# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime \prime \prime }+27 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+100 y^{\prime }-500 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime } = y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+2 y \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 6 x_{1}\relax (t ), x_{2}^{\prime }\relax (t ) = -3 x_{1}\relax (t )-x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -3 x_{1}\relax (t )+2 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -3 x_{1}\relax (t )+4 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+2 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+3 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+4 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+2 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 6 x_{1}\relax (t )-x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 6 x_{1}\relax (t )-7 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-2 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 9 x_{1}\relax (t )+5 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -6 x_{1}\relax (t )-2 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -3 x_{1}\relax (t )+4 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 6 x_{1}\relax (t )-5 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-5 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-5 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1}\relax (t )-2 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -3 x_{1}\relax (t )-2 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 9 x_{1}\relax (t )+3 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-2 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-5 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+3 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 5 x_{1}\relax (t )-9 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-4 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+3 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 7 x_{1}\relax (t )-5 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+3 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -50 x_{1}\relax (t )+20 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 100 x_{1}\relax (t )-60 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+x_{2}\relax (t )+4 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+7 x_{2}\relax (t )+x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+x_{2}\relax (t )+4 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+2 x_{2}\relax (t )+2 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+7 x_{2}\relax (t )+x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+x_{2}\relax (t )+7 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+x_{2}\relax (t )+x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+4 x_{2}\relax (t )+x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t )+4 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 5 x_{1}\relax (t )+x_{2}\relax (t )+3 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+7 x_{2}\relax (t )+x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+x_{2}\relax (t )+5 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 5 x_{1}\relax (t )-6 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-x_{2}\relax (t )-2 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 4 x_{1}\relax (t )-2 x_{2}\relax (t )-4 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+2 x_{2}\relax (t )+2 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -5 x_{1}\relax (t )-4 x_{2}\relax (t )-2 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 5 x_{1}\relax (t )+5 x_{2}\relax (t )+3 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+x_{2}\relax (t )+x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -5 x_{1}\relax (t )-3 x_{2}\relax (t )-x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 5 x_{1}\relax (t )+5 x_{2}\relax (t )+3 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+x_{2}\relax (t )-x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -4 x_{1}\relax (t )-3 x_{2}\relax (t )-x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+4 x_{2}\relax (t )+2 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 5 x_{1}\relax (t )+5 x_{2}\relax (t )+2 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -6 x_{1}\relax (t )-6 x_{2}\relax (t )-5 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 6 x_{1}\relax (t )+6 x_{2}\relax (t )+5 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = 9 x_{1}\relax (t )-x_{2}\relax (t )+2 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = -9 x_{1}\relax (t )+4 x_{2}\relax (t )-x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+2 x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = 3 x_{2}\relax (t )+3 x_{3}\relax (t ), x_{4}^{\prime }\relax (t ) = 4 x_{3}\relax (t )+4 x_{4}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -2 x_{1}\relax (t )+9 x_{4}\relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+2 x_{2}\relax (t )-10 x_{4}\relax (t ), x_{3}^{\prime }\relax (t ) = -x_{3}\relax (t )+8 x_{4}\relax (t ), x_{4}^{\prime }\relax (t ) = x_{4}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t ), x_{2}^{\prime }\relax (t ) = -21 x_{1}\relax (t )-5 x_{2}\relax (t )-27 x_{3}\relax (t )-9 x_{4}\relax (t ), x_{3}^{\prime }\relax (t ) = 5 x_{3}\relax (t ), x_{4}^{\prime }\relax (t ) = -21 x_{3}\relax (t )-2 x_{4}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+x_{2}\relax (t )+x_{3}\relax (t )+7 x_{4}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+4 x_{2}\relax (t )+10 x_{3}\relax (t )+x_{4}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{1}\relax (t )+10 x_{2}\relax (t )+4 x_{3}\relax (t )+x_{4}\relax (t ), x_{4}^{\prime }\relax (t ) = 7 x_{1}\relax (t )+x_{2}\relax (t )+x_{3}\relax (t )+4 x_{4}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -40 x_{1}\relax (t )-12 x_{2}\relax (t )+54 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = 35 x_{1}\relax (t )+13 x_{2}\relax (t )-46 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = -25 x_{1}\relax (t )-7 x_{2}\relax (t )+34 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -20 x_{1}\relax (t )+11 x_{2}\relax (t )+13 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = 12 x_{1}\relax (t )-x_{2}\relax (t )-7 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = -48 x_{1}\relax (t )+21 x_{2}\relax (t )+31 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 147 x_{1}\relax (t )+23 x_{2}\relax (t )-202 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -90 x_{1}\relax (t )-9 x_{2}\relax (t )+129 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 90 x_{1}\relax (t )+15 x_{2}\relax (t )-123 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 9 x_{1}\relax (t )-7 x_{2}\relax (t )-5 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -12 x_{1}\relax (t )+7 x_{2}\relax (t )+11 x_{3}\relax (t )+9 x_{4}\relax (t ), x_{3}^{\prime }\relax (t ) = 24 x_{1}\relax (t )-17 x_{2}\relax (t )-19 x_{3}\relax (t )-9 x_{4}\relax (t ), x_{4}^{\prime }\relax (t ) = -18 x_{1}\relax (t )+13 x_{2}\relax (t )+17 x_{3}\relax (t )+9 x_{4}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 13 x_{1}\relax (t )-42 x_{2}\relax (t )+106 x_{3}\relax (t )+139 x_{4}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-16 x_{2}\relax (t )+52 x_{3}\relax (t )+70 x_{4}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{1}\relax (t )+6 x_{2}\relax (t )-20 x_{3}\relax (t )-31 x_{4}\relax (t ), x_{4}^{\prime }\relax (t ) = -x_{1}\relax (t )-6 x_{2}\relax (t )+22 x_{3}\relax (t )+33 x_{4}\relax (t )] \] | ✓ | ✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 23 x_{1}\relax (t )-18 x_{2}\relax (t )-16 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -8 x_{1}\relax (t )+6 x_{2}\relax (t )+7 x_{3}\relax (t )+9 x_{4}\relax (t ), x_{3}^{\prime }\relax (t ) = 34 x_{1}\relax (t )-27 x_{2}\relax (t )-26 x_{3}\relax (t )-9 x_{4}\relax (t ), x_{4}^{\prime }\relax (t ) = -26 x_{1}\relax (t )+21 x_{2}\relax (t )+25 x_{3}\relax (t )+12 x_{4}\relax (t )] \] | ✓ | ✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 47 x_{1}\relax (t )-8 x_{2}\relax (t )+5 x_{3}\relax (t )-5 x_{4}\relax (t ), x_{2}^{\prime }\relax (t ) = -10 x_{1}\relax (t )+32 x_{2}\relax (t )+18 x_{3}\relax (t )-2 x_{4}\relax (t ), x_{3}^{\prime }\relax (t ) = 139 x_{1}\relax (t )-40 x_{2}\relax (t )-167 x_{3}\relax (t )-121 x_{4}\relax (t ), x_{4}^{\prime }\relax (t ) = -232 x_{1}\relax (t )+64 x_{2}\relax (t )+360 x_{3}\relax (t )+248 x_{4}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 139 x_{1}\relax (t )-14 x_{2}\relax (t )-52 x_{3}\relax (t )-14 x_{4}\relax (t )+28 x_{5}\relax (t ), x_{2}^{\prime }\relax (t ) = -22 x_{1}\relax (t )+5 x_{2}\relax (t )+7 x_{3}\relax (t )+8 x_{4}\relax (t )-7 x_{5}\relax (t ), x_{3}^{\prime }\relax (t ) = 370 x_{1}\relax (t )-38 x_{2}\relax (t )-139 x_{3}\relax (t )-38 x_{4}\relax (t )+76 x_{5}\relax (t ), x_{4}^{\prime }\relax (t ) = 152 x_{1}\relax (t )-16 x_{2}\relax (t )-59 x_{3}\relax (t )-13 x_{4}\relax (t )+35 x_{5}\relax (t ), x_{5}^{\prime }\relax (t ) = 95 x_{1}\relax (t )-10 x_{2}\relax (t )-38 x_{3}\relax (t )-7 x_{4}\relax (t )+23 x_{5}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 9 x_{1}\relax (t )+13 x_{2}\relax (t )-13 x_{6}\relax (t ), x_{2}^{\prime }\relax (t ) = -14 x_{1}\relax (t )+19 x_{2}\relax (t )-10 x_{3}\relax (t )-20 x_{4}\relax (t )+10 x_{5}\relax (t )+4 x_{6}\relax (t ), x_{3}^{\prime }\relax (t ) = -30 x_{1}\relax (t )+12 x_{2}\relax (t )-7 x_{3}\relax (t )-30 x_{4}\relax (t )+12 x_{5}\relax (t )+18 x_{6}\relax (t ), x_{4}^{\prime }\relax (t ) = -12 x_{1}\relax (t )+10 x_{2}\relax (t )-10 x_{3}\relax (t )-9 x_{4}\relax (t )+10 x_{5}\relax (t )+2 x_{6}\relax (t ), x_{5}^{\prime }\relax (t ) = 6 x_{1}\relax (t )+9 x_{2}\relax (t )+6 