Chapter 1
Introduction

 1.1 Listing of CAS systems tested
 1.2 Results
 1.3 Performance per integrand type
 1.4 Maximum leaf size ratio for each CAS against the optimal result
 1.5 Pass/Fail per test file for each CAS system
 1.6 Timing
 1.7 Verification
 1.8 Important notes about some of the results
 1.9 Design of the test system

This report gives the result of running the computer algebra independent integration problems.

The listing of the problems used by this report are

  1. MathematicaSyntaxTestFiles.zip

  2. MapleSyntaxTestFiles.zip

The above zip files were downloaded from rulebasedintegration.org.

The current number of problems in this test suite is [71994].

1.1 Listing of CAS systems tested

The following systems were tested at this time.

  1. Mathematica 12.3 (64 bit) on windows 10.

  2. Rubi 4.16.1 in Mathematica 12 on windows 10.

  3. Maple 2021.1 (64 bit) on windows 10.

  4. Maxima 5.44 on Linux. (via sagemath 9.3)

  5. Fricas 1.3.7 on Linux (via sagemath 9.3)

  6. Sympy 1.8 under Python 3.8.8 using Anaconda distribution.

  7. Giac/Xcas 1.7 on Linux. (via sagemath 9.3)

  8. Mupad using Matlab 2021a with Symbolic Math Toolbox Version 8.7 under windows 10 (64 bit)

Maxima, Fricas and Giac/Xcas were called from inside SageMath. This was done using SageMath integrate command by changing the name of the algorithm to use the different CAS systems.

Sympy was called directly using Python.

1.2 Results

Important note: A number of problems in this test suite have no antiderivative in closed form. This means the antiderivative of these integrals can not be expressed in terms of elementary, special functions or Hypergeometric2F1 functions. RootSum and RootOf are not allowed.

If a CAS returns the above integral unevaluated within the time limit, then the result is counted as passed and assigned an A grade.

However, if CAS times out, then it is assigned an F grade even if the integral is not integrable, as this implies CAS could not determine that the integral is not integrable in the time limit.

If a CAS returns an antiderivative to such an integral, it is assigned an A grade automatically and this special result is listed in the introduction section of each individual test report to make it easy to identify as this can be important result to investigate.

The results given in in the table below reflects the above.




System solved Failed






Rubi % 99.52 ( 71651 ) % 0.48 ( 343 )



Mathematica % 98.39 ( 70834 ) % 1.61 ( 1160 )



Maple % 83.58 ( 60173 ) % 16.42 ( 11821 )



Fricas % 68.7 ( 49460 ) % 31.3 ( 22534 )



Giac % 52.43 ( 37749 ) % 47.57 ( 34245 )



Maxima % 52.72 ( 37956 ) % 47.28 ( 34038 )



Sympy % 34.47 ( 24814 ) % 65.53 ( 47180 )



Mupad % 52.55 ( 37830 ) % 47.45 ( 34164 )



Table 1.1:Percentage solved for each CAS

The table below gives additional break down of the grading of quality of the antiderivatives generated by each CAS. The grading is given using the letters A,B,C and F with A being the best quality. The grading is accomplished by comparing the antiderivative generated with the optimal antiderivatives included in the test suite. The following table describes the meaning of these grades.



grade

description





A

Integral was solved and antiderivative is optimal in quality and leaf size.



B

Integral was solved and antiderivative is optimal in quality but leaf size is larger than twice the optimal antiderivatives leaf size.



C

Integral was solved and antiderivative is non-optimal in quality. This can be due to one or more of the following reasons

  1. antiderivative contains a hypergeometric function and the optimal antiderivative does not.

  2. antiderivative contains a special function and the optimal antiderivative does not.

  3. antiderivative contains the imaginary unit and the optimal antiderivative does not.



F

Integral was not solved. Either the integral was returned unevaluated within the time limit, or it timed out, or CAS hanged or crashed or an exception was raised.



