Chapter 1
Introduction and Summary of results

 1.1 Introduction
 1.2 Summary of results
 1.3 Links to problems based on solution result

1.1 Introduction

This report shows the result of running Maple and Mathematica on my collection of differential equations. These were collected over time and stored in sqlite3 database. These were collected from a number of textbooks and other references such as Kamke and Murphy collections. All books used are listed in the links below.

The current number of differential equations is [10044]. Both Maple and Mathematica are given a CPU time limit of 3 minutes to solve each ode else the problem is considered not solved and marked as failed.

When Mathematica returns DifferentialRoot as a solution to an ode then this is considered as not solved. Similarly, when Maple returns DESol or ODSESolStruc, then this is also considered as not solved.

If CAS solves the ODE within the timelimit, then it is counted as solved. No verification is done to check that the solution is correct or not.

To reduce the size of latex output, in Maple the command simplify is called on the solution with timeout of 3 minutes. If this times out, then the unsimplified original ode solution is used otherwise the simplified one is used.

Similarly for Mathematica, FullSimplify is called on the solution with timeout of 3 minutes. If this timesout, then Simplify is next called. If this also timesout, then the unsimplified solution is used else the simplified one is used. The time used for simplification is not counted in the CPU time used. The CPU time used only records the time used to solve the ode.

Tests are run under windows 10 with 128 GB RAM running on intel i9-12900K 3.20 GHz

1.2 Summary of results

1.2.1 Percentage solved and CPU performance

The following table summarizes perentage solved for each CAS

Table 1.1: Summary of final results
System % solved Number solved Number failed
Maple 2022.2 94.454 9487 557
Mathematica 13.1 93.260 9367 677

The following table summarizes the run-time performance of each CAS system.

Table 1.2: Summary of run time performance of each CAS system
System mean time (sec) mean leaf size total time (min) total leaf size
Maple 2022.2 0.285 273.73 47.695 2749388
Mathematica 13.1 2.448 845.31 409.857 8490335

The problem which Mathematica produced largest leaf size of \(2733033\) is 9606The problem which Maple produced largest leaf size of \(540884\) is 9648The problem which Mathematica used most CPU time of \(178.125\) seconds is 3759The problem which Maple used most CPU time of \(1997.156\) seconds is 8492

1.2.2 Performance based on ODE type

   Performance using Maple’s ODE types classification
   Performance using own ODE types classification

The following gives the performance of each CAS based on the type of the ODE. The first subsection uses the types as classified by Maple ode advisor.The next subsection uses my own ode solver ODE classificaiton.

Performance using Maple’s ODE types classification

The following table gives count of the number of ODE’s for each ODE type, where the ODE type here is as classified by Maple’s odeadvisor, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.

Table 1.3: Percentage solved per Maple ODE type

Type of ODE

Count

Mathematica

Maple

[_quadrature]

459

99.13%
[885, 3741, 3758, 3767]

99.78%
[6550]

[[_linear, class A]]

148

100.00%

98.65%
[6547, 6548]

[_separable]

752

99.47%
[944, 2513, 5511, 7911]

99.47%
[408, 409, 5511, 5665]

[_Riccati]

308

55.19%
[958, 1697, 1698, 1700, 1701, 1702, 2198, 2795, 2815, 2817, 2830, 3131, 3878, 6592, 7691, 9592, 9596, 9597, 9598, 9603, 9616, 9618, 9619, 9620, 9672, 9689, 9693, 9695, 9696, 9697, 9702, 9709, 9710, 9716, 9717, 9718, 9719, 9720, 9733, 9734, 9735, 9736, 9737, 9738, 9739, 9740, 9741, 9744, 9745, 9753, 9757, 9758, 9760, 9761, 9762, 9763, 9764, 9770, 9771, 9773, 9774, 9775, 9776, 9777, 9782, 9783, 9788, 9789, 9793, 9794, 9795, 9798, 9802, 9803, 9805, 9806, 9811, 9812, 9813, 9814, 9817, 9819, 9820, 9823, 9826, 9828, 9829, 9832, 9835, 9837, 9838, 9841, 9844, 9846, 9847, 9850, 9854, 9855, 9856, 9860, 9861, 9863, 9864, 9866, 9868, 9869, 9870, 9871, 9872, 9873, 9874, 9875, 9877, 9878, 9879, 9880, 9881, 9882, 9883, 9884, 9885, 9886, 9889, 9890, 9893, 9894, 9895, 9896, 9897, 9898, 9899, 9900, 9901, 9902, 9903, 9904, 9905, 9906]

71.75%
[958, 1697, 1700, 1701, 1702, 2198, 2815, 2817, 2830, 3878, 6592, 7691, 9596, 9603, 9616, 9618, 9620, 9675, 9683, 9689, 9693, 9695, 9697, 9702, 9718, 9733, 9736, 9737, 9738, 9740, 9744, 9758, 9760, 9771, 9773, 9789, 9802, 9804, 9811, 9819, 9820, 9823, 9828, 9829, 9832, 9837, 9838, 9841, 9846, 9847, 9850, 9854, 9855, 9860, 9861, 9863, 9864, 9866, 9868, 9869, 9870, 9871, 9872, 9873, 9874, 9875, 9877, 9880, 9881, 9882, 9883, 9885, 9889, 9893, 9894, 9895, 9896, 9897, 9898, 9899, 9900, 9901, 9902, 9903, 9904, 9905, 9906]

[[_homogeneous, class G]]

62

91.94%
[2723, 2727, 2888, 3532, 7963]

93.55%
[3487, 3532, 7948, 7963]

[_linear]

454

99.78%
[5416]

99.56%
[4749, 5416]

[[_homogeneous, class A], _exact, _rational, [_Abel, 2nd type, class A]]

18

100.00%

100.00%

[[_homogeneous, class A], _rational, _Bernoulli]

59

100.00%

100.00%

[[_homogeneous, class A], _dAlembert]

111

100.00%

100.00%

[[_homogeneous, class A], _rational, [_Abel, 2nd type, class A]]

68

98.53%
[5501]

100.00%

[[_homogeneous, class A], _rational, [_Abel, 2nd type, class B]]

45

100.00%

100.00%

[[_homogeneous, class A], _rational, _dAlembert]

161

98.14%
[3703, 5008, 5509]

99.38%
[5509]

[[_homogeneous, class C], _dAlembert]

57

92.98%
[2491, 3752, 3770, 6349]

98.25%
[3752]

[[_homogeneous, class C], _Riccati]

15

100.00%

100.00%

[[_homogeneous, class G], _rational, _Bernoulli]

47

100.00%

100.00%

[_Bernoulli]

84

97.62%
[4607, 6377]

100.00%

[[_1st_order, _with_linear_symmetries], _Bernoulli]

3

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(x)]]]

45

100.00%

100.00%

[y=_G(x,y’)]

109

65.14%
[133, 485, 959, 961, 962, 964, 966, 968, 1703, 1706, 1707, 2854, 2859, 2876, 2955, 3503, 3708, 3753, 3779, 3791, 4443, 4487, 5796, 6310, 6500, 7655, 7660, 7663, 7701, 7950, 7975, 8040, 8041, 8086, 8087, 8090, 8111, 8442]

59.63%
[133, 485, 959, 961, 962, 964, 966, 968, 1703, 1706, 1707, 2581, 2854, 2859, 2874, 2876, 2887, 2955, 3364, 3503, 3708, 3779, 3790, 4406, 4443, 4487, 5796, 6310, 6500, 7655, 7660, 7663, 7701, 7950, 7975, 8032, 8040, 8041, 8086, 8087, 8090, 8111, 8123, 8140]

[[_1st_order, _with_linear_symmetries]]

89

94.38%
[2720, 2722, 3782, 3786, 6054]

98.88%
[8117]

[[_homogeneous, class A], _exact, _rational, _dAlembert]

24

100.00%

100.00%

[_exact, _rational]

31

96.77%
[119]

100.00%

[_exact]

60

98.33%
[2628]

