# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime } = f \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \] |
✓ |
✓ |
|
\[ {}g \left (x \right ) y^{\prime } = f_{1} \left (x \right ) y+f_{0} \left (x \right ) \] |
✓ |
✓ |
|
\[ {}g \left (x \right ) y^{\prime } = f_{1} \left (x \right ) y+f_{n} \left (x \right ) y^{n} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a y^{2}+b x +c \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-x^{2} a^{2}+3 a \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}+x^{2} a^{2}+b x +c \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a y^{2}+b \,x^{n} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}+a n \,x^{n -1}-a^{2} x^{2 n} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a y^{2}+b \,x^{2 n}+c \,x^{n -1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{-n -2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{m} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}+k \left (a x +b \right )^{n} \left (c x +d \right )^{-n -4} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = a \,x^{n} y^{2}+b m \,x^{m -1}-a \,b^{2} x^{n +2 m} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (a \,x^{2 n}+b \,x^{n -1}\right ) y^{2}+c \] |
✓ |
✓ |
|
\[ {}\left (a_{2} x +b_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+a_{0} x +b_{0} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y^{2} x^{2}-a^{2} x^{4}+a \left (1-2 b \right ) x^{2}-b \left (b +1\right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b \,x^{n}+c \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y^{2} x^{2}+a \,x^{2 m} \left (b \,x^{m}+c \right )^{n}-\frac {n^{2}}{4}+\frac {1}{4} \] |
✗ |
✗ |
|
\[ {}\left (c_{2} x^{2}+b_{2} x +a_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+a_{0} = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime } = -x^{4} y^{2}-a^{2} \] |
✓ |
✓ |
|
\[ {}a \,x^{2} \left (-1+x \right )^{2} \left (y^{\prime }+\lambda y^{2}\right )+b \,x^{2}+c x +s = 0 \] |
✗ |
✓ |
|
\[ {}\left (x^{2} a +b x +c \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0 \] |
✓ |
✓ |
|
\[ {}x^{n +1} y^{\prime } = a \,x^{2 n} y^{2}+c \,x^{m}+d \] |
✓ |
✓ |
|
\[ {}\left (a \,x^{n}+b \right ) y^{\prime } = b y^{2}+a \,x^{n -2} \] |
✓ |
✓ |
|
\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) \left (y^{\prime }-y^{2}\right )+a n \left (n -1\right ) x^{n -2}+b m \left (m -1\right ) x^{m -2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a y^{2}+b y+c x +k \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}+a \,x^{n} y+a \,x^{n -1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}+a \,x^{n} y+b \,x^{n -1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}+\left (\alpha x +\beta \right ) y+x^{2} a +b x +c \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}+a \,x^{n} y-a b \,x^{n}-b^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\left (n +1\right ) x^{n} y^{2}+a \,x^{1+m +n}-a \,x^{m} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{m} y+b c \,x^{m}-a \,c^{2} x^{n} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a \,x^{n} y^{2}-a \,x^{n} \left (b \,x^{m}+c \right ) y+b m \,x^{m -1} \] |
✓ |
✗ |
|
\[ {}y^{\prime } = -a n \,x^{n -1} y^{2}+c \,x^{m} \left (a \,x^{n}+b \right ) y-c \,x^{m} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{m} y+c k \,x^{k -1}-b c \,x^{m +k}-a \,c^{2} x^{n +2 k} \] |
✗ |
✗ |
|
\[ {}x y^{\prime } = a y^{2}+b y+c \,x^{2 b} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = a y^{2}+b y+c \,x^{n} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = a y^{2}+\left (n +b \,x^{n}\right ) y+c \,x^{2 n} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x y^{2}+a y+b \,x^{n} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+a_{3} x y^{2}+a_{2} y+a_{1} x +a_{0} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = a \,x^{n} y^{2}+b y+c \,x^{-n} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = a \,x^{n} y^{2}+m y-a \,b^{2} x^{n +2 m} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x^{2 n} y^{2}+\left (m -n \right ) y+x^{2 m} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = a \,x^{n} y^{2}+b y+c \,x^{m} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = a \,x^{2 n} y^{2}+\left (b \,x^{n}-n \right ) y+c \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = a \,x^{2 n +m} y^{2}+\left (b \,x^{m +n}-n \right ) y+c \,x^{m} \] |
✓ |
✓ |
|
\[ {}\left (a_{2} x +b_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (a_{1} x +b_{1} \right ) y+a_{0} x +b_{0} = 0 \] |
✓ |
✓ |
|
\[ {}\left (a x +c \right ) y^{\prime } = \alpha \left (b x +a y\right )^{2}+\beta \left (b x +a y\right )-b x +\gamma \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime } = 2 y^{2}+x y-2 x \,a^{2} \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime } = 2 y^{2}+3 x y-2 x \,a^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b x y+c \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = c \,x^{2} y^{2}+\left (x^{2} a +b x \right ) y+\alpha \,x^{2}+\beta x +\gamma \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b x y+c \,x^{n}+s \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b x y+c \,x^{2 n}+s \,x^{n} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = c \,x^{2} y^{2}+\left (a \,x^{n}+b \right ) x y+\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = \left (\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \right ) y^{2}+\left (a \,x^{n}+b \right ) x y+c \,x^{2} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime }+\lambda \left (y^{2}-2 x y+1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2} a +b \right ) y^{\prime }+\alpha y^{2}+\beta x y+\frac {b \left (a +\beta \right )}{\alpha } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2} a +b \right ) y^{\prime }+\alpha y^{2}+\beta x y+\gamma = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2} a +b \right ) y^{\prime }+y^{2}-2 x y+\left (-a +1\right ) x^{2}-b = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2} a +b x +c \right ) y^{\prime } = y^{2}+\left (2 \lambda x +b \right ) y+\lambda \left (\lambda -a \right ) x^{2}+\mu \] |
✓ |
✓ |
|
\[ {}\left (x^{2} a +b x +c \right ) y^{\prime } = y^{2}+\left (a x +\mu \right ) y-\lambda ^{2} x^{2}+\lambda \left (b -\mu \right ) x +c \lambda \] |
✓ |
✓ |
|
\[ {}\left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime } = y^{2}+\left (a_{1} x +b_{1} \right ) y-\lambda \left (\lambda +a_{1} -a_{2} \right ) x^{2}+\lambda \left (b_{2} -b_{1} \right ) x +\lambda c_{2} \] |
✓ |
✓ |
|
\[ {}\left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime } = y^{2}+\left (a_{1} x +b_{1} \right ) y+a_{0} x^{2}+b_{0} x +c_{0} \] |
✗ |
✓ |
|
\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+y^{2}+k \left (y+x -a \right ) \left (y+x -b \right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (c_{2} x^{2}+b_{2} x +a_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (b_{1} x +a_{1} \right ) y+a_{0} = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime } = a \,x^{3} y^{2}+\left (b \,x^{2}+c \right ) y+s x \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime } = a \,x^{3} y^{2}+x \left (b x +c \right ) y+\alpha x +\beta \] |
✓ |
✓ |
|
\[ {}x \left (x^{2}+a \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (b \,x^{2}+c \right ) y+s x = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (x +a \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b x +c \right ) y+\alpha x +\beta = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2} a +b x +e \right ) \left (-y+x y^{\prime }\right )-y^{2}+x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (x^{2}+a \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b \,x^{2}+c \right ) y+s = 0 \] |
✓ |
✓ |
|