Chapter 1
Introduction and Summary of results

 1.1 Introduction
 1.2 Summary of results
 1.3 Links to problems based on solution result

1.1 Introduction

This report shows the result of running Maple and Mathematica on my collection of differential equations. These were collected over time and stored in sqlite3 database. These were collected from a number of textbooks and other references such as Kamke and Murphy collections. All books used are listed here.

The current number of differential equations is [10258]. Both Maple and Mathematica are given a CPU time limit of 3 minutes to solve each ode else the problem is considered not solved and marked as failed.

When Mathematica returns DifferentialRoot as a solution to an ode then this is considered as not solved. Similarly, when Maple returns DESol or ODSESolStruc, then this is also considered as not solved.

If CAS solves the ODE within the timelimit, then it is counted as solved. No verification is done to check that the solution is correct or not.

To reduce the size of latex output, in Maple the command simplify is called on the solution with timeout of 3 minutes. If this times out, then the unsimplified original ode solution is used otherwise the simplified one is used.

Similarly for Mathematica, FullSimplify is called on the solution with timeout of 3 minutes. If this timesout, then Simplify is next called. If this also timesout, then the unsimplified solution is used else the simplified one is used. The time used for simplification is not counted in the CPU time used. The CPU time used only records the time used to solve the ode.

Tests are run under windows 10 with 128 GB RAM running on intel i9-12900K 3.20 GHz

1.2 Summary of results

1.2.1 Percentage solved and CPU performance

The following table summarizes perentage solved for each CAS

Table 1.1: Summary of final results
System % solved Number solved Number failed
Maple 2022.2 94.521 9696 562
Mathematica 13.2 93.264 9567 691

The following table summarizes the run-time performance of each CAS system.

Table 1.2: Summary of run time performance of each CAS system
System mean time (sec) mean leaf size total time (min) total leaf size
Maple 2022.2 0.180 271.14 30.743 2781365
Mathematica 13.2 4.046 829.60 691.715 8510026

The problem which Mathematica produced largest leaf size of \(2733033\) is 9606.

The problem which Maple produced largest leaf size of \(545927\) is 9648.

The problem which Mathematica used most CPU time of \(178.017\) seconds is 3759.

The problem which Maple used most CPU time of \(118.453\) seconds is 3752.

1.2.2 Performance based on ODE type

   Performance using Maple’s ODE types classification
   Performance using own ODE types classification

The following gives the performance of each CAS based on the type of the ODE. The first subsection uses the types as classified by Maple ode advisor.The next subsection uses my own ode solver ODE classificaiton.

Performance using Maple’s ODE types classification

The following table gives count of the number of ODE’s for each ODE type, where the ODE type here is as classified by Maple’s odeadvisor, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.

Table 1.3: Percentage solved per Maple ODE type

Type of ODE

Count

Mathematica

Maple

[_quadrature]

467

99.14%
[885, 3741, 3758, 3767]

99.79%
[6550]

[[_linear, class A]]

148

100.00%

98.65%
[6547, 6548]

[_separable]

769

99.48%
[944, 2513, 5511, 7911]

99.48%
[408, 409, 5511, 5665]

[_Riccati]

308

55.19%
[958, 1697, 1698, 1700, 1701, 1702, 2198, 2795, 2815, 2817, 2830, 3131, 3878, 6592, 7691, 9592, 9596, 9597, 9598, 9603, 9616, 9618, 9619, 9620, 9672, 9689, 9693, 9695, 9696, 9697, 9702, 9709, 9710, 9716, 9717, 9718, 9719, 9720, 9733, 9734, 9735, 9736, 9737, 9738, 9739, 9740, 9741, 9744, 9745, 9753, 9757, 9758, 9760, 9761, 9762, 9763, 9764, 9770, 9771, 9773, 9774, 9775, 9776, 9777, 9782, 9783, 9788, 9789, 9793, 9794, 9795, 9798, 9802, 9803, 9805, 9806, 9811, 9812, 9813, 9814, 9817, 9819, 9820, 9823, 9826, 9828, 9829, 9832, 9835, 9837, 9838, 9841, 9844, 9846, 9847, 9850, 9854, 9855, 9856, 9860, 9861, 9863, 9864, 9866, 9868, 9869, 9870, 9871, 9872, 9873, 9874, 9875, 9877, 9878, 9879, 9880, 9881, 9882, 9883, 9884, 9885, 9886, 9889, 9890, 9893, 9894, 9895, 9896, 9897, 9898, 9899, 9900, 9901, 9902, 9903, 9904, 9905, 9906]

71.75%
[958, 1697, 1700, 1701, 1702, 2198, 2815, 2817, 2830, 3878, 6592, 7691, 9596, 9603, 9616, 9618, 9620, 9675, 9683, 9689, 9693, 9695, 9697, 9702, 9718, 9733, 9736, 9737, 9738, 9740, 9744, 9758, 9760, 9771, 9773, 9789, 9802, 9804, 9811, 9819, 9820, 9823, 9828, 9829, 9832, 9837, 9838, 9841, 9846, 9847, 9850, 9854, 9855, 9860, 9861, 9863, 9864, 9866, 9868, 9869, 9870, 9871, 9872, 9873, 9874, 9875, 9877, 9880, 9881, 9882, 9883, 9885, 9889, 9893, 9894, 9895, 9896, 9897, 9898, 9899, 9900, 9901, 9902, 9903, 9904, 9905, 9906]

[[_homogeneous, class G]]

62

91.94%
[2723, 2727, 2888, 3532, 7963]

93.55%
[3487, 3532, 7948, 7963]

[_linear]

466

99.79%
[5416]

99.57%
[4749, 5416]

[[_homogeneous, class A], _exact, _rational, [_Abel, 2nd type, class A]]

18

100.00%

100.00%

[[_homogeneous, class A], _rational, _Bernoulli]

63

100.00%

100.00%

[[_homogeneous, class A], _dAlembert]

118

99.15%
[10198]

99.15%
[6370]

[[_homogeneous, class A], _rational, [_Abel, 2nd type, class A]]

71

98.59%
[5501]

100.00%

[[_homogeneous, class A], _rational, [_Abel, 2nd type, class B]]

46

100.00%

100.00%

[[_homogeneous, class A], _rational, _dAlembert]

174

98.85%
[5008, 5509]

99.43%
[5509]

[[_homogeneous, class C], _dAlembert]

60

86.67%
[2491, 3561, 3570, 3752, 3770, 6349, 10204, 10226]

100.00%

[[_homogeneous, class C], _Riccati]

16

100.00%

100.00%

[[_homogeneous, class G], _rational, _Bernoulli]

48

100.00%

100.00%

[_Bernoulli]

87

97.70%
[4607, 6377]

100.00%

[[_1st_order, _with_linear_symmetries], _Bernoulli]

3

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(x)]]]

45

100.00%

100.00%

[y=_G(x,y’)]

112

63.39%
[133, 485, 959, 961, 962, 964, 966, 968, 1703, 1706, 1707, 2854, 2859, 2876, 2955, 3503, 3708, 3753, 3779, 3791, 4443, 4487, 5796, 6310, 6500, 7655, 7660, 7663, 7701, 7950, 7975, 8040, 8041, 8083, 8086, 8087, 8090, 8111, 8442, 10205, 10210]

59.82%
[133, 485, 959, 961, 962, 964, 966, 968, 1703, 1706, 1707, 2581, 2854, 2859, 2874, 2876, 2887, 2955, 3364, 3503, 3708, 3779, 3790, 4406, 4443, 4487, 5796, 6310, 6500, 7655, 7660, 7663, 7701, 7950, 7975, 8040, 8041, 8083, 8086, 8087, 8090, 8111, 8123, 8140, 10210]