Table 1.2:Description of grading applied to integration result

Grading is implemented for all CAS systems in this version except for CAS Mupad where a grade of B is automatically assigned as a place holder for all integrals it completes on time.

The following table summarizes the grading results.






System % A grade % B grade % C grade % F grade










Rubi 98.89 0.23 0.41 0.48





Mathematica 74.75 6.17 17.47 1.61





Maple 52.77 22.85 7.96 16.42





Maxima 41.43 10.17 1.11 47.28





Fricas 48.82 18.36 1.52 31.3





Sympy 26.94 4.69 2.84 65.53





Giac 38.1 13.49 0.84 47.57





Mupad 4.93 47.61 0. 47.45





Table 1.3:Antiderivative Grade distribution for each CAS

The following is a Bar chart illustration of the data in the above table.

pict

The figure below compares the CAS systems for each grade level.

pict

1.2.1 Time and leaf size Performance

The table below summarizes the performance of each CAS system in terms of time used and leaf size of results.







System Mean time (sec) Mean size Normalized mean Median size Normalized median












Rubi 0.28 156.75 1. 107. 1.






Mathematica 1.84 799.85 2.8 92. 0.94






Maple 0.79 62768.5 746.4 132. 1.27






Maxima 0.92 209.89 1.76 81. 1.






Fricas 1.56 408.24 2.78 121. 1.37






Sympy 8.89 250.16 2.77 70. 1.13






Giac 1.05 261. 2. 92. 1.12






Mupad 2.73 743.09 3.35 76. 1.






Table 1.4:Time and leaf size performance for each CAS

1.3 Performance per integrand type

The following are the different integrand types the test suite contains.

  1. Algebraic Binomial problems (products involving powers of binomials and monomials).

  2. Algebraic Trinomial problems (products involving powers of trinomials, binomials and monomials).

  3. Miscellaneous Algebraic functions.

  4. Exponentials.

  5. Logarithms.

  6. Trigonometric.

  7. Inverse Trigonometric.

  8. Hyperbolic functions.

  9. Inverse Hyperbolic functions.

  10. Special functions.

  11. Independent tests.

The following table gives percentage solved of each CAS per integrand type.











Integrand type problems Rubi Mathematica Maple Maxima Fricas Sympy Giac Mupad










Independent tests 1892 98.31 98.73 93.5 81.98 94.56 72.46 86.15 82.03
Algebraic Binomial 14276 99.99 99.7 82.87 60.35 71.54 60.43 63.63 60.65
Algebraic Trinomial 10187 99.99 98.94 90.73 52.97 77. 40.04 66.14 56.66
Algebraic Miscellaneous 1519 98.62 98.16 87.56 52.27 74.26 45.23 59.58 61.88
Exponentials 965 99.17 96.68 80.21 66.22 91.19 44.04 49.43 71.61
Logarithms 3085 98.51 97.83 54.26 56.24 58.06 32.64 45.02 43.18
Trigonometric 22551 99.56 97.66 85.76 47.39 64.1 15.49 42.22 49.39
Inverse Trigonometric 4585 99.65 98.26 83.69 36.23 48.42 35.92 40.52 38.43
Hyperbolic 5166 98.32 97.99 82.6 62.18 85.06 23.11 64.42 54.72
Inverse Hyperbolic 6626 99.52 98.46 79.94 47.75 62.56 27.3 35.69 39.6
Special functions 999 100. 95.6 69.97 39.54 48.85 42.84 34.73 40.24










Table 1.5:Percentage solved per integrand type

In addition to the above table, for each type of integrand listed above, 3D chart is made which shows how each CAS performed on that specific integrand type.

These charts and the table above can be used to show where each CAS relative strength or weakness in the area of integration.

pict

pict

pict

pict

pict

pict

pict

pict

pict

pict

pict

1.4 Maximum leaf size ratio for each CAS against the optimal result

The following table gives the largest ratio found in each test file, between each CAS antiderivative and the optimal antiderivative.

