# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime } = x \left (x^{3}+2\right )-\left (2 x^{2}-y\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+x \left (-x^{3}+2\right )+\left (2 x^{2}-y\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \relax (x )-\left (\sin \relax (x )-y\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \left (2 x \right )+\left (\sin \left (2 x \right )+y\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \relax (x )+x f \relax (x ) y+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (3+x -4 y\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (1+4 x +9 y\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 a +3 b x +3 b y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a +b y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x +b y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a +b x +c y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a \,x^{n -1}+b \,x^{2 n}+c y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a \,x^{2}+b y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \mathit {a0} +\mathit {a1} y+\mathit {a2} y^{2} \] |
✓ |
✓ | |
\[ {}y^{\prime } = f \relax (x )+a y+b y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = 1+a \left (x -y\right ) y \] |
✓ |
✓ | |
\[ {}y^{\prime } = f \relax (x )+g \relax (x ) y+a y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = x y \left (3+y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-x -x^{3}+\left (2 x^{2}+1\right ) y-x y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \left (2+x^{2} y-y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x +\left (-2 x +1\right ) y-\left (1-x \right ) y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{n} \left (a +b y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a \,x^{m}+b \,x^{n} y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (a +b y \cos \left (k x \right )\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \relax (x ) \left (2 \left (\sec ^{2}\relax (x )\right )-y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 \csc \relax (x ) = \left (3-\cot \relax (x )\right ) y+y^{2} \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \sec \relax (x )+\left (\sin \relax (x )-1\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\tan \relax (x ) \left (1-y^{2}\right ) = 0 \] |
✓ |
✓ | |
\[ {}y^{\prime } = f \relax (x )+g \relax (x ) y+h \relax (x ) y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \left (a +b y+c y^{2}\right ) f \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\left (a x +y\right ) y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (a \,{\mathrm e}^{x}+y\right ) y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 a \left (2 x +y\right ) y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \left (a +b y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \mathit {a0} +\mathit {a1} y+\mathit {a2} y^{2}+\mathit {a3} y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \left (1-x y^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (a +b x y\right ) y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y \left (1+a x y^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\left (\tan \relax (x )+y^{2} \sec \relax (x )\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{3} \sec \relax (x ) \tan \relax (x ) = 0 \] |
✓ |
✓ | |
\[ {}y^{\prime } = \mathit {f0} \relax (x )+\mathit {f1} \relax (x ) y+\mathit {f2} \relax (x ) y^{2}+\mathit {f3} \relax (x ) y^{3} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = a \,x^{\frac {n}{-n +1}}+b y^{n} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \relax (x ) y+g \relax (x ) y^{k} \] |
✓ |
✓ | |
\[ {}y^{\prime } = f \relax (x )+g \relax (x ) y+h \relax (x ) y^{n} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \sqrt {{| y|}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a +b y+\sqrt {\mathit {A0} +\mathit {B0} y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a x +b \sqrt {y} \] |
✓ | ✓ |
|
\[ {}y^{\prime }+x^{3} = x \sqrt {x^{4}+4 y} \] | ✓ | ✓ |
|
\[ {}y^{\prime }+2 y \left (1-x \sqrt {y}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {a +b y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \sqrt {a +b y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\left (f \relax (x )-y\right ) g \relax (x ) \sqrt {\left (y-a \right ) \left (y-b \right )} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \sqrt {X Y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (\cos ^{2}\relax (x )\right ) \cos \relax (y) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (\sec ^{2}\relax (x )\right ) \cot \relax (y) \cos \relax (y) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a +b \cos \left (A x +B y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+f \relax (x )+g \relax (x ) \sin \left (a y\right )+h \relax (x ) \cos \left (a y\right ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } = a +b \cos \relax (y) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x \left (\sin \left (2 y\right )-x^{2} \left (\cos ^{2}\relax (y)\right )\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\tan \relax (x ) \sec \relax (x ) \left (\cos ^{2}\relax (y)\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cot \relax (x ) \cot \relax (y) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cot \relax (x ) \cot \relax (y) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \relax (x ) \left (\csc \relax (y)-\cot \relax (y)\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \tan \relax (x ) \cot \relax (y) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\tan \relax (x ) \cot \relax (y) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\sin \left (2 x \right ) \csc \left (2 y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \tan \relax (x ) \left (\tan \relax (y)+\sec \relax (x ) \sec \relax (y)\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \cos \relax (x ) \left (\sec ^{2}\relax (y)\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (\sec ^{2}\relax (x )\right ) \left (\sec ^{3}\relax (y)\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a +b \sin \relax (y) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a +b \sin \left (A x +B y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (1+\cos \relax (x ) \sin \relax (y)\right ) \tan \relax (y) \] |
✓ |
✗ |
|
\[ {}y^{\prime }+\csc \left (2 x \right ) \sin \left (2 y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+f \relax (x )+g \relax (x ) \tan \relax (y) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \sqrt {a +b \cos \relax (y)} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{y}+x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x} \left (a +b \,{\mathrm e}^{-y}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \ln \relax (x ) \ln \relax (y) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{m -1} y^{-n +1} f \left (a \,x^{m}+b y^{n}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = a f \relax (y) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \left (a +b x +c y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = f \relax (x ) g \relax (y) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sec ^{2}\relax (x )+y \sec \relax (x ) \mathit {Csx} \relax (x ) \] |
✓ |
✓ |
|
\[ {}2 y^{\prime } = 2 \left (\sin ^{2}\relax (y)\right ) \tan \relax (y)-x \sin \left (2 y\right ) \] |
✓ |
✗ |
|
\[ {}2 y^{\prime }+a x = \sqrt {a^{2} x^{2}-4 b \,x^{2}-4 c y} \] |
✗ |
✓ |
|
\[ {}3 y^{\prime } = x +\sqrt {x^{2}-3 y} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sqrt {a^{2}-x^{2}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+x +y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+x^{2}-y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x^{3}-y \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 1+x^{3}+y \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x^{m}+y \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x \sin \relax (x )-y \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x^{2} \sin \relax (x )+y \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x^{n} \ln \relax (x )-y \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sin \relax (x )-2 y \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = a y \] |
✓ |
✓ |
|