[[_1st_order, _with_linear_symmetries]]

94

93.62%
[2720, 2722, 3782, 3786, 6054, 10201]

98.94%
[8117]

[[_homogeneous, class A], _exact, _rational, _dAlembert]

26

100.00%

100.00%

[_exact, _rational]

31

96.77%
[119]

100.00%

[_exact]

62

96.77%
[2628, 5444]

100.00%

[[_1st_order, _with_linear_symmetries], _exact, _rational]

3

100.00%

100.00%

[[_homogeneous, class A], _exact, _rational, [_Abel, 2nd type, class B]]

2

100.00%

100.00%

[[_homogeneous, class G], _exact, _rational]

3

66.67%
[146]

100.00%

[[_2nd_order, _missing_x]]

410

96.59%
[6655, 9190, 9191, 9194, 9195, 9197, 9215, 9216, 9218, 9223, 9241, 9287, 9289, 9415]

96.34%
[6655, 9190, 9191, 9194, 9195, 9197, 9215, 9216, 9218, 9223, 9241, 9287, 9288, 9289, 9415]

[[_Emden, _Fowler], [_2nd_order, _linear, _with_symmetry_[0,F(x)]]]

58

100.00%

100.00%

[[_Emden, _Fowler]]

233

99.57%
[5591]

96.57%
[2032, 4210, 4709, 4803, 4835, 4836, 5831, 5864]

[[_2nd_order, _exact, _linear, _homogeneous]]

176

100.00%

98.30%
[4837, 5707, 5865]

[[_2nd_order, _missing_y]]

80

92.50%
[6070, 6103, 6105, 6459, 9406, 10317]

97.50%
[5690, 6552]

[[_2nd_order, _with_linear_symmetries]]

2134

95.97%
[1105, 1138, 4502, 4741, 4742, 4743, 5060, 5065, 5590, 5828, 6343, 6425, 6426, 6429, 6430, 6434, 6436, 6535, 6798, 6800, 7186, 7220, 7222, 8599, 8606, 8608, 8610, 8611, 8612, 8618, 8652, 8653, 8655, 8657, 8661, 8662, 8663, 8679, 8706, 8737, 8785, 8792, 8796, 8816, 8858, 8885, 8941, 8987, 8998, 9018, 9019, 9020, 9022, 9184, 9227, 9237, 9238, 9239, 9242, 9244, 9245, 9246, 9251, 9252, 9256, 9257, 9259, 9263, 9298, 9321, 9341, 9356, 9358, 9359, 9390, 9397, 9398, 9399, 9410, 9411, 10089, 10090, 10098, 10296, 10297, 10315]

96.81%
[1794, 1797, 1805, 2411, 4193, 4206, 4495, 4502, 4768, 4773, 4811, 5065, 5289, 5688, 5696, 5828, 5839, 6426, 6434, 6436, 6535, 8599, 8606, 8608, 8610, 8611, 8618, 8652, 8653, 8655, 8657, 8661, 8737, 8785, 8792, 8796, 8816, 8858, 8987, 9018, 9019, 9020, 9022, 9184, 9227, 9237, 9238, 9239, 9242, 9244, 9245, 9246, 9251, 9252, 9256, 9259, 9261, 9263, 9298, 9321, 9341, 9356, 9390, 9399, 9410, 9411, 9413, 10315]

[[_2nd_order, _linear, _nonhomogeneous]]

560

99.29%
[1162, 1186, 6706, 8656]

96.96%
[1162, 1186, 4214, 4215, 4747, 4748, 5760, 6471, 6472, 6473, 6477, 6478, 6480, 6488, 6553, 6554, 8656]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

36

100.00%

100.00%

system of linear ODEs

449

95.32%
[5351, 5789, 5790, 9469, 9484, 9494, 9497, 9498, 9499, 9500, 9501, 9506, 9507, 9508, 9511, 9512, 9513, 9514, 9515, 9516, 9518]

95.32%
[5351, 5789, 5790, 5963, 5966, 9469, 9484, 9494, 9497, 9498, 9499, 9500, 9501, 9506, 9507, 9508, 9511, 9513, 9514, 9516, 9518]

[_Gegenbauer]

63

100.00%

100.00%

[[_high_order, _missing_x]]

96

96.88%
[9123, 9126, 9155]

100.00%

[[_3rd_order, _missing_x]]

83

100.00%

100.00%

[[_3rd_order, _missing_y]]

35

100.00%

100.00%

[[_3rd_order, _exact, _linear, _homogeneous]]

12

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, _with_symmetry_[0,F(x)]]]

54

92.59%
[8654, 8902, 9023, 10097]

98.15%
[5706]

[_Lienard]

47

100.00%

100.00%

[[_homogeneous, class A], _rational, _Riccati]

27

100.00%

100.00%

[x=_G(y,y’)]

12

66.67%
[550, 2204, 5430, 8152]

66.67%
[550, 2204, 5430, 8152]

[[_Abel, 2nd type, class B]]

15

26.67%
[553, 1046, 7830, 9924, 9927, 9947, 9948, 9949, 9969, 9982, 9987]

40.00%
[553, 1046, 7830, 9927, 9947, 9948, 9949, 9969, 9982]

[_exact, _rational, [_1st_order, _with_symmetry_[F(x),G(x)]], [_Abel, 2nd type, class A]]

6

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x)*G(y),0]]]

21

100.00%

100.00%

[[_homogeneous, class D], _rational]

2

100.00%

100.00%

[[_1st_order, _with_exponential_symmetries]]

5

100.00%

100.00%

[_rational]

99

85.86%
[1039, 1075, 2609, 2683, 2684, 3638, 3807, 5358, 8060, 8062, 8069, 8465, 8474, 10184]

77.78%
[1039, 1075, 2609, 2683, 2684, 3418, 3638, 3690, 3691, 3807, 5358, 8032, 8060, 8062, 8065, 8288, 8465, 8474, 8492, 8500, 10184, 10216]

[_rational, [_Abel, 2nd type, class B]]

133

27.07%
[1069, 2481, 2583, 3268, 3275, 5432, 6563, 7814, 7817, 7833, 7845, 9910, 9911, 9918, 9919, 9921, 9923, 9926, 9928, 9930, 9931, 9933, 9934, 9935, 9936, 9937, 9940, 9941, 9942, 9944, 9945, 9946, 9953, 9954, 9955, 9956, 9957, 9958, 9961, 9962, 9963, 9964, 9965, 9966, 9967, 9968, 9970, 9971, 9972, 9973, 9974, 9975, 9976, 9988, 10005, 10006, 10009, 10012, 10013, 10014, 10015, 10016, 10017, 10018, 10019, 10021, 10022, 10023, 10024, 10025, 10026, 10027, 10028, 10029, 10030, 10031, 10032, 10033, 10034, 10035, 10036, 10037, 10038, 10039, 10040, 10041, 10042, 10043, 10044, 10045, 10046, 10047, 10048, 10049, 10050, 10080, 10081]

51.88%
[2481, 2583, 3268, 3275, 5432, 6563, 7814, 7817, 7833, 7845, 9918, 9921, 9926, 9933, 9934, 9935, 9937, 9944, 9945, 9954, 9956, 9957, 9961, 9962, 9965, 9966, 9967, 9968, 9970, 9972, 9973, 9974, 9975, 9976, 10005, 10006, 10012, 10014, 10015, 10016, 10017, 10018, 10021, 10023, 10024, 10026, 10027, 10028, 10029, 10031, 10032, 10034, 10035, 10036, 10038, 10039, 10040, 10041, 10042, 10043, 10044, 10048, 10049, 10080]