For each test input file, the problem with the largest ratio \(\frac {\text {CAS leaf size}}{\text {Optimal leaf size}}\) is recorded with the corresponding problem number.

In each column in the table below, the first number is the maximum leaf size ratio, and the number that follows inside the parentheses is the problem number in that specific file where this maximum ratio was found. This ratio is determined only when CAS solved the the problem and also when an optimal antiderivative is known.

If it happens that a CAS was not able to solve all the integrals in the input test file, or if it was not possible to obtain leaf size for the CAS result for all the problems in the file, then a zero is used for the ratio and -1 is used for the problem number.

This makes it easy to locate the problem. In the future, a direct link will be added as well.










Table 1.6:Maximum leaf size ratio for each CAS against the optimal result









file # Rubi Mathematica Maple Maxima FriCAS Sympy Giac Mupad









1 1. (1) 3.9 (50) 16.6 (114) 3.8 (169) 4. (45) 7.5 (169) 4.2 (164) 42.4 (169)
2 7.3 (21) 7.7 (14) 3.6 (17) 1.9 (4) 14.3 (13) 16.8 (5) 4.6 (2) 3.3 (26)
3 1. (1) 16.1 (6) 17. (6) 11.1 (7) 2. (8) 1.9 (5) 1.9 (5) 11.3 (5)
4 6.4 (5) 14.3 (13) 40.7 (46) 16.6 (43) 5.5 (43) 4.4 (40) 5.3 (1) 6.9 (4)
5 1. (65) 54.7 (278) 12737.8 (278) 8.1 (280) 7.7 (280) 16.1 (175) 19.5 (141) 14.1 (204)
6 1. (1) 1.4 (3) 2.2 (4) 1.9 (1) 1.4 (7) 0.8 (4) 2.3 (5) 1.3 (3)
7 2.2 (3) 5.6 (7) 1.8 (3) 2.8 (3) 6.7 (9) 5. (2) 1.9 (3) 1.7 (3)
8 1.6 (50) 5.3 (31) 7.9 (70) 6.5 (11) 5. (42) 26.4 (71) 5.2 (70) 22.5 (70)
9 1.2 (365) 7.2 (80) 4.3 (341) 12.1 (328) 4.2 (341) 8. (75) 15. (328) 6. (9)
10 3.2 (335) 242.6 (327) 3343.5 (327) 36.9 (399) 32.1 (595) 76.3 (215) 18.8 (537) 12.8 (253)
11 529. (82) 127. (82) 317. (82) 2.7 (2) 70. (82) 41.3 (17) 6.6 (50) 207. (82)
12 1.8 (6) 2.3 (4) 1.2 (8) 1.5 (2) 3.3 (3) 3.4 (3) 1.6 (2) 0.9 (8)
13 7.1 (369) 23.8 (1323) 30.9 (1323) 32.9 (1323) 32.9 (1323) 136.1 (671) 34. (1323) 38.1 (1323)
14 2. (870) 16.5 (1101) 22.6 (1101) 22.2 (1716) 21.8 (1101) 84.5 (67) 46.7 (827) 328.9 (2300)
