4.115 Problems 11401 to 11500

Table 4.229: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

11401

\[ {}x^{\prime } = t -x^{2} \]

11402

\[ {}7 t^{2} x^{\prime } = 3 x-2 t \]

11403

\[ {}x x^{\prime } = 1-t x \]

11404

\[ {}{x^{\prime }}^{2}+t x = \sqrt {t +1} \]

11405

\[ {}x^{\prime } = -\frac {2 x}{t}+t \]

11406

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]

11407

\[ {}x^{\prime }+2 t x = {\mathrm e}^{-t^{2}} \]

11408

\[ {}t x^{\prime } = -x+t^{2} \]

11409

\[ {}\theta ^{\prime } = -a \theta +{\mathrm e}^{b t} \]

11410

\[ {}\left (t^{2}+1\right ) x^{\prime } = -3 t x+6 t \]

11411

\[ {}x^{\prime }+\frac {5 x}{t} = t +1 \]

11412

\[ {}x^{\prime } = \left (a +\frac {b}{t}\right ) x \]

11413

\[ {}R^{\prime }+\frac {R}{t} = \frac {2}{t^{2}+1} \]

11414

\[ {}N^{\prime } = N-9 \,{\mathrm e}^{-t} \]

11415

\[ {}\cos \left (\theta \right ) v^{\prime }+v = 3 \]

11416

\[ {}R^{\prime } = \frac {R}{t}+t \,{\mathrm e}^{-t} \]

11417

\[ {}y^{\prime }+a y = \sqrt {t +1} \]

11418

\[ {}x^{\prime } = 2 t x \]

11419

\[ {}x^{\prime }+\frac {{\mathrm e}^{-t} x}{t} = t \]

11420

\[ {}x^{\prime \prime }+x^{\prime } = 3 t \]

11421

\[ {}x^{\prime } = \left (t +x\right )^{2} \]

11422

\[ {}x^{\prime } = a x+b \]

11423

\[ {}x^{\prime }+p \left (t \right ) x = 0 \]

11424

\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \]

11425

\[ {}x^{\prime } = x \left (1+x \,{\mathrm e}^{t}\right ) \]

11426

\[ {}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}} \]

11427

\[ {}t^{2} y^{\prime }+2 t y-y^{2} = 0 \]

11428

\[ {}x^{\prime } = a x+b x^{3} \]

11429

\[ {}w^{\prime } = t w+t^{3} w^{3} \]

11430

\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \]

11431

\[ {}t^{3}+\frac {x}{t}+\left (x^{2}+\ln \left (t \right )\right ) x^{\prime } = 0 \]

11432

\[ {}x^{\prime } = -\frac {\sin \left (x\right )-x \sin \left (t \right )}{t \cos \left (x\right )+\cos \left (t \right )} \]

11433

\[ {}x+3 t x^{2} x^{\prime } = 0 \]

11434

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]

11435

\[ {}t \cot \left (x\right ) x^{\prime } = -2 \]

11436

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

11437

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]

11438

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]

11439

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

11440

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

11441

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]

11442

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]

11443

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

11444

\[ {}x^{\prime \prime }+x^{\prime }+4 x = 0 \]

11445

\[ {}x^{\prime \prime }-4 x^{\prime }+6 x = 0 \]

11446

\[ {}x^{\prime \prime }+9 x = 0 \]

11447

\[ {}x^{\prime \prime }-12 x = 0 \]

11448

\[ {}2 x^{\prime \prime }+3 x^{\prime }+3 x = 0 \]

11449

\[ {}\frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9} = 0 \]

11450

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]

11451

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{8}+x = 0 \]

11452

\[ {}x^{\prime \prime }+x^{\prime }+x = 3 t^{3}-1 \]

11453

\[ {}x^{\prime \prime }+x^{\prime }+x = 3 \cos \left (t \right )-2 \sin \left (t \right ) \]

11454

\[ {}x^{\prime \prime }+x^{\prime }+x = 12 \]

11455

\[ {}x^{\prime \prime }+x^{\prime }+x = t^{2} {\mathrm e}^{3 t} \]

11456

\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (7 t \right ) \]