[_rational, [_1st_order, _with_symmetry_[F(x),G(x)]], [_Abel, 2nd type, class A]]

4

100.00%

100.00%

[NONE]

80

40.00%
[710, 1041, 6357, 6461, 7637, 7668, 7782, 7947, 8155, 8156, 8415, 8417, 9174, 9177, 9178, 9182, 9185, 9187, 9188, 9196, 9198, 9202, 9203, 9204, 9207, 9213, 9221, 9222, 9224, 9228, 9254, 9264, 9272, 9281, 9283, 9308, 9311, 9313, 9314, 9317, 9318, 9330, 9336, 9368, 9380, 9381, 9394, 9430]

36.25%
[710, 5485, 6357, 6461, 7637, 7668, 7782, 7947, 8155, 8156, 8415, 8417, 9174, 9177, 9178, 9185, 9187, 9188, 9196, 9198, 9202, 9203, 9204, 9207, 9213, 9221, 9222, 9224, 9228, 9254, 9264, 9272, 9277, 9281, 9283, 9284, 9285, 9300, 9308, 9311, 9313, 9314, 9317, 9318, 9330, 9336, 9368, 9380, 9381, 9394, 9430]

[_rational, [_1st_order, _with_symmetry_[F(x)*G(y),0]]]

21

100.00%

100.00%

[[_homogeneous, class G], _rational, [_Abel, 2nd type, class B]]

40

100.00%

100.00%

[_Gegenbauer, [_2nd_order, _linear, _with_symmetry_[0,F(x)]]]

12

100.00%

100.00%

[[_high_order, _with_linear_symmetries]]

39

82.05%
[813, 9119, 9120, 9121, 9122, 9151, 9169]

82.05%
[813, 9119, 9120, 9121, 9122, 9161, 9169]

[[_3rd_order, _with_linear_symmetries]]

103

83.50%
[5064, 9036, 9037, 9038, 9039, 9040, 9041, 9042, 9052, 9053, 9055, 9063, 9068, 9079, 9094, 9095, 9110]

84.47%
[5064, 9036, 9037, 9038, 9039, 9040, 9041, 9042, 9052, 9053, 9055, 9063, 9068, 9089, 9094, 9110]

[[_high_order, _linear, _nonhomogeneous]]

53

96.23%
[9131, 9160]

98.11%
[9160]

[[_1st_order, _with_linear_symmetries], _Clairaut]

44

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(y)]]]

49

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]]

71

100.00%

100.00%

[[_homogeneous, class C], _rational, _Riccati]

5

100.00%

100.00%

[[_Abel, 2nd type, class A]]

34

14.71%
[3168, 3220, 4446, 7786, 7799, 9914, 9915, 9979, 9980, 9981, 9990, 9991, 9992, 9993, 9994, 10008, 10054, 10061, 10062, 10064, 10065, 10067, 10068, 10069, 10070, 10071, 10072, 10073, 10074]

35.29%
[3168, 3220, 4446, 7786, 7799, 9979, 9980, 9981, 9990, 9991, 9992, 9993, 9994, 10008, 10054, 10062, 10065, 10069, 10070, 10072, 10073, 10074]

[_rational, _Bernoulli]

39

100.00%

100.00%

[[_homogeneous, class A]]

7

100.00%

100.00%

[[_homogeneous, class C], _rational, [_Abel, 2nd type, class A]]

106

98.11%
[3943, 10076]

100.00%

[[_homogeneous, class G], _rational, _Riccati]

19

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _Riccati]

10

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(y)]], _Riccati]

1

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(y)]], [_Abel, 2nd type, class A]]

1

100.00%

100.00%

[_exact, _rational, [_Abel, 2nd type, class B]]

14

100.00%

100.00%

[_exact, [_Abel, 2nd type, class B]]

2

100.00%

100.00%

[_exact, [_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]]

6

100.00%

100.00%

[_exact, [_1st_order, _with_symmetry_[F(x),G(x)]], [_Abel, 2nd type, class A]]

2

100.00%

100.00%

[_exact, _Bernoulli]

6

100.00%

100.00%

[[_homogeneous, class A], _exact, _rational, _Bernoulli]

4

100.00%

100.00%

[_rational, [_Abel, 2nd type, class C]]

12

83.33%
[4409, 4454]

83.33%
[4409, 4454]

[[_homogeneous, class G], _rational]

74

100.00%

97.30%
[3655, 6067]

[[_homogeneous, class D], _rational, [_Abel, 2nd type, class B]]

2

100.00%

100.00%

[_rational, [_1st_order, _with_symmetry_[F(x),G(x)]], _Riccati]

14

100.00%

100.00%

[_rational, _Riccati]

101

94.06%
[9610, 9641, 9649, 9658, 9662, 9663]

97.03%
[9658, 9662, 9663]

[[_3rd_order, _linear, _nonhomogeneous]]

53

100.00%

100.00%

[[_high_order, _missing_y]]

18

94.44%
[9165]

94.44%
[9165]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

6

100.00%

100.00%

[[_high_order, _exact, _linear, _nonhomogeneous]]

5

100.00%

100.00%

[[_homogeneous, class C], _exact, _rational, [_Abel, 2nd type, class A]]

20

100.00%

100.00%

[_exact, [_Abel, 2nd type, class A]]

1

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], [_Abel, 2nd type, class A]]

2

100.00%

100.00%

[[_Riccati, _special]]

14

100.00%

100.00%

[_Abel]

25

76.00%
[1704, 2843, 7628, 7629, 7630, 7631]

76.00%
[1704, 2843, 7628, 7629, 7630, 7631]

[_Laguerre]

34

100.00%

100.00%

[_Laguerre, [_2nd_order, _linear, _with_symmetry_[0,F(x)]]]

4

100.00%

100.00%

[_Bessel]

15

100.00%

100.00%

[_rational, _Abel]

21

95.24%
[1897]

100.00%

[_exact, _rational, [_1st_order, _with_symmetry_[F(x)*G(y),0]]]

9

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x)*G(y),0]], [_Abel, 2nd type, class B]]

1

100.00%

100.00%

[[_homogeneous, class C], [_Abel, 2nd type, class C], _dAlembert]

4

100.00%

100.00%

[[_homogeneous, class G], _exact, _rational, [_Abel, 2nd type, class B]]

6

100.00%

100.00%

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

11

90.91%
[9355]

100.00%

[[_3rd_order, _exact, _nonlinear]]

2

50.00%
[9420]

50.00%
[9420]

[_Jacobi]

30

100.00%

100.00%

[_rational, [_1st_order, _with_symmetry_[F(x)*G(y),0]], [_Abel, 2nd type, class B]]

5

100.00%

100.00%

[[_2nd_order, _quadrature]]

33

100.00%

96.97%
[6551]

[[_3rd_order, _quadrature]]

3

100.00%

100.00%

[[_homogeneous, class D], _Bernoulli]

3

100.00%

100.00%

[[_homogeneous, class G], _exact]

1

100.00%

100.00%

[_exact, [_1st_order, _with_symmetry_[F(x)*G(y),0]]]

5

100.00%

100.00%

[[_homogeneous, class G], _exact, _rational, _Bernoulli]

8

100.00%

100.00%

[_exact, [_1st_order, _with_symmetry_[F(x),G(x)]]]

