# |
ODE |
Mathematica result |
Maple result |
\[ {}\left (1-4 x +3 y^{2} x \right ) y^{\prime } = \left (2-y^{2}\right ) y \] |
✓ |
✓ |
|
\[ {}x \left (x -3 y^{2}\right ) y^{\prime }+\left (2 x -y^{2}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}3 x \left (x +y^{2}\right ) y^{\prime }+x^{3}-3 x y-2 y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}x \left (x^{3}-3 y x^{3}+4 y^{2}\right ) y^{\prime } = 6 y^{3} \] |
✓ |
✓ |
|
\[ {}6 x y^{2} y^{\prime }+x +2 y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}x \left (x +6 y^{2}\right ) y^{\prime }+x y-3 y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}x \left (x^{2}-6 y^{2}\right ) y^{\prime } = 4 \left (x^{2}+3 y^{2}\right ) y \] |
✓ |
✓ |
|
\[ {}x \left (3 x -7 y^{2}\right ) y^{\prime }+\left (5 x -3 y^{2}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{2} y^{\prime }+1-x +x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-x^{2} y^{2}\right ) y^{\prime } = x y^{3} \] |
✓ |
✓ |
|
\[ {}\left (1-x^{2} y^{2}\right ) y^{\prime } = \left (1+x y\right ) y^{2} \] |
✓ |
✓ |
|
\[ {}x \left (1+y^{2} x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (1+y^{2} x \right ) y^{\prime } = \left (2-3 y^{2} x \right ) y \] |
✓ |
✓ |
|
\[ {}x^{2} \left (a +y\right )^{2} y^{\prime } = \left (x^{2}+1\right ) \left (y^{2}+a^{2}\right ) \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-x^{3}+6 x^{2} y^{2}\right ) y^{\prime } = \left (6+3 x y-4 y^{3}\right ) x \] |
✓ |
✓ |
|
\[ {}x \left (3+5 x -12 y^{2} x +4 x^{2} y\right ) y^{\prime }+\left (3+10 x -8 y^{2} x +6 x^{2} y\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} \left (1+y^{2}\right ) y^{\prime }+3 x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (1-x y\right )^{2} y^{\prime }+\left (1+x^{2} y^{2}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-x^{4} y^{2}\right ) y^{\prime } = y^{3} x^{3} \] |
✓ |
✓ |
|
\[ {}\left (3 x -y^{3}\right ) y^{\prime } = x^{2}-3 y \] |
✓ |
✓ |
|
\[ {}\left (x^{3}-y^{3}\right ) y^{\prime }+x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+y^{3}\right ) y^{\prime }+x^{2} \left (a x +3 y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -x^{2} y-y^{3}\right ) y^{\prime } = x^{3}-y+y^{2} x \] |
✓ |
✓ |
|
\[ {}\left (a^{2} x +\left (x^{2}-y^{2}\right ) y\right ) y^{\prime }+x \left (x^{2}-y^{2}\right ) = a^{2} y \] |
✓ |
✗ |
|
\[ {}\left (a +x^{2}+y^{2}\right ) y y^{\prime } = x \left (a -x^{2}-y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (a -3 x^{2}-y^{2}\right ) y y^{\prime }+x \left (-x^{2}+y^{2}+a \right ) = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{3} y^{\prime } = x^{3}-y^{2} x \] |
✓ |
✓ |
|
\[ {}y \left (2 y^{2}+1\right ) y^{\prime } = x \left (2 x^{2}+1\right ) \] |
✓ |
✓ |
|
\[ {}\left (3 x^{2}+2 y^{2}\right ) y y^{\prime }+x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\left (5 x^{2}+2 y^{2}\right ) y y^{\prime }+x \left (x^{2}+5 y^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-x^{3}+3 y^{2} x +2 y^{3}\right ) y^{\prime }+2 x^{3}+3 x^{2} y+y^{2}-y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\left (3 x^{3}+6 x^{2} y-3 y^{2} x +20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 y^{2} x -y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+a y^{3}\right ) y^{\prime } = x^{2} y \] |
✓ |
✓ |
|
\[ {}x y^{3} y^{\prime } = \left (-x^{2}+1\right ) \left (1+y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}x \left (x -y^{3}\right ) y^{\prime } = \left (3 x +y^{3}\right ) y \] |
✓ |
✓ |
|
\[ {}x \left (2 x^{3}+y^{3}\right ) y^{\prime } = \left (2 x^{3}-x^{2} y+y^{3}\right ) y \] |
✓ |
✓ |
|
\[ {}x \left (2 x^{3}-y^{3}\right ) y^{\prime } = \left (x^{3}-2 y^{3}\right ) y \] |
✓ |
✓ |
|
\[ {}x \left (x^{3}+3 x^{2} y+y^{3}\right ) y^{\prime } = \left (3 x^{2}+y^{2}\right ) y^{2} \] |
✓ |
✓ |
|
\[ {}x \left (x^{3}-2 y^{3}\right ) y^{\prime } = \left (2 x^{3}-y^{3}\right ) y \] |
✓ |
✓ |
|
\[ {}x \left (x^{4}-2 y^{3}\right ) y^{\prime }+\left (2 x^{4}+y^{3}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (x +y+2 y^{3}\right ) y^{\prime } = \left (-y+x \right ) y \] |
✓ |
✓ |
|
\[ {}\left (5 x -y-7 x y^{3}\right ) y^{\prime }+5 y-y^{4} = 0 \] |
✓ |
✓ |
|
\[ {}x \left (1-2 x y^{3}\right ) y^{\prime }+\left (1-2 y x^{3}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (2-y^{2} x -2 x y^{3}\right ) y^{\prime }+1+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (2-10 y^{3} x^{2}+3 y^{2}\right ) y^{\prime } = x \left (1+5 y^{4}\right ) \] |
✓ |
✓ |
|
\[ {}x \left (a +b x y^{3}\right ) y^{\prime }+\left (a +c \,x^{3} y\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (1-2 y^{3} x^{2}\right ) y^{\prime }+\left (1-2 x^{3} y^{2}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (1-x y\right ) \left (1-x^{2} y^{2}\right ) y^{\prime }+\left (1+x y\right ) \left (1+x^{2} y^{2}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-y^{4}\right ) y^{\prime } = x y \] |
