This report shows the result of running Maple and Mathematica on my collection of differential equations. These were collected over time and stored in sqlite3 database. These were collected from a number of textbooks and other references such as Kamke and Murphy collections. All books used are listed here.
The current number of differential equations is [10258]. Both Maple and Mathematica are given a CPU time limit of 3 minutes to solve each ode else the problem is considered not solved and marked as failed.
When Mathematica returns DifferentialRoot as a solution to an ode then this is considered as not solved. Similarly, when Maple returns DESol or ODSESolStruc, then this is also considered as not solved.
If CAS solves the ODE within the timelimit, then it is counted as solved. No verification is done to check that the solution is correct or not.
To reduce the size of latex output, in Maple the command simplify is called on the solution with timeout of 3 minutes. If this times out, then the unsimplified original ode solution is used otherwise the simplified one is used.
Similarly for Mathematica, FullSimplify is called on the solution with timeout of 3 minutes. If this timesout, then Simplify is next called. If this also timesout, then the unsimplified solution is used else the simplified one is used. The time used for simplification is not counted in the CPU time used. The CPU time used only records the time used to solve the ode.
Tests are run under windows 10 with 128 GB RAM running on intel i9-12900K 3.20 GHz
The following table summarizes perentage solved for each CAS
The following table summarizes the run-time performance of each CAS system.
The problem which Mathematica produced largest leaf size of \(2733033\) is 9606.
The problem which Maple produced largest leaf size of \(545927\) is 9648.
The problem which Mathematica used most CPU time of \(178.017\) seconds is 3759.
The problem which Maple used most CPU time of \(118.453\) seconds is 3752.
The following gives the performance of each CAS based on the type of the ODE. The first subsection uses the types as classified by Maple ode advisor.The next subsection uses my own ode solver ODE classificaiton.
The following table gives count of the number of ODE’s for each ODE type, where the ODE type here is as classified by Maple’s odeadvisor, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.
Table 1.3: Percentage solved per Maple ODE type
|
|||
Type of ODE |
Count |
Mathematica |
Maple |
|
|||
[_quadrature] |
467 |
99.79% |
|
[[_linear, class A]] |
148 |
100.00% |
|
[_separable] |
769 |
||
[_Riccati] |
308 |
55.19% |
71.75% |
[[_homogeneous, class G]] |
62 |
||
[_linear] |
466 |
99.79% |
|
[[_homogeneous, class A], _exact, _rational, [_Abel, 2nd type, class A]] |
18 |
100.00% |
100.00% |
[[_homogeneous, class A], _rational, _Bernoulli] |
63 |
100.00% |
100.00% |
[[_homogeneous, class A], _dAlembert] |
118 |
99.15% |
99.15% |
[[_homogeneous, class A], _rational, [_Abel, 2nd type, class A]] |
71 |
98.59% |
100.00% |
[[_homogeneous, class A], _rational, [_Abel, 2nd type, class B]] |
46 |
100.00% |
100.00% |
[[_homogeneous, class A], _rational, _dAlembert] |
174 |
99.43% |
|
[[_homogeneous, class C], _dAlembert] |
60 |
100.00% |
|
[[_homogeneous, class C], _Riccati] |
16 |
100.00% |
100.00% |
[[_homogeneous, class G], _rational, _Bernoulli] |
48 |
100.00% |
100.00% |
[_Bernoulli] |
87 |
100.00% |
|
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
3 |
100.00% |
100.00% |
[[_1st_order, _with_symmetry_[F(x),G(x)]]] |
45 |
100.00% |
100.00% |
[y=_G(x,y’)] |
112 |
63.39% |
59.82% |
[[_1st_order, _with_linear_symmetries]] |
94 |
98.94% |
|
[[_homogeneous, class A], _exact, _rational, _dAlembert] |
26 |
100.00% |
100.00% |
[_exact, _rational] |
31 |
96.77% |
100.00% |
[_exact] |
62 |
100.00% |
|
[[_1st_order, _with_linear_symmetries], _exact, _rational] |
3 |
100.00% |
100.00% |
[[_homogeneous, class A], _exact, _rational, [_Abel, 2nd type, class B]] |
2 |
100.00% |
100.00% |
[[_homogeneous, class G], _exact, _rational] |
3 |
66.67% |
100.00% |
[[_2nd_order, _missing_x]] |
410 |
96.59% |
96.34% |
[[_Emden, _Fowler], [_2nd_order, _linear, _with_symmetry_[0,F(x)]]] |
58 |
100.00% |
100.00% |
[[_Emden, _Fowler]] |
233 |
99.57% |
|
[[_2nd_order, _exact, _linear, _homogeneous]] |
176 |
100.00% |
|
[[_2nd_order, _missing_y]] |
80 |
||
[[_2nd_order, _with_linear_symmetries]] |
2134 |
95.97% |
96.81% |
[[_2nd_order, _linear, _nonhomogeneous]] |
560 |
96.96% |
|
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
36 |
100.00% |
100.00% |
system of linear ODEs |
449 |
95.32% |
95.32% |
[_Gegenbauer] |
63 |
100.00% |
100.00% |
[[_high_order, _missing_x]] |
96 |
100.00% |
|
[[_3rd_order, _missing_x]] |
83 |
100.00% |
100.00% |
[[_3rd_order, _missing_y]] |
35 |
100.00% |
100.00% |
[[_3rd_order, _exact, _linear, _homogeneous]] |
12 |
100.00% |
100.00% |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, _with_symmetry_[0,F(x)]]] |