100.00%

[[_1st_order, _with_linear_symmetries], _exact, _rational]

3

100.00%

100.00%

[[_homogeneous, class A], _exact, _rational, [_Abel, 2nd type, class B]]

2

100.00%

100.00%

[[_homogeneous, class G], _exact, _rational]

3

66.67%
[146]

100.00%

[[_2nd_order, _missing_x]]

408

96.57%
[6655, 9190, 9191, 9194, 9195, 9197, 9215, 9216, 9218, 9223, 9241, 9287, 9289, 9415]

96.32%
[6655, 9190, 9191, 9194, 9195, 9197, 9215, 9216, 9218, 9223, 9241, 9287, 9288, 9289, 9415]

[[_Emden, _Fowler], [_2nd_order, _linear, _with_symmetry_[0,F(x)]]]

58

100.00%

100.00%

[[_Emden, _Fowler]]

233

99.57%
[5591]

96.57%
[2032, 4210, 4709, 4803, 4835, 4836, 5831, 5864]

[[_2nd_order, _exact, _linear, _homogeneous]]

176

100.00%

98.30%
[4837, 5707, 5865]

[[_2nd_order, _missing_y]]

76

93.42%
[6070, 6103, 6105, 6459, 9406]

97.37%
[5690, 6552]

[[_2nd_order, _with_linear_symmetries]]

2113

96.07%
[1105, 1138, 4502, 4741, 4742, 4743, 5060, 5065, 5590, 5828, 6343, 6425, 6426, 6429, 6430, 6434, 6436, 6535, 6798, 6800, 7186, 7220, 7222, 8599, 8606, 8608, 8610, 8611, 8612, 8618, 8652, 8653, 8655, 8657, 8661, 8662, 8663, 8679, 8706, 8737, 8785, 8792, 8796, 8816, 8858, 8885, 8941, 8987, 8998, 9018, 9019, 9020, 9022, 9184, 9227, 9237, 9238, 9239, 9242, 9244, 9245, 9246, 9251, 9252, 9256, 9257, 9259, 9263, 9298, 9321, 9341, 9356, 9358, 9359, 9390, 9397, 9398, 9399, 9410, 9411, 10089, 10090, 10098]

96.83%
[1794, 1797, 1805, 2411, 4193, 4206, 4495, 4502, 4768, 4773, 4811, 5065, 5289, 5688, 5696, 5828, 5839, 6426, 6434, 6436, 6535, 8599, 8606, 8608, 8610, 8611, 8618, 8652, 8653, 8655, 8657, 8661, 8737, 8785, 8792, 8796, 8816, 8858, 8987, 9018, 9019, 9020, 9022, 9184, 9227, 9237, 9238, 9239, 9242, 9244, 9245, 9246, 9251, 9252, 9256, 9259, 9261, 9263, 9298, 9321, 9341, 9356, 9390, 9399, 9410, 9411, 9413]

[[_2nd_order, _linear, _nonhomogeneous]]

541

99.26%
[1162, 1186, 6706, 8656]

96.67%
[1162, 1186, 4214, 4215, 4747, 4748, 5080, 5760, 6471, 6472, 6473, 6477, 6478, 6480, 6488, 6553, 6554, 8656]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

33

100.00%

100.00%

system of linear ODEs

449

95.32%
[5351, 5789, 5790, 9469, 9484, 9494, 9497, 9498, 9499, 9500, 9501, 9506, 9507, 9508, 9511, 9512, 9513, 9514, 9515, 9516, 9518]

95.77%
[5351, 5789, 5790, 9469, 9484, 9494, 9497, 9498, 9499, 9500, 9501, 9506, 9507, 9508, 9511, 9513, 9514, 9516, 9518]

[_Gegenbauer]

63

100.00%

100.00%

[[_high_order, _missing_x]]

94

96.81%
[9123, 9126, 9155]

100.00%

[[_3rd_order, _missing_x]]

77

100.00%

100.00%

[[_3rd_order, _missing_y]]

30

100.00%

100.00%

[[_3rd_order, _exact, _linear, _homogeneous]]

12

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, _with_symmetry_[0,F(x)]]]

54

92.59%
[8654, 8902, 9023, 10097]

98.15%
[5706]

[_Lienard]

47

100.00%

100.00%

[[_homogeneous, class A], _rational, _Riccati]

27

100.00%

100.00%

[x=_G(y,y’)]

12

66.67%
[550, 2204, 5430, 8152]

66.67%
[550, 2204, 5430, 8152]

[[_Abel, 2nd type, class B]]

15

26.67%
[553, 1046, 7830, 9924, 9927, 9947, 9948, 9949, 9969, 9982, 9987]

40.00%
[553, 1046, 7830, 9927, 9947, 9948, 9949, 9969, 9982]

[_exact, _rational, [_1st_order, _with_symmetry_[F(x),G(x)]], [_Abel, 2nd type, class A]]

6

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x)*G(y),0]]]

21

100.00%

100.00%

[[_homogeneous, class D], _rational]

2

100.00%

100.00%

[[_1st_order, _with_exponential_symmetries]]

5

100.00%

100.00%

[_rational]

95

85.26%
[1039, 1075, 2609, 2683, 2684, 3638, 3807, 5358, 8060, 8062, 8069, 8083, 8465, 8474]

81.05%
[1039, 1075, 2609, 2683, 2684, 3418, 3638, 3690, 3691, 3807, 5358, 8060, 8062, 8083, 8288, 8465, 8474, 8500]

[_rational, [_Abel, 2nd type, class B]]

133

27.07%
[1069, 2481, 2583, 3268, 3275, 5432, 6563, 7814, 7817, 7833, 7845, 9910, 9911, 9918, 9919, 9921, 9923, 9926, 9928, 9930, 9931, 9933, 9934, 9935, 9936, 9937, 9940, 9941, 9942, 9944, 9945, 9946, 9953, 9954, 9955, 9956, 9957, 9958, 9961, 9962, 9963, 9964, 9965, 9966, 9967, 9968, 9970, 9971, 9972, 9973, 9974, 9975, 9976, 9988, 10005, 10006, 10009, 10012, 10013, 10014, 10015, 10016, 10017, 10018, 10019, 10021, 10022, 10023, 10024, 10025, 10026, 10027, 10028, 10029, 10030, 10031, 10032, 10033, 10034, 10035, 10036, 10037, 10038, 10039, 10040, 10041, 10042, 10043, 10044, 10045, 10046, 10047, 10048, 10049, 10050, 10080, 10081]

51.88%
[2481, 2583, 3268, 3275, 5432, 6563, 7814, 7817, 7833, 7845, 9918, 9921, 9926, 9933, 9934, 9935, 9937, 9944, 9945, 9954, 9956, 9957, 9961, 9962, 9965, 9966, 9967, 9968, 9970, 9972, 9973, 9974, 9975, 9976, 10005, 10006, 10012, 10014, 10015, 10016, 10017, 10018, 10021, 10023, 10024, 10026, 10027, 10028, 10029, 10031, 10032, 10034, 10035, 10036, 10038, 10039, 10040, 10041, 10042, 10043, 10044, 10048, 10049, 10080]

[_rational, [_1st_order, _with_symmetry_[F(x),G(x)]], [_Abel, 2nd type, class A]]

4

100.00%

100.00%

[NONE]

81

39.51%
[710, 1041, 4481, 6357, 6461, 7637, 7668, 7782, 7947, 8155, 8156, 8415, 8417, 9174, 9177, 9178, 9182, 9185, 9187, 9188, 9196, 9198, 9202, 9203, 9204, 9207, 9213, 9221, 9222, 9224, 9228, 9254, 9264, 9272, 9281, 9283, 9308, 9311, 9313, 9314, 9317, 9318, 9330, 9336, 9368, 9380, 9381, 9394, 9430]