✓ |
✓ |
|
\[ {}\left (x^{3}-y^{4}\right ) y^{\prime } = 3 x^{2} y \] |
✓ |
✓ |
|
\[ {}\left (a^{2} x^{2}+\left (y^{2}+x^{2}\right )^{2}\right ) y^{\prime } = a^{2} x y \] |
✓ |
✓ |
|
\[ {}2 \left (x -y^{4}\right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}\left (4 x -x y^{3}-2 y^{4}\right ) y^{\prime } = \left (2+y^{3}\right ) y \] |
✓ |
✓ |
|
\[ {}\left (a \,x^{3}+\left (a x +b y\right )^{3}\right ) y y^{\prime }+x \left (\left (a x +b y\right )^{3}+b y^{3}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +2 y+2 y^{3} x^{2}+x y^{4}\right ) y^{\prime }+\left (1+y^{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 x \left (x^{3}+y^{4}\right ) y^{\prime } = \left (x^{3}+2 y^{4}\right ) y \] |
✓ |
✓ |
|
\[ {}x \left (1-y^{4} x^{2}\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-y^{5}\right ) y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}x \left (x^{3}+y^{5}\right ) y^{\prime } = \left (x^{3}-y^{5}\right ) y \] |
✓ |
✓ |
|
\[ {}x^{3} \left (1+5 x^{3} y^{7}\right ) y^{\prime }+\left (3 x^{5} y^{5}-1\right ) y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+a \left (x +y\right )\right )^{n} y^{\prime }+a \left (x +y\right )^{n} = 0 \] |
✓ |
✓ |
|
\[ {}x \left (a +x y^{n}\right ) y^{\prime }+b y = 0 \] |
✓ |
✓ |
|
\[ {}f \left (x \right ) y^{m} y^{\prime }+g \left (x \right ) y^{m +1}+h \left (x \right ) y^{n} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sqrt {b^{2}+y^{2}} = \sqrt {a^{2}+x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sqrt {b^{2}-y^{2}} = \sqrt {a^{2}-x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sqrt {y} = \sqrt {x} \] |
✓ |
✓ |
|
\[ {}\left (\sqrt {x +y}+1\right ) y^{\prime }+1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sqrt {x y}+x -y = \sqrt {x y} \] |
✓ |
✓ |
|
\[ {}\left (x -2 \sqrt {x y}\right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{\frac {3}{2}} y^{\prime } = 1+y^{2} \] |
✓ |
✓ |
|
\[ {}\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{\frac {3}{2}} y^{\prime } = 1+y^{2} \] |
✓ |
✓ |
|
\[ {}\left (x -\sqrt {y^{2}+x^{2}}\right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}x \left (1-\sqrt {x^{2}-y^{2}}\right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}x \left (x +\sqrt {y^{2}+x^{2}}\right ) y^{\prime }+y \sqrt {y^{2}+x^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}x y \left (x +\sqrt {x^{2}-y^{2}}\right ) y^{\prime } = y^{2} x -\left (x^{2}-y^{2}\right )^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}\left (x \sqrt {1+x^{2}+y^{2}}-y \left (y^{2}+x^{2}\right )\right ) y^{\prime } = x \left (y^{2}+x^{2}\right )+y \sqrt {1+x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \cos \left (y\right ) \left (\cos \left (y\right )-\sin \left (A \right ) \sin \left (x \right )\right )+\cos \left (x \right ) \left (\cos \left (x \right )-\sin \left (A \right ) \sin \left (y\right )\right ) = 0 \] |
✓ |
✗ |
|
\[ {}\left (a \cos \left (b x +a y\right )-b \sin \left (a x +b y\right )\right ) y^{\prime }+b \cos \left (b x +a y\right )-a \sin \left (a x +b y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +\cos \left (x \right ) \sec \left (y\right )\right ) y^{\prime }+\tan \left (y\right )-y \sin \left (x \right ) \sec \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+\left (x +y\right ) \tan \left (y\right )\right ) y^{\prime }+1 = 0 \] |
✓ |
✓ |
|
\[ {}x \left (x -y \tan \left (\frac {y}{x}\right )\right ) y^{\prime }+\left (x +y \tan \left (\frac {y}{x}\right )\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\left ({\mathrm e}^{x}+x \,{\mathrm e}^{y}\right ) y^{\prime }+y \,{\mathrm e}^{x}+{\mathrm e}^{y} = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-2 x -\ln \left (y\right )\right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (\sinh \left (x \right )+x \cosh \left (y\right )\right ) y^{\prime }+y \cosh \left (x \right )+\sinh \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } \left (1+\sinh \left (x \right )\right ) \sinh \left (y\right )+\cosh \left (x \right ) \left (\cosh \left (y\right )-1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = a \,x^{n} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = y \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = -y+x \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = y+x^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+x^{2} = 4 y \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+3 x^{2} = 8 y \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+x^{2} a +b y = 0 \] |
✓ |
✗ |
|
\[ {}{y^{\prime }}^{2} = 1+y^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = 1-y^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = a^{2}-y^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = y^{2} a^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = a +b y^{2} \] |
✓ |
✓ |
|
|
|||
|
|||