54 |
98.15% |
|
[_Lienard] |
47 |
100.00% |
100.00% |
[[_homogeneous, class A], _rational, _Riccati] |
27 |
100.00% |
100.00% |
[x=_G(y,y’)] |
12 |
||
[[_Abel, 2nd type, class B]] |
15 |
26.67% |
|
[_exact, _rational, [_1st_order, _with_symmetry_[F(x),G(x)]], [_Abel, 2nd type, class A]] |
6 |
100.00% |
100.00% |
[[_1st_order, _with_symmetry_[F(x)*G(y),0]]] |
21 |
100.00% |
100.00% |
[[_homogeneous, class D], _rational] |
2 |
100.00% |
100.00% |
[[_1st_order, _with_exponential_symmetries]] |
5 |
100.00% |
100.00% |
[_rational] |
99 |
85.86% |
77.78% |
[_rational, [_Abel, 2nd type, class B]] |
133 |
27.07% |
51.88% |
[_rational, [_1st_order, _with_symmetry_[F(x),G(x)]], [_Abel, 2nd type, class A]] |
4 |
100.00% |
100.00% |
[NONE] |
80 |
40.00% |
36.25% |
[_rational, [_1st_order, _with_symmetry_[F(x)*G(y),0]]] |
21 |
100.00% |
100.00% |
[[_homogeneous, class G], _rational, [_Abel, 2nd type, class B]] |
40 |
100.00% |
100.00% |
[_Gegenbauer, [_2nd_order, _linear, _with_symmetry_[0,F(x)]]] |
12 |
100.00% |
100.00% |
[[_high_order, _with_linear_symmetries]] |
39 |
||
[[_3rd_order, _with_linear_symmetries]] |
103 |
83.50% |
84.47% |
[[_high_order, _linear, _nonhomogeneous]] |
53 |
98.11% |
|
[[_1st_order, _with_linear_symmetries], _Clairaut] |
44 |
100.00% |
100.00% |
[[_1st_order, _with_symmetry_[F(x),G(y)]]] |
49 |
100.00% |
100.00% |
[[_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]] |
71 |
100.00% |
100.00% |
[[_homogeneous, class C], _rational, _Riccati] |
5 |
100.00% |
100.00% |
[[_Abel, 2nd type, class A]] |
34 |
14.71% |
35.29% |
[_rational, _Bernoulli] |
39 |
100.00% |
100.00% |
[[_homogeneous, class A]] |
7 |
100.00% |
100.00% |
[[_homogeneous, class C], _rational, [_Abel, 2nd type, class A]] |
106 |
100.00% |
|
[[_homogeneous, class G], _rational, _Riccati] |
19 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _Riccati] |
10 |
100.00% |
100.00% |
[[_1st_order, _with_symmetry_[F(x),G(y)]], _Riccati] |
1 |
100.00% |
100.00% |
[[_1st_order, _with_symmetry_[F(x),G(y)]], [_Abel, 2nd type, class A]] |
1 |
100.00% |
100.00% |
[_exact, _rational, [_Abel, 2nd type, class B]] |
14 |
100.00% |
100.00% |
[_exact, [_Abel, 2nd type, class B]] |
2 |
100.00% |
100.00% |
[_exact, [_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]] |
6 |
100.00% |
100.00% |
[_exact, [_1st_order, _with_symmetry_[F(x),G(x)]], [_Abel, 2nd type, class A]] |
2 |
100.00% |
100.00% |
[_exact, _Bernoulli] |
6 |
100.00% |
100.00% |
[[_homogeneous, class A], _exact, _rational, _Bernoulli] |
4 |
100.00% |
100.00% |
[_rational, [_Abel, 2nd type, class C]] |
12 |
||
[[_homogeneous, class G], _rational] |
74 |
100.00% |
|
[[_homogeneous, class D], _rational, [_Abel, 2nd type, class B]] |
2 |
100.00% |
100.00% |
[_rational, [_1st_order, _with_symmetry_[F(x),G(x)]], _Riccati] |
14 |
100.00% |
100.00% |
[_rational, _Riccati] |
101 |
||
[[_3rd_order, _linear, _nonhomogeneous]] |
53 |
100.00% |
100.00% |
[[_high_order, _missing_y]] |
18 |
94.44% |
94.44% |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
6 |
100.00% |
100.00% |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
5 |
100.00% |
100.00% |
[[_homogeneous, class C], _exact, _rational, [_Abel, 2nd type, class A]] |
20 |
100.00% |
100.00% |
[_exact, [_Abel, 2nd type, class A]] |
1 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], [_Abel, 2nd type, class A]] |
2 |
100.00% |
100.00% |
[[_Riccati, _special]] |
14 |
100.00% |
100.00% |
[_Abel] |
25 |
||
[_Laguerre] |
34 |
100.00% |
100.00% |
[_Laguerre, [_2nd_order, _linear, _with_symmetry_[0,F(x)]]] |
4 |
100.00% |
100.00% |
[_Bessel] |
15 |
100.00% |
100.00% |
[_rational, _Abel] |
21 |
95.24% |
100.00% |
[_exact, _rational, [_1st_order, _with_symmetry_[F(x)*G(y),0]]] |
9 |
100.00% |
100.00% |
[[_1st_order, _with_symmetry_[F(x)*G(y),0]], [_Abel, 2nd type, class B]] |
1 |
100.00% |
100.00% |
[[_homogeneous, class C], [_Abel, 2nd type, class C], _dAlembert] |
4 |
100.00% |
100.00% |
[[_homogeneous, class G], _exact, _rational, [_Abel, 2nd type, class B]] |
6 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
3 |
100.00% |
100.00% |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
11 |
90.91% |
100.00% |
[[_3rd_order, _exact, _nonlinear]] |
2 |
50.00% |
50.00% |
[_Jacobi] |
30 |
100.00% |
100.00% |
[_rational, [_1st_order, _with_symmetry_[F(x)*G(y),0]], [_Abel, 2nd type, class B]] |
5 |
100.00% |
100.00% |
[[_2nd_order, _quadrature]] |
33 |
100.00% |
96.97% |
[[_3rd_order, _quadrature]] |
3 |
100.00% |
100.00% |
[[_homogeneous, class D], _Bernoulli] |
3 |
100.00% |
100.00% |
[[_homogeneous, class G], _exact] |
1 |
100.00% |
100.00% |
[_exact, [_1st_order, _with_symmetry_[F(x)*G(y),0]]] |
5 |
100.00% |
100.00% |
[[_homogeneous, class G], _exact, _rational, _Bernoulli] |
8 |
100.00% |
100.00% |
[_exact, [_1st_order, _with_symmetry_[F(x),G(x)]]] |
1 |
100.00% |
100.00% |
[[_homogeneous, class A], _exact, _rational, _Riccati] |
1 |
100.00% |
100.00% |
[_erf] |
4 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