15 3.3 (97) 9.3 (99) 28.5 (100) 2.8 (119) 10.8 (21) 49.2 (119) 10. (119) 23.6 (21)
16 1. (1) 1.5 (17) 11. (25) 4. (25) 9. (25) 59.8 (27) 19.9 (25) 1.7 (3)
17 2.6 (35) 10.1 (67) 39.8 (66) 1.7 (35) 6.4 (7) 5.3 (35) 16.5 (52) 330.8 (32)
18 1. (3) 27.5 (31) 68. (35) 0. (-1) 0. (-1) 0. (-1) 0. (-1) 0. (-1)
19 8.2 (664) 6.9 (663) 7.9 (196) 10. (196) 10. (196) 55.3 (528) 8. (434) 10.1 (196)
20 1.6 (254) 6.4 (94) 147.4 (69) 4.4 (73) 19.9 (160) 10.2 (24) 5.9 (69) 37.7 (26)
21 1. (596) 12.6 (337) 46.7 (754) 3.1 (313) 17.2 (1016) 47.7 (335) 8.6 (553) 224.1 (502)
22 1.3 (64) 2.6 (63) 15.2 (57) 1.3 (15) 8.1 (60) 3. (21) 3. (98) 1.7 (21)
23 1. (1) 1.1 (50) 10.4 (15) 2. (15) 7. (15) 43. (16) 13.8 (15) 2.5 (1)
24 1.2 (173) 1.9 (45) 2. (162) 3.6 (161) 5.2 (26) 47.9 (55) 4. (157) 1.8 (133)
25 8.4 (2686) 13.4 (2913) 141.8 (2913) 13.2 (2285) 23. (2913) 170.1 (2672) 28.4 (2813) 16.4 (2913)
26 4.3 (116) 9.5 (335) 17.9 (265) 4. (40) 15.1 (265) 47.5 (290) 6. (292) 62.5 (172)
27 4.2 (760) 12.3 (1051) 77.4 (546) 29.1 (1063) 17.4 (317) 36.6 (124) 9.8 (1052) 78.2 (494)
28 1.2 (46) 0.9 (45) 51.1 (15) 2.5 (15) 28.4 (15) 78.7 (3) 49.5 (16) 7.2 (15)
29 1.2 (552) 3.8 (45) 10.4 (43) 10. (43) 47.2 (73) 14.9 (577) 8.1 (591) 34.3 (171)
30 1.3 (278) 10. (328) 51.5 (297) 11.2 (348) 10.2 (348) 10. (328) 10.6 (331) 12.5 (348)
31 1. (1) 6.4 (283) 4.9 (269) 3.2 (114) 4. (269) 21.6 (269) 6.3 (269) 3.4 (190)
32 2.8 (83) 3.9 (25) 5.8 (74) 2.2 (83) 7.2 (127) 16.4 (63) 3.1 (74) 3.5 (25)
33 2. (2419) 23.9 (2302) 70.8 (2351) 28.7 (557) 36.4 (2293) 67.3 (1423) 39.4 (2023) 209.3 (2300)
34 1.3 (1471) 15.6 (1635) 82.2 (1180) 50.9 (2170) 46.2 (1452) 64.1 (1011) 28.9 (1593) 179.2 (2207)
35 2.1 (833) 58.6 (507) 116.1 (801) 5.9 (579) 34. (616) 71.6 (920) 20. (925) 201.9 (818)
36 1. (1) 10.3 (6) 425.1 (78) 2.7 (95) 30.2 (112) 1.2 (19) 13.3 (5) 3. (100)
37 1. (129) 9.7 (37) 14197.2 (12) 6.6 (27) 30.2 (117) 8.6 (14) 5.8 (37) 110.2 (16)
38 1.8 (76) 42.8 (204) 421. (278) 89. (278) 123.4 (278) 114.1 (278) 119.2 (278) 101.3 (278)
39 1.7 (636) 8.8 (109) 9.5 (885) 5.4 (515) 25.4 (1077) 28.5 (1105) 13.7 (885) 91.3 (1088)
