2.8 Problems 701 to 800

Table 2.8: Main lookup table

#

ODE

Mathematica result

Maple result

701

\[ {}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \]

702

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]

703

\[ {}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = {\mathrm e}^{2 t} t^{2} \]

704

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right ) {\mathrm e}^{-t} \]

705

\[ {}u^{\prime \prime }+2 u = 0 \]

706

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+2 u = 0 \]

707

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (\frac {t}{4}\right ) \]

708

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (2 t \right ) \]

709

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (6 t \right ) \]

710

\[ {}u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5} = \cos \relax (t ) \]

711

\[ {}y^{\prime \prime }-y = 0 \]

712

\[ {}y^{\prime \prime }-x y^{\prime }-y = 0 \]

713

\[ {}y^{\prime \prime }+k^{2} x^{2} y = 0 \]

714

\[ {}\left (1-x \right ) y^{\prime \prime }+y = 0 \]

715

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

716

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

717

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

718

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }+2 y = 0 \]

719

\[ {}\left (-x^{2}+3\right ) y^{\prime \prime }-3 x y^{\prime }-y = 0 \]

720

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

721

\[ {}2 y^{\prime \prime }+x y^{\prime }+3 y = 0 \]

722

\[ {}y^{\prime \prime }-x y^{\prime }-y = 0 \]

723

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

724

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

725

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

726

\[ {}y^{\prime \prime }-2 x y^{\prime }+\lambda y = 0 \]

727

\[ {}y^{\prime \prime }-x y^{\prime }-y = 0 \]

728

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

729

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

730

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

731

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

732

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

733

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

734

\[ {}y^{\prime \prime }+\sin \relax (x ) y^{\prime }+\cos \relax (x ) y = 0 \]

735

\[ {}x^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+3 y \ln \relax (x ) = 0 \]

736

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+\sin \relax (x ) y = 0 \]

737

\[ {}y^{\prime \prime }+4 y^{\prime }+6 x y = 0 \]

738

\[ {}y^{\prime \prime }+4 y^{\prime }+6 x y = 0 \]

739

\[ {}\left (x^{2}-2 x -3\right ) y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

740

\[ {}\left (x^{2}-2 x -3\right ) y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

741

\[ {}\left (x^{2}-2 x -3\right ) y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

742

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+4 x y^{\prime }+y = 0 \]

743

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+4 x y^{\prime }+y = 0 \]

744

\[ {}x y^{\prime \prime }+y = 0 \]

745

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\alpha ^{2} y = 0 \]

746

\[ {}y^{\prime }-y = 0 \]

747

\[ {}y^{\prime }-x y = 0 \]

748

\[ {}\left (1-x \right ) y^{\prime } = y \]

749

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\alpha \left (\alpha +1\right ) y = 0 \]

750

\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {x_{1} \relax (t )}{10}+\frac {3 x_{2} \relax (t )}{40}, x_{2}^{\prime }\relax (t ) = \frac {x_{1} \relax (t )}{10}-\frac {x_{2} \relax (t )}{5}\right ] \]

751

\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1} \relax (t )-2 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1} \relax (t )-x_{2} \relax (t )] \]

752

\[ {}[x_{1}^{\prime }\relax (t ) = -x_{1} \relax (t )-4 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )-x_{2} \relax (t )] \]

753

\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1} \relax (t )-5 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )-2 x_{2} \relax (t )] \]

754

\[ {}\left [x_{1}^{\prime }\relax (t ) = 2 x_{1} \relax (t )-\frac {5 x_{2} \relax (t )}{2}, x_{2}^{\prime }\relax (t ) = \frac {9 x_{1} \relax (t )}{5}-x_{2} \relax (t )\right ] \]

755

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )-x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = 5 x_{1} \relax (t )-3 x_{2} \relax (t )] \]

756

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )+2 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = -5 x_{1} \relax (t )-x_{2} \relax (t )] \]

757

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1} \relax (t )+x_{2} \relax (t )-2 x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = 3 x_{1} \relax (t )+2 x_{2} \relax (t )+x_{3} \relax (t )] \]

758

\[ {}[x_{1}^{\prime }\relax (t ) = -3 x_{1} \relax (t )+2 x_{3} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )-x_{2} \relax (t ), x_{3}^{\prime }\relax (t ) = -2 x_{1} \relax (t )-x_{2} \relax (t )] \]