14 |
92.86% |
100.00% |
[[_homogeneous, class D]] |
8 |
100.00% |
100.00% |
[_exact, _rational, _Riccati] |
3 |
100.00% |
100.00% |
[_rational, [_1st_order, _with_symmetry_[F(x),G(x)]], [_Abel, 2nd type, class B]] |
5 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational] |
22 |
100.00% |
100.00% |
[[_homogeneous, class D], _rational, _Riccati] |
19 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _exact] |
2 |
100.00% |
100.00% |
[[_homogeneous, class C], _exact, _dAlembert] |
3 |
100.00% |
100.00% |
[_exact, _rational, [_1st_order, _with_symmetry_[F(x)*G(y),0]], [_Abel, 2nd type, class A]] |
1 |
100.00% |
100.00% |
[[_homogeneous, class D], _rational, [_Abel, 2nd type, class A]] |
2 |
100.00% |
100.00% |
[_rational, [_Abel, 2nd type, class A]] |
37 |
27.03% |
45.95% |
[[_homogeneous, class G], _dAlembert] |
6 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli] |
3 |
100.00% |
100.00% |
[[_homogeneous, class D], _rational, _Bernoulli] |
24 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
47 |
76.60% |
100.00% |
[[_homogeneous, class G], _Abel] |
4 |
100.00% |
100.00% |
[[_homogeneous, class G], _Chini] |
4 |
100.00% |
100.00% |
[_Chini] |
3 |
||
[_rational, [_Riccati, _special]] |
9 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, _Riccati] |
2 |
100.00% |
100.00% |
[[_homogeneous, class D], _Riccati] |
20 |
100.00% |
100.00% |
[[_homogeneous, class G], _rational, [_Riccati, _special]] |
4 |
100.00% |
100.00% |
[[_homogeneous, class G], _Riccati] |
4 |
100.00% |
100.00% |
[_rational, [_1st_order, _with_symmetry_[F(x)*G(y),0]], [_Abel, 2nd type, class C]] |
5 |
100.00% |
100.00% |
[[_homogeneous, class G], _rational, [_Abel, 2nd type, class A]] |
3 |
100.00% |
100.00% |
[[_homogeneous, class C], _rational, [_Abel, 2nd type, class C], _dAlembert] |
1 |
100.00% |
100.00% |
[[_homogeneous, class A], _rational, [_Abel, 2nd type, class C], _dAlembert] |
4 |
100.00% |
100.00% |
[_exact, _rational, _Bernoulli] |
1 |
100.00% |
100.00% |
[[_homogeneous, class G], _rational, [_Abel, 2nd type, class C]] |
5 |
100.00% |
100.00% |
[[_Abel, 2nd type, class C]] |
7 |
||
[[_homogeneous, class C], _rational] |
7 |
100.00% |
100.00% |
[_exact, _rational, [_1st_order, _with_symmetry_[F(x),G(x)]]] |
2 |
100.00% |
100.00% |
[_rational, [_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]] |
17 |
100.00% |
|
unknown |
5 |
||
[_dAlembert] |
17 |
100.00% |
100.00% |
[_rational, _dAlembert] |
11 |
90.91% |
100.00% |
[[_homogeneous, class G], _rational, _Clairaut] |
5 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
10 |
100.00% |
100.00% |
[[_homogeneous, class C], _rational, _dAlembert] |
10 |
100.00% |
100.00% |
[[_homogeneous, class G], _rational, _dAlembert] |
6 |
100.00% |
100.00% |
[_rational, [_1st_order, _with_symmetry_[F(x),G(y)]]] |
14 |
100.00% |
92.86% |
[[_homogeneous, class G], _Clairaut] |
2 |
100.00% |
100.00% |
[_Clairaut] |
7 |
100.00% |
85.71% |
[[_homogeneous, class A], _exact, _dAlembert] |
2 |
100.00% |
100.00% |
[[_homogeneous, class D], _exact, _rational, _Bernoulli] |
1 |
100.00% |
100.00% |
[[_homogeneous, class D], _exact, _rational, [_Abel, 2nd type, class A]] |
3 |
100.00% |
100.00% |
[[_high_order, _quadrature]] |
6 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
8 |
100.00% |
|
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
55 |
||
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
24 |
95.83% |
95.83% |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
4 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
6 |
100.00% |
100.00% |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
16 |
93.75% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
2 |
100.00% |
|
[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
7 |
100.00% |
100.00% |
[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
3 |
100.00% |
100.00% |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
3 |
100.00% |
100.00% |
[[_homogeneous, class G], _rational, _Abel] |
2 |
100.00% |
100.00% |
[[_elliptic, _class_I]] |
2 |
100.00% |
100.00% |
[[_elliptic, _class_II]] |
2 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]] |
1 |
100.00% |
100.00% |
[_Hermite] |
12 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _Chini] |
2 |
100.00% |
100.00% |
[_exact, [_1st_order, _with_symmetry_[F(x),G(y)]]] |
2 |
100.00% |
100.00% |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
1 |
100.00% |
100.00% |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
3 |
100.00% |
100.00% |
[[_1st_order, _with_symmetry_[F(x),G(x)]], _Riccati] |
36 |
100.00% |
|
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
3 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]] |
3 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
11 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]] |
1 |
100.00% |
100.00% |
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
1 |
100.00% |
100.00% |
[[_1st_order, _with_symmetry_[F(x)*G(y),0]], [_Abel, 2nd type, class C]] |