1

100.00%

100.00%

[[_homogeneous, class A], _exact, _rational, _Riccati]

1

100.00%

100.00%

[_erf]

4

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

14

92.86%
[10212]

100.00%

[[_homogeneous, class D]]

8

100.00%

100.00%

[_exact, _rational, _Riccati]

3

100.00%

100.00%

[_rational, [_1st_order, _with_symmetry_[F(x),G(x)]], [_Abel, 2nd type, class B]]

5

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational]

22

100.00%

100.00%

[[_homogeneous, class D], _rational, _Riccati]

19

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _exact]

2

100.00%

100.00%

[[_homogeneous, class C], _exact, _dAlembert]

3

100.00%

100.00%

[_exact, _rational, [_1st_order, _with_symmetry_[F(x)*G(y),0]], [_Abel, 2nd type, class A]]

1

100.00%

100.00%

[[_homogeneous, class D], _rational, [_Abel, 2nd type, class A]]

2

100.00%

100.00%

[_rational, [_Abel, 2nd type, class A]]

37

27.03%
[3165, 7783, 7785, 9912, 9916, 9943, 9959, 9977, 9978, 9995, 9997, 9998, 10002, 10004, 10007, 10020, 10051, 10052, 10053, 10055, 10056, 10057, 10058, 10059, 10060, 10077, 10079]

45.95%
[3165, 7783, 7785, 9912, 9916, 9977, 9978, 9998, 10004, 10007, 10020, 10051, 10052, 10055, 10056, 10057, 10058, 10059, 10077, 10079]

[[_homogeneous, class G], _dAlembert]

6

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

3

100.00%

100.00%

[[_homogeneous, class D], _rational, _Bernoulli]

24

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _dAlembert]

47

76.60%
[3743, 3744, 3745, 3766, 3797, 6058, 6060, 6062, 6121, 6125, 6501]

100.00%

[[_homogeneous, class G], _Abel]

4

100.00%

100.00%

[[_homogeneous, class G], _Chini]

4

100.00%

100.00%

[_Chini]

3

0.00%
[2846, 3134, 7636]

0.00%
[2846, 3134, 7636]

[_rational, [_Riccati, _special]]

9

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

2

100.00%

100.00%

[[_homogeneous, class D], _Riccati]

20

100.00%

100.00%

[[_homogeneous, class G], _rational, [_Riccati, _special]]

4

100.00%

100.00%

[[_homogeneous, class G], _Riccati]

4

100.00%

100.00%

[_rational, [_1st_order, _with_symmetry_[F(x)*G(y),0]], [_Abel, 2nd type, class C]]

5

100.00%

100.00%

[[_homogeneous, class G], _rational, [_Abel, 2nd type, class A]]

3

100.00%

100.00%

[[_homogeneous, class C], _rational, [_Abel, 2nd type, class C], _dAlembert]

1

100.00%

100.00%

[[_homogeneous, class A], _rational, [_Abel, 2nd type, class C], _dAlembert]

4

100.00%

100.00%

[_exact, _rational, _Bernoulli]

1

100.00%

100.00%

[[_homogeneous, class G], _rational, [_Abel, 2nd type, class C]]

5

100.00%

100.00%

[[_Abel, 2nd type, class C]]

7

71.43%
[3335, 7849]

71.43%
[3335, 7849]

[[_homogeneous, class C], _rational]

7

100.00%

100.00%

[_exact, _rational, [_1st_order, _with_symmetry_[F(x),G(x)]]]

2

100.00%

100.00%

[_rational, [_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]]

17

100.00%

88.24%
[3642, 8028]

unknown

5

60.00%
[7920, 9385]

0.00%
[3472, 7920, 7932, 9385, 9414]

[_dAlembert]

17

100.00%

100.00%

[_rational, _dAlembert]

11

90.91%
[8010]

100.00%

[[_homogeneous, class G], _rational, _Clairaut]

5

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

10

100.00%

100.00%

[[_homogeneous, class C], _rational, _dAlembert]

10

100.00%

100.00%

[[_homogeneous, class G], _rational, _dAlembert]

6

100.00%

100.00%

[_rational, [_1st_order, _with_symmetry_[F(x),G(y)]]]

14

100.00%

92.86%
[3702]

[[_homogeneous, class G], _Clairaut]

2

100.00%

100.00%

[_Clairaut]

7

100.00%

85.71%
[3845]

[[_homogeneous, class A], _exact, _dAlembert]

2

100.00%

100.00%

[[_homogeneous, class D], _exact, _rational, _Bernoulli]

1

100.00%

100.00%

[[_homogeneous, class D], _exact, _rational, [_Abel, 2nd type, class A]]

3

100.00%

100.00%

[[_high_order, _quadrature]]

6

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

8

50.00%
[4160, 4331, 4332, 4333]

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

55

94.55%
[5347, 6086, 6087]

96.36%
[6086, 6087]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

24

95.83%
[4158]

95.83%
[9387]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

4

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

6

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

16

93.75%
[6464]

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

2

0.00%
[4159, 5493]

100.00%

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7

100.00%

100.00%

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_homogeneous, class G], _rational, _Abel]

2

100.00%

100.00%

[[_elliptic, _class_I]]

2

100.00%

100.00%

[[_elliptic, _class_II]]

2

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]]

1

100.00%

100.00%

[_Hermite]

12

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _Chini]

2

100.00%

100.00%

[_exact, [_1st_order, _with_symmetry_[F(x),G(y)]]]

2

100.00%

100.00%

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(x)]], _Riccati]

36

100.00%

91.67%
[8313, 8369, 8370]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

3

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

11

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x)*G(y),0]], [_Abel, 2nd type, class C]]

3

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

2

100.00%

100.00%

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

2

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

2

100.00%

100.00%

[[_Bessel, _modified]]

1

100.00%

100.00%

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

10

10.00%
[6354, 6355, 9180, 9243, 9265, 9269, 9271, 9274, 9275]

20.00%
[6354, 9180, 9243, 9265, 9269, 9271, 9274, 9275]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

2

50.00%
[9205]

50.00%
[9205]

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

8

100.00%

100.00%

[_Chini, [_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]]

2

100.00%

100.00%

[[_1st_order, _with_exponential_symmetries], _rational, [_Abel, 2nd type, class B]]

1

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, 2nd type, class B]]

1

100.00%

100.00%

[[_homogeneous, class C], _rational, [_Abel, 2nd type, class B]]

1

100.00%

100.00%

[[_homogeneous, class G], [_Abel, 2nd type, class C]]

1

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], [_Abel, 2nd type, class C]]

7

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, 2nd type, class C]]

8

100.00%

100.00%

[[_Abel, 2nd type, class C], [_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]]

4

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _Abel]

13

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, 2nd type, class A]]

7

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(y)]], [_Abel, 2nd type, class C]]

2

100.00%

100.00%

[[_homogeneous, class D], _rational, _Abel]

3

100.00%

100.00%

[[_homogeneous, class C], _rational, _Abel]

3

100.00%

100.00%

[_rational, [_Abel, 2nd type, class C], [_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]]

3

100.00%

100.00%

[[_homogeneous, class D], _rational, [_Abel, 2nd type, class C]]

1

100.00%

100.00%

[[_homogeneous, class C], _Abel]

3

100.00%

100.00%

[_rational, [_1st_order, _with_symmetry_[F(x),G(x)]], [_Abel, 2nd type, class C]]

6

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(x)]], _Abel]