759

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )-5 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )-3 x_{2} \relax (t )] \]

760

\[ {}[x_{1}^{\prime }\relax (t ) = -3 x_{1} \relax (t )+2 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1} \relax (t )-x_{2} \relax (t )] \]

761

\[ {}\left [x_{1}^{\prime }\relax (t ) = \frac {3 x_{1} \relax (t )}{4}-2 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )-\frac {5 x_{2} \relax (t )}{4}\right ] \]

762

\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {4 x_{1} \relax (t )}{5}+2 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1} \relax (t )+\frac {6 x_{2} \relax (t )}{5}\right ] \]

763

\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {x_{1} \relax (t )}{4}+x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1} \relax (t )-\frac {x_{2} \relax (t )}{4}, x_{3}^{\prime }\relax (t ) = -\frac {x_{3} \relax (t )}{4}\right ] \]

764

\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {x_{1} \relax (t )}{4}+x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1} \relax (t )-\frac {x_{2} \relax (t )}{4}, x_{3}^{\prime }\relax (t ) = \frac {x_{3} \relax (t )}{10}\right ] \]

765

\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {x_{1} \relax (t )}{2}-\frac {x_{2} \relax (t )}{8}, x_{2}^{\prime }\relax (t ) = 2 x_{1} \relax (t )-\frac {x_{2} \relax (t )}{2}\right ] \]

766

\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1} \relax (t )-4 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )-x_{2} \relax (t )] \]

767

\[ {}[x_{1}^{\prime }\relax (t ) = 4 x_{1} \relax (t )-2 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = 8 x_{1} \relax (t )-4 x_{2} \relax (t )] \]

768

\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {3 x_{1} \relax (t )}{2}+x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = -\frac {x_{1} \relax (t )}{4}-\frac {x_{2} \relax (t )}{2}\right ] \]

769

\[ {}\left [x_{1}^{\prime }\relax (t ) = -3 x_{1} \relax (t )+\frac {5 x_{2} \relax (t )}{2}, x_{2}^{\prime }\relax (t ) = -\frac {5 x_{1} \relax (t )}{2}+2 x_{2} \relax (t )\right ] \]

770

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )+x_{2} \relax (t )+x_{3} \relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1} \relax (t )+x_{2} \relax (t )-x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = -x_{2} \relax (t )+x_{3} \relax (t )] \]

771

\[ {}[x_{1}^{\prime }\relax (t ) = x_{2} \relax (t )+x_{3} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )+x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = x_{1} \relax (t )+x_{2} \relax (t )] \]

772

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )-4 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1} \relax (t )-7 x_{2} \relax (t )] \]

773

\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {5 x_{1} \relax (t )}{2}+\frac {3 x_{2} \relax (t )}{2}, x_{2}^{\prime }\relax (t ) = -\frac {3 x_{1} \relax (t )}{2}+\frac {x_{2} \relax (t )}{2}\right ] \]

774

\[ {}\left [x_{1}^{\prime }\relax (t ) = 2 x_{1} \relax (t )+\frac {3 x_{2} \relax (t )}{2}, x_{2}^{\prime }\relax (t ) = -\frac {3 x_{1} \relax (t )}{2}-x_{2} \relax (t )\right ] \]

775

\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1} \relax (t )+9 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1} \relax (t )-3 x_{2} \relax (t )] \]

776

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t ), x_{2}^{\prime }\relax (t ) = -4 x_{1} \relax (t )+x_{2} \relax (t ), x_{3}^{\prime }\relax (t ) = 3 x_{1} \relax (t )+6 x_{2} \relax (t )+2 x_{3} \relax (t )] \]

777

\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {5 x_{1} \relax (t )}{2}+x_{2} \relax (t )+x_{3} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )-\frac {5 x_{2} \relax (t )}{2}+x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = x_{1} \relax (t )+x_{2} \relax (t )-\frac {5 x_{3} \relax (t )}{2}\right ] \]

778

\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1} \relax (t )-x_{2} \relax (t )+{\mathrm e}^{t}, x_{2}^{\prime }\relax (t ) = 3 x_{1} \relax (t )-2 x_{2} \relax (t )+t] \]

779

\[ {}\left [x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )+\sqrt {3}\, x_{2} \relax (t )+{\mathrm e}^{t}, x_{2}^{\prime }\relax (t ) = \sqrt {3}\, x_{1} \relax (t )-x_{2} \relax (t )+\sqrt {3}\, {\mathrm e}^{-t}\right ] \]