3 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
2 |
100.00% |
100.00% |
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
1 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
3 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]] |
2 |
100.00% |
100.00% |
[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
2 |
100.00% |
100.00% |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]] |
2 |
100.00% |
100.00% |
[[_Bessel, _modified]] |
1 |
100.00% |
100.00% |
[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]] |
10 |
10.00% |
|
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
3 |
100.00% |
100.00% |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
2 |
50.00% |
50.00% |
[_Liouville, [_2nd_order, _reducible, _mu_xy]] |
3 |
100.00% |
100.00% |
[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
8 |
100.00% |
100.00% |
[_Chini, [_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]] |
2 |
100.00% |
100.00% |
[[_1st_order, _with_exponential_symmetries], _rational, [_Abel, 2nd type, class B]] |
1 |
100.00% |
100.00% |
|
|||
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, 2nd type, class B]] |
1 |
100.00% |
100.00% |
[[_homogeneous, class C], _rational, [_Abel, 2nd type, class B]] |
1 |
100.00% |
100.00% |
[[_homogeneous, class G], [_Abel, 2nd type, class C]] |
1 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], [_Abel, 2nd type, class C]] |
7 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, 2nd type, class C]] |
8 |
100.00% |
100.00% |
[[_Abel, 2nd type, class C], [_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]] |
4 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _Abel] |
13 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, 2nd type, class A]] |
7 |
100.00% |
100.00% |
[[_1st_order, _with_symmetry_[F(x),G(y)]], [_Abel, 2nd type, class C]] |
2 |
100.00% |
100.00% |
[[_homogeneous, class D], _rational, _Abel] |
3 |
100.00% |
100.00% |
[[_homogeneous, class C], _rational, _Abel] |
3 |
100.00% |
100.00% |
[_rational, [_Abel, 2nd type, class C], [_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]] |
3 |
100.00% |
100.00% |
[[_homogeneous, class D], _rational, [_Abel, 2nd type, class C]] |
1 |
100.00% |
100.00% |
[[_homogeneous, class C], _Abel] |
3 |
100.00% |
100.00% |
[_rational, [_1st_order, _with_symmetry_[F(x),G(x)]], [_Abel, 2nd type, class C]] |
6 |
100.00% |
100.00% |
[[_1st_order, _with_symmetry_[F(x),G(x)]], _Abel] |
5 |
100.00% |
100.00% |
[_rational, [_1st_order, _with_symmetry_[F(x),G(x)]], _Abel] |
10 |
100.00% |
100.00% |
[[_1st_order, _with_symmetry_[F(x),G(x)]], [_Abel, 2nd type, class C]] |
2 |
100.00% |
100.00% |
[[_1st_order, _with_symmetry_[F(x),G(y)]], _Abel] |
2 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, _Abel] |
1 |
100.00% |
100.00% |
[_Titchmarsh] |
1 |
0.00% |
0.00% |
[_ellipsoidal] |
2 |
100.00% |
100.00% |
[_Jacobi, [_2nd_order, _linear, _with_symmetry_[0,F(x)]]] |
1 |
100.00% |
100.00% |
[_Halm] |
2 |
100.00% |
100.00% |
[[_3rd_order, _fully, _exact, _linear]] |
5 |
100.00% |
100.00% |
[[_high_order, _fully, _exact, _linear]] |
1 |
100.00% |
100.00% |
[[_Painleve, 1st]] |
1 |
0.00% |
0.00% |
[[_Painleve, 2nd]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _with_potential_symmetries]] |
2 |
100.00% |
100.00% |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
6 |
100.00% |
100.00% |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
1 |
100.00% |
100.00% |
[[_2nd_order, _reducible, _mu_xy]] |
3 |
66.67% |
66.67% |
[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
1 |
0.00% |
0.00% |
[[_Painleve, 4th]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
1 |
100.00% |
100.00% |
[[_Painleve, 3rd]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]] |
1 |
100.00% |
100.00% |
[[_Painleve, 5th]] |
1 |
0.00% |
0.00% |
[[_Painleve, 6th]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1]] |
1 |
0.00% |
0.00% |
[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]] |
6 |
||
[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
1 |
100.00% |
100.00% |
[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]] |
1 |
100.00% |
100.00% |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
2 |
100.00% |
100.00% |
[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]] |
2 |
50.00% |
50.00% |
[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]] |
1 |
100.00% |
100.00% |
|
62 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], [_Abel, 2nd type, class B]] |
1 |
100.00% |
100.00% |
[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]] |
1 |
100.00% |
100.00% |
[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]] |
1 |
100.00% |
100.00% |
|
|||
|
|||
|
|||
|
|||
|
The types of the ODE’s are described in my ode solver page at ode types.
The following table gives count of the number of ODE’s for each ODE type, where the ODE type here is as classified by my own ode solver, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.
Table 1.4: Percentage solved per own ODE type
|
|||
Type of ODE |
Count |
Mathematica |
Maple |
|
|||
quadrature |
178 |
100.00% |
100.00% |
linear |
761 |
||
separable |
681 |
100.00% |
|
homogeneous |
481 |
99.79% |
|
homogeneousTypeC |
24 |
100.00% |
100.00% |
exact |
202 |
||
exactWithIntegrationFactor |
268 |
99.63% |
|
exactByInspection |
32 |
100.00% |
96.88% |
bernoulli |
339 |
100.00% |
|
riccati |
525 |
72.95% |
83.24% |
clairaut |
79 |
98.73% |
98.73% |
dAlembert |
151 |
86.75% |
99.34% |
isobaric |
166 |
93.37% |
|
first order special form ID 1 |
5 |
100.00% |
100.00% |
polynomial |
97 |
100.00% |
|
abelFirstKind |
6 |
100.00% |
100.00% |
differentialType |
67 |
100.00% |
100.00% |
first order ode series method. Ordinary point |
42 |
100.00% |
|
first order ode series method. Regular singular point |
9 |
100.00% |
88.89% |
first order ode series method. Irregular singular point |
3 |
100.00% |
|
first_order_laplace |
42 |
100.00% |
100.00% |
system of linear ODEs |
403 |
||
second_order_laplace |
159 |
100.00% |
99.37% |
reduction_of_order |
90 |
100.00% |
|
second_order_ode_quadrature |
21 |
100.00% |
100.00% |
second_order_linear_constant_coeff |
703 |
100.00% |
100.00% |
second_order_airy |
23 |
100.00% |
100.00% |
second_order_euler_ode |
166 |
100.00% |
100.00% |
second_order_change_of_variable_on_x_q1_constant_method |
1 |
100.00% |
100.00% |
second_order_change_of_variable_on_y_general_n |
58 |
100.00% |
|
second_order_integrable_as_is |
69 |
86.96% |
|
second_order_ode_can_be_made_integrable |
21 |
||
second_order_ode_solved_by_an_integrating_factor |
18 |
100.00% |
100.00% |
second_order_change_of_variable_on_x_p1_zero_method |
70 |
100.00% |
|
second_order_ode_lagrange_adjoint_equation_method |
18 |
100.00% |
100.00% |
second_order_nonlinear_solved_by_mainardi_lioville_method |
10 |
100.00% |
100.00% |
second_order_change_of_variable_on_y_n_one_case |
40 |
97.50% |
100.00% |
second_order_bessel_ode |
116 |
100.00% |
100.00% |
second_order_ode_missing_x |
146 |
91.78% |
91.10% |
second_order_ode_missing_y |
49 |
100.00% |
|
second order series method. Ordinary point |
456 |
100.00% |
100.00% |
second order series method. Regular singular point. Difference not integer |
188 |
100.00% |
100.00% |
second order series method. Regular singular point. Repeated root |
167 |
100.00% |
100.00% |
second order series method. Regular singular point. Difference is integer |
260 |
100.00% |
100.00% |
second order series method. Irregular singular point |
29 |
0.00% |
|
second order series method. Regular singular point. Complex roots |
24 |
100.00% |
|
second_order_ode_high_degree |
1 |
100.00% |
100.00% |
Higher order linear constant coefficients ODE |
322 |
100.00% |
|
Higher order ODE, non constant coefficients of type Euler |
45 |
100.00% |
100.00% |
higher_order_laplace |
9 |
100.00% |
100.00% |
|
|||
|
|||
|
|||
|
|||
|
These are direct links to the ode problems based on status of solving.
Not solved by Mathematica
(691) [119, 133, 146, 485, 550, 553, 710, 813, 885, 944, 958, 959, 961, 962, 964, 966, 968, 1039, 1041, 1046, 1069, 1075, 1105, 1138, 1162, 1186, 1697, 1698, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1897, 2198, 2204, 2481, 2491, 2513, 2583, 2609, 2628, 2683, 2684, 2720, 2722, 2723, 2727, 2795, 2815, 2817, 2830, 2843, 2846, 2854, 2859, 2876, 2888, 2955, 3131, 3134, 3165, 3168, 3220, 3268, 3275, 3335, 3503, 3532, 3561, 3570, 3638, 3708, 3741, 3743, 3744, 3745, 3752, 3753, 3758, 3766, 3767, 3770, 3779, 3782, 3786, 3791, 3797, 3807, 3878, 3943, 4158, 4159, 4160, 4331, 4332, 4333, 4409, 4443, 4446, 4454, 4487, 4502, 4607, 4741, 4742, 4743, 5008, 5060, 5064, 5065, 5347, 5351, 5358, 5416, 5430, 5432, 5444, 5493, 5501, 5509, 5511, 5590, 5591, 5789, 5790, 5796, 5828, 6054, 6058, 6060, 6062, 6070, 6086, 6087, 6103, 6105, 6121, 6125, 6310, 6343, 6349, 6354, 6355, 6357, 6377, 6425, 6426, 6429, 6430, 6434, 6436, 6459, 6461, 6464, 6500, 6501, 6535, 6563, 6592, 6655, 6706, 6798, 6800, 7186, 7220, 7222, 7628, 7629, 7630, 7631, 7636, 7637, 7655, 7660, 7663, 7668, 7691, 7701, 7782, 7783, 7785, 7786, 7799, 7814, 7817, 7830, 7833, 7845, 7849, 7911, 7920, 7947, 7950, 7963, 7975, 8010, 8040, 8041, 8060, 8062, 8069, 8083, 8086, 8087, 8090, 8111, 8152, 8155, 8156, 8415, 8417, 8442, 8465, 8474, 8595, 8599, 8606, 8608, 8610, 8611, 8612, 8618, 8652, 8653, 8654, 8655, 8656, 8657, 8661, 8662, 8663, 8679, 8706, 8737, 8785, 8792, 8796, 8816, 8858, 8885, 8902, 8941, 8987, 8998, 9018, 9019, 9020, 9022, 9023, 9036, 9037, 9038, 9039, 9040, 9041, 9042, 9052, 9053, 9055, 9063, 9068, 9079, 9094, 9095, 9110, 9119, 9120, 9121, 9122, 9123, 9126, 9131, 9151, 9155, 9160, 9165, 9169, 9172, 9174, 9175, 9177, 9178, 9180, 9182, 9184, 9185, 9187, 9188, 9190, 9191, 9194, 9195, 9196, 9197, 9198, 9202, 9203, 9204, 9205, 9206, 9207, 9213, 9215, 9216, 9218, 9221, 9222, 9223, 9224, 9227, 9228, 9237, 9238, 9239, 9241, 9242, 9243, 9244, 9245, 9246, 9251, 9252, 9254, 9256, 9257, 9259, 9263, 9264, 9265, 9269, 9271, 9272, 9274, 9275, 9281, 9283, 9287, 9289, 9292, 9298, 9308, 9311, 9313, 9314, 9316, 9317, 9318, 9321, 9330, 9336, 9340, 9341, 9355, 9356, 9358, 9359, 9367, 9368, 9376, 9380, 9381, 9385, 9386, 9390, 9394, 9395, 9397, 9398, 9399, 9400, 9404, 9406, 9410, 9411, 9415, 9417, 9418, 9419, 9420, 9429, 9430, 9434, 9469, 9484, 9494, 9497, 9498, 9499, 9500, 9501, 9506, 9507, 9508, 9511, 9512, 9513, 9514, 9515, 9516, 9518, 9592, 9596, 9597, 9598, 9603, 9610, 9616, 9618, 9619, 9620, 9641, 9649, 9658, 9662, 9663, 9672, 9689, 9693, 9695, 9696, 9697, 9702, 9709, 9710, 9716, 9717, 9718, 9719, 9720, 9733, 9734, 9735, 9736, 9737, 9738, 9739, 9740, 9741, 9744, 9745, 9753, 9757, 9758, 9760, 9761, 9762, 9763, 9764, 9770, 9771, 9773, 9774, 9775, 9776, 9777, 9782, 9783, 9788, 9789, 9793, 9794, 9795, 9798, 9802, 9803, 9805, 9806, 9811, 9812, 9813, 9814, 9817, 9819, 9820, 9823, 9826, 9828, 9829, 9832, 9835, 9837, 9838, 9841, 9844, 9846, 9847, 9850, 9854, 9855, 9856, 9860, 9861, 9863, 9864, 9866, 9868, 9869, 9870, 9871, 9872, 9873, 9874, 9875, 9877, 9878, 9879, 9880, 9881, 9882, 9883, 9884, 9885, 9886, 9889, 9890, 9893, 9894, 9895, 9896, 9897, 9898, 9899, 9900, 9901, 9902, 9903, 9904, 9905, 9906, 9910, 9911, 9912, 9914, 9915, 9916, 9918, 9919, 9921, 9923, 9924, 9926, 9927, 9928, 9930, 9931, 9933, 9934, 9935, 9936, 9937, 9940, 9941, 9942, 9943, 9944, 9945, 9946, 9947, 9948, 9949, 9953, 9954, 9955, 9956, 9957, 9958, 9959, 9961, 9962, 9963, 9964, 9965, 9966, 9967, 9968, 9969, 9970, 9971, 9972, 9973, 9974, 9975, 9976, 9977, 9978, 9979, 9980, 9981, 9982, 9987, 9988, 9990, 9991, 9992, 9993, 9994, 9995, 9997, 9998, 10002, 10004, 10005, 10006, 10007, 10008, 10009, 10012, 10013, 10014, 10015, 10016, 10017, 10018, 10019, 10020, 10021, 10022, 10023, 10024, 10025, 10026, 10027, 10028, 10029, 10030, 10031, 10032, 10033, 10034, 10035, 10036, 10037, 10038, 10039, 10040, 10041, 10042, 10043, 10044, 10045, 10046, 10047, 10048, 10049, 10050, 10051, 10052, 10053, 10054, 10055, 10056, 10057, 10058, 10059, 10060, 10061, 10062, 10064, 10065, 10067, 10068, 10069, 10070, 10071, 10072, 10073, 10074, 10076, 10077, 10079, 10080, 10081, 10089, 10090, 10097, 10098, 10184, 10198, 10201, 10204, 10205, 10210, 10212, 10226, 10296, 10297, 10315, 10317]
Not solved by Maple
