This report shows the result of running Maple and Mathematica on my collection of differential equations. These were collected over time and stored in sqlite3 database. These were collected from a number of textbooks and other references such as Kamke and Murphy collections. All books used are listed here.
The current number of differential equations is [13784]. Both Maple and Mathematica are given a CPU time limit of 3 minutes to solve each ode else the problem is considered not solved and marked as failed.
When Mathematica returns DifferentialRoot
as a solution to an ode then this is
considered as not solved. Similarly, when Maple returns DESol
or ODSESolStruc
, then this is
also considered as not solved.
If CAS solves the ODE within the timelimit, then it is counted as solved. No verification is done to check that the solution is correct or not.
To reduce the size of latex output, in Maple the command simplify
is called on the solution
with timeout of 3 minutes. If this times out, then the unsimplified original ode solution is
used otherwise the simplified one is used.
Similarly for Mathematica, Simplify
is next called. If this timesout, then the unsimplified
solution is used else the simplified one is used. The time used for simplification is not
counted in the CPU time used. The CPU time used only records the time used to solve the
ode.
Tests are run under windows 10 with 128 GB RAM running on intel i9-12900K 3.20 GHz
The following table summarizes perentage solved for each CAS
The following table summarizes the run-time performance of each CAS system.
The problem which Mathematica produced largest leaf size of \(413606\) is 9727.
The problem which Maple produced largest leaf size of \(949416\) is 12068.
The problem which Mathematica used most CPU time of \(175.525\) seconds is 6197.
The problem which Maple used most CPU time of \(134.110\) seconds is 6839.
The following gives the performance of each CAS based on the type of the ODE. The first subsection uses the types as classified by Maple ode advisor.The next subsection uses my own ode solver ODE classificaiton.
The following table gives count of the number of ODE’s for each ODE type, where the ODE type here is as classified by Maple’s odeadvisor, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.
Type of ODE |
Count |
Mathematica |
Maple |
[_quadrature] |
806 |
98.26% |
|
[[_linear, ‘class A‘]] |
239 |
100.00% |
|
[_separable] |
1087 |
||
[_Riccati] |
317 |
66.88% |
72.24% |
[[_homogeneous, ‘class G‘]] |
63 |
||
[_linear] |
616 |
||
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
25 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
90 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _dAlembert] |
134 |
99.25% |
100.00% |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
89 |
98.88% |
100.00% |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
54 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
215 |
100.00% |
|
[[_homogeneous, ‘class C‘], _dAlembert] |
73 |
100.00% |
|
[[_homogeneous, ‘class C‘], _Riccati] |
22 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
69 |
100.00% |
100.00% |
[_Bernoulli] |
103 |
100.00% |
|
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
9 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
46 |
100.00% |
100.00% |
[‘y=_G(x,y’)‘] |
138 |
61.59% |
58.70% |
[[_1st_order, _with_linear_symmetries]] |
99 |
98.99% |
|
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
32 |
100.00% |
100.00% |
[_exact, _rational] |
37 |
97.30% |
97.30% |
[_exact] |
79 |
98.73% |
100.00% |
[[_1st_order, _with_linear_symmetries], _exact, _rational] |
4 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
4 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _exact, _rational] |
8 |
100.00% |
|
[[_2nd_order, _missing_x]] |
652 |
96.63% |
97.09% |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
93 |
||
[[_Emden, _Fowler]] |
306 |
99.67% |
97.06% |
[[_2nd_order, _exact, _linear, _homogeneous]] |
216 |
99.54% |
|
[[_2nd_order, _missing_y]] |
146 |
||
[[_2nd_order, _with_linear_symmetries]] |
2683 |
94.04% |
95.53% |
[[_2nd_order, _linear, _nonhomogeneous]] |
897 |
98.66% |
97.44% |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
59 |
100.00% |
100.00% |
system of linear ODEs |
737 |
96.34% |
96.61% |
[_Gegenbauer] |
74 |
100.00% |
100.00% |
[[_high_order, _missing_x]] |
168 |
100.00% |
|
[[_3rd_order, _missing_x]] |
153 |
100.00% |
100.00% |
[[_3rd_order, _missing_y]] |
68 |
100.00% |
100.00% |
[[_3rd_order, _exact, _linear, _homogeneous]] |
12 |
100.00% |
100.00% |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
71 |
||
[_Lienard] |
54 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
28 |
100.00% |
100.00% |
[‘x=_G(y,y’)‘] |
13 |
||
[[_Abel, ‘2nd type‘, ‘class B‘]] |
15 |
26.67% |
40.00% |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
11 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
26 |
96.15% |
100.00% |
[[_homogeneous, ‘class D‘], _rational] |
3 |
100.00% |
100.00% |
[[_1st_order, _with_exponential_symmetries]] |
6 |
100.00% |
100.00% |
[_rational] |
108 |
82.41% |
75.93% |
[_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
133 |
27.07% |
51.88% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
4 |
100.00% |
100.00% |
[NONE] |
84 |
34.52% |
33.33% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
26 |
100.00% |
96.15% |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
55 |
98.18% |
100.00% |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
18 |
100.00% |
100.00% |
[[_high_order, _with_linear_symmetries]] |
47 |
||
[[_3rd_order, _with_linear_symmetries]] |
132 |
84.85% |
87.12% |
[[_high_order, _linear, _nonhomogeneous]] |
72 |
98.61% |
|
[[_1st_order, _with_linear_symmetries], _Clairaut] |
64 |
98.44% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
51 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
76 |
98.68% |
98.68% |
[[_homogeneous, ‘class C‘], _rational, _Riccati] |
5 |
100.00% |
100.00% |
[[_Abel, ‘2nd type‘, ‘class A‘]] |
34 |
14.71% |
35.29% |
[_rational, _Bernoulli] |
44 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘]] |
7 |
100.00% |
100.00% |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
143 |
99.30% |
|
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
20 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _Riccati] |
