2.119 Problems 11801 to 11900

Table 2.237: Main lookup table

#

ODE

Mathematica result

Maple result

11801

\[ {}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \]

11802

\[ {}x y {y^{\prime }}^{2}-\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0 \]

11803

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

11804

\[ {}x^{\prime } = {\mathrm e}^{\frac {x}{t}}+\frac {x}{t} \]

11805

\[ {}x^{2}+{y^{\prime }}^{2} = 1 \]

11806

\[ {}y = x y^{\prime }+\frac {1}{y} \]

11807

\[ {}x = {y^{\prime }}^{3}-y^{\prime }+2 \]

11808

\[ {}y^{\prime } = \frac {y}{x +y^{3}} \]

11809

\[ {}y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \]

11810

\[ {}y^{2}+{y^{\prime }}^{2} = 4 \]

11811

\[ {}y^{\prime } = \frac {2 y-x -4}{2 x -y+5} \]

11812

\[ {}y^{\prime }-\frac {y}{1+x}+y^{2} = 0 \]

11813

\[ {}y^{\prime } = x +y^{2} \]

11814

\[ {}y^{\prime } = x y^{3}+x^{2} \]

11815

\[ {}y^{\prime } = x^{2}-y^{2} \]

11816

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

11817

\[ {}{y^{\prime }}^{3}-y^{\prime } {\mathrm e}^{2 x} = 0 \]

11818

\[ {}y = 5 x y^{\prime }-{y^{\prime }}^{2} \]

11819

\[ {}y^{\prime } = x -y^{2} \]

11820

\[ {}y^{\prime } = \left (x -5 y\right )^{\frac {1}{3}}+2 \]

11821

\[ {}\left (-y+x \right ) y-x^{2} y^{\prime } = 0 \]

11822

\[ {}x^{\prime }+5 x = 10 t +2 \]

11823

\[ {}x^{\prime } = \frac {x}{t}+\frac {x^{2}}{t^{3}} \]

11824

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

11825

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

11826

\[ {}y^{\prime } = \frac {3 x -4 y-2}{3 x -4 y-3} \]

11827

\[ {}x^{\prime }-x \cot \left (t \right ) = 4 \sin \left (t \right ) \]

11828

\[ {}y = x^{2}+2 x y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \]

11829

\[ {}y^{\prime }-\frac {3 y}{x}+x^{3} y^{2} = 0 \]

11830

\[ {}y \left ({y^{\prime }}^{2}+1\right ) = a \]

11831

\[ {}x^{2}-y+\left (x^{2} y^{2}+x \right ) y^{\prime } = 0 \]

11832

\[ {}3 y^{2}-x +2 y \left (y^{2}-3 x \right ) y^{\prime } = 0 \]

11833

\[ {}\left (-y+x \right ) y-x^{2} y^{\prime } = 0 \]

11834

\[ {}y^{\prime } = \frac {x +y-3}{y-x +1} \]

11835

\[ {}x y^{\prime }-y^{2} \ln \left (x \right )+y = 0 \]

11836

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \]

11837

\[ {}\left (4 y+2 x +3\right ) y^{\prime }-2 y-x -1 = 0 \]

11838

\[ {}\left (-x +y^{2}\right ) y^{\prime }-y+x^{2} = 0 \]

11839

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0 \]

11840

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

11841

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

11842

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

11843

\[ {}{y^{\prime }}^{2}+2 y^{\prime } y \cot \left (x \right )-y^{2} = 0 \]

11844

\[ {}y^{\prime \prime }-6 y^{\prime }+10 y = 100 \]

11845

\[ {}x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right ) \]

11846

\[ {}y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \]

11847

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}} \]

11848

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 2 \]

11849

\[ {}y^{\prime \prime }+y = \cosh \left (x \right ) \]

11850

\[ {}y^{\prime \prime }+\frac {2 {y^{\prime }}^{2}}{1-y} = 0 \]

11851

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \]

11852

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

11853

\[ {}x^{3} x^{\prime \prime }+1 = 0 \]

11854

\[ {}y^{\prime \prime \prime \prime }-16 y = x^{2}-{\mathrm e}^{x} \]

11855

\[ {}{y^{\prime \prime \prime }}^{2}+{y^{\prime \prime }}^{2} = 1 \]

11856

\[ {}x^{\left (6\right )}-x^{\prime \prime \prime \prime } = 1 \]

11857

\[ {}x^{\prime \prime \prime \prime }-2 x^{\prime \prime }+x = t^{2}-3 \]

11858

\[ {}y^{\prime \prime }+4 x y = 0 \]

11859

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-\frac {1}{25}\right ) y = 0 \]

11860

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

11861

\[ {}y^{\prime \prime } = 3 \sqrt {y} \]

11862

\[ {}y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )} \]

11863

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0 \]

11864

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = \frac {y y^{\prime }}{\sqrt {x^{2}+1}} \]

11865

\[ {}y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}+{y^{\prime \prime }}^{2} \]

11866

\[ {}x^{\prime \prime }+9 x = t \sin \left (3 t \right ) \]

11867

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right ) \]

11868

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

11869

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = x \,{\mathrm e}^{x} \cos \left (x \right ) \]

11870

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1 \]

11871

\[ {}m x^{\prime \prime } = f \left (x\right ) \]

11872

\[ {}m x^{\prime \prime } = f \left (x^{\prime }\right ) \]

11873

\[ {}y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = x \]

11874

\[ {}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = \cos \left (t \right ) \]

11875

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 2 \cos \left (\ln \left (1+x \right )\right ) \]

11876

\[ {}x^{3} y^{\prime \prime }-x y^{\prime }+y = 0 \]

11877

\[ {}x^{\prime \prime \prime \prime }+x = t^{3} \]

11878

\[ {}{y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x \]

11879

\[ {}x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t} \]

11880

\[ {}x y y^{\prime \prime }-x {y^{\prime }}^{2}-y^{\prime } y = 0 \]

11881

\[ {}y^{\left (6\right )}-y = {\mathrm e}^{2 x} \]

11882

\[ {}y^{\left (6\right )}+2 y^{\prime \prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{x} \]

11883

\[ {}6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \]

11884

\[ {}x y^{\prime \prime } = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

11885

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right ) \]

11886

\[ {}y^{\prime \prime } = 2 y^{3} \]

11887

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

11888

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

11889

\[ {}[x^{\prime }\left (t \right )+5 x \left (t \right )+y \left (t \right ) = {\mathrm e}^{t}, y^{\prime }\left (t \right )-x \left (t \right )-3 y \left (t \right ) = {\mathrm e}^{2 t}] \]

11890

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )] \]

11891

\[ {}\left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = \frac {y \left (t \right )^{2}}{x \left (t \right )}\right ] \]

11892

\[ {}y^{\prime } = y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \]

11893

\[ {}x^{2} y^{\prime } = 1+y^{2} \]

11894

\[ {}y^{\prime } = \sin \left (x y\right ) \]

11895

\[ {}x \left ({\mathrm e}^{y}+4\right ) = {\mathrm e}^{x +y} y^{\prime } \]

11896

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

11897

\[ {}x y^{\prime }+y = y^{2} x \]

11898

\[ {}y^{\prime } = t \ln \left (y^{2 t}\right )+t^{2} \]

11899

\[ {}y^{\prime } = x \,{\mathrm e}^{-x +y^{2}} \]

11900

\[ {}y^{\prime } = \ln \left (x y\right ) \]