Integral number [138] \[ \int (g x)^q \left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f x^m\right )^k\right ) \, dx \]
[B] time = 0.348144 (sec), size = 304 ,normalized size = 9.81 \[ \frac {x (g x)^q \left (-b k m n \, _3F_2\left (1,\frac {q}{m}+\frac {1}{m},\frac {q}{m}+\frac {1}{m};\frac {q}{m}+\frac {1}{m}+1,\frac {q}{m}+\frac {1}{m}+1;-\frac {f x^m}{e}\right )+k m \, _2F_1\left (1,\frac {q+1}{m};\frac {m+q+1}{m};-\frac {f x^m}{e}\right ) \left (a q+a+b (q+1) \log \left (c x^n\right )-b n\right )+a q^2 \log \left (d \left (e+f x^m\right )^k\right )+2 a q \log \left (d \left (e+f x^m\right )^k\right )+a \log \left (d \left (e+f x^m\right )^k\right )-a k m q-a k m+b q^2 \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )+2 b q \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )+b \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )-b k m q \log \left (c x^n\right )-b k m \log \left (c x^n\right )-b n q \log \left (d \left (e+f x^m\right )^k\right )-b n \log \left (d \left (e+f x^m\right )^k\right )+2 b k m n\right )}{(q+1)^3} \]
[In]
[Out]
Integral number [144] \[ \int x^2 \left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f x^m\right )^k\right ) \, dx \]
[B] time = 0.188693 (sec), size = 292 ,normalized size = 10.07 \[ -\frac {x^3 \left (b e k m (m+3) n \, _3F_2\left (1,\frac {3}{m},\frac {3}{m};1+\frac {3}{m},1+\frac {3}{m};-\frac {f x^m}{e}\right )-27 a e \log \left (d \left (e+f x^m\right )^k\right )-9 a e m \log \left (d \left (e+f x^m\right )^k\right )+9 a f k m x^m \, _2F_1\left (1,\frac {m+3}{m};2+\frac {3}{m};-\frac {f x^m}{e}\right )-27 b e \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )-9 b e m \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )+b e k m (m+3) \left (n-3 \log \left (c x^n\right )\right ) \, _2F_1\left (1,\frac {3}{m};\frac {m+3}{m};-\frac {f x^m}{e}\right )+3 b e k m^2 \log \left (c x^n\right )+9 b e k m \log \left (c x^n\right )+9 b e n \log \left (d \left (e+f x^m\right )^k\right )+3 b e m n \log \left (d \left (e+f x^m\right )^k\right )-2 b e k m^2 n-6 b e k m n\right )}{27 e (m+3)} \]
[In]
[Out]
Integral number [145] \[ \int x \left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f x^m\right )^k\right ) \, dx \]
[B] time = 0.176377 (sec), size = 292 ,normalized size = 10.81 \[ -\frac {x^2 \left (b e k m (m+2) n \, _3F_2\left (1,\frac {2}{m},\frac {2}{m};1+\frac {2}{m},1+\frac {2}{m};-\frac {f x^m}{e}\right )-8 a e \log \left (d \left (e+f x^m\right )^k\right )-4 a e m \log \left (d \left (e+f x^m\right )^k\right )+4 a f k m x^m \, _2F_1\left (1,\frac {m+2}{m};2+\frac {2}{m};-\frac {f x^m}{e}\right )-8 b e \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )-4 b e m \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )+b e k m (m+2) \left (n-2 \log \left (c x^n\right )\right ) \, _2F_1\left (1,\frac {2}{m};\frac {m+2}{m};-\frac {f x^m}{e}\right )+2 b e k m^2 \log \left (c x^n\right )+4 b e k m \log \left (c x^n\right )+4 b e n \log \left (d \left (e+f x^m\right )^k\right )+2 b e m n \log \left (d \left (e+f x^m\right )^k\right )-2 b e k m^2 n-4 b e k m n\right )}{8 e (m+2)} \]
[In]
[Out]
Integral number [146] \[ \int \left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f x^m\right )^k\right ) \, dx \]