780

\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1} \relax (t )-5 x_{2} \relax (t )-\cos \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )-2 x_{2} \relax (t )+\sin \relax (t )] \]

781

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )+x_{2} \relax (t )+{\mathrm e}^{-2 t}, x_{2}^{\prime }\relax (t ) = 4 x_{1} \relax (t )-2 x_{2} \relax (t )-2 \,{\mathrm e}^{t}] \]

782

\[ {}\left [x_{1}^{\prime }\relax (t ) = 4 x_{1} \relax (t )-2 x_{2} \relax (t )+\frac {1}{t^{3}}, x_{2}^{\prime }\relax (t ) = 8 x_{1} \relax (t )-4 x_{2} \relax (t )-\frac {1}{t^{2}}\right ] \]

783

\[ {}\left [x_{1}^{\prime }\relax (t ) = -4 x_{1} \relax (t )+2 x_{2} \relax (t )+\frac {1}{t}, x_{2}^{\prime }\relax (t ) = 2 x_{1} \relax (t )-x_{2} \relax (t )+\frac {2}{t}+4\right ] \]

784

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )+x_{2} \relax (t )+2 \,{\mathrm e}^{t}, x_{2}^{\prime }\relax (t ) = 4 x_{1} \relax (t )+x_{2} \relax (t )-{\mathrm e}^{t}] \]

785

\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1} \relax (t )-x_{2} \relax (t )+{\mathrm e}^{t}, x_{2}^{\prime }\relax (t ) = 3 x_{1} \relax (t )-2 x_{2} \relax (t )-{\mathrm e}^{t}] \]

786

\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {5 x_{1} \relax (t )}{4}+\frac {3 x_{2} \relax (t )}{4}+2 t, x_{2}^{\prime }\relax (t ) = \frac {3 x_{1} \relax (t )}{4}-\frac {5 x_{2} \relax (t )}{4}+{\mathrm e}^{t}\right ] \]

787

\[ {}\left [x_{1}^{\prime }\relax (t ) = -3 x_{1} \relax (t )+\sqrt {2}\, x_{2} \relax (t )+{\mathrm e}^{-t}, x_{2}^{\prime }\relax (t ) = \sqrt {2}\, x_{1} \relax (t )-2 x_{2} \relax (t )-{\mathrm e}^{-t}\right ] \]

788

\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1} \relax (t )-5 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )-2 x_{2} \relax (t )+\cos \relax (t )] \]

789

\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1} \relax (t )-5 x_{2} \relax (t )+\csc \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )-2 x_{2} \relax (t )+\sec \relax (t )] \]

790

\[ {}\left [x_{1}^{\prime }\relax (t ) = -\frac {x_{1} \relax (t )}{2}-\frac {x_{2} \relax (t )}{8}+\frac {{\mathrm e}^{-\frac {t}{2}}}{2}, x_{2}^{\prime }\relax (t ) = 2 x_{1} \relax (t )-\frac {x_{2} \relax (t )}{2}\right ] \]

791

\[ {}[x_{1}^{\prime }\relax (t ) = -2 x_{1} \relax (t )+x_{2} \relax (t )+2 \,{\mathrm e}^{-t}, x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )-2 x_{2} \relax (t )+3 t] \]

792

\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1} \relax (t )-2 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1} \relax (t )-2 x_{2} \relax (t )] \]

793

\[ {}[x_{1}^{\prime }\relax (t ) = 5 x_{1} \relax (t )-x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = 3 x_{1} \relax (t )+x_{2} \relax (t )] \]

794

\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1} \relax (t )-x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = 3 x_{1} \relax (t )-2 x_{2} \relax (t )] \]

795

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )-4 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1} \relax (t )-7 x_{2} \relax (t )] \]

796

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )-5 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )-3 x_{2} \relax (t )] \]

797

\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1} \relax (t )-5 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )-2 x_{2} \relax (t )] \]

798

\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1} \relax (t )-2 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1} \relax (t )-x_{2} \relax (t )] \]

799

\[ {}\left [x_{1}^{\prime }\relax (t ) = -x_{1} \relax (t )-x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = -\frac {5 x_{2} \relax (t )}{2}\right ] \]

800

\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1} \relax (t )-4 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )-x_{2} \relax (t )] \]