(562) [133, 408, 409, 485, 550, 553, 710, 813, 958, 959, 961, 962, 964, 966, 968, 1039, 1046, 1075, 1162, 1186, 1697, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1794, 1797, 1805, 2032, 2198, 2204, 2411, 2481, 2581, 2583, 2609, 2683, 2684, 2815, 2817, 2830, 2843, 2846, 2854, 2859, 2874, 2876, 2887, 2955, 3134, 3165, 3168, 3220, 3268, 3275, 3335, 3364, 3418, 3472, 3487, 3503, 3532, 3638, 3642, 3655, 3690, 3691, 3702, 3708, 3779, 3790, 3807, 3845, 3878, 4193, 4206, 4210, 4214, 4215, 4406, 4409, 4443, 4446, 4454, 4487, 4495, 4502, 4709, 4747, 4748, 4749, 4768, 4773, 4803, 4811, 4835, 4836, 4837, 5064, 5065, 5289, 5351, 5358, 5416, 5430, 5432, 5485, 5509, 5511, 5665, 5688, 5690, 5696, 5706, 5707, 5760, 5789, 5790, 5796, 5828, 5831, 5839, 5864, 5865, 5963, 5966, 6067, 6086, 6087, 6310, 6354, 6357, 6370, 6426, 6434, 6436, 6461, 6471, 6472, 6473, 6477, 6478, 6480, 6488, 6500, 6535, 6547, 6548, 6550, 6551, 6552, 6553, 6554, 6563, 6592, 6655, 7628, 7629, 7630, 7631, 7636, 7637, 7655, 7660, 7663, 7668, 7691, 7701, 7782, 7783, 7785, 7786, 7799, 7814, 7817, 7830, 7833, 7845, 7849, 7920, 7932, 7947, 7948, 7950, 7963, 7975, 8028, 8032, 8040, 8041, 8060, 8062, 8065, 8083, 8086, 8087, 8090, 8111, 8117, 8123, 8140, 8152, 8155, 8156, 8288, 8313, 8369, 8370, 8415, 8417, 8465, 8474, 8492, 8500, 8595, 8599, 8606, 8608, 8610, 8611, 8618, 8652, 8653, 8655, 8656, 8657, 8661, 8737, 8785, 8792, 8796, 8816, 8858, 8987, 9018, 9019, 9020, 9022, 9036, 9037, 9038, 9039, 9040, 9041, 9042, 9052, 9053, 9055, 9063, 9068, 9089, 9094, 9110, 9119, 9120, 9121, 9122, 9160, 9161, 9165, 9169, 9172, 9174, 9175, 9177, 9178, 9180, 9184, 9185, 9187, 9188, 9190, 9191, 9194, 9195, 9196, 9197, 9198, 9202, 9203, 9204, 9205, 9206, 9207, 9213, 9215, 9216, 9218, 9221, 9222, 9223, 9224, 9227, 9228, 9237, 9238, 9239, 9241, 9242, 9243, 9244, 9245, 9246, 9251, 9252, 9254, 9256, 9259, 9261, 9263, 9264, 9265, 9269, 9271, 9272, 9274, 9275, 9277, 9281, 9283, 9284, 9285, 9287, 9288, 9289, 9292, 9298, 9300, 9308, 9311, 9313, 9314, 9316, 9317, 9318, 9321, 9330, 9336, 9340, 9341, 9356, 9367, 9368, 9376, 9380, 9381, 9385, 9386, 9387, 9390, 9394, 9395, 9399, 9400, 9404, 9410, 9411, 9413, 9414, 9415, 9417, 9418, 9419, 9420, 9429, 9430, 9434, 9469, 9484, 9494, 9497, 9498, 9499, 9500, 9501, 9506, 9507, 9508, 9511, 9513, 9514, 9516, 9518, 9596, 9603, 9616, 9618, 9620, 9658, 9662, 9663, 9675, 9683, 9689, 9693, 9695, 9697, 9702, 9718, 9733, 9736, 9737, 9738, 9740, 9744, 9758, 9760, 9771, 9773, 9789, 9802, 9804, 9811, 9819, 9820, 9823, 9828, 9829, 9832, 9837, 9838, 9841, 9846, 9847, 9850, 9854, 9855, 9860, 9861, 9863, 9864, 9866, 9868, 9869, 9870, 9871, 9872, 9873, 9874, 9875, 9877, 9880, 9881, 9882, 9883, 9885, 9889, 9893, 9894, 9895, 9896, 9897, 9898, 9899, 9900, 9901, 9902, 9903, 9904, 9905, 9906, 9912, 9916, 9918, 9921, 9926, 9927, 9933, 9934, 9935, 9937, 9944, 9945, 9947, 9948, 9949, 9954, 9956, 9957, 9961, 9962, 9965, 9966, 9967, 9968, 9969, 9970, 9972, 9973, 9974, 9975, 9976, 9977, 9978, 9979, 9980, 9981, 9982, 9990, 9991, 9992, 9993, 9994, 9998, 10004, 10005, 10006, 10007, 10008, 10012, 10014, 10015, 10016, 10017, 10018, 10020, 10021, 10023, 10024, 10026, 10027, 10028, 10029, 10031, 10032, 10034, 10035, 10036, 10038, 10039, 10040, 10041, 10042, 10043, 10044, 10048, 10049, 10051, 10052, 10054, 10055, 10056, 10057, 10058, 10059, 10062, 10065, 10069, 10070, 10072, 10073, 10074, 10077, 10079, 10080, 10184, 10210, 10216, 10315]
Solved by Maple but not by Mathematica
(228) [119, 146, 885, 944, 1041, 1069, 1105, 1138, 1698, 1897, 2491, 2513, 2628, 2720, 2722, 2723, 2727, 2795, 2888, 3131, 3561, 3570, 3741, 3743, 3744, 3745, 3752, 3753, 3758, 3766, 3767, 3770, 3782, 3786, 3791, 3797, 3943, 4158, 4159, 4160, 4331, 4332, 4333, 4607, 4741, 4742, 4743, 5008, 5060, 5347, 5444, 5493, 5501, 5590, 5591, 6054, 6058, 6060, 6062, 6070, 6103, 6105, 6121, 6125, 6343, 6349, 6355, 6377, 6425, 6429, 6430, 6459, 6464, 6501, 6706, 6798, 6800, 7186, 7220, 7222, 7911, 8010, 8069, 8442, 8612, 8654, 8662, 8663, 8679, 8706, 8885, 8902, 8941, 8998, 9023, 9079, 9095, 9123, 9126, 9131, 9151, 9155, 9182, 9257, 9355, 9358, 9359, 9397, 9398, 9406, 9512, 9515, 9592, 9597, 9598, 9610, 9619, 9641, 9649, 9672, 9696, 9709, 9710, 9716, 9717, 9719, 9720, 9734, 9735, 9739, 9741, 9745, 9753, 9757, 9761, 9762, 9763, 9764, 9770, 9774, 9775, 9776, 9777, 9782, 9783, 9788, 9793, 9794, 9795, 9798, 9803, 9805, 9806, 9812, 9813, 9814, 9817, 9826, 9835, 9844, 9856, 9878, 9879, 9884, 9886, 9890, 9910, 9911, 9914, 9915, 9919, 9923, 9924, 9928, 9930, 9931, 9936, 9940, 9941, 9942, 9943, 9946, 9953, 9955, 9958, 9959, 9963, 9964, 9971, 9987, 9988, 9995, 9997, 10002, 10009, 10013, 10019, 10022, 10025, 10030, 10033, 10037, 10045, 10046, 10047, 10050, 10053, 10060, 10061, 10064, 10067, 10068, 10071, 10076, 10081, 10089, 10090, 10097, 10098, 10198, 10201, 10204, 10205, 10212, 10226, 10296, 10297, 10317]