5

100.00%

100.00%

[_rational, [_1st_order, _with_symmetry_[F(x),G(x)]], _Abel]

10

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(x)]], [_Abel, 2nd type, class C]]

2

100.00%

100.00%

[[_1st_order, _with_symmetry_[F(x),G(y)]], _Abel]

2

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Abel]

1

100.00%

100.00%

[_Titchmarsh]

1

0.00%
[8595]

0.00%
[8595]

[_ellipsoidal]

2

100.00%

100.00%

[_Jacobi, [_2nd_order, _linear, _with_symmetry_[0,F(x)]]]

1

100.00%

100.00%

[_Halm]

2

100.00%

100.00%

[[_3rd_order, _fully, _exact, _linear]]

5

100.00%

100.00%

[[_high_order, _fully, _exact, _linear]]

1

100.00%

100.00%

[[_Painleve, 1st]]

1

0.00%
[9172]

0.00%
[9172]

[[_Painleve, 2nd]]

1

0.00%
[9175]

0.00%
[9175]

[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1

0.00%
[9206]

0.00%
[9206]

[[_2nd_order, _with_potential_symmetries]]

2

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

6

100.00%

100.00%

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

1

100.00%

100.00%

[[_2nd_order, _reducible, _mu_xy]]

3

66.67%
[9367]

66.67%
[9367]

[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

1

0.00%
[9292]

0.00%
[9292]

[[_Painleve, 4th]]

1

0.00%
[9316]

0.00%
[9316]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

1

100.00%

100.00%

[[_Painleve, 3rd]]

1

0.00%
[9340]

0.00%
[9340]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

1

100.00%

100.00%

[[_Painleve, 5th]]

1

0.00%
[9376]

0.00%
[9376]

[[_Painleve, 6th]]

1

0.00%
[9386]

0.00%
[9386]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

1

0.00%
[9395]

0.00%
[9395]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]]

1

0.00%
[9400]

0.00%
[9400]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1]]

1

0.00%
[9404]

0.00%
[9404]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

6

33.33%
[9417, 9418, 9419, 9434]

33.33%
[9417, 9418, 9419, 9434]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

1

100.00%

100.00%

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

1

100.00%

100.00%

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

2

100.00%

100.00%

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

2

50.00%
[9429]

50.00%
[9429]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

62

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], [_Abel, 2nd type, class B]]

1

100.00%

100.00%

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

1

100.00%

100.00%

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

1

100.00%

100.00%

Performance using own ODE types classification

The types of the ODE’s are described in my ode solver page at ode types.

The following table gives count of the number of ODE’s for each ODE type, where the ODE type here is as classified by my own ode solver, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.

Table 1.4: Percentage solved per own ODE type

Type of ODE

Count

Mathematica

Maple

quadrature

178

100.00%

100.00%

linear

761

99.74%
[5416, 5511]

99.74%
[5416, 5511]

separable

681

98.97%
[885, 944, 2513, 3741, 3758, 3767, 7911]

100.00%

homogeneous

481

99.17%
[5008, 5501, 5509, 10198]

99.79%
[5509]

homogeneousTypeC

24

100.00%

100.00%

exact

202

98.02%
[119, 146, 2628, 5444]

99.01%
[3472, 7932]

exactWithIntegrationFactor

268

99.63%
[7920]

98.51%
[2581, 3642, 7920, 8028]

exactByInspection

32

100.00%

96.88%
[3418]

bernoulli

339

99.41%
[4607, 6377]

100.00%

riccati

525

72.95%
[958, 1697, 1698, 1700, 1701, 1702, 2198, 2795, 2815, 2817, 2830, 3131, 3878, 6592, 7691, 9592, 9596, 9597, 9598, 9603, 9610, 9616, 9618, 9619, 9620, 9641, 9649, 9658, 9662, 9663, 9672, 9689, 9693, 9695, 9696, 9697, 9702, 9709, 9710, 9716, 9717, 9718, 9719, 9720, 9733, 9734, 9735, 9736, 9737, 9738, 9739, 9740, 9741, 9744, 9745, 9753, 9757, 9760, 9761, 9762, 9763, 9764, 9770, 9773, 9774, 9775, 9776, 9777, 9782, 9783, 9788, 9789, 9793, 9794, 9795, 9798, 9802, 9803, 9805, 9806, 9811, 9812, 9813, 9814, 9817, 9819, 9820, 9823, 9826, 9828, 9829, 9832, 9835, 9837, 9838, 9841, 9844, 9846, 9847, 9850, 9854, 9855, 9856, 9860, 9861, 9863, 9864, 9866, 9868, 9869, 9870, 9871, 9872, 9873, 9874, 9875, 9877, 9878, 9879, 9880, 9881, 9882, 9883, 9884, 9885, 9886, 9889, 9890, 9893, 9894, 9895, 9896, 9897, 9898, 9899, 9900, 9901, 9902, 9903, 9904, 9905, 9906]

83.24%
[958, 1697, 1700, 1701, 1702, 2198, 2815, 2817, 2830, 3878, 6592, 7691, 9596, 9603, 9616, 9618, 9620, 9658, 9662, 9663, 9675, 9683, 9689, 9693, 9695, 9697, 9702, 9718, 9733, 9736, 9737, 9738, 9740, 9744, 9760, 9773, 9789, 9802, 9804, 9811, 9819, 9820, 9823, 9828, 9829, 9832, 9837, 9838, 9841, 9846, 9847, 9850, 9854, 9855, 9860, 9861, 9863, 9864, 9866, 9868, 9869, 9870, 9871, 9872, 9873, 9874, 9875, 9877, 9880, 9881, 9882, 9883, 9885, 9889, 9893, 9894, 9895, 9896, 9897, 9898, 9899, 9900, 9901, 9902, 9903, 9904, 9905, 9906]

clairaut

79

98.73%
[10212]

98.73%
[3845]

dAlembert

151

86.75%
[2491, 3561, 3570, 3743, 3744, 3745, 3752, 3766, 3770, 3797, 6058, 6060, 6062, 6121, 6125, 6349, 6501, 8010, 10204, 10226]

99.34%
[6370]

isobaric

166

93.37%
[2720, 2722, 2723, 2727, 2888, 3532, 3782, 3786, 6054, 7963, 10201]

95.78%
[3487, 3532, 3655, 6067, 7948, 7963, 8117]

first order special form ID 1

5

100.00%

100.00%

polynomial

97

97.94%
[3943, 10076]

100.00%

abelFirstKind

6

100.00%

100.00%

differentialType

67

100.00%

100.00%

first order ode series method. Ordinary point

42

100.00%

92.86%
[6547, 6548, 6550]

first order ode series method. Regular singular point

9

100.00%

88.89%
[4749]

first order ode series method. Irregular singular point

3

100.00%

0.00%
[408, 409, 5665]

first_order_laplace

42

100.00%

100.00%

system of linear ODEs

403

99.26%
[5351, 5790, 9484]

98.76%
[5351, 5790, 5963, 5966, 9484]

second_order_laplace

159

100.00%

99.37%
[5760]

reduction_of_order

90

96.67%
[1138, 5590, 5591]

100.00%

second_order_ode_quadrature

21

100.00%

100.00%

second_order_linear_constant_coeff

703

100.00%

100.00%

second_order_airy

23

100.00%

100.00%

second_order_euler_ode

166

100.00%

100.00%

second_order_change_of_variable_on_x_q1_constant_method

1

100.00%

100.00%

second_order_change_of_variable_on_y_general_n

58

96.55%
[8902, 8998]

