# |
ODE |
Mathematica |
Maple |
\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (1+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-\left (x^{2}+\frac {5}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x^{4} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {2 y}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {6 y}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (-1+x \right )^{2}}+\frac {3}{16 x \left (-1+x \right )}\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {20 y}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {12 y}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {y}{4 x^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {y}{x^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {\left (4 x^{6}-8 x^{5}+12 x^{4}+4 x^{3}+7 x^{2}-20 x +4\right ) y}{4 x^{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (\frac {6}{x^{2}}-1\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (\frac {x^{2}}{4}-\frac {11}{2}\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (\frac {1}{x}-\frac {3}{16 x^{2}}\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (-1+x \right )^{2}}+\frac {3}{16 x \left (-1+x \right )}\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {\left (5 x^{2}+27\right ) y}{36 \left (x^{2}-1\right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {y}{4 x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime } = 2 y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-2+x \right )^{2} y^{\prime \prime }-\left (-2+x \right ) y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {1}{\sqrt {\operatorname {a4} \,x^{4}+\operatorname {a3} \,x^{3}+\operatorname {a2} \,x^{2}+\operatorname {a1} x +\operatorname {a0}}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y-c \,{\mathrm e}^{b x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y-b \sin \left (c x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y-x \,{\mathrm e}^{-x^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (x \right ) y-{\mathrm e}^{2 x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (x \right ) y-\frac {\sin \left (2 x \right )}{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (x \right ) y-{\mathrm e}^{-\sin \left (x \right )} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \tan \left (x \right )-\sin \left (2 x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\left (\sin \left (\ln \left (x \right )\right )+\cos \left (\ln \left (x \right )\right )+a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+f^{\prime }\left (x \right ) y-f \left (x \right ) f^{\prime }\left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+f \left (x \right ) y-g \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2}-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2}-a x -b = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2}+a \,x^{m} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2}-2 x^{2} y+x^{4}-2 x -1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2}+\left (x y-1\right ) f \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y^{2}-3 y+4 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y^{2}-x y-x +1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\left (x +y\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y^{2}+\left (x^{2}+1\right ) y-2 x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y^{2}+y \sin \left (x \right )-\cos \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y^{2}-y \sin \left (2 x \right )-\cos \left (2 x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y^{2}-b = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y^{2}-b \,x^{\nu } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y^{2}-b \,x^{2 \nu }-c \,x^{\nu -1} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\left (y A -a \right ) \left (B y-b \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y \left (y-x \right )-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x y^{2}-x^{3} y-2 x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y^{2}-3 x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x^{-1-a} y^{2}-x^{a} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-a \,x^{n} \left (1+y^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2} \sin \left (x \right )-\frac {2 \sin \left (x \right )}{\cos \left (x \right )^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y^{2} f^{\prime }\left (x \right )}{g \left (x \right )}+\frac {g^{\prime }\left (x \right )}{f \left (x \right )} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+f \left (x \right ) y^{2}+g \left (x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+f \left (x \right ) \left (y^{2}+2 a y+b \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{3}+a x y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y^{3}-a \,{\mathrm e}^{x} y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-a y^{3}-\frac {b}{x^{\frac {3}{2}}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\operatorname {a3} y^{3}-\operatorname {a2} y^{2}-\operatorname {a1} y-\operatorname {a0} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 a y^{3}+6 a x y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a x y^{3}+b y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x \left (2+x \right ) y^{3}-\left (x +3\right ) y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\left (4 x \,a^{2}+3 x^{2} a +b \right ) y^{3}+3 x y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 a \,x^{3} y^{3}+2 x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 \left (a^{2} x^{3}-b^{2} x \right ) y^{3}+3 b y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x^{a} y^{3}+3 y^{2}-x^{-a} y-x^{-2 a}+a \,x^{-1-a} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-a \left (x^{n}-x \right ) y^{3}-y^{2} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-\left (a \,x^{n}+b x \right ) y^{3}-c y^{2} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }+a \phi ^{\prime }\left (x \right ) y^{3}+6 a \phi \left (x \right ) y^{2}+\frac {\left (2 a +1\right ) y \phi ^{\prime \prime }\left (x \right )}{\phi ^{\prime }\left (x \right )}+2+2 a = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-f_{3} \left (x \right ) y^{3}-f_{2} \left (x \right ) y^{2}-f_{1} \left (x \right ) y-f_{0} \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-\left (y-f \left (x \right )\right ) \left (y-g \left (x \right )\right ) \left (y-\frac {a f \left (x \right )+b g \left (x \right )}{a +b}\right ) h \left (x \right )-\frac {f^{\prime }\left (x \right ) \left (y-g \left (x \right )\right )}{f \left (x \right )-g \left (x \right )}-\frac {g^{\prime }\left (x \right ) \left (y-f \left (x \right )\right )}{g \left (x \right )-f \left (x \right )} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-a y^{n}-b \,x^{\frac {n}{1-n}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-f \left (x \right )^{1-n} g^{\prime }\left (x \right ) y^{n} \left (a g \left (x \right )+b \right )^{-n}-\frac {f^{\prime }\left (x \right ) y}{f \left (x \right )}-f \left (x \right ) g^{\prime }\left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-a^{n} f \left (x \right )^{1-n} g^{\prime }\left (x \right ) y^{n}-\frac {f^{\prime }\left (x \right ) y}{f \left (x \right )}-f \left (x \right ) g^{\prime }\left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-f \left (x \right ) y^{n}-g \left (x \right ) y-h \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-f \left (x \right ) y^{a}-g \left (x \right ) y^{b} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-\sqrt {{| y|}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-a \sqrt {y}-b x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-a \sqrt {1+y^{2}}-b = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {\sqrt {y^{2}-1}}{\sqrt {x^{2}-1}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {\sqrt {x^{2}-1}}{\sqrt {y^{2}-1}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y-x^{2} \sqrt {x^{2}-y^{2}}}{x y \sqrt {x^{2}-y^{2}}+x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {1+y^{2}}{{| y+\sqrt {y+1}|} \left (1+x \right )^{\frac {3}{2}}} = 0 \] |
✓ |
✓ |
|