# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = \delta \left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-16 y = \delta \left (t -10\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \delta \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t -3\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \delta \left (t -4\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-12 y^{\prime }+45 y = \delta \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 y}{2 x -1} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -3\right ) y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }-2 x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{-1+x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{-1+x} = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-x \right ) y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{3}+2\right ) y^{\prime }-3 x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{3}+2\right ) y^{\prime }+3 x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) y^{\prime }+\left (1-x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }-5 x y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-6 x \right ) y^{\prime \prime }+4 \left (x -3\right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (2+x \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-2 x +2\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-2 x y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\lambda y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\lambda y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+{\mathrm e}^{2 x} y = 0 \] |
✓ |
✓ |
|
\[ {}\sin \left (x \right ) y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+x y = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime } \sin \left (x \right )-x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-{\mathrm e}^{x} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\tan \left (x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\sin \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-{\mathrm e}^{x} y = 0 \] |
✓ |
✓ |
|
\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-{\mathrm e}^{x} y = 0 \] |
✓ |
✓ |
|
\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \sin \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{3 x} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+\frac {2 y}{x^{2}+4} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {\left (1+{\mathrm e}^{x}\right ) y}{-{\mathrm e}^{x}+1} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+\left (x^{2}+x -6\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (-{\mathrm e}^{x}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\sin \left (\pi \,x^{2}\right ) y^{\prime \prime }+x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-{\mathrm e}^{x} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+{\mathrm e}^{2 x} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \ln \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-{\mathrm e}^{x} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 x y^{\prime }-{\mathrm e}^{x} y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-3 x y^{\prime }+y \sin \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y \ln \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}\sqrt {x}\, y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (6 x^{2}+2 x +1\right ) y^{\prime }+\left (2+12 x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-{\mathrm e}^{x} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \sqrt {x^{2}+1} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } \cos \left (x \right )+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\sqrt {2 x^{2}+1}\, y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-{\mathrm e}^{x} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\cos \left (x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } \sin \left (x \right )+\cos \left (x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\sqrt {x}\, y^{\prime \prime }+y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -3\right )^{2} y^{\prime \prime }-2 \left (x -3\right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-1+x \right )^{2} y^{\prime \prime }-5 \left (-1+x \right ) y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (2+x \right )^{2} y^{\prime \prime }+\left (2+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 \left (-2+x \right )^{2} y^{\prime \prime }-4 \left (x -5\right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -5\right )^{2} y^{\prime \prime }+\left (x -5\right ) y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{-2+x}+\frac {2 y}{2+x} = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{4}+x^{3}\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+827 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x -3}+\frac {y}{x -4} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {y^{\prime }}{\left (x -3\right )^{2}}+\frac {y}{\left (x -4\right )^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (\frac {1}{x}-\frac {1}{3}\right ) y^{\prime }+\left (\frac {1}{x}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (4 x^{2}-1\right ) y^{\prime \prime }+\left (4-\frac {2}{x}\right ) y^{\prime }+\frac {\left (-x^{2}+1\right ) y}{x^{2}+1} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+4\right )^{2} y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x -4\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-9 x^{4}+x^{2}\right ) y^{\prime \prime }-6 x y^{\prime }+10 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\frac {y}{1-x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{x^{2}}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+\left (-2 x^{3}+5 x \right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+\left (9+4 x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-3 x^{3}+3 x^{2}\right ) y^{\prime \prime }-\left (5 x^{2}+4 x \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (-x^{4}+x \right ) y^{\prime }+3 x^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}\left (9 x^{3}+9 x^{2}\right ) y^{\prime \prime }+\left (27 x^{2}+9 x \right ) y^{\prime }+\left (8 x -1\right ) y = 0 \] |
✓ |
✓ |
|