# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2} \sin \left (y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}}{-2+x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}3 x +2 y+\left (y+2 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+3+\left (2 x y-4\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y+1+\left (x^{2}+4 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2} y+2-\left (x^{3}+y\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}6 x y+2 y^{2}-5+\left (3 x^{2}+4 x y-6\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \sec \left (x \right )^{2}+\sec \left (x \right ) \tan \left (x \right )+\left (\tan \left (x \right )+2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x}{y^{2}}+x +\left (\frac {x^{2}}{y^{3}}+y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {2 y^{\frac {3}{2}}+1}{x^{\frac {1}{3}}}+\left (3 \sqrt {x}\, \sqrt {y}-1\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}2 x y-3+\left (x^{2}+4 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2} y^{2}-y^{3}+2 x +\left (2 x^{3} y-3 y^{2} x +1\right ) y^{\prime } = 0 \] |
✓ |
✗ |
|
\[ {}2 y \sin \left (x \right ) \cos \left (x \right )+y^{2} \sin \left (x \right )+\left (\sin \left (x \right )^{2}-2 y \cos \left (x \right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}+y^{2}+\left ({\mathrm e}^{x}+2 x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {3-y}{x^{2}}+\frac {\left (y^{2}-2 x \right ) y^{\prime }}{y^{2} x} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {1+8 x y^{\frac {2}{3}}}{x^{\frac {2}{3}} y^{\frac {1}{3}}}+\frac {\left (2 x^{\frac {4}{3}} y^{\frac {2}{3}}-x^{\frac {1}{3}}\right ) y^{\prime }}{y^{\frac {4}{3}}} = 0 \] |
✗ |
✓ |
|
\[ {}4 x +3 y^{2}+2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+2 x y-x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y+x \left (y^{2}+x^{2}\right )^{2}+\left (y \left (y^{2}+x^{2}\right )^{2}-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}4 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y+2 x +y+2+\left (x^{2}+2 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\csc \left (y\right )+\sec \left (x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\tan \left (\theta \right )+2 r \theta ^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left ({\mathrm e}^{v}+1\right ) \cos \left (u \right )+{\mathrm e}^{v} \left (1+\sin \left (u \right )\right ) v^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +4\right ) \left (1+y^{2}\right )+y \left (x^{2}+3 x +2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +y-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y+3 y^{2}-\left (2 x y+x^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}v^{3}+\left (u^{3}-u v^{2}\right ) v^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \tan \left (\frac {y}{x}\right )+y-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{3}+y^{2} \sqrt {y^{2}+x^{2}}-x y \sqrt {y^{2}+x^{2}}\, y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sqrt {x +y}+\sqrt {-y+x}+\left (\sqrt {-y+x}-\sqrt {x +y}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y+2+y \left (x +4\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}8 \cos \left (y\right )^{2}+\csc \left (x \right )^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (3 x +8\right ) \left (y^{2}+4\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+3 y^{2}-2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x -5 y+\left (4 x -y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2}+9 x y+5 y^{2}-\left (6 x^{2}+4 x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +2 y+\left (-y+2 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x -y-\left (x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+2 y^{2}+\left (4 x y-y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2}+2 x y+y^{2}+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \sin \left (t \right )+\cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x^{2}-1} \] |
✓ |
✓ |
|
\[ {}u^{\prime } = 4 t \ln \left (t \right ) \] |
✓ |
✓ |
|
\[ {}z^{\prime } = x \,{\mathrm e}^{-2 x} \] |
✓ |
✓ |
|
\[ {}T^{\prime } = {\mathrm e}^{-t} \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \sec \left (t \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x -\frac {1}{3} x^{3} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = 2 \sin \left (t \right )^{2} \] |
✓ |
✓ |
|
\[ {}x V^{\prime } = x^{2}+1 \] |
✓ |
✓ |
|
\[ {}x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t} = {\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = -x+1 \] |
✓ |
✓ |
|
\[ {}x^{\prime } = x \left (2-x\right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \left (1+x\right ) \left (2-x\right ) \sin \left (x\right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime } = -x \left (-x+1\right ) \left (2-x\right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime } = x^{2}-x^{4} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = t^{3} \left (-x+1\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime } = t^{2} x \] |
✓ |
✓ |
|
\[ {}x^{\prime } = -x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} {\mathrm e}^{-t^{2}} \] |
✓ |
✓ |
|
\[ {}x^{\prime }+p x = q \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = k y \] |
✓ |
✓ |
|
\[ {}i^{\prime } = p \left (t \right ) i \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \lambda x \] |
✓ |
✓ |
|
\[ {}m v^{\prime } = -m g +k v^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = k x-x^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = -x \left (k^{2}+x^{2}\right ) \] |
✓ |
✗ |
|
\[ {}y^{\prime }+\frac {y}{x} = x^{2} \] |
✗ |
✓ |
|
\[ {}x^{\prime }+t x = 4 t \] |
✓ |
✓ |
|
\[ {}z^{\prime } = z \tan \left (y \right )+\sin \left (y \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \,{\mathrm e}^{-x} = 1 \] |
✓ |
✓ |
|
\[ {}x^{\prime }+x \tanh \left (t \right ) = 3 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y \cot \left (x \right ) = 5 \] |
✓ |
✓ |
|
\[ {}x^{\prime }+5 x = t \] |
✓ |
✓ |
|
\[ {}x^{\prime }+\left (a +\frac {1}{t}\right ) x = b \] |
✓ |
✓ |
|
\[ {}T^{\prime } = -k \left (T-\mu -a \cos \left (\omega \left (t -\phi \right )\right )\right ) \] |
✓ |
✓ |
|
\[ {}2 x y-\sec \left (x \right )^{2}+\left (x^{2}+2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+y \,{\mathrm e}^{x}+x \,{\mathrm e}^{x} y+\left (x \,{\mathrm e}^{x}+2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x \cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }+\sin \left (y\right )-\sin \left (x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x} \sin \left (y\right )+y+\left ({\mathrm e}^{x} \cos \left (y\right )+x +{\mathrm e}^{y}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{-y} \sec \left (x \right )+2 \cos \left (x \right )-{\mathrm e}^{-y} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}V^{\prime }\left (x \right )+2 y^{\prime } y = 0 \] |
✓ |
✓ |
|
\[ {}\left (\frac {1}{y}-a \right ) y^{\prime }+\frac {2}{x}-b = 0 \] |
✓ |
✓ |
|
\[ {}x y+y^{2}+x^{2}-x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {x^{2}+t \sqrt {t^{2}+x^{2}}}{t x} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = k x-x^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}z^{\prime \prime }-4 z^{\prime }+13 z = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\theta ^{\prime \prime }+4 \theta = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \] |
✓ |
✓ |
|
|
|||
|
|||