[B] time = 0.181192 (sec), size = 165 ,normalized size = 6.35 \[ x \left (-b k m n \, _3F_2\left (1,\frac {1}{m},\frac {1}{m};1+\frac {1}{m},1+\frac {1}{m};-\frac {f x^m}{e}\right )+k m \, _2F_1\left (1,\frac {1}{m};1+\frac {1}{m};-\frac {f x^m}{e}\right ) \left (a+b \log \left (c x^n\right )-b n\right )+a \log \left (d \left (e+f x^m\right )^k\right )+b \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )-b n \log \left (d \left (e+f x^m\right )^k\right )-b k m n \log (x)+b k m n\right )-k m x \left (a+b \left (\log \left (c x^n\right )-n \log (x)\right )\right )+b k m n x \]
[In]
[Out]
Integral number [148] \[ \int \frac {\left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f x^m\right )^k\right )}{x^2} \, dx \]
[B] time = 0.17089 (sec), size = 282 ,normalized size = 9.72 \[ \frac {b e k (m-1) m n \, _3F_2\left (1,-\frac {1}{m},-\frac {1}{m};1-\frac {1}{m},1-\frac {1}{m};-\frac {f x^m}{e}\right )+a e \log \left (d \left (e+f x^m\right )^k\right )-a e m \log \left (d \left (e+f x^m\right )^k\right )+a f k m x^m \, _2F_1\left (1,\frac {m-1}{m};2-\frac {1}{m};-\frac {f x^m}{e}\right )+b e \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )-b e m \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )+b e k (m-1) m \left (\log \left (c x^n\right )+n\right ) \, _2F_1\left (1,-\frac {1}{m};\frac {m-1}{m};-\frac {f x^m}{e}\right )-b e k m^2 \log \left (c x^n\right )+b e k m \log \left (c x^n\right )+b e n \log \left (d \left (e+f x^m\right )^k\right )-b e m n \log \left (d \left (e+f x^m\right )^k\right )-2 b e k m^2 n+2 b e k m n}{e (m-1) x} \]
[In]
[Out]
Integral number [149] \[ \int \frac {\left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f x^m\right )^k\right )}{x^3} \, dx \]
[B] time = 0.162371 (sec), size = 292 ,normalized size = 10.07 \[ \frac {b e k (m-2) m n \, _3F_2\left (1,-\frac {2}{m},-\frac {2}{m};1-\frac {2}{m},1-\frac {2}{m};-\frac {f x^m}{e}\right )+8 a e \log \left (d \left (e+f x^m\right )^k\right )-4 a e m \log \left (d \left (e+f x^m\right )^k\right )+4 a f k m x^m \, _2F_1\left (1,\frac {m-2}{m};2-\frac {2}{m};-\frac {f x^m}{e}\right )+8 b e \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )-4 b e m \log \left (c x^n\right ) \log \left (d \left (e+f x^m\right )^k\right )+b e k (m-2) m \left (2 \log \left (c x^n\right )+n\right ) \, _2F_1\left (1,-\frac {2}{m};\frac {m-2}{m};-\frac {f x^m}{e}\right )-2 b e k m^2 \log \left (c x^n\right )+4 b e k m \log \left (c x^n\right )+4 b e n \log \left (d \left (e+f x^m\right )^k\right )-2 b e m n \log \left (d \left (e+f x^m\right )^k\right )-2 b e k m^2 n+4 b e k m n}{8 e (m-2) x^2} \]
[In]
[Out]
Integral number [220] \[ \int -(d x)^m \left (a+b \log \left (c x^n\right )\right ) \log \left (1-e x^q\right ) \, dx \]
[B] time = 0.243344 (sec), size = 266 ,normalized size = 8.87 \[ -\frac {x (d x)^m \left (-b n q \, _3F_2\left (1,\frac {m}{q}+\frac {1}{q},\frac {m}{q}+\frac {1}{q};\frac {m}{q}+\frac {1}{q}+1,\frac {m}{q}+\frac {1}{q}+1;e x^q\right )+q \, _2F_1\left (1,\frac {m+1}{q};\frac {m+q+1}{q};e x^q\right ) \left (a m+a+b (m+1) \log \left (c x^n\right )-b n\right )+a m^2 \log \left (1-e x^q\right )+2 a m \log \left (1-e x^q\right )+a \log \left (1-e x^q\right )-a m q-a q+b m^2 \log \left (c x^n\right ) \log \left (1-e x^q\right )+2 b m \log \left (c x^n\right ) \log \left (1-e x^q\right )+b \log \left (c x^n\right ) \log \left (1-e x^q\right )-b m q \log \left (c x^n\right )-b q \log \left (c x^n\right )-b m n \log \left (1-e x^q\right )-b n \log \left (1-e x^q\right )+2 b n q\right )}{(m+1)^3} \]
[In]
[Out]
Integral number [220] \[ \int -(d x)^m \left (a+b \log \left (c x^n\right )\right ) \log \left (1-e x^q\right ) \, dx \]
[B] time = 0.866 (sec), size = 844 ,normalized size = 28.13 \[ -\frac {\left (-\frac {\left (-m -q -1\right ) e q \,x^{m +q +1} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \Phi \left (e \,x^{q}, 1, \frac {m +q +1}{q}\right )}{\left (m +q +1\right ) \left (m +1\right )}+\frac {q \,x^{m +1} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (-e \,x^{q}+1\right )}{m +1}\right ) b \,x^{-m} \left (d x \right )^{m} \left (-e \right )^{-\frac {m}{q}-\frac {1}{q}} \ln \relax (c )}{q}-\frac {\left (-\frac {\left (-m -q -1\right ) e q \,x^{m +q +1} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \Phi \left (e \,x^{q}, 1, \frac {m +q +1}{q}\right )}{\left (m +q +1\right ) \left (m +1\right )}+\frac {q \,x^{m +1} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (-e \,x^{q}+1\right )}{m +1}\right ) a \,x^{-m} \left (d x \right )^{m} \left (-e \right )^{-\frac {m}{q}-\frac {1}{q}}}{q}+\left (-\frac {\left (-\frac {\left (-m -q -1\right ) e q \,x^{m +q} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \relax (x ) \Phi \left (e \,x^{q}, 1, \frac {m +q +1}{q}\right )}{\left (m +q +1\right ) \left (m +1\right )}+\frac {\left (-m -q -1\right ) e q \,x^{m +q} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \Phi \left (e \,x^{q}, 1, \frac {m +q +1}{q}\right )}{\left (m +q +1\right )^{2} \left (m +1\right )}+\frac {e q \,x^{m +q} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \Phi \left (e \,x^{q}, 1, \frac {m +q +1}{q}\right )}{\left (m +q +1\right ) \left (m +1\right )}+\frac {\left (-m -q -1\right ) e q \,x^{m +q} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \Phi \left (e \,x^{q}, 1, \frac {m +q +1}{q}\right )}{\left (m +q +1\right ) \left (m +1\right )^{2}}-\frac {\left (-m -q -1\right ) e \,x^{m +q} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (-e \right ) \Phi \left (e \,x^{q}, 1, \frac {m +q +1}{q}\right )}{\left (m +q +1\right ) \left (m +1\right )}+\frac {q \,x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \relax (x ) \ln \left (-e \,x^{q}+1\right )}{m +1}+\frac {\left (-m -q -1\right ) e \,x^{m +q} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \Phi \left (e \,x^{q}, 2, \frac {m +q +1}{q}\right )}{\left (m +q +1\right ) \left (m +1\right )}-\frac {q \,x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (-e \,x^{q}+1\right )}{\left (m +1\right )^{2}}+\frac {x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (-e \right ) \ln \left (-e \,x^{q}+1\right )}{m +1}\right ) b n \,x^{-m} \left (d x \right )^{m} \left (-e \right )^{-\frac {m}{q}-\frac {1}{q}}}{q}+\frac {\left (-\frac {\left (-m -q -1\right ) e q \,x^{m +q} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \Phi \left (e \,x^{q}, 1, \frac {m +q +1}{q}\right )}{\left (m +q +1\right ) \left (m +1\right )}+\frac {q \,x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (-e \,x^{q}+1\right )}{m +1}\right ) b n \,x^{-m} \left (d x \right )^{m} \left (-e \right )^{-\frac {m}{q}-\frac {1}{q}} \ln \left (-e \right )}{q^{2}}\right ) x \]
[In]
[Out]
Integral number [221] \[ \int (d x)^m \left (a+b \log \left (c x^n\right )\right ) \text {Li}_2\left (e x^q\right ) \, dx \]
[B] time = 0.352 (sec), size = 867 ,normalized size = 4.87 \[ -\frac {\left (-\frac {e \,q^{2} x^{m +q +1} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \Phi \left (e \,x^{q}, 1, \frac {m +q +1}{q}\right )}{\left (m +1\right )^{2}}-\frac {q^{2} x^{m +1} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (-e \,x^{q}+1\right )}{\left (m +1\right )^{2}}-\frac {q \,x^{m +1} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \polylog \left (2, e \,x^{q}\right )}{m +1}\right ) b \,x^{-m} \left (d x \right )^{m} \left (-e \right )^{-\frac {m}{q}-\frac {1}{q}} \ln \relax (c )}{q}-\frac {\left (-\frac {e \,q^{2} x^{m +q +1} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \Phi \left (e \,x^{q}, 1, \frac {m +q +1}{q}\right )}{\left (m +1\right )^{2}}-\frac {q^{2} x^{m +1} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (-e \,x^{q}+1\right )}{\left (m +1\right )^{2}}-\frac {q \,x^{m +1} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \polylog \left (2, e \,x^{q}\right )}{m +1}\right ) a \,x^{-m} \left (d x \right )^{m} \left (-e \right )^{-\frac {m}{q}-\frac {1}{q}}}{q}+\left (-\frac {\left (-\frac {e \,q^{2} x^{m +q} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \relax (x ) \Phi \left (e \,x^{q}, 1, \frac {m +q +1}{q}\right )}{\left (m +1\right )^{2}}+\frac {2 e \,q^{2} x^{m +q} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \Phi \left (e \,x^{q}, 1, \frac {m +q +1}{q}\right )}{\left (m +1\right )^{3}}-\frac {e q \,x^{m +q} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (-e \right ) \Phi \left (e \,x^{q}, 1, \frac {m +q +1}{q}\right )}{\left (m +1\right )^{2}}-\frac {q^{2} x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \relax (x ) \ln \left (-e \,x^{q}+1\right )}{\left (m +1\right )^{2}}+\frac {e q \,x^{m +q} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \Phi \left (e \,x^{q}, 2, \frac {m +q +1}{q}\right )}{\left (m +1\right )^{2}}+\frac {2 q^{2} x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (-e \,x^{q}+1\right )}{\left (m +1\right )^{3}}-\frac {q \,x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \polylog \left (2, e \,x^{q}\right ) \ln \relax (x )}{m +1}-\frac {q \,x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (-e \right ) \ln \left (-e \,x^{q}+1\right )}{\left (m +1\right )^{2}}+\frac {q \,x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \polylog \left (2, e \,x^{q}\right )}{\left (m +1\right )^{2}}-\frac {x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \polylog \left (2, e \,x^{q}\right ) \ln \left (-e \right )}{m +1}\right ) b n \,x^{-m} \left (d x \right )^{m} \left (-e \right )^{-\frac {m}{q}-\frac {1}{q}}}{q}+\frac {\left (-\frac {e \,q^{2} x^{m +q} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \Phi \left (e \,x^{q}, 1, \frac {m +q +1}{q}\right )}{\left (m +1\right )^{2}}-\frac {q^{2} x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \ln \left (-e \,x^{q}+1\right )}{\left (m +1\right )^{2}}-\frac {q \,x^{m} \left (-e \right )^{\frac {m}{q}+\frac {1}{q}} \polylog \left (2, e \,x^{q}\right )}{m +1}\right ) b n \,x^{-m} \left (d x \right )^{m} \left (-e \right )^{-\frac {m}{q}-\frac {1}{q}} \ln \left (-e \right )}{q^{2}}\right ) x \]
[In]
[Out]
Integral number [222] \[ \int (d x)^m \left (a+b \log \left (c x^n\right )\right ) \text {Li}_3\left (e x^q\right ) \, dx \]
[B] time = 2.282 (sec), size = 1065 ,normalized size = 4.35 \[ \text {result too large to display} \]
[In]
[Out]