Chapter 1
Introduction and Summary of results

1.1 Introduction
1.2 Summary of results
1.3 Links to problems based on solution result

1.1 Introduction

This report shows the result of running Maple and Mathematica on my collection of differential equations. These were collected over time and stored in sqlite3 database. These were collected from a number of textbooks and other references such as Kamke and Murphy collections. All books used are listed here.

The current number of differential equations is [13784]. Both Maple and Mathematica are given a CPU time limit of 3 minutes to solve each ode else the problem is considered not solved and marked as failed.

When Mathematica returns DifferentialRoot as a solution to an ode then this is considered as not solved. Similarly, when Maple returns DESol or ODSESolStruc, then this is also considered as not solved.

If CAS solves the ODE within the timelimit, then it is counted as solved. No verification is done to check that the solution is correct or not.

To reduce the size of latex output, in Maple the command simplify is called on the solution with timeout of 3 minutes. If this times out, then the unsimplified original ode solution is used otherwise the simplified one is used.

Similarly for Mathematica, Simplify is next called. If this timesout, then the unsimplified solution is used else the simplified one is used. The time used for simplification is not counted in the CPU time used. The CPU time used only records the time used to solve the ode.

Tests are run under windows 10 with 128 GB RAM running on intel i9-12900K 3.20 GHz

1.2 Summary of results

1.2.1 Percentage solved and CPU performance

The following table summarizes perentage solved for each CAS

Table 1.1: Summary of final results
System % solved Number solved Number failed
Maple 2023.2.1 95.089 13107 677
Mathematica 14 93.979 12954 830

The following table summarizes the run-time performance of each CAS system.

Table 1.2: Summary of run time performance of each CAS system
System mean time (sec) mean leaf size total time (min) total leaf size
Maple 2023.2.1 0.119 276.23 27.412 3807490
Mathematica 14 3.401 238.27 781.250 3284309

The problem which Mathematica produced largest leaf size of \(413606\) is 9727.

The problem which Maple produced largest leaf size of \(949416\) is 12068.

The problem which Mathematica used most CPU time of \(175.525\) seconds is 6197.

The problem which Maple used most CPU time of \(134.110\) seconds is 6839.

1.2.2 Performance based on ODE type

Performance using Maple’s ODE types classification
Performance using own ODE types classification

The following gives the performance of each CAS based on the type of the ODE. The first subsection uses the types as classified by Maple ode advisor.The next subsection uses my own ode solver ODE classificaiton.

Performance using Maple’s ODE types classification

The following table gives count of the number of ODE’s for each ODE type, where the ODE type here is as classified by Maple’s odeadvisor, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.

Table 1.3: Percentage solved per Maple ODE type

Type of ODE

Count

Mathematica

Maple

[_quadrature]

806

98.26%
[885, 4266, 4275, 11807, 11809, 12590, 12591, 12594, 12615, 12616, 12642, 12645, 12646, 12647]

99.75%
[7303, 11674]

[[_linear, ‘class A‘]]

239

100.00%

98.74%
[7300, 7301, 11528]

[_separable]

1087

99.26%
[944, 2366, 3022, 6264, 8667, 11391, 11425, 13814]

99.45%
[408, 409, 6264, 6418, 11425, 13814]

[_Riccati]

317

66.88%
[958, 1697, 1698, 1700, 1701, 1702, 2707, 3304, 3324, 3326, 3339, 3639, 4386, 7345, 8447, 10349, 10356, 10369, 10373, 10425, 10442, 10446, 10450, 10455, 10462, 10471, 10486, 10489, 10490, 10491, 10493, 10497, 10511, 10513, 10514, 10515, 10524, 10526, 10527, 10542, 10546, 10548, 10551, 10555, 10559, 10564, 10565, 10566, 10567, 10570, 10572, 10573, 10576, 10579, 10581, 10582, 10585, 10588, 10590, 10591, 10594, 10597, 10599, 10600, 10603, 10607, 10608, 10609, 10613, 10614, 10617, 10619, 10621, 10622, 10623, 10624, 10625, 10626, 10627, 10628, 10630, 10631, 10632, 10633, 10634, 10635, 10636, 10637, 10638, 10639, 10642, 10646, 10647, 10648, 10649, 10650, 10651, 10652, 10653, 10654, 10655, 10656, 10657, 10658, 10659]

72.24%
[958, 1697, 1700, 1701, 1702, 2707, 3324, 3326, 3339, 4386, 7345, 8447, 10349, 10356, 10369, 10371, 10373, 10428, 10436, 10442, 10446, 10448, 10450, 10455, 10471, 10479, 10486, 10489, 10490, 10491, 10493, 10497, 10511, 10513, 10524, 10526, 10542, 10555, 10557, 10564, 10572, 10573, 10576, 10581, 10582, 10585, 10590, 10591, 10594, 10599, 10600, 10603, 10607, 10608, 10613, 10614, 10616, 10617, 10619, 10621, 10622, 10623, 10624, 10625, 10626, 10627, 10628, 10630, 10633, 10634, 10635, 10636, 10638, 10642, 10646, 10647, 10648, 10649, 10650, 10651, 10652, 10653, 10654, 10655, 10656, 10657, 10658, 10659]

[[_homogeneous, ‘class G‘]]

63

95.24%
[3232, 3236, 11828]

93.65%
[3995, 4040, 8704, 8719]

[_linear]

616

99.19%
[2006, 6169, 11675, 12384, 13807]

99.19%
[2006, 5502, 6169, 12384, 13807]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

25

100.00%

100.00%

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

90

100.00%

100.00%

[[_homogeneous, ‘class A‘], _dAlembert]

134

99.25%
[11222]

100.00%

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

89

98.88%
[6254]

100.00%

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

54

100.00%

100.00%

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

215

99.07%
[2085, 5761]

100.00%

[[_homogeneous, ‘class C‘], _dAlembert]

73

93.15%
[3000, 4260, 4278, 7102, 11250]

100.00%

[[_homogeneous, ‘class C‘], _Riccati]

22

100.00%

100.00%

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

69

100.00%

100.00%

[_Bernoulli]

103

97.09%
[2012, 5115, 7130]

100.00%

[[_1st_order, _with_linear_symmetries], _Bernoulli]

9

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

46

100.00%

100.00%

[‘y=_G(x,y’)‘]

138

61.59%
[133, 485, 959, 961, 962, 964, 966, 968, 1703, 1706, 1707, 2026, 2316, 2368, 2371, 3363, 3368, 3384, 3463, 4011, 4216, 4261, 4287, 4299, 4951, 4995, 6549, 7063, 7253, 8411, 8416, 8419, 8457, 8706, 8731, 8795, 8796, 8838, 8841, 8845, 8866, 9197, 11229, 11234, 11414, 11894, 11900, 11919, 12316, 12969, 13028, 13726, 13813]

58.70%
[133, 485, 959, 961, 962, 964, 966, 968, 1703, 1706, 1707, 2026, 2063, 2316, 3090, 3363, 3368, 3382, 3384, 3395, 3463, 3872, 4011, 4216, 4287, 4298, 4914, 4951, 4995, 6549, 7063, 7253, 8411, 8416, 8419, 8457, 8706, 8731, 8787, 8795, 8796, 8838, 8841, 8845, 8848, 8866, 8878, 11234, 11414, 11894, 11898, 11900, 11919, 12316, 12969, 13028, 13813]

[[_1st_order, _with_linear_symmetries]]

99

91.92%
[3229, 3231, 4290, 4294, 5346, 6797, 6807, 11225]

98.99%
[8872]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

32

100.00%

100.00%

[_exact, _rational]

37

97.30%
[119]

97.30%
[11616]

[_exact]

79

98.73%
[3137]

100.00%

[[_1st_order, _with_linear_symmetries], _exact, _rational]