100.00%

second_order_integrable_as_is

69

86.96%
[4159, 4160, 4331, 4332, 4333, 5493, 9205, 9395, 9400]

95.65%
[9205, 9395, 9400]

second_order_ode_can_be_made_integrable

21

85.71%
[5347, 6086, 6087]

90.48%
[6086, 6087]

second_order_ode_solved_by_an_integrating_factor

18

100.00%

100.00%

second_order_change_of_variable_on_x_p1_zero_method

70

97.14%
[8654, 9023]

100.00%

second_order_ode_lagrange_adjoint_equation_method

18

100.00%

100.00%

second_order_nonlinear_solved_by_mainardi_lioville_method

10

100.00%

100.00%

second_order_change_of_variable_on_y_n_one_case

40

97.50%
[8706]

100.00%

second_order_bessel_ode

116

100.00%

100.00%

second_order_ode_missing_x

146

91.78%
[4158, 9190, 9191, 9195, 9197, 9215, 9216, 9218, 9241, 9287, 9289, 9415]

91.10%
[9190, 9191, 9195, 9197, 9215, 9216, 9218, 9241, 9287, 9288, 9289, 9387, 9415]

second_order_ode_missing_y

49

85.71%
[6070, 6103, 6105, 6459, 6464, 9406, 10317]

100.00%

second order series method. Ordinary point

456

100.00%

100.00%

second order series method. Regular singular point. Difference not integer

188

100.00%

100.00%

second order series method. Regular singular point. Repeated root

167

100.00%

100.00%

second order series method. Regular singular point. Difference is integer

260

100.00%

100.00%

second order series method. Irregular singular point

29

93.10%
[4502, 5828]

0.00%
[1794, 1797, 1805, 2032, 2411, 4193, 4206, 4210, 4495, 4502, 4709, 4768, 4773, 4803, 4811, 4835, 4836, 4837, 5289, 5688, 5690, 5696, 5706, 5707, 5828, 5831, 5839, 5864, 5865]

second order series method. Regular singular point. Complex roots

24

87.50%
[4741, 4742, 4743]

100.00%

second_order_ode_high_degree

1

100.00%

100.00%

Higher order linear constant coefficients ODE

322

99.07%
[9123, 9126, 9155]

100.00%

Higher order ODE, non constant coefficients of type Euler

45

100.00%

100.00%

higher_order_laplace

9

100.00%

100.00%

These are direct links to the ode problems based on status of solving.

Not solved by Mathematica

(691) [119, 133, 146, 485, 550, 553, 710, 813, 885, 944, 958, 959, 961, 962, 964, 966, 968, 1039, 1041, 1046, 1069, 1075, 1105, 1138, 1162, 1186, 1697, 1698, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1897, 2198, 2204, 2481, 2491, 2513, 2583, 2609, 2628, 2683, 2684, 2720, 2722, 2723, 2727, 2795, 2815, 2817, 2830, 2843, 2846, 2854, 2859, 2876, 2888, 2955, 3131, 3134, 3165, 3168, 3220, 3268, 3275, 3335, 3503, 3532, 3561, 3570, 3638, 3708, 3741, 3743, 3744, 3745, 3752, 3753, 3758, 3766, 3767, 3770, 3779, 3782, 3786, 3791, 3797, 3807, 3878, 3943, 4158, 4159, 4160, 4331, 4332, 4333, 4409, 4443, 4446, 4454, 4487, 4502, 4607, 4741, 4742, 4743, 5008, 5060, 5064, 5065, 5347, 5351, 5358, 5416, 5430, 5432, 5444, 5493, 5501, 5509, 5511, 5590, 5591, 5789, 5790, 5796, 5828, 6054, 6058, 6060, 6062, 6070, 6086, 6087, 6103, 6105, 6121, 6125, 6310, 6343, 6349, 6354, 6355, 6357, 6377, 6425, 6426, 6429, 6430, 6434, 6436, 6459, 6461, 6464, 6500, 6501, 6535, 6563, 6592, 6655, 6706, 6798, 6800, 7186, 7220, 7222, 7628, 7629, 7630, 7631, 7636, 7637, 7655, 7660, 7663, 7668, 7691, 7701, 7782, 7783, 7785, 7786, 7799, 7814, 7817, 7830, 7833, 7845, 7849, 7911, 7920, 7947, 7950, 7963, 7975, 8010, 8040, 8041, 8060, 8062, 8069, 8083, 8086, 8087, 8090, 8111, 8152, 8155, 8156, 8415, 8417, 8442, 8465, 8474, 8595, 8599, 8606, 8608, 8610, 8611, 8612, 8618, 8652, 8653, 8654, 8655, 8656, 8657, 8661, 8662, 8663, 8679, 8706, 8737, 8785, 8792, 8796, 8816, 8858, 8885, 8902, 8941, 8987, 8998, 9018, 9019, 9020, 9022, 9023, 9036, 9037, 9038, 9039, 9040, 9041, 9042, 9052, 9053, 9055, 9063, 9068, 9079, 9094, 9095, 9110, 9119, 9120, 9121, 9122, 9123, 9126, 9131, 9151, 9155, 9160, 9165, 9169, 9172, 9174, 9175, 9177, 9178, 9180, 9182, 9184, 9185, 9187, 9188, 9190, 9191, 9194, 9195, 9196, 9197, 9198, 9202, 9203, 9204, 9205, 9206, 9207, 9213, 9215, 9216, 9218, 9221, 9222, 9223, 9224, 9227, 9228, 9237, 9238, 9239, 9241, 9242, 9243, 9244, 9245, 9246, 9251, 9252, 9254, 9256, 9257, 9259, 9263, 9264, 9265, 9269, 9271, 9272, 9274, 9275, 9281, 9283, 9287, 9289, 9292, 9298, 9308, 9311, 9313, 9314, 9316, 9317, 9318, 9321, 9330, 9336, 9340, 9341, 9355, 9356, 9358, 9359, 9367, 9368, 9376, 9380, 9381, 9385, 9386, 9390, 9394, 9395, 9397, 9398, 9399, 9400, 9404, 9406, 9410, 9411, 9415, 9417, 9418, 9419, 9420, 9429, 9430, 9434, 9469, 9484, 9494, 9497, 9498, 9499, 9500, 9501, 9506, 9507, 9508, 9511, 9512, 9513, 9514, 9515, 9516, 9518, 9592, 9596, 9597, 9598, 9603, 9610, 9616, 9618, 9619, 9620, 9641, 9649, 9658, 9662, 9663, 9672, 9689, 9693, 9695, 9696, 9697, 9702, 9709, 9710, 9716, 9717, 9718, 9719, 9720, 9733, 9734, 9735, 9736, 9737, 9738, 9739, 9740, 9741, 9744, 9745, 9753, 9757, 9758, 9760, 9761, 9762, 9763, 9764, 9770, 9771, 9773, 9774, 9775, 9776, 9777, 9782, 9783, 9788, 9789, 9793, 9794, 9795, 9798, 9802, 9803, 9805, 9806, 9811, 9812, 9813, 9814, 9817, 9819, 9820, 9823, 9826, 9828, 9829, 9832, 9835, 9837, 9838, 9841, 9844, 9846, 9847, 9850, 9854, 9855, 9856, 9860, 9861, 9863, 9864, 9866, 9868, 9869, 9870, 9871, 9872, 9873, 9874, 9875, 9877, 9878, 9879, 9880, 9881, 9882, 9883, 9884, 9885, 9886, 9889, 9890, 9893, 9894, 9895, 9896, 9897, 9898, 9899, 9900, 9901, 9902, 9903, 9904, 9905, 9906, 9910, 9911, 9912, 9914, 9915, 9916, 9918, 9919, 9921, 9923, 9924, 9926, 9927, 9928, 9930, 9931, 9933, 9934, 9935, 9936, 9937, 9940, 9941, 9942, 9943, 9944, 9945, 9946, 9947, 9948, 9949, 9953, 9954, 9955, 9956, 9957, 9958, 9959, 9961, 9962, 9963, 9964, 9965, 9966, 9967, 9968, 9969, 9970, 9971, 9972, 9973, 9974, 9975, 9976, 9977, 9978, 9979, 9980, 9981, 9982, 9987, 9988, 9990, 9991, 9992, 9993, 9994, 9995, 9997, 9998, 10002, 10004, 10005, 10006, 10007, 10008, 10009, 10012, 10013, 10014, 10015, 10016, 10017, 10018, 10019, 10020, 10021, 10022, 10023, 10024, 10025, 10026, 10027, 10028, 10029, 10030, 10031, 10032, 10033, 10034, 10035, 10036, 10037, 10038, 10039, 10040, 10041, 10042, 10043, 10044, 10045, 10046, 10047, 10048, 10049, 10050, 10051, 10052, 10053, 10054, 10055, 10056, 10057, 10058, 10059, 10060, 10061, 10062, 10064, 10065, 10067, 10068, 10069, 10070, 10071, 10072, 10073, 10074, 10076, 10077, 10079, 10080, 10081, 10089, 10090, 10097, 10098, 10184, 10198, 10201, 10204, 10205, 10210, 10212, 10226, 10296, 10297, 10315, 10317]