10 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Riccati] |
1 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
1 |
100.00% |
100.00% |
[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
15 |
100.00% |
100.00% |
[_exact, [_Abel, ‘2nd type‘, ‘class B‘]] |
5 |
100.00% |
100.00% |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
9 |
100.00% |
100.00% |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
4 |
100.00% |
100.00% |
[_exact, _Bernoulli] |
6 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
9 |
100.00% |
100.00% |
[_rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
12 |
||
[[_homogeneous, ‘class G‘], _rational] |
90 |
98.89% |
|
[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
2 |
100.00% |
100.00% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
14 |
100.00% |
100.00% |
[_rational, _Riccati] |
102 |
||
[[_3rd_order, _linear, _nonhomogeneous]] |
75 |
100.00% |
|
[[_high_order, _missing_y]] |
36 |
97.22% |
97.22% |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
6 |
100.00% |
100.00% |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
7 |
100.00% |
100.00% |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
24 |
100.00% |
100.00% |
[_exact, [_Abel, ‘2nd type‘, ‘class A‘]] |
2 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]] |
2 |
100.00% |
100.00% |
[[_Riccati, _special]] |
23 |
100.00% |
100.00% |
[_Abel] |
30 |
66.67% |
66.67% |
[_Laguerre] |
38 |
100.00% |
100.00% |
[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
4 |
100.00% |
100.00% |
[_Bessel] |
19 |
100.00% |
100.00% |
[_rational, _Abel] |
21 |
95.24% |
100.00% |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
3 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
5 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
8 |
100.00% |
100.00% |
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
8 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
6 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
30 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘], _Bernoulli] |
4 |
100.00% |
100.00% |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
11 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
4 |
100.00% |
100.00% |
[[_2nd_order, _quadrature]] |
51 |
98.04% |
98.04% |
[[_high_order, _quadrature]] |
8 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
71 |
98.59% |
|
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
21 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
7 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
16 |
100.00% |
|
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
29 |
||
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
10 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
36 |
97.22% |
97.22% |
[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]] |
4 |
100.00% |
100.00% |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
13 |
100.00% |
100.00% |
[_dAlembert] |
21 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
58 |
81.03% |
100.00% |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
9 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _Clairaut] |
3 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
16 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
1 |
100.00% |
100.00% |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
6 |
100.00% |
100.00% |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
11 |
100.00% |
100.00% |
[[_3rd_order, _exact, _nonlinear]] |
3 |
66.67% |
66.67% |
[_Jacobi] |
33 |
100.00% |
100.00% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
6 |
100.00% |
100.00% |
[[_3rd_order, _quadrature]] |
5 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _exact] |
2 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
12 |
100.00% |
100.00% |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
1 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _exact, _rational, _Riccati] |
1 |
100.00% |
100.00% |
[_erf] |
4 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘]] |
13 |
100.00% |
100.00% |
[_exact, _rational, _Riccati] |
3 |
100.00% |
100.00% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
5 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational] |
26 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
20 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _exact] |
2 |
100.00% |
100.00% |
[[_homogeneous, ‘class C‘], _exact, _dAlembert] |
4 |
100.00% |
100.00% |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
2 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
2 |
100.00% |
100.00% |
[_rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
40 |
27.50% |
45.00% |
[[_homogeneous, ‘class G‘], _dAlembert] |
5 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli] |
5 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _Abel] |
4 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _Chini] |
4 |
100.00% |
100.00% |
[_Chini] |
3 |
||
[_rational, [_Riccati, _special]] |
9 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, _Riccati] |
2 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘], _Riccati] |
20 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]] |
4 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _Riccati] |
4 |
100.00% |
100.00% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
5 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
4 |
100.00% |
100.00% |
[_exact, _rational, _Bernoulli] |
3 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
5 |
100.00% |
100.00% |
[[_Abel, ‘2nd type‘, ‘class C‘]] |
7 |
||
[[_homogeneous, ‘class C‘], _rational] |
7 |
100.00% |
100.00% |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
2 |
100.00% |
100.00% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
17 |
100.00% |
100.00% |
unknown |
6 |
||
[_rational, _dAlembert] |
10 |
90.00% |
100.00% |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
8 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
10 |
100.00% |
100.00% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
14 |
100.00% |
100.00% |
[_Clairaut] |
7 |
100.00% |
85.71% |
[[_homogeneous, ‘class D‘], _exact, _rational, _Bernoulli] |
1 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
6 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
10 |
90.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
3 |
66.67% |
100.00% |