35.80%
[710, 4481, 5485, 6357, 6461, 7637, 7668, 7782, 7947, 8155, 8156, 8415, 8417, 9174, 9177, 9178, 9185, 9187, 9188, 9196, 9198, 9202, 9203, 9204, 9207, 9213, 9221, 9222, 9224, 9228, 9254, 9264, 9272, 9277, 9281, 9283, 9284, 9285, 9300, 9308, 9311, 9313, 9314, 9317, 9318, 9330, 9336, 9368, 9380, 9381, 9394, 9430]

[_rational, [_1st_order, _with_symmetry_[F(x)*G(y),0]]]

19

100.00%

100.00%

[[_homogeneous, class G], _rational, [_Abel, 2nd type, class B]]

36

100.00%

100.00%

[_Gegenbauer, [_2nd_order, _linear, _with_symmetry_[0,F(x)]]]

11

100.00%

100.00%

[[_high_order, _with_linear_symmetries]]

37

81.08%
[813, 9119, 9120, 9121, 9122, 9151, 9169]

81.08%
[813, 9119, 9120, 9121, 9122, 9161, 9169]

[[_3rd_order, _with_linear_symmetries]]

96

82.29%
[5064, 9036, 9037, 9038, 9039, 9040, 9041, 9042, 9052, 9053, 9055, 9063, 9068, 9079, 9094, 9095, 9110]

83.33%
[5064, 9036, 9037, 9038, 9039, 9040, 9041, 9042, 9052, 9053, 9055, 9063, 9068, 9089, 9094, 9110]

[[_high_order, _linear, _nonhomogeneous]]

49

95.92%
[9131, 9160]

97.96%
[9160]

[[_1st_order, _with_linear_symmetries], _Clairaut]

45

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(y)]]]

48

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]]

70

100.00%

100.00%

[[_homogeneous, class C], _rational, _Riccati]

5

100.00%

100.00%

[[_Abel, 2nd type, class A]]

34

14.71%
[3168, 3220, 4446, 7786, 7799, 9914, 9915, 9979, 9980, 9981, 9990, 9991, 9992, 9993, 9994, 10008, 10054, 10061, 10062, 10064, 10065, 10067, 10068, 10069, 10070, 10071, 10072, 10073, 10074]

35.29%
[3168, 3220, 4446, 7786, 7799, 9979, 9980, 9981, 9990, 9991, 9992, 9993, 9994, 10008, 10054, 10062, 10065, 10069, 10070, 10072, 10073, 10074]

[_rational, _Bernoulli]

38

100.00%

100.00%

[[_homogeneous, class A]]

7

100.00%

100.00%

[[_homogeneous, class C], _rational, [_Abel, 2nd type, class A]]

101

98.02%
[3943, 10076]

100.00%

[[_homogeneous, class G], _rational, _Riccati]

18

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _Riccati]

10

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(y)]], _Riccati]

1

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(y)]], [_Abel, 2nd type, class A]]

1

100.00%

100.00%

[_exact, _rational, [_Abel, 2nd type, class B]]

14

100.00%

100.00%

[_exact, [_Abel, 2nd type, class B]]

2

100.00%

100.00%

[_exact, [_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]]

6

100.00%

100.00%

[_exact, [_1st_order, _with_symmetry_[F(x),G(x)]], [_Abel, 2nd type, class A]]

2

100.00%

100.00%

[_exact, _Bernoulli]

6

100.00%

100.00%

[[_homogeneous, class A], _exact, _rational, _Bernoulli]

4

100.00%

100.00%

[_rational, [_Abel, 2nd type, class C]]

12

83.33%
[4409, 4454]

83.33%
[4409, 4454]

[[_homogeneous, class G], _rational]

69

100.00%

97.10%
[3655, 6067]

[[_homogeneous, class D], _rational, [_Abel, 2nd type, class B]]

2

100.00%

100.00%

[_rational, [_1st_order, _with_symmetry_[F(x),G(x)]], _Riccati]

14

100.00%

100.00%

[_rational, _Riccati]

100

94.00%
[9610, 9641, 9649, 9658, 9662, 9663]

97.00%
[9658, 9662, 9663]

[[_3rd_order, _linear, _nonhomogeneous]]

51

100.00%

100.00%

[[_high_order, _missing_y]]

18

94.44%
[9165]

94.44%
[9165]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

4

100.00%

100.00%

[[_high_order, _exact, _linear, _nonhomogeneous]]

5

100.00%

100.00%

[[_homogeneous, class C], _exact, _rational, [_Abel, 2nd type, class A]]

19

100.00%

100.00%

[_exact, [_Abel, 2nd type, class A]]

1

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], [_Abel, 2nd type, class A]]

2

100.00%

100.00%

[[_Riccati, _special]]

14

100.00%

100.00%

[_Abel]

25

76.00%
[1704, 2843, 7628, 7629, 7630, 7631]

76.00%
[1704, 2843, 7628, 7629, 7630, 7631]

[_Laguerre]

33

100.00%

100.00%

[_Laguerre, [_2nd_order, _linear, _with_symmetry_[0,F(x)]]]

4

100.00%

100.00%

[_Bessel]

15

100.00%

100.00%

[_rational, _Abel]

21

95.24%
[1897]

100.00%

[_exact, _rational, [_1st_order, _with_symmetry_[F(x)*G(y),0]]]

9

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x)*G(y),0]], [_Abel, 2nd type, class B]]

1

100.00%

100.00%

[[_homogeneous, class C], [_Abel, 2nd type, class C], _dAlembert]

3

100.00%

100.00%

[[_homogeneous, class G], _exact, _rational, [_Abel, 2nd type, class B]]

6

100.00%

100.00%

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

10

100.00%

100.00%

[[_3rd_order, _exact, _nonlinear]]

2

50.00%
[9420]

50.00%
[9420]

[_Jacobi]

30

100.00%

100.00%

[_rational, [_1st_order, _with_symmetry_[F(x)*G(y),0]], [_Abel, 2nd type, class B]]

5

100.00%

100.00%

[[_2nd_order, _quadrature]]

32

100.00%

96.88%
[6551]

[[_3rd_order, _quadrature]]

3

100.00%

100.00%

[[_homogeneous, class D], _Bernoulli]

3

100.00%

100.00%

[[_homogeneous, class G], _exact]

1

100.00%

100.00%

[_exact, [_1st_order, _with_symmetry_[F(x)*G(y),0]]]

5

100.00%

100.00%

[[_homogeneous, class G], _exact, _rational, _Bernoulli]

8

100.00%

100.00%

[_exact, [_1st_order, _with_symmetry_[F(x),G(x)]]]

1

100.00%

100.00%

[[_homogeneous, class A], _exact, _rational, _Riccati]

1

100.00%

100.00%

[_erf]

4

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

10

100.00%

100.00%

[[_homogeneous, class D]]

8

100.00%

100.00%

[_exact, _rational, _Riccati]

3

100.00%

100.00%

[_rational, [_1st_order, _with_symmetry_[F(x),G(x)]], [_Abel, 2nd type, class B]]

5

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational]

22

100.00%

100.00%

[[_homogeneous, class D], _rational, _Riccati]

18

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _exact]

2

100.00%

100.00%

[[_homogeneous, class C], _exact, _dAlembert]

3

100.00%

100.00%

[_exact, _rational, [_1st_order, _with_symmetry_[F(x)*G(y),0]], [_Abel, 2nd type, class A]]

1

100.00%

100.00%

[[_homogeneous, class D], _rational, [_Abel, 2nd type, class A]]

2

100.00%

100.00%

[_rational, [_Abel, 2nd type, class A]]

37

27.03%
[3165, 7783, 7785, 9912, 9916, 9943, 9959, 9977, 9978, 9995, 9997, 9998, 10002, 10004, 10007, 10020, 10051, 10052, 10053, 10055, 10056, 10057, 10058, 10059, 10060, 10077, 10079]

48.65%
[3165, 7783, 7785, 9912, 9916, 9977, 9978, 9998, 10004, 10007, 10020, 10051, 10052, 10055, 10056, 10057, 10058, 10059, 10079]

[[_homogeneous, class G], _dAlembert]

