Integral number [145] \[ \int x \cos (k \csc (x)) \cot (x) \csc (x) \, dx \]
[B] time = 0.473911 (sec), size = 240 ,normalized size = 17.14 \[ -\frac {{\left (x e^{\left (\frac {4 \, k \cos \left (2 \, x\right ) \cos \relax (x)}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1} + \frac {4 \, k \sin \left (2 \, x\right ) \sin \relax (x)}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1}\right )} + x e^{\left (\frac {4 \, k \cos \relax (x)}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1}\right )}\right )} e^{\left (-\frac {2 \, k \cos \left (2 \, x\right ) \cos \relax (x)}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1} - \frac {2 \, k \sin \left (2 \, x\right ) \sin \relax (x)}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1} - \frac {2 \, k \cos \relax (x)}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1}\right )} \sin \left (\frac {2 \, {\left (k \cos \relax (x) \sin \left (2 \, x\right ) - k \cos \left (2 \, x\right ) \sin \relax (x) + k \sin \relax (x)\right )}}{\cos \left (2 \, x\right )^{2} + \sin \left (2 \, x\right )^{2} - 2 \, \cos \left (2 \, x\right ) + 1}\right )}{2 \, k} \]
[In]
[Out]