[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
9 |
100.00% |
100.00% |
[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
3 |
100.00% |
100.00% |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
3 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _rational, _Abel] |
2 |
100.00% |
100.00% |
[[_elliptic, _class_I]] |
2 |
100.00% |
100.00% |
[[_elliptic, _class_II]] |
2 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]] |
1 |
100.00% |
100.00% |
[_Hermite] |
15 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]] |
3 |
100.00% |
100.00% |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
4 |
100.00% |
100.00% |
[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]] |
3 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _Chini] |
2 |
100.00% |
100.00% |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
2 |
100.00% |
100.00% |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
1 |
100.00% |
100.00% |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
3 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
36 |
100.00% |
|
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
5 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]] |
3 |
100.00% |
100.00% |
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
1 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
3 |
100.00% |
100.00% |
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
1 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
6 |
100.00% |
100.00% |
[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
2 |
100.00% |
100.00% |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]] |
2 |
100.00% |
100.00% |
[[_Bessel, _modified]] |
2 |
100.00% |
100.00% |
[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]] |
12 |
8.33% |
25.00% |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
3 |
||
[_Liouville, [_2nd_order, _reducible, _mu_xy]] |
3 |
100.00% |
100.00% |
[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
8 |
100.00% |
100.00% |
[_Chini, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
2 |
100.00% |
100.00% |
[[_1st_order, _with_exponential_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
1 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
1 |
100.00% |
100.00% |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
1 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
1 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]] |
7 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
8 |
100.00% |
100.00% |
[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
4 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _Abel] |
13 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
7 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
2 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘], _rational, _Abel] |
3 |
100.00% |
100.00% |
[[_homogeneous, ‘class C‘], _rational, _Abel] |
3 |
100.00% |
100.00% |
[_rational, [_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
3 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
1 |
100.00% |
100.00% |
[[_homogeneous, ‘class C‘], _Abel] |
3 |
100.00% |
100.00% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
6 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
5 |
100.00% |
100.00% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
10 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
2 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel] |
2 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, _Abel] |
1 |
100.00% |
100.00% |
[_Titchmarsh] |
2 |
50.00% |
50.00% |
[_ellipsoidal] |
2 |
100.00% |
100.00% |
[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
1 |
100.00% |
100.00% |
[_Halm] |
4 |
100.00% |
100.00% |
[[_3rd_order, _fully, _exact, _linear]] |
6 |
100.00% |
100.00% |
[[_high_order, _fully, _exact, _linear]] |
1 |
100.00% |
100.00% |
[[_Painleve, ‘1st‘]] |
1 |
0.00% |
0.00% |
[[_Painleve, ‘2nd‘]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _with_potential_symmetries]] |
2 |
100.00% |
100.00% |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
6 |
100.00% |
100.00% |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
2 |
100.00% |
100.00% |
[[_2nd_order, _reducible, _mu_xy]] |
3 |
66.67% |
66.67% |
[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
1 |
0.00% |
0.00% |
[[_Painleve, ‘4th‘]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
3 |
100.00% |
100.00% |
[[_Painleve, ‘3rd‘]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]] |
1 |
100.00% |
100.00% |
[[_Painleve, ‘5th‘]] |
1 |
0.00% |
0.00% |
[[_Painleve, ‘6th‘]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1]] |
1 |
0.00% |
0.00% |
[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]] |
7 |
||
[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
1 |
100.00% |
100.00% |
[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]] |
1 |
100.00% |
100.00% |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
4 |
100.00% |
100.00% |
[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]] |
2 |
50.00% |
50.00% |
[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]] |
2 |
100.00% |
100.00% |
|
82 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class B‘]] |
1 |
100.00% |
100.00% |
[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]] |
1 |
100.00% |
100.00% |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
1 |
100.00% |
100.00% |
[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]] |
2 |
||
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
2 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
1 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]] |
2 |
100.00% |
100.00% |
[[_1st_order, _with_exponential_symmetries], _exact] |
1 |
100.00% |
100.00% |
[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert] |
1 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
2 |
100.00% |
100.00% |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
1 |
100.00% |
100.00% |
[[_high_order, _exact, _linear, _homogeneous]] |
2 |
100.00% |
100.00% |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
1 |
100.00% |
100.00% |
|
|||
|
|||
|
The types of the ODE’s are described in my ode solver page at ode types.
The following table gives count of the number of ODE’s for each ODE type, where the ODE type here is as classified by my own ode solver, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.
Type of ODE |
Count |
Mathematica |
Maple |
quadrature |
724 |
98.07% |
99.86% |
linear |
69 |
98.55% |
98.55% |
separable |
135 |
100.00% |
100.00% |
homogeneous |
70 |
98.57% |
100.00% |
homogeneousTypeD2 |
9 |
100.00% |
100.00% |
exact |
275 |
||
exactWithIntegrationFactor |
134 |
99.25% |
|
exactByInspection |
19 |
100.00% |
94.74% |
bernoulli |
25 |
100.00% |
100.00% |
riccati |
470 |
76.60% |
80.00% |
clairaut |
101 |
99.01% |
99.01% |
dAlembert |
252 |
93.25% |
100.00% |
isobaric |
13 |
100.00% |
100.00% |
polynomial |
16 |
100.00% |
100.00% |
abelFirstKind |
58 |
82.76% |
84.48% |
first order ode series method. Taylor series method |
10 |
100.00% |
|
first order ode series method. Regular singular point |
8 |
100.00% |
100.00% |
first order ode series method. Irregular singular point |
3 |
100.00% |
|
first_order_laplace |
72 |
100.00% |
100.00% |
first_order_ode_lie_symmetry_calculated |
338 |
96.15% |
96.75% |
system of linear ODEs |
714 |
96.78% |
96.92% |
second_order_laplace |
318 |
100.00% |
99.69% |
reduction_of_order |
125 |
99.20% |
|
second_order_linear_constant_coeff |
2 |
100.00% |
|
second_order_airy |
15 |
100.00% |
100.00% |
exact nonlinear second order ode |
7 |
||
second_order_change_of_variable_on_x_method_1 |
2 |
50.00% |
100.00% |
second_order_change_of_variable_on_x_method_2 |
5 |
100.00% |
100.00% |
second_order_change_of_variable_on_y_method_2 |
15 |
93.33% |
|
second_order_change_of_variable_on_y_method_1 |
3 |
100.00% |
100.00% |
second_order_integrable_as_is |
11 |
||
second_order_ode_lagrange_adjoint_equation_method |
8 |
87.50% |
87.50% |
second_order_nonlinear_solved_by_mainardi_lioville_method |
14 |
100.00% |
100.00% |
second_order_bessel_ode |
130 |
90.77% |
|
second_order_bessel_ode_form_A |
7 |
100.00% |
100.00% |
second_order_ode_missing_x |
152 |
88.16% |
90.79% |
second_order_ode_missing_y |
58 |
||
second order series method. Taylor series method |
6 |
83.33% |
|
second order series method. Regular singular point. Difference not integer |
246 |
99.59% |
|
second order series method. Regular singular point. Repeated root |
198 |
100.00% |
99.49% |
second order series method. Regular singular point. Difference is integer |
302 |
100.00% |
99.67% |
second order series method. Irregular singular point |
35 |
0.00% |
|
second order series method. Regular singular point. Complex roots |
28 |
100.00% |
|
second_order_ode_high_degree |
1 |
100.00% |
100.00% |
higher_order_linear_constant_coefficients_ODE |
549 |
100.00% |
|
higher_order_ODE_non_constant_coefficients_of_type_Euler |
67 |
100.00% |
100.00% |
higher_order_laplace |
29 |
96.55% |
100.00% |
|
|||
|
|||
These are direct links to the ode problems based on status of solving.
(830) [119, 133, 146, 485, 550, 553, 710, 813, 885, 944, 958, 959, 961, 962, 964, 966, 968, 1039, 1041, 1046, 1069, 1075, 1105, 1138, 1162, 1186, 1697, 1698, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1897, 1941, 1953, 1985, 1986, 2006, 2012, 2026, 2031, 2083, 2085, 2304, 2307, 2308, 2316, 2319, 2350, 2366, 2368, 2371, 2376, 2377, 2378, 2379, 2380, 2707, 2713, 2990, 3000, 3022, 3092, 3118, 3137, 3192, 3193, 3229, 3231, 3232, 3236, 3304, 3324, 3326, 3339, 3352, 3355, 3363, 3368, 3384, 3463, 3639, 3642, 3673, 3676, 3728, 3776, 3783, 3843, 4011, 4146, 4216, 4251, 4252, 4253, 4260, 4261, 4266, 4274, 4275, 4278, 4287, 4290, 4294, 4299, 4305, 4315, 4386, 4451, 4658, 4666, 4668, 4839, 4840, 4841, 4917, 4951, 4954, 4962, 4995, 5010, 5115, 5247, 5346, 5494, 5495, 5496, 5761, 5813, 5817, 5818, 6100, 6104, 6111, 6169, 6183, 6185, 6246, 6254, 6264, 6343, 6344, 6542, 6543, 6549, 6581, 6797, 6807, 6811, 6813, 6839, 6840, 6856, 6858, 6874, 6878, 7063, 7096, 7102, 7107, 7108, 7110, 7130, 7178, 7179, 7182, 7183, 7187, 7189, 7212, 7214, 7217, 