5

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

3

100.00%

100.00%

[[_homogeneous, class D], _rational, _Bernoulli]

23

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _dAlembert]

45

75.56%
[3743, 3744, 3745, 3766, 3797, 6058, 6060, 6062, 6121, 6125, 6501]

100.00%

[[_homogeneous, class G], _Abel]

4

100.00%

100.00%

[[_homogeneous, class G], _Chini]

4

100.00%

100.00%

[_Chini]

3

0.00%
[2846, 3134, 7636]

0.00%
[2846, 3134, 7636]

[_rational, [_Riccati, _special]]

9

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

2

100.00%

100.00%

[[_homogeneous, class D], _Riccati]

20

100.00%

100.00%

[[_homogeneous, class G], _rational, [_Riccati, _special]]

4

100.00%

100.00%

[[_homogeneous, class G], _Riccati]

4

100.00%

100.00%

[_rational, [_1st_order, _with_symmetry_[F(x)*G(y),0]], [_Abel, 2nd type, class C]]

5

100.00%

100.00%

[[_homogeneous, class G], _rational, [_Abel, 2nd type, class A]]

3

100.00%

100.00%

[[_homogeneous, class C], _rational, [_Abel, 2nd type, class C], _dAlembert]

1

100.00%

100.00%

[[_homogeneous, class A], _rational, [_Abel, 2nd type, class C], _dAlembert]

4

100.00%

100.00%

[_exact, _rational, _Bernoulli]

1

100.00%

100.00%

[[_homogeneous, class G], _rational, [_Abel, 2nd type, class C]]

5

100.00%

100.00%

[[_Abel, 2nd type, class C]]

7

71.43%
[3335, 7849]

71.43%
[3335, 7849]

[[_homogeneous, class C], _rational]

7

100.00%

100.00%

[_exact, _rational, [_1st_order, _with_symmetry_[F(x),G(x)]]]

2

100.00%

100.00%

[_rational, [_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]]

16

100.00%

87.50%
[3642, 8028]

unknown

7

71.43%
[7920, 9385]

0.00%
[3472, 4272, 7649, 7920, 7932, 9385, 9414]

[_dAlembert]

17

100.00%

100.00%

[_rational, _dAlembert]

11

90.91%
[8010]

100.00%

[[_homogeneous, class G], _rational, _dAlembert]

7

100.00%

100.00%

[[_homogeneous, class G], _rational, _Clairaut]

4

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

10

100.00%

100.00%

[[_homogeneous, class C], _rational, _dAlembert]

9

100.00%

100.00%

[_rational, [_1st_order, _with_symmetry_[F(x),G(y)]]]

14

100.00%

92.86%
[3702]

[[_homogeneous, class G], _Clairaut]

1

100.00%

100.00%

[_Clairaut]

7

100.00%

85.71%
[3845]

[[_homogeneous, class A], _exact, _dAlembert]

2

100.00%

100.00%

[[_homogeneous, class D], _exact, _rational, _Bernoulli]

1

100.00%

100.00%

[[_homogeneous, class D], _exact, _rational, [_Abel, 2nd type, class A]]

2

100.00%

100.00%

[[_high_order, _quadrature]]

6

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

8

50.00%
[4160, 4331, 4332, 4333]

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

53

94.34%
[5347, 6086, 6087]

96.23%
[6086, 6087]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

24

95.83%
[4158]

95.83%
[9387]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

4

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

6

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

15

93.33%
[6464]

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

2

0.00%
[4159, 5493]

100.00%

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7

100.00%

100.00%

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_homogeneous, class G], _rational, _Abel]

2

100.00%

100.00%

[[_elliptic, _class_I]]

2

100.00%

100.00%

[[_elliptic, _class_II]]

2

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]]

1

100.00%

100.00%

[_Hermite]

12

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _Chini]

2

100.00%

100.00%

[_exact, [_1st_order, _with_symmetry_[F(x),G(y)]]]

2

100.00%

100.00%

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

2

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(x)]], _Riccati]

36

100.00%

91.67%
[8313, 8369, 8370]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

3

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

2

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

11

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x)*G(y),0]], [_Abel, 2nd type, class C]]

3

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

2

100.00%

100.00%

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

2

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

2

100.00%

100.00%

[[_Bessel, _modified]]

1

100.00%

100.00%

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

10

10.00%
[6354, 6355, 9180, 9243, 9265, 9269, 9271, 9274, 9275]

20.00%
[6354, 9180, 9243, 9265, 9269, 9271, 9274, 9275]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

2

50.00%
[9205]

50.00%
[9205]

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

8

100.00%

100.00%

[_Chini, [_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]]

2

100.00%

100.00%

[[_1st_order, _with_exponential_symmetries], _rational, [_Abel, 2nd type, class B]]

1

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, 2nd type, class B]]

1

100.00%

100.00%

[[_homogeneous, class C], _rational, [_Abel, 2nd type, class B]]

1

100.00%

100.00%

[[_homogeneous, class G], [_Abel, 2nd type, class C]]

1

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], [_Abel, 2nd type, class C]]

7

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, 2nd type, class C]]

8

100.00%

100.00%

[[_Abel, 2nd type, class C], [_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]]

4

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _Abel]

13

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, 2nd type, class A]]

7

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(y)]], [_Abel, 2nd type, class C]]

2

100.00%

100.00%

[[_homogeneous, class D], _rational, _Abel]

3

100.00%

100.00%

[[_homogeneous, class C], _rational, _Abel]

3

100.00%

100.00%

[_rational, [_Abel, 2nd type, class C], [_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]]

3

100.00%

100.00%

[[_homogeneous, class D], _rational, [_Abel, 2nd type, class C]]

1

100.00%

100.00%

[[_homogeneous, class C], _Abel]

3

100.00%

100.00%

[_rational, [_1st_order, _with_symmetry_[F(x),G(x)]], [_Abel, 2nd type, class C]]

6

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(x)]], _Abel]

5

100.00%

100.00%

[_rational, [_1st_order, _with_symmetry_[F(x),G(x)]], _Abel]

10

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(x)]], [_Abel, 2nd type, class C]]

2

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(y)]], _Abel]

2

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Abel]

1

100.00%

100.00%

[_Titchmarsh]

1

0.00%
[8595]

0.00%
[8595]

[_ellipsoidal]

2

100.00%

100.00%

[_Jacobi, [_2nd_order, _linear, _with_symmetry_[0,F(x)]]]

1

100.00%

100.00%

[_Halm]

2

100.00%

100.00%

[[_3rd_order, _fully, _exact, _linear]]

4

100.00%

100.00%

[[_high_order, _fully, _exact, _linear]]

1

100.00%

100.00%

[[_Painleve, 1st]]

1

0.00%
[9172]

0.00%
[9172]

[[_Painleve, 2nd]]

1

0.00%
[9175]

0.00%
[9175]

[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1

0.00%
[9206]

0.00%
[9206]

[[_2nd_order, _with_potential_symmetries]]

2

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

6

100.00%

100.00%

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

1

100.00%

100.00%

[[_2nd_order, _reducible, _mu_xy]]

2

50.00%
[9367]

50.00%
[9367]

[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

1

0.00%
[9292]

0.00%
[9292]

[[_Painleve, 4th]]

1

0.00%
[9316]

0.00%
[9316]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

1

100.00%

100.00%

[[_Painleve, 3rd]]

1

0.00%
[9340]

0.00%
[9340]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

1

100.00%

100.00%

[[_Painleve, 5th]]

1

0.00%
[9376]

0.00%
[9376]

[[_Painleve, 6th]]

1

0.00%
[9386]

0.00%
[9386]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

1

0.00%
[9395]

0.00%
[9395]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]]

1

0.00%
[9400]

0.00%
[9400]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1]]

1

0.00%
[9404]

0.00%
[9404]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

6

33.33%
[9417, 9418, 9419, 9434]

33.33%
[9417, 9418, 9419, 9434]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

1

100.00%

100.00%

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

1

100.00%

100.00%

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

2

100.00%

100.00%

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

2

50.00%
[9429]

50.00%
[9429]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

62

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], [_Abel, 2nd type, class B]]

1

100.00%

100.00%

Performance using own ODE types classification

The following gives the ODE types used and a short description of each type.

  1. polynomial. First order Polynomial type such as \(y'=\frac {-6x+y-3}{2x-y-1}\).
  2. quadrature. First order quadrature type ode such as \(y'=1\).
  3. linear. First order linear ode such as \(y'+y=x\).
  4. separable. First order separable such as \(y'=xy\).
  5. riccati. First order Riccati such as \(y'=x^2-y^2\).
  6. exact or exactWithIntegrationFactor. First order exact such as \((x^2+y) \mathrm {d}x+(e^y+x)\mathrm {d}y=0\).
  7. homogeneous. First order homogeneous such as \((x+y)y'=x-y\).
  8. bernoulli. First order Bernoulli such as \(2xyy'=x^2+y^2\).
  9. dAlembert. First order dAlembert such as \(y'=\sqrt {x+y}\).
  10. clairaut. First order Clairaut such as \(y=xy'+(y')^3\).
  11. polynomial. First order Polynomial type such as \(y'=\frac {-6x+y-3}{2x-y-1}\).
  12. isobaric. First order isobaric such as \(2 x^3 y'=1+\sqrt {1+ x^2 y}\).
  13. abelFirstKind. First order Abel such as \(y'=e^{-5 x}+y^3\).
  14. system of linear ODEs. These are system of first order odes.
  15. first order ode series method. Ordinary point. First order ode solved using series method. Ordinary point.
  16. first order ode series method. Regular singular point. First order ode solved using series method. Regular singular point.
  17. second order constant coefficients. standard second order ode with constant coefficients.
  18. second order Euler ode (type 7). standard second order Euler ode such as \(x^2 y''+x y+y=0\).
  19. second order quadrature. Such as \(A(x) y'=F(x)\).
  20. second order missing y (type 3). Such as \(x^2 y''+x y'=\sin x\).
  21. second order Airy ode. Such as \(y''-xy=0\) or \(y''+y'-xy=f(x)\).
  22. second order type 5. Such as \(3 y''-y^3=5\).
  23. second order type 6. Such as \(y^2 y''+y^2=5\).
  24. second order with basic integrating factor (type 13). Such as \(y''+4 x y'+(2+4 x^2)y=0\).
  25. second order. Tranformation on independent variable. p=0 method. (type 15). Transformation on independent variable.
  26. second order. Tranformation on independent variable. q=constant method. (type 8). Transformation on independent variable.
  27. second order. Tranformation on dependent variable. special case method. (type 9). Transformation on dependent variable using \(y(x)=v(x)x^n\).
  28. second order type 11. Such as \(x y y''+x (y')^2 - y y'=0\).
  29. kovacic type. Any second order ODE which is solvable using Kovacic algorithm.
  30. reduction of order. Second order ode where one solution is given.
  31. second order series method. Ordinary point. Second order solved using series method. Ordinary point.
  32. second order series method. Regular singular point. Complex roots. Second order solved using series method. Regular singular point. Complex roots.
  33. second order series method. Regular singular point. Difference is integer. Second order solved using series method. Regular singular point. Difference between roots is integer.
  34. second order series method. Regular singular point. Difference not integer. Second order solved using series method. Regular singular point. Difference between roots is not integer.
  35. second order series method. Regular singular point. Repeated root. Second order solved using series method. Regular singular point. root is repeated.
  36. second order series method. Irregular singular point. Second order solved using Asymptotic methods. Irregular singular point.
  37. second order ode. Lagrange adjoint equation method (type 16). Second order solved using Lagrange adjoint method such as \(y''+x^2 y'+y=0\).
  38. second order transformation, Reduction to Lower Order. (type 17). Such as \(y (y'')^2 + *y')^3=0\).
  39. second order ode. Liouville ode (type 18). Such as \(y''+(3+x+\sin x)y'+(1+y) (y')^2 = 0\).
  40. second order ode. Liouville transformation (type 19). Such as \(y''-\frac {1}{\sqrt {x}}+\frac {1}{4 x^2}(x+\sqrt {x}-8) y=0\).
  41. Higher order linear constant coefficients ODE.
  42. Higher order ODE, non constant coefficients of type Euler. Higher order but Euler type.
  43. second order ode with degree not 1. Any second order of degree not one.
  44. second order ode. Lagrange adjoint equation method (type 16). Uses transformation to adjoint form.
  45. unknown or NONE Any unknown ode type.

The following table gives count of the number of ODE’s for each ODE type, where the ODE type here is as classified by my own ode solver, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.

Table 1.4: Percentage solved per own ODE type

Type of ODE

Count

Mathematica

Maple

quadrature

160

100.00%

100.00%

linear

747

99.73%
[5416, 5511]

99.73%
[5416, 5511]

separable

730

99.04%
[885, 944, 2513, 3741, 3758, 3767, 7911]

100.00%

homogeneous

455

99.12%
[3703, 5008, 5501, 5509]

99.78%
[5509]

homogeneousTypeC

22

100.00%

100.00%

exact

218

98.17%
[119, 146, 2628, 4481]

98.17%
[3472, 4272, 4481, 7932]

exactWithIntegrationFactor

186

99.46%
[7920]

97.31%
[2581, 3642, 7649, 7920, 8028]

bernoulli

261

99.23%
[4607, 6377]

100.00%

riccati

548

73.72%
[958, 1697, 1698, 1700, 1701, 1702, 2198, 2795, 2815, 2817, 2830, 3131, 3878, 6592, 7691, 9592, 9596, 9597, 9598, 9603, 9610, 9616, 9618, 9619, 9620, 9641, 9649, 9658, 9662, 9663, 9672, 9689, 9693, 9695, 9696, 9697, 9702, 9709, 9710, 9716, 9717, 9718, 9719, 9720, 9733, 9734, 9735, 9736, 9737, 9738, 9739, 9740, 9741, 9744, 9745, 9753, 9757, 9758, 9760, 9761, 9762, 9763, 9764, 9770, 9771, 9773, 9774, 9775, 9776, 9777, 9782, 9783, 9788, 9789, 9793, 9794, 9795, 9798, 9802, 9803, 9805, 9806, 9811, 9812, 9813, 9814, 9817, 9819, 9820, 9823, 9826, 9828, 9829, 9832, 9835, 9837, 9838, 9841, 9844, 9846, 9847, 9850, 9854, 9855, 9856, 9860, 9861, 9863, 9864, 9866, 9868, 9869, 9870, 9871, 9872, 9873, 9874, 9875, 9877, 9878, 9879, 9880, 9881, 9882, 9883, 9884, 9885, 9886, 9889, 9890, 9893, 9894, 9895, 9896, 9897, 9898, 9899, 9900, 9901, 9902, 9903, 9904, 9905, 9906]

83.03%
[958, 1697, 1700, 1701, 1702, 2198, 2815, 2817, 2830, 3878, 6592, 7691, 8313, 8369, 8370, 9596, 9603, 9616, 9618, 9620, 9658, 9662, 9663, 9675, 9683, 9689, 9693, 9695, 9697, 9702, 9718, 9733, 9736, 9737, 9738, 9740, 9744, 9758, 9760, 9771, 9773, 9789, 9802, 9804, 9811, 9819, 9820, 9823, 9828, 9829, 9832, 9837, 9838, 9841, 9846, 9847, 9850, 9854, 9855, 9860, 9861, 9863, 9864, 9866, 9868, 9869, 9870, 9871, 9872, 9873, 9874, 9875, 9877, 9880, 9881, 9882, 9883, 9885, 9889, 9893, 9894, 9895, 9896, 9897, 9898, 9899, 9900, 9901, 9902, 9903, 9904, 9905, 9906]

clairaut

74

100.00%

98.65%
[3845]

dAlembert

147

89.12%
[2491, 3743, 3744, 3745, 3752, 3766, 3770, 3797, 6058, 6060, 6062, 6121, 6125, 6349, 6501, 8010]

99.32%
[3752]

isobaric

199

93.97%
[2720, 2722, 2723, 2727, 2888, 3532, 3782, 3786, 6054, 7963, 8465, 8474]

95.48%
[3487, 3532, 3655, 6067, 7948, 7963, 8117, 8465, 8474]

first order special form ID 1

5

100.00%

100.00%

polynomial

92

97.83%
[3943, 10076]

100.00%

abelFirstKind

78

92.31%
[1704, 1897, 2843, 7628, 7629, 7631]

93.59%
[1704, 2843, 7628, 7629, 7631]

differentialType

67

100.00%

100.00%

first order ode series method. Ordinary point

42

100.00%

92.86%
[6547, 6548, 6550]

first order ode series method. Regular singular point

9

100.00%

88.89%
[4749]

first order ode series method. Irregular singular point

3

100.00%

0.00%
[408, 409, 5665]

first_order_laplace

42

100.00%

100.00%

system of linear ODEs

403

99.26%
[5351, 5790, 9484]

99.26%
[5351, 5790, 9484]

second_order_laplace

159

100.00%

99.37%
[5760]

reduction_of_order

90

96.67%
[1138, 5590, 5591]

100.00%

second_order_ode_quadrature

20

100.00%

100.00%

second_order_linear_constant_coeff

685

100.00%

100.00%

second_order_airy

23

100.00%

100.00%

second_order_euler_ode

164

100.00%

100.00%

second_order_change_of_variable_on_y_general_n

51

96.08%
[8902, 8998]

100.00%

second_order_integrable_as_is

69

86.96%
[4159, 4160, 4331, 4332, 4333, 5493, 9205, 9395, 9400]

95.65%
[9205, 9395, 9400]

second_order_ode_can_be_made_integrable

20

85.00%
[5347, 6086, 6087]

90.00%
[6086, 6087]

second_order_ode_solved_by_an_integrating_factor

17

100.00%

100.00%

second_order_change_of_variable_on_x_p1_zero_method

65

96.92%
[8654, 9023]

100.00%

second_order_ode_lagrange_adjoint_equation_method

17

100.00%

100.00%

second_order_nonlinear_solved_by_mainardi_lioville_method

10

100.00%

100.00%

second_order_change_of_variable_on_y_n_one_case

36

97.22%
[8706]

100.00%

second_order_bessel_ode

112

100.00%

100.00%

second_order_ode_missing_x

128

89.06%
[4158, 9190, 9191, 9195, 9197, 9215, 9216, 9218, 9223, 9241, 9287, 9289, 9404, 9415]

88.28%
[9190, 9191, 9195, 9197, 9215, 9216, 9218, 9223, 9241, 9287, 9288, 9289, 9387, 9404, 9415]

second_order_ode_missing_y

69

91.30%
[6070, 6103, 6105, 6459, 6464, 9406]

100.00%

second order series method. Ordinary point

456

100.00%

100.00%

second order series method. Regular singular point. Difference not integer

188

100.00%

100.00%

second order series method. Regular singular point. Repeated root

167

100.00%

100.00%

second order series method. Regular singular point. Difference is integer

260

100.00%

100.00%

second order series method. Irregular singular point

29

93.10%
[4502, 5828]

0.00%
[1794, 1797, 1805, 2032, 2411, 4193, 4206, 4210, 4495, 4502, 4709, 4768, 4773, 4803, 4811, 4835, 4836, 4837, 5289, 5688, 5690, 5696, 5706, 5707, 5828, 5831, 5839, 5864, 5865]

second order series method. Regular singular point. Complex roots

24

87.50%
[4741, 4742, 4743]

100.00%

second_order_ode_high_degree

1

100.00%

100.00%

Higher order linear constant coefficients ODE

300

99.00%
[9123, 9126, 9155]

100.00%

Higher order ODE, non constant coefficients of type Euler

41

100.00%

100.00%

higher_order_laplace

9

100.00%

100.00%

These are direct links to the ode problems based on status of solving.

Not solved by Mathematica

(677) [119, 133, 146, 485, 550, 553, 710, 813, 885, 944, 958, 959, 961, 962, 964, 966, 968, 1039, 1041, 1046, 1069, 1075, 1105, 1138, 1162, 1186, 1697, 1698, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1897, 2198, 2204, 2481, 2491, 2513, 2583, 2609, 2628, 2683, 2684, 2720, 2722, 2723, 2727, 2795, 2815, 2817, 2830, 2843, 2846, 2854, 2859, 2876, 2888, 2955, 3131, 3134, 3165, 3168, 3220, 3268, 3275, 3335, 3503, 3532, 3638, 3703, 3708, 3741, 3743, 3744, 3745, 3752, 3753, 3758, 3766, 3767, 3770, 3779, 3782, 3786, 3791, 3797, 3807, 3878, 3943, 4158, 4159, 4160, 4331, 4332, 4333, 4409, 4443, 4446, 4454, 4481, 4487, 4502, 4607, 4741, 4742, 4743, 5008, 5060, 5064, 5065, 5347, 5351, 5358, 5416, 5430, 5432, 5493, 5501, 5509, 5511, 5590, 5591, 5789, 5790, 5796, 5828, 6054, 6058, 6060, 6062, 6070, 6086, 6087, 6103, 6105, 6121, 6125, 6310, 6343, 6349, 6354, 6355, 6357, 6377, 6425, 6426, 6429, 6430, 6434, 6436, 6459, 6461, 6464, 6500, 6501, 6535, 6563, 6592, 6655, 6706, 6798, 6800, 7186, 7220, 7222, 7628, 7629, 7630, 7631, 7636, 7637, 7655, 7660, 7663, 7668, 7691, 7701, 7782, 7783, 7785, 7786, 7799, 7814, 7817, 7830, 7833, 7845, 7849, 7911, 7920, 7947, 7950, 7963, 7975, 8010, 8040, 8041, 8060, 8062, 8069, 8083, 8086, 8087, 8090, 8111, 8152, 8155, 8156, 8415, 8417, 8442, 8465, 8474, 8595, 8599, 8606, 8608, 8610, 8611, 8612, 8618, 8652, 8653, 8654, 8655, 8656, 8657, 8661, 8662, 8663, 8679, 8706, 8737, 8785, 8792, 8796, 8816, 8858, 8885, 8902, 8941, 8987, 8998, 9018, 9019, 9020, 9022, 9023, 9036, 9037, 9038, 9039, 9040, 9041, 9042, 9052, 9053, 9055, 9063, 9068, 9079, 9094, 9095, 9110, 9119, 9120, 9121, 9122, 9123, 9126, 9131, 9151, 9155, 9160, 9165, 9169, 9172, 9174, 9175, 9177, 9178, 9180, 9182, 9184, 9185, 9187, 9188, 9190, 9191, 9194, 9195, 9196, 9197, 9198, 9202, 9203, 9204, 9205, 9206, 9207, 9213, 9215, 9216, 9218, 9221, 9222, 9223, 9224, 9227, 9228, 9237, 9238, 9239, 9241, 9242, 9243, 9244, 9245, 9246, 9251, 9252, 9254, 9256, 9257, 9259, 9263, 9264, 9265, 9269, 9271, 9272, 9274, 9275, 9281, 9283, 9287, 9289, 9292, 9298, 9308, 9311, 9313, 9314, 9316, 9317, 9318, 9321, 9330, 9336, 9340, 9341, 9356, 9358, 9359, 9367, 9368, 9376, 9380, 9381, 9385, 9386, 9390, 9394, 9395, 9397, 9398, 9399, 9400, 9404, 9406, 9410, 9411, 9415, 9417, 9418, 9419, 9420, 9429, 9430, 9434, 9469, 9484, 9494, 9497, 9498, 9499, 9500, 9501, 9506, 9507, 9508, 9511, 9512, 9513, 9514, 9515, 9516, 9518, 9592, 9596, 9597, 9598, 9603, 9610, 9616, 9618, 9619, 9620, 9641, 9649, 9658, 9662, 9663, 9672, 9689, 9693, 9695, 9696, 9697, 9702, 9709, 9710, 9716, 9717, 9718, 9719, 9720, 9733, 9734, 9735, 9736, 9737, 9738, 9739, 9740, 9741, 9744, 9745, 9753, 9757, 9758, 9760, 9761, 9762, 9763, 9764, 9770, 9771, 9773, 9774, 9775, 9776, 9777, 9782, 9783, 9788, 9789, 9793, 9794, 9795, 9798, 9802, 9803, 9805, 9806, 9811, 9812, 9813, 9814, 9817, 9819, 9820, 9823, 9826, 9828, 9829, 9832, 9835, 9837, 9838, 9841, 9844, 9846, 9847, 9850, 9854, 9855, 9856, 9860, 9861, 9863, 9864, 9866, 9868, 9869, 9870, 9871, 9872, 9873, 9874, 9875, 9877, 9878, 9879, 9880, 9881, 9882, 9883, 9884, 9885, 9886, 9889, 9890, 9893, 9894, 9895, 9896, 9897, 9898, 9899, 9900, 9901, 9902, 9903, 9904, 9905, 9906, 9910, 9911, 9912, 9914, 9915, 9916, 9918, 9919, 9921, 9923, 9924, 9926, 9927, 9928, 9930, 9931, 9933, 9934, 9935, 9936, 9937, 9940, 9941, 9942, 9943, 9944, 9945, 9946, 9947, 9948, 9949, 9953, 9954, 9955, 9956, 9957, 9958, 9959, 9961, 9962, 9963, 9964, 9965, 9966, 9967, 9968, 9969, 9970, 9971, 9972, 9973, 9974, 9975, 9976, 9977, 9978, 9979, 9980, 9981, 9982, 9987, 9988, 9990, 9991, 9992, 9993, 9994, 9995, 9997, 9998, 10002, 10004, 10005, 10006, 10007, 10008, 10009, 10012, 10013, 10014, 10015, 10016, 10017, 10018, 10019, 10020, 10021, 10022, 10023, 10024, 10025, 10026, 10027, 10028, 10029, 10030, 10031, 10032, 10033, 10034, 10035, 10036, 10037, 10038, 10039, 10040, 10041, 10042, 10043, 10044, 10045, 10046, 10047, 10048, 10049, 10050, 10051, 10052, 10053, 10054, 10055, 10056, 10057, 10058, 10059, 10060, 10061, 10062, 10064, 10065, 10067, 10068, 10069, 10070, 10071, 10072, 10073, 10074, 10076, 10077, 10079, 10080, 10081, 10089, 10090, 10097, 10098]

Not solved by Maple

(557) [133, 408, 409, 485, 550, 553, 710, 813, 958, 959, 961, 962, 964, 966, 968, 1039, 1046, 1075, 1162, 1186, 1697, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1794, 1797, 1805, 2032, 2198, 2204, 2411, 2481, 2581, 2583, 2609, 2683, 2684, 2815, 2817, 2830, 2843, 2846, 2854, 2859, 2874, 2876, 2887, 2955, 3134, 3165, 3168, 3220, 3268, 3275, 3335, 3364, 3418, 3472, 3487, 3503, 3532, 3638, 3642, 3655, 3690, 3691, 3702, 3708, 3752, 3779, 3790, 3807, 3845, 3878, 4193, 4206, 4210, 4214, 4215, 4272, 4406, 4409, 4443, 4446, 4454, 4481, 4487, 4495, 4502, 4709, 4747, 4748, 4749, 4768, 4773, 4803, 4811, 4835, 4836, 4837, 5064, 5065, 5080, 5289, 5351, 5358, 5416, 5430, 5432, 5485, 5509, 5511, 5665, 5688, 5690, 5696, 5706, 5707, 5760, 5789, 5790, 5796, 5828, 5831, 5839, 5864, 5865, 6067, 6086, 6087, 6310, 6354, 6357, 6426, 6434, 6436, 6461, 6471, 6472, 6473, 6477, 6478, 6480, 6488, 6500, 6535, 6547, 6548, 6550, 6551, 6552, 6553, 6554, 6563, 6592, 6655, 7628, 7629, 7630, 7631, 7636, 7637, 7649, 7655, 7660, 7663, 7668, 7691, 7701, 7782, 7783, 7785, 7786, 7799, 7814, 7817, 7830, 7833, 7845, 7849, 7920, 7932, 7947, 7948, 7950, 7963, 7975, 8028, 8032, 8040, 8041, 8060, 8062, 8083, 8086, 8087, 8090, 8111, 8117, 8123, 8140, 8152, 8155, 8156, 8288, 8313, 8369, 8370, 8415, 8417, 8465, 8474, 8500, 8595, 8599, 8606, 8608, 8610, 8611, 8618, 8652, 8653, 8655, 8656, 8657, 8661, 8737, 8785, 8792, 8796, 8816, 8858, 8987, 9018, 9019, 9020, 9022, 9036, 9037, 9038, 9039, 9040, 9041, 9042, 9052, 9053, 9055, 9063, 9068, 9089, 9094, 9110, 9119, 9120, 9121, 9122, 9160, 9161, 9165, 9169, 9172, 9174, 9175, 9177, 9178, 9180, 9184, 9185, 9187, 9188, 9190, 9191, 9194, 9195, 9196, 9197, 9198, 9202, 9203, 9204, 9205, 9206, 9207, 9213, 9215, 9216, 9218, 9221, 9222, 9223, 9224, 9227, 9228, 9237, 9238, 9239, 9241, 9242, 9243, 9244, 9245, 9246, 9251, 9252, 9254, 9256, 9259, 9261, 9263, 9264, 9265, 9269, 9271, 9272, 9274, 9275, 9277, 9281, 9283, 9284, 9285, 9287, 9288, 9289, 9292, 9298, 9300, 9308, 9311, 9313, 9314, 9316, 9317, 9318, 9321, 9330, 9336, 9340, 9341, 9356, 9367, 9368, 9376, 9380, 9381, 9385, 9386, 9387, 9390, 9394, 9395, 9399, 9400, 9404, 9410, 9411, 9413, 9414, 9415, 9417, 9418, 9419, 9420, 9429, 9430, 9434, 9469, 9484, 9494, 9497, 9498, 9499, 9500, 9501, 9506, 9507, 9508, 9511, 9513, 9514, 9516, 9518, 9596, 9603, 9616, 9618, 9620, 9658, 9662, 9663, 9675, 9683, 9689, 9693, 9695, 9697, 9702, 9718, 9733, 9736, 9737, 9738, 9740, 9744, 9758, 9760, 9771, 9773, 9789, 9802, 9804, 9811, 9819, 9820, 9823, 9828, 9829, 9832, 9837, 9838, 9841, 9846, 9847, 9850, 9854, 9855, 9860, 9861, 9863, 9864, 9866, 9868, 9869, 9870, 9871, 9872, 9873, 9874, 9875, 9877, 9880, 9881, 9882, 9883, 9885, 9889, 9893, 9894, 9895, 9896, 9897, 9898, 9899, 9900, 9901, 9902, 9903, 9904, 9905, 9906, 9912, 9916, 9918, 9921, 9926, 9927, 9933, 9934, 9935, 9937, 9944, 9945, 9947, 9948, 9949, 9954, 9956, 9957, 9961, 9962, 9965, 9966, 9967, 9968, 9969, 9970, 9972, 9973, 9974, 9975, 9976, 9977, 9978, 9979, 9980, 9981, 9982, 9990, 9991, 9992, 9993, 9994, 9998, 10004, 10005, 10006, 10007, 10008, 10012, 10014, 10015, 10016, 10017, 10018, 10020, 10021, 10023, 10024, 10026, 10027, 10028, 10029, 10031, 10032, 10034, 10035, 10036, 10038, 10039, 10040, 10041, 10042, 10043, 10044, 10048, 10049, 10051, 10052, 10054, 10055, 10056, 10057, 10058, 10059, 10062, 10065, 10069, 10070, 10072, 10073, 10074, 10079, 10080]

