# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \operatorname {arccot}\left (x \right )^{n} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \operatorname {arccot}\left (x \right )^{m}-n y \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2}+f \left (x \right ) y-a^{2}-a f \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )-a y-a b -b^{2} f \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}+x f \left (x \right ) y+f \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )-a \,x^{n} f \left (x \right ) y+a n \,x^{n -1} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )+a n \,x^{n -1}-a^{2} x^{2 n} f \left (x \right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime } = -\left (n +1\right ) x^{n} y^{2}+x^{n +1} f \left (x \right ) y-f \left (x \right ) \] |
✗ |
✓ |
|
\[ {}x y^{\prime } = y^{2} f \left (x \right )+n y+a \,x^{2 n} f \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x^{2 n} f \left (x \right ) y^{2}+\left (a \,x^{n} f \left (x \right )-n \right ) y+f \left (x \right ) b \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )+g \left (x \right ) y-a^{2} f \left (x \right )-a g \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )+g \left (x \right ) y+a n \,x^{n -1}-a \,x^{n} g \left (x \right )-a^{2} x^{2 n} f \left (x \right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )-a \,x^{n} g \left (x \right ) y+a n \,x^{n -1}+a^{2} x^{2 n} \left (g \left (x \right )-f \left (x \right )\right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+\lambda f \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )-a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x} \] |
✓ |
✗ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )+\lambda y+a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )-f \left (x \right ) \left ({\mathrm e}^{\lambda x} a +b \right ) y+a \lambda \,{\mathrm e}^{\lambda x} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = {\mathrm e}^{\lambda x} f \left (x \right ) y^{2}+\left (a f \left (x \right )-\lambda \right ) y+b \,{\mathrm e}^{-\lambda x} f \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )+g \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{\lambda x} g \left (x \right )-a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )-a \,{\mathrm e}^{\lambda x} g \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x}+a^{2} {\mathrm e}^{2 \lambda x} \left (g \left (x \right )-f \left (x \right )\right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )+2 a \lambda x \,{\mathrm e}^{\lambda \,x^{2}}-a^{2} f \left (x \right ) {\mathrm e}^{2 \lambda \,x^{2}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )+\lambda x y+a f \left (x \right ) {\mathrm e}^{\lambda x} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )-a \tanh \left (\lambda x \right )^{2} \left (a f \left (x \right )+\lambda \right )+a \lambda \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )-a \coth \left (\lambda x \right )^{2} \left (a f \left (x \right )+\lambda \right )+a \lambda \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )-a^{2} f \left (x \right )+a \lambda \sinh \left (\lambda x \right )-a^{2} f \left (x \right ) \sinh \left (\lambda x \right )^{2} \] |
✗ |
✗ |
|
\[ {}x y^{\prime } = y^{2} f \left (x \right )+a -a^{2} f \left (x \right ) \ln \left (x \right )^{2} \] |
✗ |
✗ |
|
\[ {}x y^{\prime } = f \left (x \right ) \left (y+a \ln \left (x \right )\right )^{2}-a \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )-a x \ln \left (x \right ) f \left (x \right ) y+a \ln \left (x \right )+a \] |
✗ |
✗ |
|
\[ {}y^{\prime } = -a \ln \left (x \right ) y^{2}+a f \left (x \right ) \left (x \ln \left (x \right )-x \right ) y-f \left (x \right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+f \left (x \right ) \cos \left (\lambda x \right ) y-f \left (x \right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )-a^{2} f \left (x \right )+a \lambda \sin \left (\lambda x \right )+a^{2} f \left (x \right ) \sin \left (\lambda x \right )^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )-a^{2} f \left (x \right )+a \lambda \cos \left (\lambda x \right )+a^{2} f \left (x \right ) \cos \left (\lambda x \right )^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )-a \tan \left (\lambda x \right )^{2} \left (a f \left (x \right )-\lambda \right )+a \lambda \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )-a \cot \left (\lambda x \right )^{2} \left (a f \left (x \right )-\lambda \right )+a \lambda \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2}-f \left (x \right )^{2}+f^{\prime }\left (x \right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )-f \left (x \right ) g \left (x \right ) y+g^{\prime }\left (x \right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime } = -f^{\prime }\left (x \right ) y^{2}+f \left (x \right ) g \left (x \right ) y-g \left (x \right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime } = g \left (x \right ) \left (y-f \left (x \right )\right )^{2}+f^{\prime }\left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {f^{\prime }\left (x \right ) y^{2}}{g \left (x \right )}-\frac {g^{\prime }\left (x \right )}{f \left (x \right )} \] |
✓ |
✓ |
|
\[ {}f \left (x \right )^{2} y^{\prime }-f^{\prime }\left (x \right ) y^{2}+g \left (x \right ) \left (y-f \left (x \right )\right ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } = f^{\prime }\left (x \right ) y^{2}+a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+{\mathrm e}^{\lambda x} a \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )+g^{\prime }\left (x \right ) y+a f \left (x \right ) {\mathrm e}^{2 g \left (x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}+a^{2} f \left (a x +b \right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2}+\frac {f \left (\frac {1}{x}\right )}{x^{4}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2}+\frac {f \left (\frac {a x +b}{c x +d}\right )}{\left (c x +d \right )^{4}} \] |
✗ |
✗ |
|
\[ {}x^{2} y^{\prime } = x^{4} f \left (x \right ) y^{2}+1 \] |
✗ |
✗ |
|
\[ {}x^{2} y^{\prime } = x^{4} y^{2}+x^{2 n} f \left (a \,x^{n}+b \right )-\frac {n^{2}}{4}+\frac {1}{4} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2} f \left (x \right )+g \left (x \right ) y+h \left (x \right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2}+{\mathrm e}^{2 \lambda x} f \left ({\mathrm e}^{\lambda x}\right )-\frac {\lambda ^{2}}{4} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2}-\frac {\lambda ^{2}}{4}+\frac {{\mathrm e}^{2 \lambda x} f \left (\frac {{\mathrm e}^{\lambda x} a +b}{c \,{\mathrm e}^{\lambda x}+d}\right )}{\left (c \,{\mathrm e}^{\lambda x}+d \right )^{4}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2}-\lambda ^{2}+\frac {f \left (\coth \left (\lambda x \right )\right )}{\sinh \left (\lambda x \right )^{4}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2}-\lambda ^{2}+\frac {f \left (\tanh \left (\lambda x \right )\right )}{\cosh \left (\lambda x \right )^{4}} \] |
✗ |
✗ |
|
\[ {}x^{2} y^{\prime } = x^{2} y^{2}+f \left (a \ln \left (x \right )+b \right )+\frac {1}{4} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2}+\lambda ^{2}+\frac {f \left (\cot \left (\lambda x \right )\right )}{\sin \left (\lambda x \right )^{4}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2}+\lambda ^{2}+\frac {f \left (\tan \left (\lambda x \right )\right )}{\cos \left (\lambda x \right )^{4}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2}+\lambda ^{2}+\frac {f \left (\frac {\sin \left (\lambda x +a \right )}{\sin \left (\lambda x +b \right )}\right )}{\sin \left (\lambda x +b \right )^{4}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } y-y = A \] |
✓ |
✓ |
|
\[ {}y^{\prime } y-y = A x +B \] |
✓ |
✓ |
|
\[ {}y^{\prime } y-y = -\frac {2 x}{9}+A +\frac {B}{\sqrt {x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y-y = 2 A \left (\sqrt {x}+4 A +\frac {3 A^{2}}{\sqrt {x}}\right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime } y-y = A x +\frac {B}{x}-\frac {B^{2}}{x^{3}} \] |
✗ |
✓ |
|
\[ {}y^{\prime } y-y = A \,x^{k -1}-k B \,x^{k}+k \,B^{2} x^{2 k -1} \] |
✗ |
✗ |
|
\[ {}y^{\prime } y-y = \frac {A}{x}-\frac {A^{2}}{x^{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y-y = A +B \,{\mathrm e}^{-\frac {2 x}{A}} \] |
✗ |
✓ |
|
\[ {}y^{\prime } y-y = A \left ({\mathrm e}^{\frac {2 x}{A}}-1\right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime } y-y = -\frac {2 \left (m +1\right )}{\left (m +3\right )^{2}}+A \,x^{m} \] |
✗ |
✗ |
|
\[ {}y^{\prime } y-y = -\frac {2 x}{9}+6 A^{2} \left (1+\frac {2 A}{\sqrt {x}}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } y-y = \frac {2 m -2}{\left (m -3\right )^{2}}+\frac {2 A \left (m \left (m +3\right ) \sqrt {x}+\left (4 m^{2}+3 m +9\right ) A +\frac {3 m \left (m +3\right ) A^{2}}{\sqrt {x}}\right )}{\left (m -3\right )^{2}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } y-y = \frac {\left (2 m +1\right ) x}{4 m^{2}}+\frac {A}{x}-\frac {A^{2}}{x^{3}} \] |
✗ |
✓ |
|
\[ {}y^{\prime } y-y = \frac {4}{9} x +2 A \,x^{2}+2 A^{2} x^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y-y = -\frac {3 x}{16}+\frac {5 A}{x^{\frac {1}{3}}}-\frac {12 A^{2}}{x^{\frac {5}{3}}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } y-y = \frac {A}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y-y = -\frac {x}{4}+\frac {A \left (\sqrt {x}+5 A +\frac {3 A^{2}}{\sqrt {x}}\right )}{4} \] |
✗ |
✓ |
|
\[ {}y^{\prime } y-y = \frac {2 a^{2}}{\sqrt {8 a^{2}+x^{2}}} \] |
✗ |
✓ |
|
\[ {}y^{\prime } y-y = 2 x +\frac {A}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y-y = -\frac {6 X}{25}+\frac {2 A \left (2 \sqrt {x}+19 A +\frac {6 A^{2}}{\sqrt {x}}\right )}{25} \] |
✗ |
✗ |
|
\[ {}y^{\prime } y-y = \frac {3 x}{8}+\frac {3 \sqrt {a^{2}+x^{2}}}{8}-\frac {a^{2}}{16 \sqrt {a^{2}+x^{2}}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } y-y = -\frac {4 x}{25}+\frac {A}{\sqrt {x}} \] |
✗ |
✓ |
|
\[ {}y^{\prime } y-y = -\frac {9 x}{100}+\frac {A}{x^{\frac {5}{3}}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y-y = -\frac {12 x}{49}+\frac {2 A \left (5 \sqrt {x}+34 A +\frac {15 A^{2}}{\sqrt {x}}\right )}{49} \] |
✗ |
✓ |
|
\[ {}y^{\prime } y-y = -\frac {12 x}{49}+\frac {A \left (25 \sqrt {x}+41 A +\frac {10 A^{2}}{\sqrt {x}}\right )}{98} \] |
✗ |
✓ |
|
\[ {}y^{\prime } y-y = -\frac {2 x}{9}+\frac {A}{\sqrt {x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y-y = -\frac {5 x}{36}+\frac {A}{x^{\frac {7}{5}}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } y-y = -\frac {12 x}{49}+\frac {6 A \left (-3 \sqrt {x}+23 A +\frac {12 A^{2}}{\sqrt {x}}\right )}{49} \] |
✗ |
✗ |
|
\[ {}y^{\prime } y-y = -\frac {30 x}{121}+\frac {3 A \left (21 \sqrt {x}+35 A +\frac {6 A^{2}}{\sqrt {x}}\right )}{242} \] |
✗ |
✗ |
|
\[ {}y^{\prime } y-y = -\frac {3 x}{16}+\frac {A}{x^{\frac {5}{3}}} \] |
✗ |
✓ |
|
\[ {}y^{\prime } y-y = -\frac {12 x}{49}+\frac {4 A \left (-10 \sqrt {x}+27 A +\frac {10 A^{2}}{\sqrt {x}}\right )}{49} \] |
✗ |
✗ |
|
\[ {}y^{\prime } y-y = \frac {A}{\sqrt {x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y-y = \frac {A}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y-y = A \left (n +2\right ) \left (\sqrt {x}+2 \left (n +2\right ) A +\frac {\left (n +1\right ) \left (n +3\right ) A^{2}}{\sqrt {x}}\right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime } y-y = A \left (n +2\right ) \left (\sqrt {x}+2 \left (n +2\right ) A +\frac {\left (3+2 n \right ) A^{2}}{\sqrt {x}}\right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime } y-y = A \sqrt {x}+2 A^{2}+\frac {B}{\sqrt {x}} \] |
✗ |
✓ |
|
\[ {}y^{\prime } y-y = 2 A^{2}-A \sqrt {x} \] |
✗ |
✓ |
|
\[ {}y^{\prime } y-y = -\frac {x}{4}+\frac {6 A \left (\sqrt {x}+8 A +\frac {5 A^{2}}{\sqrt {x}}\right )}{49} \] |
✗ |
✗ |
|
\[ {}y^{\prime } y-y = -\frac {6 x}{25}+\frac {6 A \left (2 \sqrt {x}+7 A +\frac {4 A^{2}}{\sqrt {x}}\right )}{25} \] |
✗ |
✗ |
|
\[ {}y^{\prime } y-y = -\frac {3 x}{16}+\frac {3 A}{x^{\frac {1}{3}}}-\frac {12 A^{2}}{x^{\frac {5}{3}}} \] |
✗ |
✓ |
|
\[ {}y^{\prime } y-y = \frac {3 x}{8}+\frac {3 \sqrt {b^{2}+x^{2}}}{8}+\frac {3 b^{2}}{16 \sqrt {b^{2}+x^{2}}} \] |
✗ |
✗ |
|
|
|||
|
|||