7253, 7254, 7288, 7316, 7345, 7411, 7462, 7554, 7556, 7942, 7976, 7978, 8384, 8385, 8386, 8387, 8392, 8393, 8411, 8416, 8419, 8424, 8447, 8457, 8538, 8539, 8541, 8542, 8555, 8570, 8573, 8586, 8589, 8601, 8605, 8667, 8676, 8703, 8706, 8731, 8766, 8795, 8796, 8815, 8817, 8824, 8838, 8841, 8845, 8866, 8907, 8910, 8911, 9170, 9172, 9197, 9220, 9229, 9350, 9354, 9361, 9363, 9365, 9366, 9367, 9373, 9407, 9408, 9409, 9410, 9411, 9412, 9416, 9417, 9418, 9434, 9461, 9492, 9540, 9547, 9551, 9571, 9613, 9640, 9657, 9696, 9726, 9736, 9742, 9753, 9768, 9773, 9774, 9775, 9777, 9778, 9791, 9792, 9793, 9794, 9795, 9796, 9797, 9807, 9808, 9810, 9818, 9823, 9834, 9847, 9848, 9863, 9872, 9873, 9874, 9875, 9876, 9879, 9884, 9904, 9908, 9913, 9918, 9922, 9923, 9925, 9927, 9928, 9930, 9931, 9933, 9935, 9937, 9938, 9940, 9941, 9943, 9944, 9945, 9947, 9948, 9949, 9950, 9951, 9955, 9956, 9957, 9958, 9959, 9960, 9966, 9968, 9969, 9971, 9974, 9975, 9976, 9977, 9980, 9981, 9990, 9991, 9992, 9994, 9995, 9996, 9997, 9998, 9999, 10004, 10005, 10007, 10009, 10010, 10012, 10014, 10016, 10017, 10018, 10022, 10024, 10025, 10027, 10028, 10034, 10036, 10040, 10042, 10045, 10051, 10061, 10064, 10066, 10067, 10069, 10070, 10071, 10074, 10083, 10089, 10093, 10094, 10109, 10111, 10112, 10120, 10121, 10129, 10133, 10134, 10138, 10139, 10143, 10147, 10148, 10150, 10151, 10152, 10153, 10157, 10159, 10163, 10164, 10165, 10168, 10170, 10171, 10172, 10173, 10182, 10183, 10187, 10222, 10237, 10247, 10250, 10251, 10252, 10253, 10254, 10259, 10260, 10261, 10264, 10265, 10266, 10267, 10268, 10269, 10271, 10349, 10356, 10359, 10369, 10373, 10402, 10411, 10415, 10416, 10425, 10442, 10446, 10450, 10455, 10462, 10471, 10486, 10489, 10490, 10491, 10493, 10497, 10511, 10513, 10514, 10515, 10524, 10526, 10527, 10542, 10546, 10548, 10551, 10555, 10559, 10564, 10565, 10566, 10567, 10570, 10572, 10573, 10576, 10579, 10581, 10582, 10585, 10588, 10590, 10591, 10594, 10597, 10599, 10600, 10603, 10607, 10608, 10609, 10613, 10614, 10617, 10619, 10621, 10622, 10623, 10624, 10625, 10626, 10627, 10628, 10630, 10631, 10632, 10633, 10634, 10635, 10636, 10637, 10638, 10639, 10642, 10646, 10647, 10648, 10649, 10650, 10651, 10652, 10653, 10654, 10655, 10656, 10657, 10658, 10659, 10663, 10664, 10665, 10667, 10668, 10669, 10671, 10672, 10674, 10676, 10677, 10679, 10680, 10681, 10683, 10684, 10686, 10687, 10688, 10689, 10690, 10693, 10694, 10695, 10696, 10697, 10698, 10699, 10700, 10701, 10702, 10706, 10707, 10708, 10709, 10710, 10711, 10712, 10714, 10715, 10716, 10717, 10718, 10719, 10720, 10721, 10722, 10723, 10724, 10725, 10726, 10727, 10728, 10729, 10730, 10731, 10732, 10733, 10734, 10735, 10740, 10741, 10743, 10744, 10745, 10746, 10747, 10748, 10750, 10751, 10755, 10757, 10758, 10759, 10760, 10761, 10762, 10765, 10766, 10767, 10768, 10769, 10770, 10771, 10772, 10773, 10774, 10775, 10776, 10777, 10778, 10779, 10780, 10781, 10782, 10783, 10784, 10785, 10786, 10787, 10788, 10789, 10790, 10791, 10792, 10793, 10794, 10795, 10796, 10797, 10798, 10799, 10800, 10801, 10802, 10803, 10804, 10805, 10806, 10807, 10808, 10809, 10810, 10811, 10812, 10813, 10814, 10815, 10817, 10818, 10820, 10821, 10822, 10823, 10824, 10825, 10826, 10827, 10829, 10830, 10832, 10833, 10834, 10843, 10850, 10851, 10866, 10871, 10882, 10884, 10885, 10886, 10887, 10888, 10891, 10892, 10893, 10894, 10902, 10912, 10918, 10925, 10931, 10932, 10934, 10935, 10936, 10937, 10938, 10943, 10953, 10955, 10956, 10976, 10977, 10978, 10982, 11022, 11035, 11039, 11040, 11042, 11046, 11049, 11062, 11065, 11066, 11075, 11076, 11077, 11078, 11079, 11080, 11081, 11082, 11083, 11084, 11088, 11089, 11091, 11092, 11094, 11095, 11096, 11097, 11105, 11110, 11113, 11128, 11129, 11131, 11208, 11222, 11225, 11229, 11234, 11236, 11250, 