x_{4}\relax (t )+5 x_{5}\relax (t )-15 x_{6}\relax (t ), x_{6}^{\prime }\relax (t ) = -14 x_{1}\relax (t )+23 x_{2}\relax (t )-10 x_{3}\relax (t )-20 x_{4}\relax (t )+10 x_{5}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 9 x_{1}\relax (t )+4 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -6 x_{1}\relax (t )-x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = 6 x_{1}\relax (t )+4 x_{2}\relax (t )+3 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-3 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+7 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{2}\relax (t )+2 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -5 x_{1}\relax (t )-3 x_{2}\relax (t )-7 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{1}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{4}\relax (t ), x_{3}^{\prime }\relax (t ) = -2 x_{1}\relax (t )+2 x_{2}\relax (t )-3 x_{3}\relax (t )+x_{4}\relax (t ), x_{4}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-2 x_{2}\relax (t )+x_{3}\relax (t )-3 x_{4}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -2 x_{1}\relax (t )+x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1}\relax (t )-4 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-2 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+5 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+5 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 7 x_{1}\relax (t )+x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -4 x_{1}\relax (t )+3 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-4 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+9 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t ), x_{2}^{\prime }\relax (t ) = -7 x_{1}\relax (t )+9 x_{2}\relax (t )+7 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 2 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 25 x_{1}\relax (t )+12 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -18 x_{1}\relax (t )-5 x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = 6 x_{1}\relax (t )+6 x_{2}\relax (t )+13 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -19 x_{1}\relax (t )+12 x_{2}\relax (t )+84 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = 5 x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = -8 x_{1}\relax (t )+4 x_{2}\relax (t )+33 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -13 x_{1}\relax (t )+40 x_{2}\relax (t )-48 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -8 x_{1}\relax (t )+23 x_{2}\relax (t )-24 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 3 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -3 x_{1}\relax (t )-4 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1}\relax (t )-x_{2}\relax (t )-x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -x_{1}\relax (t )+x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -x_{2}\relax (t )+x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{1}\relax (t )-x_{2}\relax (t )-x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -x_{1}\relax (t )+x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{2}\relax (t )-4 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{2}\relax (t )-3 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -5 x_{1}\relax (t )-x_{2}\relax (t )-5 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+x_{2}\relax (t )-2 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -2 x_{1}\relax (t )-9 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+4 x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{1}\relax (t )+3 x_{2}\relax (t )+x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t ), x_{2}^{\prime }\relax (t ) = -2 x_{1}\relax (t )-2 x_{2}\relax (t )-3 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+3 x_{2}\relax (t )+4 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t ), x_{2}^{\prime }\relax (t ) = 18 x_{1}\relax (t )+7 x_{2}\relax (t )+4 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = -27 x_{1}\relax (t )-9 x_{2}\relax (t )-5 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+3 x_{2}\relax (t )+x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = -2 x_{1}\relax (t )-4 x_{2}\relax (t )-x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-4 x_{2}\relax (t )-2 x_{4}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = 6 x_{1}\relax (t )-12 x_{2}\relax (t )-x_{3}\relax (t )-6 x_{4}\relax (t ), x_{4}^{\prime }\relax (t ) = -4 x_{2}\relax (t )-x_{4}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+x_{2}\relax (t )+x_{4}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{2}\relax (t )+x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 2 x_{3}\relax (t )+x_{4}\relax (t ), x_{4}^{\prime }\relax (t ) = 2 x_{4}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -x_{1}\relax (t )-4 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+3 x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{1}\relax (t )+2 x_{2}\relax (t )+x_{3}\relax (t ), x_{4}^{\prime }\relax (t ) = x_{2}\relax (t )+x_{4}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+3 x_{2}\relax (t )+7 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -x_{2}\relax (t )-4 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{2}\relax (t )+3 x_{3}\relax (t ), x_{4}^{\prime }\relax (t ) = -6 x_{2}\relax (t )-14 x_{3}\relax (t )+x_{4}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 39 x_{1}\relax (t )+8 x_{2}\relax (t )-16 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -36 x_{1}\relax (t )-5 x_{2}\relax (t )+16 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 72 x_{1}\relax (t )+16 x_{2}\relax (t )-29 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 28 x_{1}\relax (t )+50 x_{2}\relax (t )+100 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = 15 x_{1}\relax (t )+33 x_{2}\relax (t )+60 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = -15 x_{1}\relax (t )-30 x_{2}\relax (t )-57 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -2 x_{1}\relax (t )+17 x_{2}\relax (t )+4 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1}\relax (t )+6 x_{2}\relax (t )+x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = x_{2}\relax (t )+2 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 5 x_{1}\relax (t )-x_{2}\relax (t )+x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+3 x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = -3 x_{1}\relax (t )+2 x_{2}\relax (t )+x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -3 x_{1}\relax (t )+5 x_{2}\relax (t )-5 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-x_{2}\relax (t )+3 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 8 x_{1}\relax (t )-8 x_{2}\relax (t )+10 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -15 x_{1}\relax (t )-7 x_{2}\relax (t )+4 x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = 34 x_{1}\relax (t )+16 x_{2}\relax (t )-11 x_{3}\relax (t ), x_{3}^{\prime }\relax (t ) = 17 x_{1}\relax (t )+7 x_{2}\relax (t )+5 x_{3}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -x_{1}\relax (t )+x_{2}\relax (t )+x_{3}\relax (t )-2 x_{4}\relax (t ), x_{2}^{\prime }\relax (t ) = 7 x_{1}\relax (t )-4 x_{2}\relax (t )-6 x_{3}\relax (t )+11 x_{4}\relax (t ), x_{3}^{\prime }\relax (t ) = 5 x_{1}\relax (t )-x_{2}\relax (t )+x_{3}\relax (t )+3 x_{4}\relax (t ), x_{4}^{\prime }\relax (t ) = 6 x_{1}\relax (t )-2 x_{2}\relax (t )-2 x_{3}\relax (t )+6 x_{4}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )+x_{2}\relax (t )-2 x_{3}\relax (t )+x_{4}\relax (t ), x_{2}^{\prime }\relax (t ) = 3 x_{2}\relax (t )-5 x_{3}\relax (t )+3 x_{4}\relax (t ), x_{3}^{\prime }\relax (t ) = -13 x_{2}\relax (t )+22 x_{3}\relax (t )-12 x_{4}\relax (t ), x_{4}^{\prime }\relax (t ) = -27 x_{2}\relax (t )+45 x_{3}\relax (t )-25 x_{4}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 35 x_{1}\relax (t )-12 x_{2}\relax (t )+4 x_{3}\relax (t )+30 x_{4}\relax (t ), x_{2}^{\prime }\relax (t ) = 22 x_{1}\relax (t )-8 x_{2}\relax (t )+3 x_{3}\relax (t )+19 x_{4}\relax (t ), x_{3}^{\prime }\relax (t ) = -10 x_{1}\relax (t )+3 x_{2}\relax (t )-9 x_{4}\relax (t ), x_{4}^{\prime }\relax (t ) = -27 x_{1}\relax (t )+9 x_{2}\relax (t )-3 x_{3}\relax (t )-23 x_{4}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 11 x_{1}\relax (t )-x_{2}\relax (t )+26 x_{3}\relax (t )+6 x_{4}\relax (t )-3 x_{5}\relax (t ), x_{2}^{\prime }\relax (t ) = 3 x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = -9 x_{1}\relax (t )-24 x_{3}\relax (t )-6 x_{4}\relax (t )+3 x_{5}\relax (t ), x_{4}^{\prime }\relax (t ) = 3 x_{1}\relax (t )+9 x_{3}\relax (t )+5 x_{4}\relax (t )-x_{5}\relax (t ), x_{5}^{\prime }\relax (t ) = -48 x_{1}\relax (t )-3 x_{2}\relax (t )-138 x_{3}\relax (t )-30 x_{4}\relax (t )+18 x_{5}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-4 x_{2}\relax (t )+x_{3}\relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1}\relax (t )+3 x_{2}\relax (t )+x_{4}\relax (t ), x_{3}^{\prime }\relax (t ) = 3 x_{3}\relax (t )-4 x_{4}\relax (t ), x_{4}^{\prime }\relax (t ) = 4 x_{3}\relax (t )+3 x_{4}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-8 x_{3}\relax (t )-3 x_{4}\relax (t ), x_{2}^{\prime }\relax (t ) = -18 x_{1}\relax (t )-x_{2}\relax (t ), x_{3}^{\prime }\relax (t ) = -9 x_{1}\relax (t )-3 x_{2}\relax (t )-25 x_{3}\relax (t )-9 x_{4}\relax (t ), x_{4}^{\prime }\relax (t ) = 33 x_{1}\relax (t )+10 x_{2}\relax (t )+90 x_{3}\relax (t )+32 x_{4}\relax (t )] \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 4 y \] |
✓ |
✓ |
|
\[ {}2 y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2} y \] |
✓ |
✓ |
|
\[ {}\left (-2+x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (2 x -1\right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}2 \left (x +1\right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}\left (x -1\right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|