4

100.00%

100.00%

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4

100.00%

100.00%

[[_homogeneous, ‘class G‘], _exact, _rational]

8

75.00%
[146, 11620]

100.00%

[[_2nd_order, _missing_x]]

652

96.63%
[2307, 2377, 7411, 9943, 9944, 9945, 9947, 9948, 9950, 9968, 9969, 9971, 9976, 9994, 10040, 10042, 10165, 10168, 11599, 11600, 12250, 12251]

97.09%
[7411, 9943, 9944, 9947, 9948, 9950, 9968, 9969, 9971, 9976, 9994, 10040, 10041, 10042, 10168, 11599, 11600, 12250, 12251]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

93

96.77%
[12294, 13249, 13250]

96.77%
[12294, 13249, 13250]

[[_Emden, _Fowler]]

306

99.67%
[6344]

97.06%
[2541, 4718, 5217, 5556, 5588, 5589, 6584, 6617, 12086]

[[_2nd_order, _exact, _linear, _homogeneous]]

216

99.54%
[11938]

98.15%
[5590, 6460, 6618, 12087]

[[_2nd_order, _missing_y]]

146

96.58%
[6856, 6858, 7212, 10159, 11341]

98.63%
[6443, 7305]

[[_2nd_order, _with_linear_symmetries]]

2683

94.04%
[1105, 1138, 2380, 5010, 5494, 5495, 5496, 5813, 5818, 6343, 6581, 7096, 7178, 7179, 7182, 7183, 7187, 7189, 7288, 7554, 7556, 7942, 7976, 7978, 9354, 9361, 9363, 9365, 9366, 9367, 9373, 9407, 9408, 9410, 9412, 9416, 9417, 9418, 9434, 9461, 9492, 9540, 9547, 9551, 9571, 9613, 9640, 9696, 9726, 9736, 9742, 9753, 9768, 9773, 9774, 9775, 9777, 9937, 9980, 9990, 9991, 9992, 9995, 9997, 9998, 9999, 10004, 10005, 10009, 10010, 10012, 10014, 10016, 10051, 10074, 10094, 10109, 10111, 10112, 10143, 10150, 10151, 10152, 10163, 10164, 10843, 10851, 10866, 10871, 10882, 10884, 10885, 10886, 10887, 10888, 10891, 10892, 10893, 10894, 10902, 10912, 10918, 10925, 10931, 10932, 10934, 10935, 10936, 10937, 10938, 10953, 10955, 10956, 10976, 10977, 10978, 10982, 11022, 11035, 11039, 11042, 11046, 11049, 11062, 11065, 11066, 11075, 11076, 11077, 11078, 11079, 11080, 11081, 11082, 11083, 11088, 11089, 11091, 11092, 11094, 11095, 11096, 11097, 11105, 11110, 11113, 11128, 11129, 11131, 11320, 11321, 11339, 11730, 11929, 11930, 11932, 11944, 12092, 13730, 13801]

95.53%
[1794, 1797, 1805, 2400, 2920, 4701, 4714, 5003, 5010, 5521, 5526, 5564, 5818, 6042, 6441, 6449, 6581, 6592, 7179, 7187, 7189, 7288, 9354, 9361, 9363, 9365, 9366, 9373, 9407, 9408, 9410, 9412, 9416, 9492, 9540, 9547, 9551, 9571, 9613, 9742, 9773, 9774, 9775, 9777, 9937, 9980, 9990, 9991, 9992, 9995, 9997, 9998, 9999, 10004, 10005, 10009, 10012, 10014, 10016, 10051, 10074, 10094, 10109, 10152, 10163, 10164, 10166, 10866, 10882, 10884, 10886, 10887, 10892, 10893, 10894, 10925, 10931, 10932, 10935, 10936, 10937, 10938, 10956, 10977, 10978, 10982, 11022, 11032, 11033, 11034, 11037, 11042, 11044, 11049, 11065, 11066, 11075, 11076, 11080, 11081, 11082, 11083, 11091, 11092, 11094, 11097, 11114, 11119, 11121, 11126, 11127, 11128, 11131, 11339, 11730, 11932, 11944, 12092, 13730, 13801]

[[_2nd_order, _linear, _nonhomogeneous]]

897

98.66%
[1162, 1186, 7462, 9411, 11485, 11928, 11931, 11961, 12032, 12034, 12428, 12429]

97.44%
[1162, 1186, 4722, 4723, 5500, 5501, 6513, 7224, 7225, 7226, 7230, 7231, 7233, 7241, 7306, 7307, 9411, 11928, 11931, 11961, 12032, 12034, 12429]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

59

100.00%

100.00%

system of linear ODEs

737

96.34%
[6104, 6542, 6543, 10222, 10237, 10247, 10250, 10251, 10252, 10253, 10254, 10259, 10260, 10261, 10264, 10265, 10266, 10267, 10268, 10269, 10271, 12507, 12508, 12509, 12510, 12522, 13723]

96.61%
[6104, 6542, 6543, 6719, 10222, 10237, 10247, 10250, 10251, 10252, 10253, 10254, 10259, 10260, 10264, 10266, 10267, 10269, 10271, 12507, 12508, 12509, 12510, 12522, 13723]

[_Gegenbauer]

74

100.00%

100.00%

[[_high_order, _missing_x]]

168

98.21%
[9876, 9879, 9908]

100.00%

[[_3rd_order, _missing_x]]

153

100.00%

100.00%

[[_3rd_order, _missing_y]]

68

100.00%

100.00%

[[_3rd_order, _exact, _linear, _homogeneous]]

12

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

71

90.14%
[9409, 9657, 9778, 10850, 10943, 11040, 11084]

97.18%
[6459, 11098]

[_Lienard]

54

100.00%

100.00%

[[_homogeneous, ‘class A‘], _rational, _Riccati]

28

100.00%

100.00%

[‘x=_G(y,y’)‘]

13

61.54%
[550, 2713, 6183, 8907, 12714]

61.54%
[550, 2713, 6183, 8907, 12714]

[[_Abel, ‘2nd type‘, ‘class B‘]]

15

26.67%
[553, 1046, 8586, 10677, 10680, 10700, 10701, 10702, 10722, 10735, 10740]

40.00%
[553, 1046, 8586, 10680, 10700, 10701, 10702, 10722, 10735]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

11

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

26

96.15%
[2031]

100.00%

[[_homogeneous, ‘class D‘], _rational]

3

100.00%

100.00%

[[_1st_order, _with_exponential_symmetries]]

6

100.00%

100.00%

[_rational]

108

82.41%
[1039, 1075, 1953, 2319, 3118, 3192, 3193, 4146, 4315, 6111, 8815, 8817, 8824, 9220, 9229, 11208, 11614, 13781, 13806]

75.93%
[1039, 1075, 1953, 2319, 3118, 3192, 3193, 3926, 4146, 4198, 4199, 4315, 6111, 8815, 8817, 9043, 9220, 9229, 9247, 9255, 11208, 11240, 11614, 12101, 13781, 13806]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

133

27.07%
[1069, 2990, 3092, 3776, 3783, 6185, 7316, 8570, 8573, 8589, 8601, 10663, 10664, 10671, 10672, 10674, 10676, 10679, 10681, 10683, 10684, 10686, 10687, 10688, 10689, 10690, 10693, 10694, 10695, 10697, 10698, 10699, 10706, 10707, 10708, 10709, 10710, 10711, 10714, 10715, 10716, 10717, 10718, 10719, 10720, 10721, 10723, 10724, 10725, 10726, 10727, 10728, 10729, 10741, 10758, 10759, 10762, 10765, 10766, 10767, 10768, 10769, 10770, 10771, 10772, 10774, 10775, 10776, 10777, 10778, 10779, 10780, 10781, 10782, 10783, 10784, 10785, 10786, 10787, 10788, 10789, 10790, 10791, 10792, 10793, 10794, 10795, 10796, 10797, 10798, 10799, 10800, 10801, 10802, 10803, 10833, 10834]

51.88%
[2990, 3092, 3776, 3783, 6185, 7316, 8570, 8573, 8589, 8601, 10671, 10674, 10679, 10686, 10687, 10688, 10690, 10697, 10698, 10707, 10709, 10710, 10714, 10715, 10718, 10719, 10720, 10721, 10723, 10725, 10726, 10727, 10728, 10729, 10758, 10759, 10765, 10767, 10768, 10769, 10770, 10771, 10774, 10776, 10777, 10779, 10780, 10781, 10782, 10784, 10785, 10787, 10788, 10789, 10791, 10792, 10793, 10794, 10795, 10796, 10797, 10801, 10802, 10833]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

4

100.00%

100.00%

[NONE]

84

34.52%
[710, 1041, 2378, 2379, 7110, 7214, 8393, 8424, 8538, 8703, 8910, 8911, 9170, 9172, 9927, 9930, 9931, 9935, 9938, 9940, 9941, 9949, 9951, 9955, 9956, 9957, 9960, 9966, 9974, 9975, 9977, 9981, 10007, 10017, 10025, 10034, 10036, 10061, 10064, 10066, 10067, 10070, 10071, 10083, 10089, 10121, 10133, 10134, 10147, 10183, 11918, 11921, 11923, 13209, 13731]

33.33%
[710, 6238, 7110, 7214, 8393, 8424, 8538, 8703, 8910, 8911, 9170, 9172, 9927, 9930, 9931, 9938, 9940, 9941, 9949, 9951, 9955, 9956, 9957, 9960, 9966, 9974, 9975, 9977, 9981, 10007, 10017, 10025, 10030, 10034, 10036, 10037, 10038, 10053, 10061, 10064, 10066, 10067, 10070, 10071, 10083, 10089, 10121, 10133, 10134, 10147, 10183, 11918, 11921, 11923, 13209, 13731]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

26

100.00%

96.15%
[1984]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

55

98.18%
[2083]

100.00%

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18

100.00%

100.00%

[[_high_order, _with_linear_symmetries]]

47

85.11%
[813, 9872, 9873, 9874, 9875, 9904, 9922]

85.11%
[813, 9872, 9873, 9874, 9875, 9914, 9922]

[[_3rd_order, _with_linear_symmetries]]

132

84.85%
[5817, 9791, 9792, 9793, 9794, 9795, 9796, 9797, 9807, 9808, 9810, 9818, 9823, 9834, 9847, 9848, 9863, 12463, 13239, 13541]

87.12%
[5817, 9791, 9792, 9793, 9794, 9795, 9796, 9797, 9807, 9808, 9810, 9818, 9823, 9842, 9847, 9863, 13239]

[[_high_order, _linear, _nonhomogeneous]]

72

97.22%
[9884, 9913]

98.61%
[9913]

[[_1st_order, _with_linear_symmetries], _Clairaut]

64

98.44%
[11236]

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

51

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

76

98.68%
[1985]

98.68%
[1985]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

5

100.00%

100.00%

[[_Abel, ‘2nd type‘, ‘class A‘]]

34

14.71%
[3676, 3728, 4954, 8542, 8555, 10667, 10668, 10732, 10733, 10734, 10743, 10744, 10745, 10746, 10747, 10761, 10807, 10814, 10815, 10817, 10818, 10820, 10821, 10822, 10823, 10824, 10825, 10826, 10827]

35.29%
[3676, 3728, 4954, 8542, 8555, 10732, 10733, 10734, 10743, 10744, 10745, 10746, 10747, 10761, 10807, 10815, 10818, 10822, 10823, 10825, 10826, 10827]

[_rational, _Bernoulli]

44

100.00%

100.00%

[[_homogeneous, ‘class A‘]]

7

100.00%

100.00%

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

143

97.90%
[1941, 4451, 10829]

99.30%
[1938]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

20

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _Riccati]

10

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Riccati]

1

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1

100.00%

100.00%

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15

100.00%

100.00%

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

5

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

4

100.00%

100.00%

[_exact, _Bernoulli]

6

100.00%

100.00%

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

9

100.00%

100.00%

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

12

83.33%
[4917, 4962]

83.33%
[4917, 4962]

[[_homogeneous, ‘class G‘], _rational]

90

98.89%
[1986]

97.78%
[4163, 6820]

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

14

100.00%

100.00%

[_rational, _Riccati]

102

95.10%
[10359, 10402, 10411, 10415, 10416]

97.06%
[10411, 10415, 10416]

[[_3rd_order, _linear, _nonhomogeneous]]

75

97.33%
[11903, 11907]

100.00%

[[_high_order, _missing_y]]

36

97.22%
[9918]

97.22%
[9918]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

6

100.00%

100.00%

[[_high_order, _exact, _linear, _nonhomogeneous]]

7

100.00%

100.00%

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

24

100.00%

100.00%

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

2

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

2

100.00%

100.00%

[[_Riccati, _special]]

23

100.00%

100.00%

[_Abel]

30

66.67%
[1704, 3352, 8384, 8385, 8386, 8387, 11814, 12311, 12618, 12737]

66.67%
[1704, 3352, 8384, 8385, 8386, 8387, 11814, 12311, 12618, 12737]

[_Laguerre]

38

100.00%

100.00%

[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4

100.00%

100.00%

[_Bessel]

19

100.00%

100.00%

[_rational, _Abel]

21

95.24%
[1897]

100.00%

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

3

100.00%

100.00%

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5

100.00%

100.00%

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

8

100.00%

100.00%

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6

100.00%

100.00%

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

30

100.00%

100.00%

[[_homogeneous, ‘class D‘], _Bernoulli]

4

100.00%

100.00%

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

11

100.00%

100.00%

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

4

100.00%

100.00%

[[_2nd_order, _quadrature]]

51

98.04%
[11878]

98.04%
[7304]

[[_high_order, _quadrature]]

8

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

71

90.14%
[2308, 2376, 4658, 6100, 6839, 6840, 9923]

98.59%
[2376]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

21

100.00%

100.00%

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

7

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16

62.50%
[4668, 4839, 4840, 4841, 13203, 13204]

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

29

89.66%
[2304, 7217, 13200]

93.10%
[2304, 2309]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

10

100.00%

100.00%

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

36

97.22%
[4666]

97.22%
[10140]

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

4

100.00%

100.00%

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

13

100.00%

100.00%

[_dAlembert]

21

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _dAlembert]

58

81.03%
[2350, 4251, 4252, 4253, 4274, 4305, 6811, 6813, 6874, 6878, 7254]

100.00%

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

9

100.00%

100.00%

[[_homogeneous, ‘class G‘], _Clairaut]

3

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

16

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

6

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

11

100.00%

100.00%

[[_3rd_order, _exact, _nonlinear]]

3

66.67%
[10173]

66.67%
[10173]

[_Jacobi]

33

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

6

100.00%

100.00%

[[_3rd_order, _quadrature]]

5

100.00%

100.00%

[[_homogeneous, ‘class G‘], _exact]

2

100.00%

100.00%

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

12

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1

100.00%

100.00%

[[_homogeneous, ‘class A‘], _exact, _rational, _Riccati]

1

100.00%

100.00%

[_erf]

4

100.00%

100.00%

[[_homogeneous, ‘class D‘]]

13

100.00%

100.00%

[_exact, _rational, _Riccati]

3

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

5

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational]

26

100.00%

100.00%

[[_homogeneous, ‘class D‘], _rational, _Riccati]

20

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _exact]

2

100.00%

100.00%

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

4

100.00%

100.00%

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2

100.00%

100.00%

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2

100.00%

100.00%

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

40

27.50%
[3673, 5247, 8539, 8541, 10665, 10669, 10696, 10712, 10730, 10731, 10748, 10750, 10751, 10755, 10757, 10760, 10773, 10804, 10805, 10806, 10808, 10809, 10810, 10811, 10812, 10813, 10830, 10832, 11609]

45.00%
[3673, 5247, 8539, 8541, 10665, 10669, 10730, 10731, 10751, 10757, 10760, 10773, 10804, 10805, 10808, 10809, 10810, 10811, 10812, 10830, 10832, 11609]

[[_homogeneous, ‘class G‘], _dAlembert]

5

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

5

100.00%

100.00%

[[_homogeneous, ‘class G‘], _Abel]

4

100.00%

100.00%

[[_homogeneous, ‘class G‘], _Chini]

4

100.00%

100.00%

[_Chini]

3

0.00%
[3355, 3642, 8392]

0.00%
[3355, 3642, 8392]

[_rational, [_Riccati, _special]]

9

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

2

100.00%

100.00%

[[_homogeneous, ‘class D‘], _Riccati]

20

100.00%

100.00%

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

4

100.00%

100.00%

[[_homogeneous, ‘class G‘], _Riccati]

4

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

5

100.00%

100.00%

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

4

100.00%

100.00%

[_exact, _rational, _Bernoulli]

3

100.00%

100.00%

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

5

100.00%

100.00%

[[_Abel, ‘2nd type‘, ‘class C‘]]

7

71.43%
[3843, 8605]

71.43%
[3843, 8605]

[[_homogeneous, ‘class C‘], _rational]

7

100.00%

100.00%

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

17

100.00%

100.00%

unknown

6

66.67%
[8676, 10138]

0.00%
[3980, 8676, 8688, 10138, 10167, 10487]

[_rational, _dAlembert]

10

90.00%
[8766]

100.00%

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

8

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

10

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

14

100.00%

100.00%

[_Clairaut]

7

100.00%

85.71%
[4343]

[[_homogeneous, ‘class D‘], _exact, _rational, _Bernoulli]

1

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

10

90.00%
[12175]

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

3

66.67%
[6246]

100.00%

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

9

100.00%

100.00%

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_homogeneous, ‘class G‘], _rational, _Abel]

2

100.00%

100.00%

[[_elliptic, _class_I]]

2

100.00%

100.00%

[[_elliptic, _class_II]]

2

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]]

1

100.00%

100.00%

[_Hermite]

15

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

3

100.00%

100.00%

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

4

100.00%

100.00%

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

3

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _Chini]

2

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2

100.00%

100.00%

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

36

100.00%

91.67%
[9068, 9124, 9125]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

5

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

3

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

3

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6

100.00%

100.00%

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

2

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

2

100.00%

100.00%

[[_Bessel, _modified]]

2

100.00%

100.00%

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

12

8.33%
[7107, 7108, 9933, 9996, 10018, 10022, 10024, 10027, 10028, 11936, 12930]

25.00%
[7107, 9933, 9996, 10018, 10022, 10024, 10027, 10028, 12930]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

3

33.33%
[9958, 11949]

33.33%
[9958, 11949]

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

8

100.00%

100.00%

[_Chini, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2

100.00%

100.00%

[[_1st_order, _with_exponential_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_homogeneous, ‘class G‘], [_Abel, ‘2nd type‘, ‘class C‘]]

1

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

7

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

8

100.00%

100.00%

[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _Abel]

13

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

2

100.00%

100.00%

[[_homogeneous, ‘class D‘], _rational, _Abel]

3

100.00%

100.00%

[[_homogeneous, ‘class C‘], _rational, _Abel]

3

100.00%

100.00%

[_rational, [_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3

100.00%

100.00%

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

1

100.00%

100.00%

[[_homogeneous, ‘class C‘], _Abel]

3

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

6

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

5

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

10

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

2

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel]

2

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Abel]

1

100.00%

100.00%

[_Titchmarsh]

2

50.00%
[9350]

50.00%
[9350]

[_ellipsoidal]

2

100.00%

100.00%

[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1

100.00%

100.00%

[_Halm]

4

100.00%

100.00%

[[_3rd_order, _fully, _exact, _linear]]

6

100.00%

100.00%

[[_high_order, _fully, _exact, _linear]]

1

100.00%

100.00%

[[_Painleve, ‘1st‘]]

1

0.00%
[9925]

0.00%
[9925]

[[_Painleve, ‘2nd‘]]

1

0.00%
[9928]

0.00%
[9928]

[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1

0.00%
[9959]

0.00%
[9959]

[[_2nd_order, _with_potential_symmetries]]

2

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

6

100.00%

100.00%

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

2

100.00%

100.00%

[[_2nd_order, _reducible, _mu_xy]]

3

66.67%
[10120]

66.67%
[10120]

[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

1

0.00%
[10045]

0.00%
[10045]

[[_Painleve, ‘4th‘]]

1

0.00%
[10069]

0.00%
[10069]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_Painleve, ‘3rd‘]]

1

0.00%
[10093]

0.00%
[10093]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

1

100.00%

100.00%

[[_Painleve, ‘5th‘]]

1

0.00%
[10129]

0.00%
[10129]

[[_Painleve, ‘6th‘]]

1

0.00%
[10139]

0.00%
[10139]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

1

0.00%
[10148]

0.00%
[10148]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]]

1

0.00%
[10153]

0.00%
[10153]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1]]

1

0.00%
[10157]

0.00%
[10157]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

7

28.57%
[10170, 10171, 10172, 10187, 13215]

28.57%
[10170, 10171, 10172, 10187, 13215]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

1

100.00%

100.00%

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

1

100.00%

100.00%

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

4

100.00%

100.00%

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

2

50.00%
[10182]

50.00%
[10182]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

2

100.00%

100.00%

82

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

1

100.00%

100.00%

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

2

0.00%
[11906, 11920]

0.00%
[11906, 11920]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

2

100.00%

100.00%

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

1

100.00%

100.00%

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

2

100.00%

100.00%

[[_1st_order, _with_exponential_symmetries], _exact]

1

100.00%

100.00%

[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert]

1

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

2

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_high_order, _exact, _linear, _homogeneous]]

2

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1

100.00%

100.00%

Performance using own ODE types classification

The types of the ODE’s are described in my ode solver page at ode types.

The following table gives count of the number of ODE’s for each ODE type, where the ODE type here is as classified by my own ode solver, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.

Table 1.5: Percentage solved per own ODE type

Type of ODE

Count

Mathematica

Maple

quadrature

724

98.07%
[885, 4266, 4275, 11807, 11809, 12590, 12591, 12594, 12615, 12616, 12642, 12645, 12646, 12647]

99.86%
[11674]

linear

69

98.55%
[6169]

98.55%
[6169]

separable

135

100.00%

100.00%

homogeneous

70

98.57%
[5761]

100.00%

homogeneousTypeD2

9

100.00%

100.00%

exact

275

98.91%
[119, 146, 3137]

98.91%
[3980, 8688, 11616]

exactWithIntegrationFactor

134

99.25%
[8676]

97.01%
[1984, 2063, 3090, 8676]

exactByInspection

19

100.00%

94.74%
[3926]

bernoulli

25

100.00%

100.00%

riccati

470

76.60%
[958, 1697, 1698, 1700, 1701, 1702, 2707, 3304, 3324, 3326, 3339, 3639, 4386, 7345, 8447, 10349, 10356, 10359, 10369, 10373, 10402, 10411, 10415, 10416, 10425, 10442, 10446, 10450, 10455, 10462, 10471, 10486, 10489, 10490, 10491, 10493, 10497, 10511, 10513, 10514, 10515, 10524, 10526, 10527, 10542, 10546, 10548, 10551, 10555, 10559, 10564, 10565, 10566, 10567, 10570, 10572, 10573, 10576, 10579, 10581, 10582, 10585, 10588, 10590, 10591, 10594, 10597, 10599, 10600, 10603, 10607, 10608, 10609, 10613, 10614, 10617, 10619, 10621, 10622, 10623, 10624, 10625, 10626, 10627, 10628, 10630, 10631, 10632, 10633, 10634, 10635, 10636, 10637, 10638, 10639, 10642, 10646, 10647, 10648, 10649, 10650, 10651, 10652, 10653, 10654, 10655, 10656, 10657, 10658, 10659]

80.00%
[958, 1697, 1700, 1701, 1702, 2707, 3324, 3326, 3339, 4386, 7345, 8447, 9068, 9125, 10349, 10356, 10369, 10371, 10373, 10411, 10415, 10416, 10428, 10436, 10442, 10446, 10448, 10450, 10455, 10471, 10479, 10486, 10487, 10489, 10490, 10491, 10493, 10497, 10511, 10513, 10524, 10526, 10542, 10555, 10557, 10564, 10572, 10573, 10576, 10581, 10582, 10585, 10590, 10591, 10594, 10599, 10600, 10603, 10607, 10608, 10613, 10614, 10616, 10617, 10619, 10621, 10622, 10623, 10624, 10625, 10626, 10627, 10628, 10630, 10633, 10634, 10635, 10636, 10638, 10642, 10646, 10647, 10648, 10649, 10650, 10651, 10652, 10653, 10654, 10655, 10656, 10657, 10658, 10659]

clairaut

101

99.01%
[11236]

99.01%
[4343]

dAlembert

252

93.25%
[2350, 3000, 4251, 4252, 4253, 4260, 4274, 4278, 4305, 6811, 6813, 6874, 6878, 7254, 8766, 11222, 11250]

100.00%

isobaric

13

100.00%

100.00%

polynomial

16

100.00%

100.00%

abelFirstKind

58

82.76%
[1704, 1897, 3352, 8384, 8385, 8387, 11814, 12311, 12618, 12737]

84.48%
[1704, 3352, 8384, 8385, 8387, 11814, 12311, 12618, 12737]

first order ode series method. Taylor series method

10

70.00%
[2366, 2368, 2371]

100.00%

first order ode series method. Regular singular point

8

100.00%

100.00%

first order ode series method. Irregular singular point

3

100.00%

0.00%
[408, 409, 6418]

first_order_laplace

72

100.00%

100.00%

first_order_ode_lie_symmetry_calculated

338

96.15%
[1986, 2083, 3229, 3231, 3232, 3236, 4290, 4294, 5346, 6797, 6807, 11225, 11828]

96.75%
[3995, 4040, 4163, 4199, 6820, 8704, 8719, 8872, 9247, 11240, 12101]

system of linear ODEs

714

96.78%
[6104, 6542, 6543, 10237, 10247, 10250, 10251, 10252, 10253, 10254, 10264, 10265, 10266, 10267, 10268, 10269, 10271, 12507, 12508, 12509, 12510, 12522, 13723]

96.92%
[6104, 6542, 6543, 6719, 10237, 10247, 10250, 10251, 10252, 10253, 10254, 10264, 10266, 10267, 10269, 10271, 12507, 12508, 12509, 12510, 12522, 13723]

second_order_laplace

318

100.00%

99.69%
[6513]

reduction_of_order

125

96.80%
[1138, 6343, 6344, 11730]

99.20%
[11730]

second_order_linear_constant_coeff

2

100.00%

0.00%
[7306, 7307]

second_order_airy

15

100.00%

100.00%

exact nonlinear second order ode

7

28.57%
[9938, 9940, 9941, 9951, 13731]

28.57%
[9938, 9940, 9941, 9951, 13731]

second_order_change_of_variable_on_x_method_1

2

50.00%
[9409]

100.00%

second_order_change_of_variable_on_x_method_2

5

100.00%

100.00%

second_order_change_of_variable_on_y_method_2

15

86.67%
[9753, 10937]

93.33%
[10937]

second_order_change_of_variable_on_y_method_1

3

100.00%

100.00%

second_order_integrable_as_is

11

81.82%
[10153, 11949]

81.82%
[10153, 11949]

second_order_ode_lagrange_adjoint_equation_method

8

87.50%
[10891]

87.50%
[11098]

second_order_nonlinear_solved_by_mainardi_lioville_method

14

100.00%

100.00%

second_order_bessel_ode

130

90.77%
[7288, 9350, 9640, 9696, 10843, 10902, 10953, 10955, 11046, 11089, 12092, 12428]

97.69%
[7288, 9350, 12092]

second_order_bessel_ode_form_A

7

100.00%

100.00%

second_order_ode_missing_x

152

88.16%
[2307, 2308, 4666, 9943, 9944, 9945, 9948, 9968, 9969, 9971, 9994, 10040, 10042, 10165, 10168, 12175, 12250, 12251]

90.79%
[9943, 9944, 9948, 9968, 9969, 9971, 9994, 10040, 10041, 10042, 10140, 10168, 12250, 12251]

second_order_ode_missing_y

58

86.21%
[2304, 6856, 6858, 7212, 7217, 10159, 11341, 13200]

96.55%
[2304, 2309]

second order series method. Taylor series method

6

33.33%
[2376, 2377, 2378, 2379]

83.33%
[2376]

second order series method. Regular singular point. Difference not integer

246

99.59%
[2380]

97.56%
[7224, 7225, 7226, 7230, 7231, 7233]

second order series method. Regular singular point. Repeated root

198

100.00%

99.49%
[7241]

second order series method. Regular singular point. Difference is integer

302

100.00%

99.67%
[5501]

second order series method. Irregular singular point

35

94.29%
[5010, 6581]

0.00%
[1794, 1797, 1805, 2400, 2541, 2920, 4701, 4714, 4718, 4722, 4723, 5003, 5010, 5217, 5500, 5521, 5526, 5556, 5564, 5588, 5589, 5590, 6042, 6441, 6443, 6449, 6459, 6460, 6581, 6584, 6592, 6617, 6618, 12086, 12087]

second order series method. Regular singular point. Complex roots

28

89.29%
[5494, 5495, 5496]

100.00%

second_order_ode_high_degree

1

100.00%

100.00%

higher_order_linear_constant_coefficients_ODE

549

99.27%
[9876, 9879, 9908, 12463]

100.00%

higher_order_ODE_non_constant_coefficients_of_type_Euler

67

100.00%

100.00%

higher_order_laplace

29

96.55%
[13541]

100.00%

These are direct links to the ode problems based on status of solving.

Not solved by Mathematica

(830) [119, 133, 146, 485, 550, 553, 710, 813, 885, 944, 958, 959, 961, 962, 964, 966, 968, 1039, 1041, 1046, 1069, 1075, 1105, 1138, 1162, 1186, 1697, 1698, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1897, 1941, 1953, 1985, 1986, 2006, 2012, 2026, 2031, 2083, 2085, 2304, 2307, 2308, 2316, 2319, 2350, 2366, 2368, 2371, 2376, 2377, 2378, 2379, 2380, 2707, 2713, 2990, 3000, 3022, 3092, 3118, 3137, 3192, 3193, 3229, 3231, 3232, 3236, 3304, 3324, 3326, 3339, 3352, 3355, 3363, 3368, 3384, 3463, 3639, 3642, 3673, 3676, 3728, 3776, 3783, 3843, 4011, 4146, 4216, 4251, 4252, 4253, 4260, 4261, 4266, 4274, 4275, 4278, 4287, 4290, 4294, 4299, 4305, 4315, 4386, 4451, 4658, 4666, 4668, 4839, 4840, 4841, 4917, 4951, 4954, 4962, 4995, 5010, 5115, 5247, 5346, 5494, 5495, 5496, 5761, 5813, 5817, 5818, 6100, 6104, 6111, 6169, 6183, 6185, 6246, 6254, 6264, 6343, 6344, 6542, 6543, 6549, 6581, 6797, 6807, 6811, 6813, 6839, 6840, 6856, 6858, 6874, 6878, 7063, 7096, 7102, 7107, 7108, 7110, 7130, 7178, 7179, 7182, 7183, 7187, 7189, 7212, 7214, 7217, 7253, 7254, 7288, 7316, 7345, 7411, 7462, 7554, 7556, 7942, 7976, 7978, 8384, 8385, 8386, 8387, 8392, 8393, 8411, 8416, 8419, 8424, 8447, 8457, 8538, 8539, 8541, 8542, 8555, 8570, 8573, 8586, 8589, 8601, 8605, 8667, 8676, 8703, 8706, 8731, 8766, 8795, 8796, 8815, 8817, 8824, 8838, 8841, 8845, 8866, 8907, 8910, 8911, 9170, 9172, 9197, 9220, 9229, 9350, 9354, 9361, 9363, 9365, 9366, 9367, 9373, 9407, 9408, 9409, 9410, 9411, 9412, 9416, 9417, 9418, 9434, 9461, 9492, 9540, 9547, 9551, 9571, 9613, 9640, 9657, 9696, 9726, 9736, 9742, 9753, 9768, 9773, 9774, 9775, 9777, 9778, 9791, 9792, 9793, 9794, 9795, 9796, 9797, 9807, 9808, 9810, 9818, 9823, 9834, 9847, 9848, 9863, 9872, 9873, 9874, 9875, 9876, 9879, 9884, 9904, 9908, 9913, 9918, 9922, 9923, 9925, 9927, 9928, 9930, 9931, 9933, 9935, 9937, 9938, 9940, 9941, 9943, 9944, 9945, 9947, 9948, 9949, 9950, 9951, 9955, 9956, 9957, 9958, 9959, 9960, 9966, 9968, 9969, 9971, 9974, 9975, 9976, 9977, 9980, 9981, 9990, 9991, 9992, 9994, 9995, 9996, 9997, 9998, 9999, 10004, 10005, 10007, 10009, 10010, 10012, 10014, 10016, 10017, 10018, 10022, 10024, 10025, 10027, 10028, 10034, 10036, 10040, 10042, 10045, 10051, 10061, 10064, 10066, 10067, 10069, 10070, 10071, 10074, 10083, 10089, 10093, 10094, 10109, 10111, 10112, 10120, 10121, 10129, 10133, 10134, 10138, 10139, 10143, 10147, 10148, 10150, 10151, 10152, 10153, 10157, 10159, 10163, 10164, 10165, 10168, 10170, 10171, 10172, 10173, 10182, 10183, 10187, 10222, 10237, 10247, 10250, 10251, 10252, 10253, 10254, 10259, 10260, 10261, 10264, 10265, 10266, 10267, 10268, 10269, 10271, 10349, 10356, 10359, 10369, 10373, 10402, 10411, 10415, 10416, 10425, 10442, 10446, 10450, 10455, 10462, 10471, 10486, 10489, 10490, 10491, 10493, 10497, 10511, 10513, 10514, 10515, 10524, 10526, 10527, 10542, 10546, 10548, 10551, 10555, 10559, 10564, 10565, 10566, 10567, 10570, 10572, 10573, 10576, 10579, 10581, 10582, 10585, 10588, 10590, 10591, 10594, 10597, 10599, 10600, 10603, 10607, 10608, 10609, 10613, 10614, 10617, 10619, 10621, 10622, 10623, 10624, 10625, 10626, 10627, 10628, 10630, 10631, 10632, 10633, 10634, 10635, 10636, 10637, 10638, 10639, 10642, 10646, 10647, 10648, 10649, 10650, 10651, 10652, 10653, 10654, 10655, 10656, 10657, 10658, 10659, 10663, 10664, 10665, 10667, 10668, 10669, 10671, 10672, 10674, 10676, 10677, 10679, 10680, 10681, 10683, 10684, 10686, 10687, 10688, 10689, 10690, 10693, 10694, 10695, 10696, 10697, 10698, 10699, 10700, 10701, 10702, 10706, 10707, 10708, 10709, 10710, 10711, 10712, 10714, 10715, 10716, 10717, 10718, 10719, 10720, 10721, 10722, 10723, 10724, 10725, 10726, 10727, 10728, 10729, 10730, 10731, 10732, 10733, 10734, 10735, 10740, 10741, 10743, 10744, 10745, 10746, 10747, 10748, 10750, 10751, 10755, 10757, 10758, 10759, 10760, 10761, 10762, 10765, 10766, 10767, 10768, 10769, 10770, 10771, 10772, 10773, 10774, 10775, 10776, 10777, 10778, 10779, 10780, 10781, 10782, 10783, 10784, 10785, 10786, 10787, 10788, 10789, 10790, 10791, 10792, 10793, 10794, 10795, 10796, 10797, 10798, 10799, 10800, 10801, 10802, 10803, 10804, 10805, 10806, 10807, 10808, 10809, 10810, 10811, 10812, 10813, 10814, 10815, 10817, 10818, 10820, 10821, 10822, 10823, 10824, 10825, 10826, 10827, 10829, 10830, 10832, 10833, 10834, 10843, 10850, 10851, 10866, 10871, 10882, 10884, 10885, 10886, 10887, 10888, 10891, 10892, 10893, 10894, 10902, 10912, 10918, 10925, 10931, 10932, 10934, 10935, 10936, 10937, 10938, 10943, 10953, 10955, 10956, 10976, 10977, 10978, 10982, 11022, 11035, 11039, 11040, 11042, 11046, 11049, 11062, 11065, 11066, 11075, 11076, 11077, 11078, 11079, 11080, 11081, 11082, 11083, 11084, 11088, 11089, 11091, 11092, 11094, 11095, 11096, 11097, 11105, 11110, 11113, 11128, 11129, 11131, 11208, 11222, 11225, 11229, 11234, 11236, 11250, 11320, 11321, 11339, 11341, 11391, 11414, 11425, 11485, 11599, 11600, 11609, 11614, 11620, 11675, 11730, 11807, 11809, 11814, 11828, 11878, 11894, 11900, 11903, 11906, 11907, 11918, 11919, 11920, 11921, 11923, 11928, 11929, 11930, 11931, 11932, 11936, 11938, 11944, 11949, 11961, 12032, 12034, 12092, 12175, 12250, 12251, 12294, 12311, 12316, 12384, 12428, 12429, 12463, 12507, 12508, 12509, 12510, 12522, 12590, 12591, 12594, 12615, 12616, 12618, 12642, 12645, 12646, 12647, 12714, 12737, 12930, 12969, 13028, 13200, 13203, 13204, 13209, 13215, 13239, 13249, 13250, 13541, 13723, 13726, 13730, 13731, 13781, 13801, 13806, 13807, 13813, 13814]

Not solved by Maple

(677) [133, 408, 409, 485, 550, 553, 710, 813, 958, 959, 961, 962, 964, 966, 968, 1039, 1046, 1075, 1162, 1186, 1697, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1794, 1797, 1805, 1938, 1953, 1984, 1985, 2006, 2026, 2063, 2304, 2309, 2316, 2319, 2376, 2400, 2541, 2707, 2713, 2920, 2990, 3090, 3092, 3118, 3192, 3193, 3324, 3326, 3339, 3352, 3355, 3363, 3368, 3382, 3384, 3395, 3463, 3642, 3673, 3676, 3728, 3776, 3783, 3843, 3872, 3926, 3980, 3995, 4011, 4040, 4146, 4163, 4198, 4199, 4216, 4287, 4298, 4315, 4343, 4386, 4701, 4714, 4718, 4722, 4723, 4914, 4917, 4951, 4954, 4962, 4995, 5003, 5010, 5217, 5247, 5500, 5501, 5502, 5521, 5526, 5556, 5564, 5588, 5589, 5590, 5817, 5818, 6042, 6104, 6111, 6169, 6183, 6185, 6238, 6264, 6418, 6441, 6443, 6449, 6459, 6460, 6513, 6542, 6543, 6549, 6581, 6584, 6592, 6617, 6618, 6719, 6820, 7063, 7107, 7110, 7179, 7187, 7189, 7214, 7224, 7225, 7226, 7230, 7231, 7233, 7241, 7253, 7288, 7300, 7301, 7303, 7304, 7305, 7306, 7307, 7316, 7345, 7411, 8384, 8385, 8386, 8387, 8392, 8393, 8411, 8416, 8419, 8424, 8447, 8457, 8538, 8539, 8541, 8542, 8555, 8570, 8573, 8586, 8589, 8601, 8605, 8676, 8688, 8703, 8704, 8706, 8719, 8731, 8787, 8795, 8796, 8815, 8817, 8838, 8841, 8845, 8848, 8866, 8872, 8878, 8907, 8910, 8911, 9043, 9068, 9124, 9125, 9170, 9172, 9220, 9229, 9247, 9255, 9350, 9354, 9361, 9363, 9365, 9366, 9373, 9407, 9408, 9410, 9411, 9412, 9416, 9492, 9540, 9547, 9551, 9571, 9613, 9742, 9773, 9774, 9775, 9777, 9791, 9792, 9793, 9794, 9795, 9796, 9797, 9807, 9808, 9810, 9818, 9823, 9842, 9847, 9863, 9872, 9873, 9874, 9875, 9913, 9914, 9918, 9922, 9925, 9927, 9928, 9930, 9931, 9933, 9937, 9938, 9940, 9941, 9943, 9944, 9947, 9948, 9949, 9950, 9951, 9955, 9956, 9957, 9958, 9959, 9960, 9966, 9968, 9969, 9971, 9974, 9975, 9976, 9977, 9980, 9981, 9990, 9991, 9992, 9994, 9995, 9996, 9997, 9998, 9999, 10004, 10005, 10007, 10009, 10012, 10014, 10016, 10017, 10018, 10022, 10024, 10025, 10027, 10028, 10030, 10034, 10036, 10037, 10038, 10040, 10041, 10042, 10045, 10051, 10053, 10061, 10064, 10066, 10067, 10069, 10070, 10071, 10074, 10083, 10089, 10093, 10094, 10109, 10120, 10121, 10129, 10133, 10134, 10138, 10139, 10140, 10147, 10148, 10152, 10153, 10157, 10163, 10164, 10166, 10167, 10168, 10170, 10171, 10172, 10173, 10182, 10183, 10187, 10222, 10237, 10247, 10250, 10251, 10252, 10253, 10254, 10259, 10260, 10264, 10266, 10267, 10269, 10271, 10349, 10356, 10369, 10371, 10373, 10411, 10415, 10416, 10428, 10436, 10442, 10446, 10448, 10450, 10455, 10471, 10479, 10486, 10487, 10489, 10490, 10491, 10493, 10497, 10511, 10513, 10524, 10526, 10542, 10555, 10557, 10564, 10572, 10573, 10576, 10581, 10582, 10585, 10590, 10591, 10594, 10599, 10600, 10603, 10607, 10608, 10613, 10614, 10616, 10617, 10619, 10621, 10622, 10623, 10624, 10625, 10626, 10627, 10628, 10630, 10633, 10634, 10635, 10636, 10638, 10642, 10646, 10647, 10648, 10649, 10650, 10651, 10652, 10653, 10654, 10655, 10656, 10657, 10658, 10659, 10665, 10669, 10671, 10674, 10679, 10680, 10686, 10687, 10688, 10690, 10697, 10698, 10700, 10701, 10702, 10707, 10709, 10710, 10714, 10715, 10718, 10719, 10720, 10721, 10722, 10723, 10725, 10726, 10727, 10728, 10729, 10730, 10731, 10732, 10733, 10734, 10735, 10743, 10744, 10745, 10746, 10747, 10751, 10757, 10758, 10759, 10760, 10761, 10765, 10767, 10768, 10769, 10770, 10771, 10773, 10774, 10776, 10777, 10779, 10780, 10781, 10782, 10784, 10785, 10787, 10788, 10789, 10791, 10792, 10793, 10794, 10795, 10796, 10797, 10801, 10802, 10804, 10805, 10807, 10808, 10809, 10810, 10811, 10812, 10815, 10818, 10822, 10823, 10825, 10826, 10827, 10830, 10832, 10833, 10866, 10882, 10884, 10886, 10887, 10892, 10893, 10894, 10925, 10931, 10932, 10935, 10936, 10937, 10938, 10956, 10977, 10978, 10982, 11022, 11032, 11033, 11034, 11037, 11042, 11044, 11049, 11065, 11066, 11075, 11076, 11080, 11081, 11082, 11083, 11091, 11092, 11094, 11097, 11098, 11114, 11119, 11121, 11126, 11127, 11128, 11131, 11208, 11234, 11240, 11339, 11414, 11425, 11528, 11599, 11600, 11609, 11614, 11616, 11674, 11730, 11814, 11894, 11898, 11900, 11906, 11918, 11919, 11920, 11921, 11923, 11928, 11931, 11932, 11944, 11949, 11961, 12032, 12034, 12086, 12087, 12092, 12101, 12250, 12251, 12294, 12311, 12316, 12384, 12429, 12507, 12508, 12509, 12510, 12522, 12618, 12714, 12737, 12930, 12969, 13028, 13209, 13215, 13239, 13249, 13250, 13723, 13730, 13731, 13781, 13801, 13806, 13807, 13813, 13814]

Solved by Maple but not by Mathematica

(275) [119, 146, 885, 944, 1041, 1069, 1105, 1138, 1698, 1897, 1941, 1986, 2012, 2031, 2083, 2085, 2307, 2308, 2350, 2366, 2368, 2371, 2377, 2378, 2379, 2380, 3000, 3022, 3137, 3229, 3231, 3232, 3236, 3304, 3639, 4251, 4252, 4253, 4260, 4261, 4266, 4274, 4275, 4278, 4290, 4294, 4299, 4305, 4451, 4658, 4666, 4668, 4839, 4840, 4841, 5115, 5346, 5494, 5495, 5496, 5761, 5813, 6100, 6246, 6254, 6343, 6344, 6797, 6807, 6811, 6813, 6839, 6840, 6856, 6858, 6874, 6878, 7096, 7102, 7108, 7130, 7178, 7182, 7183, 7212, 7217, 7254, 7462, 7554, 7556, 7942, 7976, 7978, 8667, 8766, 8824, 9197, 9367, 9409, 9417, 9418, 9434, 9461, 9640, 9657, 9696, 9726, 9736, 9753, 9768, 9778, 9834, 9848, 9876, 9879, 9884, 9904, 9908, 9923, 9935, 9945, 10010, 10111, 10112, 10143, 10150, 10151, 10159, 10165, 10261, 10265, 10268, 10359, 10402, 10425, 10462, 10514, 10515, 10527, 10546, 10548, 10551, 10559, 10565, 10566, 10567, 10570, 10579, 10588, 10597, 10609, 10631, 10632, 10637, 10639, 10663, 10664, 10667, 10668, 10672, 10676, 10677, 10681, 10683, 10684, 10689, 10693, 10694, 10695, 10696, 10699, 10706, 10708, 10711, 10712, 10716, 10717, 10724, 10740, 10741, 10748, 10750, 10755, 10762, 10766, 10772, 10775, 10778, 10783, 10786, 10790, 10798, 10799, 10800, 10803, 10806, 10813, 10814, 10817, 10820, 10821, 10824, 10829, 10834, 10843, 10850, 10851, 10871, 10885, 10888, 10891, 10902, 10912, 10918, 10934, 10943, 10953, 10955, 10976, 11035, 11039, 11040, 11046, 11062, 11077, 11078, 11079, 11084, 11088, 11089, 11095, 11096, 11105, 11110, 11113, 11129, 11222, 11225, 11229, 11236, 11250, 11320, 11321, 11341, 11391, 11485, 11620, 11675, 11807, 11809, 11828, 11878, 11903, 11907, 11929, 11930, 11936, 11938, 12175, 12428, 12463, 12590, 12591, 12594, 12615, 12616, 12642, 12645, 12646, 12647, 13200, 13203, 13204, 13541, 13726]