11457

\[ {}x^{\prime \prime }+x^{\prime }+x = {\mathrm e}^{2 t} \cos \left (t \right )+t^{2} \]

11458

\[ {}x^{\prime \prime }+x^{\prime }+x = t \,{\mathrm e}^{-t} \sin \left (\pi t \right ) \]

11459

\[ {}x^{\prime \prime }+x^{\prime }+x = \left (2+t \right ) \sin \left (\pi t \right ) \]

11460

\[ {}x^{\prime \prime }+x^{\prime }+x = 4 t +5 \,{\mathrm e}^{-t} \]

11461

\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (2 t \right )+t \,{\mathrm e}^{t} \]

11462

\[ {}x^{\prime \prime }+x^{\prime }+x = t^{3}+1-4 t \cos \left (t \right ) \]

11463

\[ {}x^{\prime \prime }+x^{\prime }+x = -6+2 \,{\mathrm e}^{2 t} \sin \left (t \right ) \]

11464

\[ {}x^{\prime \prime }+7 x = t \,{\mathrm e}^{3 t} \]

11465

\[ {}x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t} \]

11466

\[ {}x^{\prime \prime }+x = t^{2} \]

11467

\[ {}x^{\prime \prime }-3 x^{\prime }-4 x = 2 t^{2} \]

11468

\[ {}x^{\prime \prime }+x = 9 \,{\mathrm e}^{-t} \]

11469

\[ {}x^{\prime \prime }-4 x = \cos \left (2 t \right ) \]

11470

\[ {}x^{\prime \prime }+x^{\prime }+2 x = t \sin \left (2 t \right ) \]

11471

\[ {}x^{\prime \prime }-b x^{\prime }+x = \sin \left (2 t \right ) \]

11472

\[ {}x^{\prime \prime }-3 x^{\prime }-40 x = 2 \,{\mathrm e}^{-t} \]

11473

\[ {}x^{\prime \prime }-2 x^{\prime } = 4 \]

11474

\[ {}x^{\prime \prime }+2 x = \cos \left (\sqrt {2}\, t \right ) \]

11475

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{100}+4 x = \cos \left (2 t \right ) \]

11476

\[ {}x^{\prime \prime }+w^{2} x = \cos \left (\beta t \right ) \]

11477

\[ {}x^{\prime \prime }+3025 x = \cos \left (45 t \right ) \]

11478

\[ {}x^{\prime \prime } = -\frac {x}{t^{2}} \]

11479

\[ {}x^{\prime \prime } = \frac {4 x}{t^{2}} \]

11480

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0 \]

11481

\[ {}t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t} = 0 \]

11482

\[ {}t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x = 0 \]

11483

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x = 0 \]

11484

\[ {}t^{2} x^{\prime \prime }+t x^{\prime } = 0 \]

11485

\[ {}t^{2} x^{\prime \prime }-t x^{\prime }+2 x = 0 \]

11486

\[ {}x^{\prime \prime }+t^{2} x^{\prime } = 0 \]

11487

\[ {}x^{\prime \prime }+x = \tan \left (t \right ) \]

11488

\[ {}x^{\prime \prime }-x = t \,{\mathrm e}^{t} \]

11489

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]

11490

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

11491

\[ {}x^{\prime \prime }+x = \frac {1}{t +1} \]

11492

\[ {}x^{\prime \prime }-2 x^{\prime }+x = \frac {{\mathrm e}^{t}}{2 t} \]

11493

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{t} = a \]

11494

\[ {}t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7} \]

11495

\[ {}x^{\prime \prime }-x = \frac {{\mathrm e}^{t}}{1+{\mathrm e}^{t}} \]

11496

\[ {}x^{\prime \prime }+t x^{\prime }+x = 0 \]

11497

\[ {}x^{\prime \prime }-t x^{\prime }+x = 0 \]

11498

\[ {}x^{\prime \prime }-2 a x^{\prime }+a^{2} x = 0 \]

11499

\[ {}x^{\prime \prime }-\frac {\left (2+t \right ) x^{\prime }}{t}+\frac {\left (2+t \right ) x}{t^{2}} = 0 \]

11500

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }+\left (t^{2}-\frac {1}{4}\right ) x = 0 \]