4.119 Problems 11801 to 11900

Table 4.237: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

11801

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 9 \,{\mathrm e}^{2 x} x \]

11802

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 4 x \,{\mathrm e}^{-3 x} \]

11803

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = 8 \,{\mathrm e}^{-2 x} \]

11804

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 27 \,{\mathrm e}^{-6 x} \]

11805

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 18 \,{\mathrm e}^{-2 x} \]

11806

\[ {}y^{\prime \prime }-10 y^{\prime }+29 y = 8 \,{\mathrm e}^{5 x} \]

11807

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 8 \sin \left (3 x \right ) \]

11808

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 8 \,{\mathrm e}^{2 x}-5 \,{\mathrm e}^{3 x} \]

11809

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \,{\mathrm e}^{2 x} x +6 \,{\mathrm e}^{x} \]

11810

\[ {}y^{\prime \prime }-y = 3 \,{\mathrm e}^{x} x^{2} \]

11811

\[ {}y^{\prime \prime }+y = 3 x^{2}-4 \sin \left (x \right ) \]

11812

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right ) \]

11813

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 3 x \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}-\sin \left (x \right ) \]

11814

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime }-4 y = 8 x^{2}+3-6 \,{\mathrm e}^{2 x} \]

11815

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = x^{3}+x +{\mathrm e}^{-2 x} \]

11816

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x}+{\mathrm e}^{3 x} \sin \left (3 x \right ) \]

11817

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \left (\cos \left (x \right )+1\right ) \]

11818

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} x^{4}+x^{3} {\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \]

11819

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = x \,{\mathrm e}^{-3 x} \sin \left (2 x \right )+x^{2} {\mathrm e}^{-2 x} \sin \left (3 x \right ) \]

11820

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = {\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{2 x} x +5 x^{2} \]

11821

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = {\mathrm e}^{2 x} x +x^{2} {\mathrm e}^{3 x} \]

11822

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x}+3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]

11823

\[ {}y^{\prime \prime \prime \prime }-16 y = \sin \left (2 x \right ) x^{2}+x^{4} {\mathrm e}^{2 x} \]

11824

\[ {}y^{\left (6\right )}+2 y^{\left (5\right )}+5 y^{\prime \prime \prime \prime } = x^{3}+x^{2} {\mathrm e}^{-x}+\sin \left (2 x \right ) {\mathrm e}^{-x} \]

11825

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = \cos \left (x \right ) x^{2} \]

11826

\[ {}y^{\prime \prime \prime \prime }+16 y = x \,{\mathrm e}^{\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+{\mathrm e}^{-\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right ) \]

11827

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = \cos \left (x \right )^{2}-\cosh \left (x \right ) \]

11828

\[ {}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \sin \left (2 x \right ) \sin \left (x \right ) \]

11829

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

11830

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

11831

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

11832

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

11833

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

11834

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

11835

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \sec \left (x \right ) \]

11836

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \tan \left (2 x \right ) \]

11837

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 x}}{x^{3}} \]

11838

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \ln \left (x \right ) \]

11839

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

11840

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{3} \]

11841

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{x}} \]

11842

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{{\mathrm e}^{2 x}+1} \]

11843

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )+1} \]

11844

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \arcsin \left (x \right ) \]

11845

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x} \]

11846

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \ln \left (x \right ) \]

11847

\[ {}x^{2} y^{\prime \prime }-6 x y^{\prime }+10 y = 3 x^{4}+6 x^{3} \]

11848

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 1 \]

11849

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = \left (2+x \right )^{2} \]

11850

\[ {}x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y = x^{3} \]

11851

\[ {}x \left (-2+x \right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (-1+x \right ) y = 3 x^{2} \left (-2+x \right )^{2} {\mathrm e}^{x} \]

11852

\[ {}\left (2 x +1\right ) \left (1+x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = \left (2 x +1\right )^{2} \]

11853

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = \sin \left (x \right )^{3} \]

11854

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = {\mathrm e}^{x} x^{2} \]

11855

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

11856

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

11857

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+3 y = 0 \]

11858

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

11859

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

11860

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

11861

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

11862

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

11863

\[ {}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

11864

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

11865

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

11866

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0 \]

11867

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 x y^{\prime }+18 y = 0 \]

11868

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 4 x -6 \]

11869

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

11870

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

11871

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 2 x \ln \left (x \right ) \]

11872

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 4 \sin \left (\ln \left (x \right )\right ) \]

11873

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{3} \]

11874

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]

11875

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

11876

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

11877

\[ {}x^{2} y^{\prime \prime }-2 y = 4 x -8 \]

11878

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = -6 x^{3}+4 x^{2} \]

11879

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 10 x^{2} \]

11880

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

11881

\[ {}x^{2} y^{\prime \prime }-6 y = \ln \left (x \right ) \]

11882

\[ {}\left (2+x \right )^{2} y^{\prime \prime }-\left (2+x \right ) y^{\prime }-3 y = 0 \]

11883

\[ {}\left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y = 0 \]

11884

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

11885

\[ {}y^{\prime \prime }+8 x y^{\prime }-4 y = 0 \]

11886

\[ {}y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}+1\right ) y = 0 \]

11887

\[ {}y^{\prime \prime }+x y^{\prime }+\left (x^{2}-4\right ) y = 0 \]

11888

\[ {}y^{\prime \prime }+x y^{\prime }+\left (2+3 x \right ) y = 0 \]

11889

\[ {}y^{\prime \prime }-x y^{\prime }+\left (3 x -2\right ) y = 0 \]

11890

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+x y = 0 \]

11891

\[ {}\left (-1+x \right ) y^{\prime \prime }-\left (3 x -2\right ) y^{\prime }+2 x y = 0 \]

11892

\[ {}\left (x^{3}-1\right ) y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

11893

\[ {}\left (x +3\right ) y^{\prime \prime }+\left (2+x \right ) y^{\prime }+y = 0 \]

11894

\[ {}y^{\prime \prime }-x y^{\prime }-y = 0 \]

11895

\[ {}y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

11896

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+2 x y = 0 \]

11897

\[ {}\left (2 x^{2}-3\right ) y^{\prime \prime }-2 x y^{\prime }+y = 0 \]

11898

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

11899

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

11900

\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \]