# |
ODE |
Mathematica result |
Maple result |
\[ {}\left (y^{\prime }\right )^{3}+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{3}-\left (x +5\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{3}-a x y^{\prime }+x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{3}-2 y y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{2}-a x y y^{\prime }+2 a y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{3}-\left (x^{2}+x y+y^{2}\right ) \left (y^{\prime }\right )^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{3}-x y^{4} y^{\prime }-y^{5} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{3}+a \left (y^{\prime }\right )^{2}+b y+a b x = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{3}+x \left (y^{\prime }\right )^{2}-y = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{3}-y \left (y^{\prime }\right )^{2}+y^{2} = 0 \] |
✓ |
✓ | |
\[ {}\left (y^{\prime }\right )^{2}-\left (y^{4}+x y^{2}+x^{2}\right ) \left (y^{\prime }\right )^{2}+\left (x y^{6}+x^{2} y^{4}+x^{3} y^{2}\right ) y^{\prime }-x^{3} y^{6} = 0 \] |
✗ |
✗ |
|
\[ {}a \left (y^{\prime }\right )^{3}+b \left (y^{\prime }\right )^{2}+c y^{\prime }-y-d = 0 \] |
✓ |
✓ |
|
\[ {}x \left (y^{\prime }\right )^{3}-y \left (y^{\prime }\right )^{2}+a = 0 \] |
✓ |
✓ |
|
\[ {}4 x \left (y^{\prime }\right )^{3}-6 y \left (y^{\prime }\right )^{2}+3 y-x = 0 \] |
✓ |
✓ |
|
\[ {}8 x \left (y^{\prime }\right )^{3}-12 y \left (y^{\prime }\right )^{2}+9 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-a^{2}+x^{2}\right ) \left (y^{\prime }\right )^{3}+b x \left (-a^{2}+x^{2}\right ) \left (y^{\prime }\right )^{2}+y^{\prime }+b x = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} \left (y^{\prime }\right )^{3}-3 x^{2} y \left (y^{\prime }\right )^{2}+\left (3 x y^{2}+x^{6}\right ) y^{\prime }-y^{3}-2 x^{5} y = 0 \] |
✓ |
✗ |
|
\[ {}2 \left (x y^{\prime }+y\right )^{3}-y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{3} \sin \relax (x )-\left (y \sin \relax (x )-\left (\cos ^{2}\relax (x )\right )\right ) \left (y^{\prime }\right )^{2}-\left (y \left (\cos ^{2}\relax (x )\right )+\sin \relax (x )\right ) y^{\prime }+y \sin \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}2 y \left (y^{\prime }\right )^{3}-y \left (y^{\prime }\right )^{2}+2 x y^{\prime }-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} \left (y^{\prime }\right )^{3}+2 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}16 y^{2} \left (y^{\prime }\right )^{3}+2 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{2} \left (y^{\prime }\right )^{3}-y^{3} \left (y^{\prime }\right )^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y = 0 \] |
✓ |
✗ |
|
\[ {}x^{7} y^{2} \left (y^{\prime }\right )^{3}-\left (3 x^{6} y^{3}-1\right ) \left (y^{\prime }\right )^{2}+3 x^{5} y^{4} y^{\prime }-x^{4} y^{5} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{4}-\left (y-a \right )^{3} \left (y-b \right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{4}+3 \left (-1+x \right ) \left (y^{\prime }\right )^{2}-3 \left (2 y-1\right ) y^{\prime }+3 x = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{4}-4 y \left (x y^{\prime }-2 y\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{6}-\left (y-a \right )^{4} \left (y-b \right )^{3} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (\left (y^{\prime }\right )^{2}+1\right )^{3}-a^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{r}-a y^{s}-b \,x^{\frac {r s}{r -s}} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{n}-f \relax (x )^{n} \left (y-a \right )^{n +1} \left (y-b \right )^{n -1} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{n}-f \relax (x ) g \relax (y) = 0 \] |
✓ |
✓ |
|
\[ {}a \left (y^{\prime }\right )^{m}+b \left (y^{\prime }\right )^{n}-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{n -1} \left (y^{\prime }\right )^{n}-n x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\sqrt {\left (y^{\prime }\right )^{2}+1}+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}\sqrt {\left (y^{\prime }\right )^{2}+1}+x \left (y^{\prime }\right )^{2}+y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (\sqrt {\left (y^{\prime }\right )^{2}+1}+y^{\prime }\right )-y = 0 \] |
✓ |
✓ |
|
\[ {}a x \sqrt {\left (y^{\prime }\right )^{2}+1}+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y \sqrt {\left (y^{\prime }\right )^{2}+1}-a y y^{\prime }-a x = 0 \] |
✓ |
✓ |
|
\[ {}a y \sqrt {\left (y^{\prime }\right )^{2}+1}-2 x y y^{\prime }+y^{2}-x^{2} = 0 \] |
✓ |
✗ |
|
\[ {}f \left (x^{2}+y^{2}\right ) \sqrt {\left (y^{\prime }\right )^{2}+1}-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}a \left (\left (y^{\prime }\right )^{3}+1\right )^{\frac {1}{3}}+b x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}\ln \left (y^{\prime }\right )+x y^{\prime }+a y+b = 0 \] |
✓ |
✓ |
|
\[ {}\ln \left (y^{\prime }\right )+a \left (-y+x y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \relax (y)-x y = 0 \] |
✓ |
✓ |
|
\[ {}\sin \left (y^{\prime }\right )+y^{\prime }-x = 0 \] |
✓ |
✓ |
|
\[ {}a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{2} \sin \left (y^{\prime }\right )-y = 0 \] |
✓ |
✓ |
|
\[ {}\left (\left (y^{\prime }\right )^{2}+1\right ) \left (\sin ^{2}\left (-y+x y^{\prime }\right )\right )-1 = 0 \] | ✓ | ✓ |
|
\[ {}\left (\left (y^{\prime }\right )^{2}+1\right ) \left (\arctan \left (y^{\prime }\right )+a x \right )+y^{\prime } = 0 \] | ✓ | ✓ |
|
\[ {}a \,x^{n} f \left (y^{\prime }\right )+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}\left (-y+x y^{\prime }\right )^{n} f \left (y^{\prime }\right )+y g \left (y^{\prime }\right )+x h \left (y^{\prime }\right ) = 0 \] |
✗ |
✗ |
|
\[ {}f \left (x \left (y^{\prime }\right )^{2}\right )+2 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}f \left (x -\frac {3 \left (y^{\prime }\right )^{2}}{2}\right )+\left (y^{\prime }\right )^{3}-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } f \left (x y y^{\prime }-y^{2}\right )-x^{2} y^{\prime }+x y = 0 \] |
✗ |
✗ |
|
\[ {}\phi \left (f \left (x , y, y^{\prime }\right ), g \left (x , y, y^{\prime }\right )\right ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } = F \left (\frac {y}{x +a}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x +F \left (y-x^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {a x}{2}+F \left (y+\frac {a \,x^{2}}{4}+\frac {b x}{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = F \left (y \,{\mathrm e}^{-b x}\right ) {\mathrm e}^{b x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1+2 F \left (\frac {4 x^{2} y+1}{4 x^{2}}\right ) x}{2 x^{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1+F \left (\frac {y a x +1}{a x}\right ) a \,x^{2}}{a \,x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {\left (a \,x^{2}-2 F \left (y+\frac {a \,x^{4}}{8}\right )\right ) x}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 a}{y+2 F \left (y^{2}-4 a x \right ) a} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = F \left (\ln \left (\ln \relax (y)\right )-\ln \relax (x )\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {F \left (\frac {y}{\sqrt {x^{2}+1}}\right ) x}{\sqrt {x^{2}+1}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (x^{\frac {3}{2}}+2 F \left (y-\frac {x^{3}}{6}\right )\right ) \sqrt {x}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +F \left (-\left (x -y\right ) \left (x +y\right )\right )}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {F \left (-\frac {-1+y \ln \relax (x )}{y}\right ) y^{2}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x}{-y+F \left (x^{2}+y^{2}\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {F \left (\frac {a y^{2}+b \,x^{2}}{a}\right ) x}{\sqrt {a}\, y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {6 x^{3}+5 \sqrt {x}+5 F \left (y-\frac {2 x^{3}}{5}-2 \sqrt {x}\right )}{5 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {F \left (y^{\frac {3}{2}}-\frac {3 \,{\mathrm e}^{x}}{2}\right ) {\mathrm e}^{x}}{\sqrt {y}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {F \left (-\frac {-y^{2}+b}{x^{2}}\right ) x}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {F \left (\frac {x y^{2}+1}{x}\right )}{y x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-2 x^{2}+x +F \left (y+x^{2}-x \right )}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 a}{x^{2} \left (-y+2 F \left (\frac {x y^{2}-4 a}{x}\right ) a \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y+F \left (\frac {y}{x}\right )}{-1+x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-x +F \left (x^{2}+y^{2}\right )}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {F \left (-\frac {-1+2 y \ln \relax (x )}{y}\right ) y^{2}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {F \left (-\left (x -y\right ) \left (x +y\right )\right ) x}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2} \left (2+F \left (\frac {x^{2}-y}{y x^{2}}\right ) x^{2}\right )}{x^{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 F \left (y+\ln \left (1+2 x \right )\right ) x +F \left (y+\ln \left (1+2 x \right )\right )-2}{1+2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y^{3}}{1+2 F \left (\frac {1+4 x y^{2}}{y^{2}}\right ) y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {y^{2} \left (2 x -F \left (-\frac {x y-2}{2 y}\right )\right )}{4 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\left (-{\mathrm e}^{-x^{2}}+x^{2} {\mathrm e}^{-x^{2}}-F \left (y-\frac {x^{2} {\mathrm e}^{-x^{2}}}{2}\right )\right ) x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y+F \left (\frac {y}{x^{2}}\right ) x^{3}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {y}+F \left (\frac {x -y}{\sqrt {y}}\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-3 x^{2} y+F \left (x^{3} y\right )}{x^{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y+F \left (\frac {y}{x}\right ) x^{2}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-2 x -y+F \left (\left (x +y\right ) x \right )}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (y \,{\mathrm e}^{-\frac {x^{2}}{4}} x +2 F \left (y \,{\mathrm e}^{-\frac {x^{2}}{4}}\right )\right ) {\mathrm e}^{\frac {x^{2}}{4}}}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y+F \left (-\frac {-y+x \ln \relax (x )}{x}\right ) x^{2}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x \left (a -1\right ) \left (a +1\right )}{y+F \left (\frac {y^{2}}{2}-\frac {a^{2} x^{2}}{2}+\frac {x^{2}}{2}\right ) a^{2}-F \left (\frac {y^{2}}{2}-\frac {a^{2} x^{2}}{2}+\frac {x^{2}}{2}\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x \left (-1+F \left (x y\right ) y\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {-x^{2}+2 x^{3} y-F \left (\left (x y-1\right ) x \right )}{x^{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {F \left (\frac {\left (3+y\right ) {\mathrm e}^{\frac {3 x^{2}}{2}}}{3 y}\right ) x y^{2} {\mathrm e}^{3 x^{2}} {\mathrm e}^{-\frac {9 x^{2}}{2}}}{9} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\left (y+1\right ) \left (\left (y-\ln \left (y+1\right )-\ln \relax (x )\right ) x +1\right )}{y x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {6 y}{8 y^{4}+9 y^{3}+12 y^{2}+6 y-F \left (-\frac {y^{4}}{3}-\frac {y^{3}}{2}-y^{2}-y+x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y^{2}+2 x y+x^{2}+{\mathrm e}^{2 F \left (-\left (x -y\right ) \left (x +y\right )\right )}}{y^{2}+2 x y+x^{2}-{\mathrm e}^{2 F \left (-\left (x -y\right ) \left (x +y\right )\right )}} \] |
✓ |
✓ |
|