11320, 11321, 11339, 11341, 11391, 11414, 11425, 11485, 11599, 11600, 11609, 11614, 11620, 11675, 11730, 11807, 11809, 11814, 11828, 11878, 11894, 11900, 11903, 11906, 11907, 11918, 11919, 11920, 11921, 11923, 11928, 11929, 11930, 11931, 11932, 11936, 11938, 11944, 11949, 11961, 12032, 12034, 12092, 12175, 12250, 12251, 12294, 12311, 12316, 12384, 12428, 12429, 12463, 12507, 12508, 12509, 12510, 12522, 12590, 12591, 12594, 12615, 12616, 12618, 12642, 12645, 12646, 12647, 12714, 12737, 12930, 12969, 13028, 13200, 13203, 13204, 13209, 13215, 13239, 13249, 13250, 13541, 13723, 13726, 13730, 13731, 13781, 13801, 13806, 13807, 13813, 13814]
(677) [133, 408, 409, 485, 550, 553, 710, 813, 958, 959, 961, 962, 964, 966, 968, 1039, 1046, 1075, 1162, 1186, 1697, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1794, 1797, 1805, 1938, 1953, 1984, 1985, 2006, 2026, 2063, 2304, 2309, 2316, 2319, 2376, 2400, 2541, 2707, 2713, 2920, 2990, 3090, 3092, 3118, 3192, 3193, 3324, 3326, 3339, 3352, 3355, 3363, 3368, 3382, 3384, 3395, 3463, 3642, 3673, 3676, 3728, 3776, 3783, 3843, 3872, 3926, 3980, 3995, 4011, 4040, 4146, 4163, 4198, 4199, 4216, 4287, 4298, 4315, 4343, 4386, 4701, 4714, 4718, 4722, 4723, 4914, 4917, 4951, 4954, 4962, 4995, 5003, 5010, 5217, 5247, 5500, 5501, 5502, 5521, 5526, 5556, 5564, 5588, 5589, 5590, 5817, 5818, 6042, 6104, 6111, 6169, 6183, 6185, 6238, 6264, 6418, 6441, 6443, 6449, 6459, 6460, 6513, 6542, 6543, 6549, 6581, 6584, 6592, 6617, 6618, 6719, 6820, 7063, 7107, 7110, 7179, 7187, 7189, 7214, 7224, 7225, 7226, 7230, 7231, 7233, 7241, 7253, 7288, 7300, 7301, 7303, 7304, 7305, 7306, 7307, 7316, 7345, 7411, 8384, 8385, 8386, 8387, 8392, 8393, 8411, 8416, 8419, 8424, 8447, 8457, 8538, 8539, 8541, 8542, 8555, 8570, 8573, 8586, 8589, 8601, 8605, 8676, 8688, 8703, 8704, 8706, 8719, 8731, 8787, 8795, 8796, 8815, 8817, 8838, 8841, 8845, 8848, 8866, 8872, 8878, 8907, 8910, 8911, 9043, 9068, 9124, 9125, 9170, 9172, 9220, 9229, 9247, 9255, 9350, 9354, 9361, 9363, 9365, 9366, 9373, 9407, 9408, 9410, 9411, 9412, 9416, 9492, 9540, 9547, 9551, 9571, 9613, 9742, 9773, 9774, 9775, 9777, 9791, 9792, 9793, 9794, 9795, 9796, 9797, 9807, 9808, 9810, 9818, 9823, 9842, 9847, 9863, 9872, 9873, 9874, 9875, 9913, 9914, 9918, 9922, 9925, 9927, 9928, 9930, 9931, 9933, 9937, 9938, 9940, 9941, 9943, 9944, 9947, 9948, 9949, 9950, 9951, 9955, 9956, 9957, 9958, 9959, 9960, 9966, 9968, 9969, 9971, 9974, 9975, 9976, 9977, 9980, 9981, 9990, 9991, 9992, 9994, 9995, 9996, 9997, 9998, 9999, 10004, 10005, 10007, 10009, 10012, 10014, 10016, 10017, 10018, 10022, 10024, 10025, 10027, 10028, 10030, 10034, 10036, 10037, 10038, 10040, 10041, 10042, 10045, 10051, 10053, 10061, 10064, 10066, 10067, 10069, 10070, 10071, 10074, 10083, 10089, 10093, 10094, 10109, 10120, 10121, 10129, 10133, 10134, 10138, 10139, 10140, 10147, 10148, 10152, 10153, 10157, 10163, 10164, 10166, 10167, 10168, 10170, 10171, 10172, 10173, 10182, 10183, 10187, 10222, 10237, 10247, 10250, 10251, 10252, 10253, 10254, 10259, 10260, 10264, 10266, 10267, 10269, 10271, 10349, 10356, 10369, 10371, 10373, 10411, 10415, 10416, 10428, 10436, 10442, 10446, 10448, 10450, 10455, 10471, 10479, 10486, 10487, 10489, 10490, 10491, 10493, 10497, 10511, 10513, 10524, 10526, 10542, 10555, 10557, 10564, 10572, 10573, 10576, 10581, 10582, 10585, 10590, 10591, 10594, 10599, 10600, 10603, 10607, 10608, 10613, 10614, 10616, 10617, 10619, 10621, 10622, 10623, 10624, 10625, 10626, 10627, 10628, 10630, 10633, 10634, 10635, 10636, 10638, 10642, 10646, 10647, 10648, 10649, 10650, 10651, 10652, 10653, 10654, 10655, 10656, 10657, 10658, 10659, 10665, 10669, 10671, 10674, 10679, 10680, 10686, 10687, 10688, 10690, 10697, 10698, 10700, 10701, 10702, 10707, 10709, 10710, 10714, 10715, 10718, 10719, 10720, 