Solved by Mathematica but not by Maple

(122) [408, 409, 1794, 1797, 1805, 1938, 1984, 2063, 2309, 2400, 2541, 2920, 3090, 3382, 3395, 3872, 3926, 3980, 3995, 4040, 4163, 4198, 4199, 4298, 4343, 4701, 4714, 4718, 4722, 4723, 4914, 5003, 5217, 5500, 5501, 5502, 5521, 5526, 5556, 5564, 5588, 5589, 5590, 6042, 6238, 6418, 6441, 6443, 6449, 6459, 6460, 6513, 6584, 6592, 6617, 6618, 6719, 6820, 7224, 7225, 7226, 7230, 7231, 7233, 7241, 7300, 7301, 7303, 7304, 7305, 7306, 7307, 8688, 8704, 8719, 8787, 8848, 8872, 8878, 9043, 9068, 9124, 9125, 9247, 9255, 9842, 9914, 10030, 10037, 10038, 10041, 10053, 10140, 10166, 10167, 10371, 10428, 10436, 10448, 10479, 10487, 10557, 10616, 11032, 11033, 11034, 11037, 11044, 11098, 11114, 11119, 11121, 11126, 11127, 11240, 11528, 11616, 11674, 11898, 12086, 12087, 12101]

Both systems unable to solve

(555) [133, 485, 550, 553, 710, 813, 958, 959, 961, 962, 964, 966, 968, 1039, 1046, 1075, 1162, 1186, 1697, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1953, 1985, 2006, 2026, 2304, 2316, 2319, 2376, 2707, 2713, 2990, 3092, 3118, 3192, 3193, 3324, 3326, 3339, 3352, 3355, 3363, 3368, 3384, 3463, 3642, 3673, 3676, 3728, 3776, 3783, 3843, 4011, 4146, 4216, 4287, 4315, 4386, 4917, 4951, 4954, 4962, 4995, 5010, 5247, 5817, 5818, 6104, 6111, 6169, 6183, 6185, 6264, 6542, 6543, 6549, 6581, 7063, 7107, 7110, 7179, 7187, 7189, 7214, 7253, 7288, 7316, 7345, 7411, 8384, 8385, 8386, 8387, 8392, 8393, 8411, 8416, 8419, 8424, 8447, 8457, 8538, 8539, 8541, 8542, 8555, 8570, 8573, 8586, 8589, 8601, 8605, 8676, 8703, 8706, 8731, 8795, 8796, 8815, 8817, 8838, 8841, 8845, 8866, 8907, 8910, 8911, 9170, 9172, 9220, 9229, 9350, 9354, 9361, 9363, 9365, 9366, 9373, 9407, 9408, 9410, 9411, 9412, 9416, 9492, 9540, 9547, 9551, 9571, 9613, 9742, 9773, 9774, 9775, 9777, 9791, 9792, 9793, 9794, 9795, 9796, 9797, 9807, 9808, 9810, 9818, 9823, 9847, 9863, 9872, 9873, 9874, 9875, 9913, 9918, 9922, 9925, 9927, 9928, 9930, 9931, 9933, 9937, 9938, 9940, 9941, 9943, 9944, 9947, 9948, 9949, 9950, 9951, 9955, 9956, 9957, 9958, 9959, 9960, 9966, 9968, 9969, 9971, 9974, 9975, 9976, 9977, 9980, 9981, 9990, 9991, 9992, 9994, 9995, 9996, 9997, 9998, 9999, 10004, 10005, 10007, 10009, 10012, 10014, 10016, 10017, 10018, 10022, 10024, 10025, 10027, 10028, 10034, 10036, 10040, 10042, 10045, 10051, 10061, 10064, 10066, 10067, 10069, 10070, 10071, 10074, 10083, 10089, 10093, 10094, 10109, 10120, 10121, 10129, 10133, 10134, 10138, 10139, 10147, 10148, 10152, 10153, 10157, 10163, 10164, 10168, 10170, 10171, 10172, 10173, 10182, 10183, 10187, 10222, 10237, 10247, 10250, 10251, 10252, 10253, 10254, 10259, 10260, 10264, 10266, 10267, 10269, 10271, 10349, 10356, 10369, 10373, 10411, 10415, 10416, 10442, 10446, 10450, 10455, 10471, 10486, 10489, 10490, 10491, 10493, 10497, 10511, 10513, 10524, 10526, 10542, 10555, 10564, 10572, 10573, 10576, 10581, 10582, 10585, 10590, 10591, 10594, 10599, 10600, 10603, 10607, 10608, 10613, 10614, 10617, 10619, 10621, 10622, 10623, 10624, 10625, 10626, 10627, 10628, 10630, 10633, 10634, 10635, 10636, 10638, 10642, 10646, 10647, 10648, 10649, 10650, 10651, 10652, 10653, 10654, 10655, 10656, 10657, 10658, 10659, 10665, 10669, 10671, 10674, 10679, 10680, 10686, 10687, 10688, 10690, 10697, 10698, 10700, 10701, 10702, 10707, 10709, 10710, 10714, 10715, 10718, 10719, 10720, 10721, 10722, 10723, 10725, 10726, 10727, 10728, 10729, 10730, 10731, 10732, 10733, 10734, 10735, 10743, 10744, 10745, 10746, 10747, 10751, 10757, 10758, 10759, 10760, 10761, 10765, 10767, 10768, 10769, 10770, 10771, 10773, 10774, 10776, 10777, 10779, 10780, 10781, 10782, 10784, 10785, 10787, 10788, 10789, 10791, 10792, 10793, 10794, 10795, 10796, 10797, 10801, 10802, 10804, 10805, 10807, 10808, 10809, 10810, 10811, 10812, 10815, 10818, 10822, 10823, 10825, 10826, 10827, 10830, 10832, 10833, 10866, 10882, 10884, 10886, 10887, 10892, 10893, 10894, 10925, 10931, 10932, 10935, 10936, 10937, 10938, 10956, 10977, 10978, 10982, 11022, 11042, 11049, 11065, 11066, 11075, 11076, 11080, 11081, 11082, 11083, 11091, 11092, 11094, 11097, 11128, 11131, 11208, 11234, 11339, 11414, 11425, 11599, 11600, 11609, 11614, 11730, 11814, 11894, 11900, 11906, 11918, 11919, 11920, 11921, 11923, 11928, 11931, 11932, 11944, 11949, 11961, 12032, 12034, 12092, 12250, 12251, 12294, 12311, 12316, 12384, 12429, 12507, 12508, 12509, 12510, 12522, 12618, 12714, 12737, 12930, 12969, 13028, 13209, 13215, 13239, 13249, 13250, 13723, 13730, 13731, 13781, 13801, 13806, 13807, 13813, 13814]