Solved by Maple but not by Mathematica

(216) [119, 146, 885, 944, 1041, 1069, 1105, 1138, 1698, 1897, 2491, 2513, 2628, 2720, 2722, 2723, 2727, 2795, 2888, 3131, 3703, 3741, 3743, 3744, 3745, 3753, 3758, 3766, 3767, 3770, 3782, 3786, 3791, 3797, 3943, 4158, 4159, 4160, 4331, 4332, 4333, 4607, 4741, 4742, 4743, 5008, 5060, 5347, 5493, 5501, 5590, 5591, 6054, 6058, 6060, 6062, 6070, 6103, 6105, 6121, 6125, 6343, 6349, 6355, 6377, 6425, 6429, 6430, 6459, 6464, 6501, 6706, 6798, 6800, 7186, 7220, 7222, 7911, 8010, 8069, 8442, 8612, 8654, 8662, 8663, 8679, 8706, 8885, 8902, 8941, 8998, 9023, 9079, 9095, 9123, 9126, 9131, 9151, 9155, 9182, 9257, 9358, 9359, 9397, 9398, 9406, 9512, 9515, 9592, 9597, 9598, 9610, 9619, 9641, 9649, 9672, 9696, 9709, 9710, 9716, 9717, 9719, 9720, 9734, 9735, 9739, 9741, 9745, 9753, 9757, 9761, 9762, 9763, 9764, 9770, 9774, 9775, 9776, 9777, 9782, 9783, 9788, 9793, 9794, 9795, 9798, 9803, 9805, 9806, 9812, 9813, 9814, 9817, 9826, 9835, 9844, 9856, 9878, 9879, 9884, 9886, 9890, 9910, 9911, 9914, 9915, 9919, 9923, 9924, 9928, 9930, 9931, 9936, 9940, 9941, 9942, 9943, 9946, 9953, 9955, 9958, 9959, 9963, 9964, 9971, 9987, 9988, 9995, 9997, 10002, 10009, 10013, 10019, 10022, 10025, 10030, 10033, 10037, 10045, 10046, 10047, 10050, 10053, 10060, 10061, 10064, 10067, 10068, 10071, 10076, 10077, 10081, 10089, 10090, 10097, 10098]

Solved by Mathematica but not by Maple

(96) [408, 409, 1794, 1797, 1805, 2032, 2411, 2581, 2874, 2887, 3364, 3418, 3472, 3487, 3642, 3655, 3690, 3691, 3702, 3790, 3845, 4193, 4206, 4210, 4214, 4215, 4272, 4406, 4495, 4709, 4747, 4748, 4749, 4768, 4773, 4803, 4811, 4835, 4836, 4837, 5080, 5289, 5485, 5665, 5688, 5690, 5696, 5706, 5707, 5760, 5831, 5839, 5864, 5865, 6067, 6471, 6472, 6473, 6477, 6478, 6480, 6488, 6547, 6548, 6550, 6551, 6552, 6553, 6554, 7649, 7932, 7948, 8028, 8032, 8117, 8123, 8140, 8288, 8313, 8369, 8370, 8500, 9089, 9161, 9261, 9277, 9284, 9285, 9288, 9300, 9387, 9413, 9414, 9675, 9683, 9804]

Both systems unable to solve

(461) [133, 485, 550, 553, 710, 813, 958, 959, 961, 962, 964, 966, 968, 1039, 1046, 1075, 1162, 1186, 1697, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 2198, 2204, 2481, 2583, 2609, 2683, 2684, 2815, 2817, 2830, 2843, 2846, 2854, 2859, 2876, 2955, 3134, 3165, 3168, 3220, 3268, 3275, 3335, 3503, 3532, 3638, 3708, 3752, 3779, 3807, 3878, 4409, 4443, 4446, 4454, 4481, 4487, 4502, 5064, 5065, 5351, 5358, 5416, 5430, 5432, 5509, 5511, 5789, 5790, 5796, 5828, 6086, 6087, 6310, 6354, 6357, 6426, 6434, 6436, 6461, 6500, 6535, 6563, 6592, 6655, 7628, 7629, 7630, 7631, 7636, 7637, 7655, 7660, 7663, 7668, 7691, 7701, 7782, 7783, 7785, 7786, 7799, 7814, 7817, 7830, 7833, 7845, 7849, 7920, 7947, 7950, 7963, 7975, 8040, 8041, 8060, 8062, 8083, 8086, 8087, 8090, 8111, 8152, 8155, 8156, 8415, 8417, 8465, 8474, 8595, 8599, 8606, 8608, 8610, 8611, 8618, 8652, 8653, 8655, 8656, 8657, 8661, 8737, 8785, 8792, 8796, 8816, 8858, 8987, 9018, 9019, 9020, 9022, 9036, 9037, 9038, 9039, 9040, 9041, 9042, 9052, 9053, 9055, 9063, 9068, 9094, 9110, 9119, 9120, 9121, 9122, 9160, 9165, 9169, 9172, 9174, 9175, 9177, 9178, 9180, 9184, 9185, 9187, 9188, 9190, 9191, 9194, 9195, 9196, 9197, 9198, 9202, 9203, 9204, 9205, 9206, 9207, 9213, 9215, 9216, 9218, 9221, 9222, 9223, 9224, 9227, 9228, 9237, 9238, 9239, 9241, 9242, 9243, 9244, 9245, 9246, 9251, 9252, 9254, 9256, 9259, 9263, 9264, 9265, 9269, 9271, 9272, 9274, 9275, 9281, 9283, 9287, 9289, 9292, 9298, 9308, 9311, 9313, 9314, 9316, 9317, 9318, 9321, 9330, 9336, 9340, 9341, 9356, 9367, 9368, 9376, 9380, 9381, 9385, 9386, 9390, 9394, 9395, 9399, 9400, 9404, 9410, 9411, 9415, 9417, 9418, 9419, 9420, 9429, 9430, 9434, 9469, 9484, 9494, 9497, 9498, 9499, 9500, 9501, 9506, 9507, 9508, 9511, 9513, 9514, 9516, 9518, 9596, 9603, 9616, 9618, 9620, 9658, 9662, 9663, 9689, 9693, 9695, 9697, 9702, 9718, 9733, 9736, 9737, 9738, 9740, 9744, 9758, 9760, 9771, 9773, 9789, 9802, 9811, 9819, 9820, 9823, 9828, 9829, 9832, 9837, 9838, 9841, 9846, 9847, 9850, 9854, 9855, 9860, 9861, 9863, 9864, 9866, 9868, 9869, 9870, 9871, 9872, 9873, 9874, 9875, 9877, 9880, 9881, 9882, 9883, 9885, 9889, 9893, 9894, 9895, 9896, 9897, 9898, 9899, 9900, 9901, 9902, 9903, 9904, 9905, 9906, 9912, 9916, 9918, 9921, 9926, 9927, 9933, 9934, 9935, 9937, 9944, 9945, 9947, 9948, 9949, 9954, 9956, 9957, 9961, 9962, 9965, 9966, 9967, 9968, 9969, 9970, 9972, 9973, 9974, 9975, 9976, 9977, 9978, 9979, 9980, 9981, 9982, 9990, 9991, 9992, 9993, 9994, 9998, 10004, 10005, 10006, 10007, 10008, 10012, 10014, 10015, 10016, 10017, 10018, 10020, 10021, 10023, 10024, 10026, 10027, 10028, 10029, 10031, 10032, 10034, 10035, 10036, 10038, 10039, 10040, 10041, 10042, 10043, 10044, 10048, 10049, 10051, 10052, 10054, 10055, 10056, 10057, 10058, 10059, 10062, 10065, 10069, 10070, 10072, 10073, 10074, 10079, 10080]