40 1.7 (212) 13.9 (409) 50.7 (220) 6.5 (88) 33.5 (109) 15.8 (283) 110.2 (216) 360. (274)
41 1.9 (327) 32.6 (381) 26. (136) 5.6 (70) 55.6 (305) 47.5 (220) 35.3 (309) 123.2 (309)
42 1. (59) 1.5 (25) 15.8 (54) 1.4 (111) 2.6 (46) 43. (11) 21.7 (25) 107.5 (41)
43 1.6 (135) 2.4 (136) 13.8 (37) 1.6 (131) 48.1 (60) 27.3 (39) 20.4 (60) 94.8 (130)
44 1.9 (1) 6.3 (24) 6.4 (29) 0. (-1) 4.2 (35) 0.8 (1) 2.5 (42) 3.8 (34)
45 1. (1) 4.9 (4) 0.9 (4) 0. (-1) 0. (-1) 0. (-1) 0. (-1) 0. (-1)
46 2.1 (154) 20. (601) 54.7 (609) 6.3 (609) 46.7 (637) 21.4 (598) 46.6 (597) 99.1 (318)
47 1. (1) 25.5 (83) 2.7 (37) 1.8 (68) 12.2 (37) 42.2 (68) 15.3 (37) 116. (41)
48 1. (67) 25.1 (143) 2909.3 (93) 88.7 (96) 90.4 (93) 82.9 (93) 73.6 (96) 165.9 (51)
49 1. (1) 11. (17) 1.7 (11) 2.1 (16) 2.2 (16) 3.2 (11) 3.3 (16) 215.3 (1)
50 1. (1) 1.7 (99) 4. (72) 1.1 (72) 9.5 (102) 18.1 (72) 12.1 (79) 41.4 (99)
51 6.2 (424) 11.6 (162) 1223.1 (192) 42.3 (63) 93.1 (192) 84.3 (192) 27.1 (202) 166.7 (20)
52 4.1 (997) 172.1 (1010) 3059.3 (1010) 5.1 (612) 40.5 (871) 58.4 (180) 16.9 (414) 54.2 (410)
53 1. (1) 1.2 (82) 9.5 (87) 2.2 (2) 2. (81) 2.5 (2) 55.8 (2) 1.8 (2)
54 1. (1) 1. (1) 16. (46) 1.9 (25) 4.6 (58) 2.2 (32) 37.5 (25) 1.8 (20)
55 1.2 (655) 5.3 (636) 38.7 (267) 125.2 (267) 28.5 (292) 11.2 (281) 54.7 (563) 14.9 (268)
56 1. (1) 1.3 (133) 83.5 (150) 4.9 (149) 5. (150) 24. (150) 10.2 (149) 2.6 (61)
57 1.7 (115) 3.9 (363) 97.5 (440) 5.1 (348) 21.1 (440) 65.5 (442) 10.8 (392) 2.5 (65)
58 1.5 (176) 12.4 (64) 375.9 (87) 2.9 (166) 10.1 (237) 3.6 (165) 13.4 (237) 2.2 (166)
59 7.5 (71) 39.2 (308) 376.9 (168) 7.4 (10) 7.3 (171) 6.5 (59) 49.8 (231) 6.6 (239)
60 26.4 (88) 16.8 (81) 1428.6 (228) 79.5 (81) 9.2 (212) 8. (71) 26.8 (1) 13.6 (83)
61 1.6 (79) 55.1 (51) 14.7 (74) 14.2 (44) 4.5 (15) 20.3 (12) 12.3 (34) 7. (34)
62 1.8 (383) 9.3 (340) 161.9 (62) 9.1 (340) 8.8 (404) 58.5 (427) 35.8 (456) 3.6 (52)
63 1.5 (390) 4.3 (45) 54.3 (175) 7.4 (390) 33.9 (197) 45.6 (183) 13.8 (45) 5.7 (197)
64 1.2 (284) 13.1 (44) 2190.9 (91) 10.6 (23) 11.2 (91) 15.9 (189) 15.3 (28) 8.4 (91)