10721, 10722, 10723, 10725, 10726, 10727, 10728, 10729, 10730, 10731, 10732, 10733, 10734, 10735, 10743, 10744, 10745, 10746, 10747, 10751, 10757, 10758, 10759, 10760, 10761, 10765, 10767, 10768, 10769, 10770, 10771, 10773, 10774, 10776, 10777, 10779, 10780, 10781, 10782, 10784, 10785, 10787, 10788, 10789, 10791, 10792, 10793, 10794, 10795, 10796, 10797, 10801, 10802, 10804, 10805, 10807, 10808, 10809, 10810, 10811, 10812, 10815, 10818, 10822, 10823, 10825, 10826, 10827, 10830, 10832, 10833, 10866, 10882, 10884, 10886, 10887, 10892, 10893, 10894, 10925, 10931, 10932, 10935, 10936, 10937, 10938, 10956, 10977, 10978, 10982, 11022, 11032, 11033, 11034, 11037, 11042, 11044, 11049, 11065, 11066, 11075, 11076, 11080, 11081, 11082, 11083, 11091, 11092, 11094, 11097, 11098, 11114, 11119, 11121, 11126, 11127, 11128, 11131, 11208, 11234, 11240, 11339, 11414, 11425, 11528, 11599, 11600, 11609, 11614, 11616, 11674, 11730, 11814, 11894, 11898, 11900, 11906, 11918, 11919, 11920, 11921, 11923, 11928, 11931, 11932, 11944, 11949, 11961, 12032, 12034, 12086, 12087, 12092, 12101, 12250, 12251, 12294, 12311, 12316, 12384, 12429, 12507, 12508, 12509, 12510, 12522, 12618, 12714, 12737, 12930, 12969, 13028, 13209, 13215, 13239, 13249, 13250, 13723, 13730, 13731, 13781, 13801, 13806, 13807, 13813, 13814]
(275) [119, 146, 885, 944, 1041, 1069, 1105, 1138, 1698, 1897, 1941, 1986, 2012, 2031, 2083, 2085, 2307, 2308, 2350, 2366, 2368, 2371, 2377, 2378, 2379, 2380, 3000, 3022, 3137, 3229, 3231, 3232, 3236, 3304, 3639, 4251, 4252, 4253, 4260, 4261, 4266, 4274, 4275, 4278, 4290, 4294, 4299, 4305, 4451, 4658, 4666, 4668, 4839, 4840, 4841, 5115, 5346, 5494, 5495, 5496, 5761, 5813, 6100, 6246, 6254, 6343, 6344, 6797, 6807, 6811, 6813, 6839, 6840, 6856, 6858, 6874, 6878, 7096, 7102, 7108, 7130, 7178, 7182, 7183, 7212, 7217, 7254, 7462, 7554, 7556, 7942, 7976, 7978, 8667, 8766, 8824, 9197, 9367, 9409, 9417, 9418, 9434, 9461, 9640, 9657, 9696, 9726, 9736, 9753, 9768, 9778, 9834, 9848, 9876, 9879, 9884, 9904, 9908, 9923, 9935, 9945, 10010, 10111, 10112, 10143, 10150, 10151, 10159, 10165, 10261, 10265, 10268, 10359, 10402, 10425, 10462, 10514, 10515, 10527, 10546, 10548, 10551, 10559, 10565, 10566, 10567, 10570, 10579, 10588, 10597, 10609, 10631, 10632, 10637, 10639, 10663, 10664, 10667, 10668, 10672, 10676, 10677, 10681, 10683, 10684, 10689, 10693, 10694, 10695, 10696, 10699, 10706, 10708, 10711, 10712, 10716, 10717, 10724, 10740, 10741, 10748, 10750, 10755, 10762, 10766, 10772, 10775, 10778, 10783, 10786, 10790, 10798, 10799, 10800, 10803, 10806, 10813, 10814, 10817, 10820, 10821, 10824, 10829, 10834, 10843, 10850, 10851, 10871, 10885, 10888, 10891, 10902, 10912, 10918, 10934, 10943, 10953, 10955, 10976, 11035, 11039, 11040, 11046, 11062, 11077, 11078, 11079, 11084, 11088, 11089, 11095, 11096, 11105, 11110, 11113, 11129, 11222, 11225, 11229, 11236, 11250, 11320, 11321, 11341, 11391, 11485, 11620, 11675, 11807, 11809, 11828, 11878, 11903, 11907, 11929, 11930, 11936, 11938, 12175, 12428, 12463, 12590, 12591, 12594, 12615, 12616, 12642, 12645, 12646, 12647, 13200, 13203, 13204, 13541, 13726]
(122) [408, 409, 1794, 1797, 1805, 1938, 1984, 2063, 2309, 2400, 2541, 2920, 3090, 3382, 3395, 3872, 3926, 3980, 3995, 4040, 4163, 4198, 4199, 4298, 4343, 4701, 4714, 4718, 4722, 4723, 4914, 5003, 5217, 5500, 5501, 5502, 5521, 5526, 5556, 5564, 5588, 5589, 5590, 6042, 6238, 6418, 6441, 6443, 6449, 6459, 6460, 6513, 6584, 6592, 6617, 6618, 6719, 6820, 7224, 7225, 7226, 7230, 7231, 7233, 7241, 7300, 7301, 7303, 7304, 7305, 7306, 7307, 8688, 8704, 8719, 8787, 8848, 8872, 8878, 9043, 9068, 9124, 9125, 9247, 9255, 9842, 9914, 10030, 10037, 10038, 10041, 10053, 10140, 10166, 10167, 10371, 10428, 10436, 10448, 10479, 10487, 10557, 10616, 11032, 11033, 11034, 11037, 11044, 11098, 11114, 11119, 11121, 11126, 11127, 11240, 11528, 11616, 11674, 11898, 12086, 12087, 12101]
(555) [133, 485, 550, 553, 710, 813, 958, 959, 961, 962, 964, 966, 968, 1039, 1046, 1075, 1162, 1186, 1697, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1953, 1985, 2006, 2026, 2304, 2316, 2319, 2376, 2707, 2713, 2990, 3092, 3118, 3192, 3193, 3324, 3326, 3339, 3352, 3355, 3363, 3368, 3384, 3463, 3642, 3673, 3676, 3728, 3776, 3783, 3843, 4011, 4146, 4216, 4287, 4315, 4386, 4917, 4951, 4954, 4962, 4995, 5010, 5247, 5817, 5818, 6104, 6111, 6169, 6183, 6185, 6264, 6542, 6543, 6549, 6581, 7063, 7107, 7110, 7179, 7187, 7189, 7214, 7253, 7288, 7316, 7345, 7411, 8384, 8385, 8386, 8387, 8392, 8393, 8411, 8416, 8419, 8424, 8447, 8457, 8538, 8539, 8541, 8542, 8555, 8570, 8573, 8586, 8589, 8601, 8605, 8676, 8703, 8706, 8731, 8795, 8796, 8815, 8817, 8838, 8841, 8845, 8866, 8907, 8910, 8911, 9170, 9172, 9220, 9229, 9350, 9354, 9361, 9363, 9365, 9366, 9373, 9407, 9408, 9410, 9411, 9412, 9416, 9492, 9540, 9547, 9551, 9571, 9613, 9742, 9773, 9774, 9775, 9777, 9791, 9792, 9793, 9794, 9795, 9796, 9797, 9807, 9808, 9810, 9818, 9823, 9847, 9863, 9872, 9873, 9874, 9875, 9913, 9918, 9922, 9925, 9927, 9928, 9930, 9931, 9933, 9937, 9938, 9940, 9941, 9943, 9944, 9947, 9948, 9949, 9950, 9951, 9955, 9956, 9957, 9958, 9959, 9960, 9966, 9968, 9969, 9971, 9974, 9975, 9976, 9977, 9980, 9981, 9990, 9991, 9992, 9994, 9995, 9996, 9997, 9998, 9999, 10004, 10005, 10007, 10009, 10012, 10014, 10016, 10017, 10018, 10022, 10024, 10025, 10027, 10028, 10034, 10036, 10040, 10042, 10045, 10051, 10061, 10064, 10066, 10067, 10069, 10070, 10071, 10074, 10083, 10089, 10093, 10094, 10109, 10120, 10121, 10129, 10133, 10134, 10138, 10139, 10147, 10148, 10152, 10153, 10157, 10163, 10164, 10168, 10170, 10171, 10172, 10173, 10182, 10183, 10187, 10222, 10237, 10247, 10250, 10251, 10252, 10253, 10254, 10259, 10260, 10264, 10266, 10267, 10269, 10271, 10349, 10356, 10369, 10373, 10411, 10415, 10416, 10442, 10446, 10450, 10455, 10471, 10486, 10489, 10490, 10491, 10493, 10497, 10511, 10513, 10524, 10526, 10542, 10555, 10564, 10572, 10573, 10576, 10581, 10582, 10585, 10590, 10591, 10594, 10599, 10600, 10603, 10607, 10608, 10613, 10614, 10617, 10619, 10621, 10622, 10623, 10624, 10625, 10626, 10627, 10628, 10630, 10633, 10634, 10635, 10636, 10638, 10642, 10646, 10647, 10648, 10649, 10650, 10651, 10652, 10653, 10654, 10655, 10656, 10657, 10658, 10659, 10665, 10669, 10671, 10674, 10679, 10680, 10686, 10687, 10688, 10690, 10697, 10698, 10700, 10701, 10702, 10707, 10709, 10710, 10714, 10715, 10718, 10719, 10720, 10721, 10722, 10723, 10725, 10726, 10727, 10728, 10729, 10730, 10731, 10732, 10733, 10734, 10735, 10743, 10744, 10745, 10746, 10747, 10751, 10757, 10758, 10759, 10760, 10761, 10765, 10767, 10768, 10769, 10770, 10771, 10773, 10774, 10776, 10777, 10779, 10780, 10781, 10782, 10784, 10785, 10787, 10788, 10789, 10791, 10792, 10793, 10794, 10795, 10796, 10797, 10801, 10802, 10804, 10805, 10807, 10808, 10809, 10810, 10811, 10812, 10815, 10818, 10822, 10823, 10825, 10826, 10827, 10830, 10832, 10833, 10866, 10882, 10884, 10886, 10887, 10892, 10893, 10894, 10925, 10931, 10932, 10935, 10936, 10937, 10938, 10956, 10977, 10978, 10982, 11022, 11042, 11049, 11065, 11066, 11075, 11076, 11080, 11081, 11082, 11083, 11091, 11092, 11094, 11097, 11128, 11131, 11208, 11234, 11339, 11414, 11425, 11599, 11600, 11609, 11614, 11730, 11814, 11894, 11900, 11906, 11918, 11919, 11920, 11921, 11923, 11928, 11931, 11932, 11944, 11949, 11961, 12032, 12034, 12092, 12250, 12251, 12294, 12311, 12316, 12384, 12429, 12507, 12508, 12509, 12510, 12522, 12618, 12714, 12737, 12930, 12969, 13028, 13209, 13215, 13239, 13249, 13250, 13723, 13730, 13731, 13781, 13801, 13806, 13807, 13813, 13814]