Solved by Mathematica but not by Maple
(99) [408, 409, 1794, 1797, 1805, 2032, 2411, 2581, 2874, 2887, 3364, 3418, 3472, 3487, 3642, 3655, 3690, 3691, 3702, 3790, 3845, 4193, 4206, 4210, 4214, 4215, 4406, 4495, 4709, 4747, 4748, 4749, 4768, 4773, 4803, 4811, 4835, 4836, 4837, 5289, 5485, 5665, 5688, 5690, 5696, 5706, 5707, 5760, 5831, 5839, 5864, 5865, 5963, 5966, 6067, 6370, 6471, 6472, 6473, 6477, 6478, 6480, 6488, 6547, 6548, 6550, 6551, 6552, 6553, 6554, 7932, 7948, 8028, 8032, 8065, 8117, 8123, 8140, 8288, 8313, 8369, 8370, 8492, 8500, 9089, 9161, 9261, 9277, 9284, 9285, 9288, 9300, 9387, 9413, 9414, 9675, 9683, 9804, 10216]
Both systems unable to solve
(463) [133, 485, 550, 553, 710, 813, 958, 959, 961, 962, 964, 966, 968, 1039, 1046, 1075, 1162, 1186, 1697, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 2198, 2204, 2481, 2583, 2609, 2683, 2684, 2815, 2817, 2830, 2843, 2846, 2854, 2859, 2876, 2955, 3134, 3165, 3168, 3220, 3268, 3275, 3335, 3503, 3532, 3638, 3708, 3779, 3807, 3878, 4409, 4443, 4446, 4454, 4487, 4502, 5064, 5065, 5351, 5358, 5416, 5430, 5432, 5509, 5511, 5789, 5790, 5796, 5828, 6086, 6087, 6310, 6354, 6357, 6426, 6434, 6436, 6461, 6500, 6535, 6563, 6592, 6655, 7628, 7629, 7630, 7631, 7636, 7637, 7655, 7660, 7663, 7668, 7691, 7701, 7782, 7783, 7785, 7786, 7799, 7814, 7817, 7830, 7833, 7845, 7849, 7920, 7947, 7950, 7963, 7975, 8040, 8041, 8060, 8062, 8083, 8086, 8087, 8090, 8111, 8152, 8155, 8156, 8415, 8417, 8465, 8474, 8595, 8599, 8606, 8608, 8610, 8611, 8618, 8652, 8653, 8655, 8656, 8657, 8661, 8737, 8785, 8792, 8796, 8816, 8858, 8987, 9018, 9019, 9020, 9022, 9036, 9037, 9038, 9039, 9040, 9041, 9042, 9052, 9053, 9055, 9063, 9068, 9094, 9110, 9119, 9120, 9121, 9122, 9160, 9165, 9169, 9172, 9174, 9175, 9177, 9178, 9180, 9184, 9185, 9187, 9188, 9190, 9191, 9194, 9195, 9196, 9197, 9198, 9202, 9203, 9204, 9205, 9206, 9207, 9213, 9215, 9216, 9218, 9221, 9222, 9223, 9224, 9227, 9228, 9237, 9238, 9239, 9241, 9242, 9243, 9244, 9245, 9246, 9251, 9252, 9254, 9256, 9259, 9263, 9264, 9265, 9269, 9271, 9272, 9274, 9275, 9281, 9283, 9287, 9289, 9292, 9298, 9308, 9311, 9313, 9314, 9316, 9317, 9318, 9321, 9330, 9336, 9340, 9341, 9356, 9367, 9368, 9376, 9380, 9381, 9385, 9386, 9390, 9394, 9395, 9399, 9400, 9404, 9410, 9411, 9415, 9417, 9418, 9419, 9420, 9429, 9430, 9434, 9469, 9484, 9494, 9497, 9498, 9499, 9500, 9501, 9506, 9507, 9508, 9511, 9513, 9514, 9516, 9518, 9596, 9603, 9616, 9618, 9620, 9658, 9662, 9663, 9689, 9693, 9695, 9697, 9702, 9718, 9733, 9736, 9737, 9738, 9740, 9744, 9758, 9760, 9771, 9773, 9789, 9802, 9811, 9819, 9820, 9823, 9828, 9829, 9832, 9837, 9838, 9841, 9846, 9847, 9850, 9854, 9855, 9860, 9861, 9863, 9864, 9866, 9868, 9869, 9870, 9871, 9872, 9873, 9874, 9875, 9877, 9880, 9881, 9882, 9883, 9885, 9889, 9893, 9894, 9895, 9896, 9897, 9898, 9899, 9900, 9901, 9902, 9903, 9904, 9905, 9906, 9912, 9916, 9918, 9921, 9926, 9927, 9933, 9934, 9935, 9937, 9944, 9945, 9947, 9948, 9949, 9954, 9956, 9957, 9961, 9962, 9965, 9966, 9967, 9968, 9969, 9970, 9972, 9973, 9974, 9975, 9976, 9977, 9978, 9979, 9980, 9981, 9982, 9990, 9991, 9992, 9993, 9994, 9998, 10004, 10005, 10006, 10007, 10008, 10012, 10014, 10015, 10016, 10017, 10018, 10020, 10021, 10023, 10024, 10026, 10027, 10028, 10029, 10031, 10032, 10034, 10035, 10036, 10038, 10039, 10040, 10041, 10042, 10043, 10044, 10048, 10049, 10051, 10052, 10054, 10055, 10056, 10057, 10058, 10059, 10062, 10065, 10069, 10070, 10072, 10073, 10074, 10077, 10079, 10080, 10184, 10210, 10315]