65 1. (1) 114.1 (497) 33.3 (493) 3.9 (111) 7.8 (301) 137.4 (62) 5.7 (105) 6.2 (210)
66 1. (1) 8.6 (249) 7.6 (83) 18.6 (185) 13.1 (209) 29.5 (193) 55.1 (7) 12. (328)
67 1. (1) 9.2 (12) 4.3 (51) 2.4 (21) 3.6 (5) 17.1 (49) 4.3 (7) 1.8 (21)
68 1. (1) 1.8 (113) 7.7 (65) 21.3 (45) 2.3 (38) 2.2 (12) 55.1 (36) 1.7 (12)
69 1. (1) 3.3 (203) 7.8 (201) 168.3 (37) 4.7 (44) 8.4 (115) 10.8 (197) 2.7 (37)
70 2. (615) 113.3 (353) 447.5 (605) 9. (151) 23.4 (476) 68.3 (344) 140.9 (122) 19.7 (467)
71 1. (1) 1.1 (10) 1.4 (29) 8.1 (33) 1.1 (10) 3.9 (12) 2.3 (30) 1.1 (8)
72 1.6 (103) 56.7 (138) 3.6 (200) 4. (53) 7. (201) 2.6 (40) 128.8 (16) 14.1 (189)
73 1.9 (621) 1029.2 (406) 4914.7 (790) 30.7 (256) 15. (563) 45.9 (462) 34.1 (48) 853.8 (722)
74 1.6 (1108) 1478. (937) 149.3 (174) 8.6 (46) 14.7 (937) 70.5 (1236) 42.8 (257) 41.4 (1131)
75 1.3 (12) 3375. (37) 688.4 (48) 7.2 (16) 28.8 (35) 3.4 (1) 1.7 (39) 132.2 (39)
76 1.2 (206) 85. (202) 8067.4 (353) 35.1 (48) 16.5 (327) 51.8 (79) 157.2 (15) 82. (352)
77 1. (1) 6.7 (10) 3.9 (2) 12.4 (1) 2.3 (2) 412.4 (8) 5.4 (12) 2.4 (3)
78 1.4 (32) 72.5 (30) 4.4 (33) 3.3 (20) 2.2 (18) 2.3 (32) 0.9 (32) 2.9 (1)
79 1.8 (236) 228.2 (240) 51493.3 (593) 17.6 (487) 43.6 (260) 29. (236) 19.3 (510) 295.9 (392)
80 1. (1) 2.2 (2) 2.1 (4) 1.3 (2) 4.6 (1) 11.7 (4) 2.3 (2) 35.6 (4)
81 1. (1) 1.5 (16) 6. (13) 1. (19) 25.3 (1) 2.8 (11) 1.8 (14) 122.9 (1)
82 1. (1) 3.7 (284) 8.3 (12) 16.5 (170) 4.1 (42) 2.7 (64) 12.5 (64) 3.5 (41)
83 1. (1) 4. (62) 8.3 (76) 12.1 (133) 6.9 (33) 4.1 (9) 66. (8) 2.4 (1)
84 1. (1) 2.4 (61) 3.4 (50) 2. (5) 2.7 (5) 6. (41) 2. (5) 1.3 (4)
85 1. (1) 1.3 (94) 4.2 (26) 4.2 (86) 1.5 (35) 6. (61) 4.3 (35) 1.1 (87)
86 4.3 (11) 4.1 (60) 13.2 (78) 3.2 (3) 4.2 (32) 16.8 (26) 3.7 (11) 16.1 (24)
87 1. (1) 1. (10) 1.4 (29) 8.1 (32) 1.1 (10) 3.8 (12) 2.3 (30) 1.1 (8)
88 1. (1) 3.2 (1) 3.4 (3) 4.1 (3) 4.1 (20) 0. (-1) 3. (3) 14.7 (10)
89 1.4 (370) 35.3 (773) 9.3 (642) 46.6 (119) 7.2 (484) 23. (452) 57.9 (116) 29. (479)
90 1. (1) 2.8 (2) 2.9 (2) 0. (-1) 0. (-1) 0. (-1) 0. (-1) 0. (-1)
91 1. (1) 3. (1) 1.8 (1) 3.5 (1) 1.7 (1) 0. (-1) 0. (-1) 1.2 (1)
