{\mathrm e}^{x} y = 0 \]

13956

\[ {}y^{\prime }+{\mathrm e}^{2 x} y = 0 \]

13957

\[ {}y^{\prime }+\cos \left (x \right ) y = 0 \]

13958

\[ {}y^{\prime }+y \ln \left (x \right ) = 0 \]

13959

\[ {}y^{\prime \prime }-{\mathrm e}^{x} y = 0 \]

13960

\[ {}y^{\prime \prime }+3 x y^{\prime }-{\mathrm e}^{x} y = 0 \]

13961

\[ {}x y^{\prime \prime }-3 x y^{\prime }+y \sin \left (x \right ) = 0 \]

13962

\[ {}y^{\prime \prime }+y \ln \left (x \right ) = 0 \]

13963

\[ {}\sqrt {x}\, y^{\prime \prime }+y = 0 \]

13964

\[ {}y^{\prime \prime }+\left (6 x^{2}+2 x +1\right ) y^{\prime }+\left (2+12 x \right ) y = 0 \]

13965

\[ {}y^{\prime }-{\mathrm e}^{x} y = 0 \]

13966

\[ {}y^{\prime }+y \sqrt {x^{2}+1} = 0 \]

13967

\[ {}y^{\prime } \cos \left (x \right )+y = 0 \]

13968

\[ {}y^{\prime }+\sqrt {2 x^{2}+1}\, y = 0 \]

13969

\[ {}y^{\prime \prime }-{\mathrm e}^{x} y = 0 \]

13970

\[ {}y^{\prime \prime }+\cos \left (x \right ) y = 0 \]

13971

\[ {}y^{\prime \prime }+y^{\prime } \sin \left (x \right )+\cos \left (x \right ) y = 0 \]

13972

\[ {}\sqrt {x}\, y^{\prime \prime }+y^{\prime }+x y = 0 \]

13973

\[ {}\left (x -3\right )^{2} y^{\prime \prime }-2 \left (x -3\right ) y^{\prime }+2 y = 0 \]

13974

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

13975

\[ {}\left (-1+x \right )^{2} y^{\prime \prime }-5 \left (-1+x \right ) y^{\prime }+9 y = 0 \]

13976

\[ {}\left (2+x \right )^{2} y^{\prime \prime }+\left (2+x \right ) y^{\prime } = 0 \]

13977

\[ {}3 \left (-2+x \right )^{2} y^{\prime \prime }-4 \left (x -5\right ) y^{\prime }+2 y = 0 \]

13978

\[ {}\left (x -5\right )^{2} y^{\prime \prime }+\left (x -5\right ) y^{\prime }+4 y = 0 \]

13979

\[ {}x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{-2+x}+\frac {2 y}{2+x} = 0 \]

13980

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

13981

\[ {}\left (-x^{4}+x^{3}\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+827 y = 0 \]

13982

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x -3}+\frac {y}{x -4} = 0 \]

13983

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{\left (x -3\right )^{2}}+\frac {y}{\left (x -4\right )^{2}} = 0 \]

13984

\[ {}y^{\prime \prime }+\left (\frac {1}{x}-\frac {1}{3}\right ) y^{\prime }+\left (\frac {1}{x}-\frac {1}{4}\right ) y = 0 \]

13985

\[ {}\left (4 x^{2}-1\right ) y^{\prime \prime }+\left (4-\frac {2}{x}\right ) y^{\prime }+\frac {\left (-x^{2}+1\right ) y}{x^{2}+1} = 0 \]

13986

\[ {}\left (x^{2}+4\right )^{2} y^{\prime \prime }+y = 0 \]

13987

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

13988

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

13989

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x -4\right ) y = 0 \]

13990

\[ {}\left (-9 x^{4}+x^{2}\right ) y^{\prime \prime }-6 x y^{\prime }+10 y = 0 \]

13991

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\frac {y}{1-x} = 0 \]

13992

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

13993

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{x^{2}}\right ) y = 0 \]

13994

\[ {}2 x^{2} y^{\prime \prime }+\left (-2 x^{3}+5 x \right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

13995

\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+\left (9+4 x \right ) y = 0 \]

13996

\[ {}\left (-3 x^{3}+3 x^{2}\right ) y^{\prime \prime }-\left (5 x^{2}+4 x \right ) y^{\prime }+2 y = 0 \]

13997

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0 \]

13998

\[ {}4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y = 0 \]

13999

\[ {}x^{2} y^{\prime \prime }+\left (-x^{4}+x \right ) y^{\prime }+3 x^{3} y = 0 \]

14000

\[ {}\left (9 x^{3}+9 x^{2}\right ) y^{\prime \prime }+\left (27 x^{2}+9 x \right ) y^{\prime }+\left (8 x -1\right ) y = 0 \]