Not solved by Maple

(562) [133, 408, 409, 485, 550, 553, 710, 813, 958, 959, 961, 962, 964, 966, 968, 1039, 1046, 1075, 1162, 1186, 1697, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1794, 1797, 1805, 2032, 2198, 2204, 2411, 2481, 2581, 2583, 2609, 2683, 2684, 2815, 2817, 2830, 2843, 2846, 2854, 2859, 2874, 2876, 2887, 2955, 3134, 3165, 3168, 3220, 3268, 3275, 3335, 3364, 3418, 3472, 3487, 3503, 3532, 3638, 3642, 3655, 3690, 3691, 3702, 3708, 3779, 3790, 3807, 3845, 3878, 4193, 4206, 4210, 4214, 4215, 4406, 4409, 4443, 4446, 4454, 4487, 4495, 4502, 4709, 4747, 4748, 4749, 4768, 4773, 4803, 4811, 4835, 4836, 4837, 5064, 5065, 5289, 5351, 5358, 5416, 5430, 5432, 5485, 5509, 5511, 5665, 5688, 5690, 5696, 5706, 5707, 5760, 5789, 5790, 5796, 5828, 5831, 5839, 5864, 5865, 5963, 5966, 6067, 6086, 6087, 6310, 6354, 6357, 6370, 6426, 6434, 6436, 6461, 6471, 6472, 6473, 6477, 6478, 6480, 6488, 6500, 6535, 6547, 6548, 6550, 6551, 6552, 6553, 6554, 6563, 6592, 6655, 7628, 7629, 7630, 7631, 7636, 7637, 7655, 7660, 7663, 7668, 7691, 7701, 7782, 7783, 7785, 7786, 7799, 7814, 7817, 7830, 7833, 7845, 7849, 7920, 7932, 7947, 7948, 7950, 7963, 7975, 8028, 8032, 8040, 8041, 8060, 8062, 8065, 8083, 8086, 8087, 8090, 8111, 8117, 8123, 8140, 8152, 8155, 8156, 8288, 8313, 8369, 8370, 8415, 8417, 8465, 8474, 8492, 8500, 8595, 8599, 8606, 8608, 8610, 8611, 8618, 8652, 8653, 8655, 8656, 8657, 8661, 8737, 8785, 8792, 8796, 8816, 8858, 8987, 9018, 9019, 9020, 9022, 9036, 9037, 9038, 9039, 9040, 9041, 9042, 9052, 9053, 9055, 9063, 9068, 9089, 9094, 9110, 9119, 9120, 9121, 9122, 9160, 9161, 9165, 9169, 9172, 9174, 9175, 9177, 9178, 9180, 9184, 9185, 9187, 9188, 9190, 9191, 9194, 9195, 9196, 9197, 9198, 9202, 9203, 9204, 9205, 9206, 9207, 9213, 9215, 9216, 9218, 9221, 9222, 9223, 9224, 9227, 9228, 9237, 9238, 9239, 9241, 9242, 9243, 9244, 9245, 9246, 9251, 9252, 9254, 9256, 9259, 9261, 9263, 9264, 9265, 9269, 9271, 9272, 9274, 9275, 9277, 9281, 9283, 9284, 9285, 9287, 9288, 9289, 9292, 9298, 9300, 9308, 9311, 9313, 9314, 9316, 9317, 9318, 9321, 9330, 9336, 9340, 9341, 9356, 9367, 9368, 9376, 9380, 9381, 9385, 9386, 9387, 9390, 9394, 9395, 9399, 9400, 9404, 9410, 9411, 9413, 9414, 9415, 9417, 9418, 9419, 9420, 9429, 9430, 9434, 9469, 9484, 9494, 9497, 9498, 9499, 9500, 9501, 9506, 9507, 9508, 9511, 9513, 9514, 9516, 9518, 9596, 9603, 9616, 9618, 9620, 9658, 9662, 9663, 9675, 9683, 9689, 9693, 9695, 9697, 9702, 9718, 9733, 9736, 9737, 9738, 9740, 9744, 9758, 9760, 9771, 9773, 9789, 9802, 9804, 9811, 9819, 9820, 9823, 9828, 9829, 9832, 9837, 9838, 9841, 9846, 9847, 9850, 9854, 9855, 9860, 9861, 9863, 9864, 9866, 9868, 9869, 9870, 9871, 9872, 9873, 9874, 9875, 9877, 9880, 9881, 9882, 9883, 9885, 9889, 9893, 9894, 9895, 9896, 9897, 9898, 9899, 9900, 9901, 9902, 9903, 9904, 9905, 9906, 9912, 9916, 9918, 9921, 9926, 9927, 9933, 9934, 9935, 9937, 9944, 9945, 9947, 9948, 9949, 9954, 9956, 9957, 9961, 9962, 9965, 9966, 9967, 9968, 9969, 9970, 9972, 9973, 9974, 9975, 9976, 9977, 9978, 9979, 9980, 9981, 9982, 9990, 9991, 9992, 9993, 9994, 9998, 10004, 10005, 10006, 10007, 10008, 10012, 10014, 10015, 10016, 10017, 10018, 10020, 10021, 10023, 10024, 10026, 10027, 10028, 10029, 10031, 10032, 10034, 10035, 10036, 10038, 10039, 10040, 10041, 10042, 10043, 10044, 10048, 10049, 10051, 10052, 10054, 10055, 10056, 10057, 10058, 10059, 10062, 10065, 10069, 10070, 10072, 10073, 10074, 10077, 10079, 10080, 10184, 10210, 10216, 10315]

Solved by Maple but not by Mathematica

(228) [119, 146, 885, 944, 1041, 1069, 1105, 1138, 1698, 1897, 2491, 2513, 2628, 2720, 2722, 2723, 2727, 2795, 2888, 3131, 3561, 3570, 3741, 3743, 3744, 3745, 3752, 3753, 3758, 3766, 3767, 3770, 3782, 3786, 3791, 3797, 3943, 4158, 4159, 4160, 4331, 4332, 4333, 4607, 4741, 4742, 4743, 5008, 5060, 5347, 5444, 5493, 5501, 5590, 5591, 6054, 6058, 6060, 6062, 6070, 6103, 6105, 6121, 6125, 6343, 6349, 6355, 6377, 6425, 6429, 6430, 6459, 6464, 6501, 6706, 6798, 6800, 7186, 7220, 7222, 7911, 8010, 8069, 8442, 8612, 8654, 8662, 8663, 8679, 8706, 8885, 8902, 8941, 8998, 9023, 9079, 9095, 9123, 9126, 9131, 9151, 9155, 9182, 9257, 9355, 9358, 9359, 9397, 9398, 9406, 9512, 9515, 9592, 9597, 9598, 9610, 9619, 9641, 9649, 9672, 9696, 9709, 9710, 9716, 9717, 9719, 9720, 9734, 9735, 9739, 9741, 9745, 9753, 9757, 9761, 9762, 9763, 9764, 9770, 9774, 9775, 9776, 9777, 9782, 9783, 9788, 9793, 9794, 9795, 9798, 9803, 9805, 9806, 9812, 9813, 9814, 9817, 9826, 9835, 9844, 9856, 9878, 9879, 9884, 9886, 9890, 9910, 9911, 9914, 9915, 9919, 9923, 9924, 9928, 9930, 9931, 9936, 9940, 9941, 9942, 9943, 9946, 9953, 9955, 9958, 9959, 9963, 9964, 9971, 9987, 9988, 9995, 9997, 10002, 10009, 10013, 10019, 10022, 10025, 10030, 10033, 10037, 10045, 10046, 10047, 10050, 10053, 10060, 10061, 10064, 10067, 10068, 10071, 10076, 10081, 10089, 10090, 10097, 10098, 10198, 10201, 10204, 10205, 10212, 10226, 10296, 10297, 10317]

Solved by Mathematica but not by Maple

(99) [408, 409, 1794, 1797, 1805, 2032, 2411, 2581, 2874, 2887, 3364, 3418, 3472, 3487, 3642, 3655, 3690, 3691, 3702, 3790, 3845, 4193, 4206, 4210, 4214, 4215, 4406, 4495, 4709, 4747, 4748, 4749, 4768, 4773, 4803, 4811, 4835, 4836, 4837, 5289, 5485, 5665, 5688, 5690, 5696, 5706, 5707, 5760, 5831, 5839, 5864, 5865, 5963, 5966, 6067, 6370, 6471, 6472, 6473, 6477, 6478, 6480, 6488, 6547, 6548, 6550, 6551, 6552, 6553, 6554, 7932, 7948, 8028, 8032, 8065, 8117, 8123, 8140, 8288, 8313, 8369, 8370, 8492, 8500, 9089, 9161, 9261, 9277, 9284, 9285, 9288, 9300, 9387, 9413, 9414, 9675, 9683, 9804, 10216]

Both systems unable to solve

(463) [133, 485, 550, 553, 710, 813, 958, 959, 961, 962, 964, 966, 968, 1039, 1046, 1075, 1162, 1186, 1697, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 2198, 2204, 2481, 2583, 2609, 2683, 2684, 2815, 2817, 2830, 2843, 2846, 2854, 2859, 2876, 2955, 3134, 3165, 3168, 3220, 3268, 3275, 3335, 3503, 3532, 3638, 3708, 3779, 3807, 3878, 4409, 4443, 4446, 4454, 4487, 4502, 5064, 5065, 5351, 5358, 5416, 5430, 5432, 5509, 5511, 5789, 5790, 5796, 5828, 6086, 6087, 6310, 6354, 6357, 6426, 6434, 6436, 6461, 6500, 6535, 6563, 6592, 6655, 7628, 7629, 7630, 7631, 7636, 7637, 7655, 7660, 7663, 7668, 7691, 7701, 7782, 7783, 7785, 7786, 7799, 7814, 7817, 7830, 7833, 7845, 7849, 7920, 7947, 7950, 7963, 7975, 8040, 8041, 8060, 8062, 8083, 8086, 8087, 8090, 8111, 8152, 8155, 8156, 8415, 8417, 8465, 8474, 8595, 8599, 8606, 8608, 8610, 8611, 8618, 8652, 8653, 8655, 8656, 8657, 8661, 8737, 8785, 8792, 8796, 8816, 8858, 8987, 9018, 9019, 9020, 9022, 9036, 9037, 9038, 9039, 9040, 9041, 9042, 9052, 9053, 9055, 9063, 9068, 9094, 9110, 9119, 9120, 9121, 9122, 9160, 9165, 9169, 9172, 9174, 9175, 9177, 9178, 9180, 9184, 9185, 9187, 9188, 9190, 9191, 9194, 9195, 9196, 9197, 9198, 9202, 9203, 9204, 9205, 9206, 9207, 9213, 9215, 9216, 9218, 9221, 9222, 9223, 9224, 9227, 9228, 9237, 9238, 9239, 9241, 9242, 9243, 9244, 9245, 9246, 9251, 9252, 9254, 9256, 9259, 9263, 9264, 9265, 9269, 9271, 9272, 9274, 9275, 9281, 9283, 9287, 9289, 9292, 9298, 9308, 9311, 9313, 9314, 9316, 9317, 9318, 9321, 9330, 9336, 9340, 9341, 9356, 9367, 9368, 9376, 9380, 9381, 9385, 9386, 9390, 9394, 9395, 9399, 9400, 9404, 9410, 9411, 9415, 9417, 9418, 9419, 9420, 9429, 9430, 9434, 9469, 9484, 9494, 9497, 9498, 9499, 9500, 9501, 9506, 9507, 9508, 9511, 9513, 9514, 9516, 9518, 9596, 9603, 9616, 9618, 9620, 9658, 9662, 9663, 9689, 9693, 9695, 9697, 9702, 9718, 9733, 9736, 9737, 9738, 9740, 9744, 9758, 9760, 9771, 9773, 9789, 9802, 9811, 9819, 9820, 9823, 9828, 9829, 9832, 9837, 9838, 9841, 9846, 9847, 9850, 9854, 9855, 9860, 9861, 9863, 9864, 9866, 9868, 9869, 9870, 9871, 9872, 9873, 9874, 9875, 9877, 9880, 9881, 9882, 9883, 9885, 9889, 9893, 9894, 9895, 9896, 9897, 9898, 9899, 9900, 9901, 9902, 9903, 9904, 9905, 9906, 9912, 9916, 9918, 9921, 9926, 9927, 9933, 9934, 9935, 9937, 9944, 9945, 9947, 9948, 9949, 9954, 9956, 9957, 9961, 9962, 9965, 9966, 9967, 9968, 9969, 9970, 9972, 9973, 9974, 9975, 9976, 9977, 9978, 9979, 9980, 9981, 9982, 9990, 9991, 9992, 9993, 9994, 9998, 10004, 10005, 10006, 10007, 10008, 10012, 10014, 10015, 10016, 10017, 10018, 10020, 10021, 10023, 10024, 10026, 10027, 10028, 10029, 10031, 10032, 10034, 10035, 10036, 10038, 10039, 10040, 10041, 10042, 10043, 10044, 10048, 10049, 10051, 10052, 10054, 10055, 10056, 10057, 10058, 10059, 10062, 10065, 10069, 10070, 10072, 10073, 10074, 10077, 10079, 10080, 10184, 10210, 10315]