92 1.1 (40) 36.7 (454) 14.3 (436) 56.4 (95) 7.5 (278) 36.2 (252) 28.6 (78) 32.8 (267)
93 1. (1) 53.3 (393) 8. (29) 20.3 (115) 3.4 (319) 9. (35) 80.5 (35) 2.8 (122)
94 1.4 (940) 84.8 (1350) 18. (1154) 47.3 (96) 7.2 (590) 29.3 (565) 55.5 (78) 193.6 (981)
95 1.2 (81) 4.9 (91) 6.9 (70) 9.4 (53) 44.5 (85) 400.9 (20) 3.7 (91) 20.3 (14)
96 1. (1) 2.1 (9) 7.6 (21) 1. (2) 8.4 (13) 13.9 (4) 7. (4) 113.8 (15)
97 1. (1) 1.9 (5) 10.5 (13) 0.8 (11) 25.1 (13) 3.2 (12) 35.4 (15) 139.2 (13)
98 1. (1) 105. (358) 326.6 (179) 1.3 (7) 8.5 (251) 3.1 (376) 14.2 (7) 26.5 (105)
99 1. (1) 4.4 (44) 8.6 (29) 11.1 (49) 4.9 (54) 2.5 (24) 6.5 (22) 2.8 (16)
100 1. (1) 3.8 (44) 1.5 (21) 7.8 (52) 4.5 (39) 16.9 (21) 1.7 (21) 2.3 (28)
101 1.5 (562) 75.5 (641) 173.9 (617) 18.9 (393) 8.6 (80) 40. (172) 52.2 (73) 11.3 (560)
102 1. (1) 7. (46) 4.1 (61) 2.9 (67) 7.5 (75) 1.3 (2) 77.5 (13) 6.3 (58)
103 1.4 (891) 200.5 (678) 9431.6 (611) 141. (1121) 111.4 (1249) 68.2 (1213) 27.4 (1203) 547.4 (1257)
104 1. (1) 941.7 (463) 15282.6 (454) 144. (373) 90.9 (369) 42.2 (280) 24.3 (257) 304.5 (428)
105 1. (130) 3975.5 (145) 172.7 (123) 3. (83) 11.4 (83) 42.2 (37) 26.2 (51) 688.1 (115)
106 1. (1) 44.6 (159) 2905.5 (351) 18.1 (272) 20.7 (379) 67.8 (245) 31.7 (199) 2360. (138)
107 1. (1) 777.6 (45) 31763.8 (14) 0. (-1) 16.1 (45) 0. (-1) 0. (-1) 0. (-1)
108 1. (1) 21.6 (47) 288.2 (43) 1.3 (4) 4.9 (20) 2.6 (1) 4.2 (3) 5.9 (7)
109 1. (1) 5.5 (42) 10.1 (27) 18.6 (47) 4.9 (59) 2.4 (22) 40.3 (8) 2.2 (16)
110 1. (1) 2.5 (11) 3.4 (16) 3.3 (11) 4. (7) 1.3 (2) 2.5 (7) 6.7 (17)
111 1. (1) 2.4 (5) 4.3 (9) 4.3 (7) 3.3 (7) 1.2 (2) 2.7 (6) 8.7 (15)
112 1. (1) 3.9 (15) 69.4 (103) 1.9 (94) 4.3 (6) 35.7 (93) 2.4 (94) 51.1 (103)
113 1. (1) 23.7 (22) 35. (29) 13.6 (8) 13. (57) 64.2 (7) 19.6 (37) 32.4 (7)
114 1. (1) 1997.4 (22) 36459.7 (8) 0. (-1) 25.5 (27) 0. (-1) 0. (-1) 0. (-1)
115 1. (1) 14.7 (42) 9.6 (259) 25.9 (47) 5.7 (42) 3.3 (1) 11.7 (42) 3.9 (223)
116 1. (1) 10. (40) 4.1 (29) 14.8 (16) 5.1 (6) 0. (-1) 6.4 (18) 1.8 (18)
117 1. (1) 3.2 (18) 5.9 (73) 120.4 (20) 4.5 (68) 2.2 (53) 4.2 (20) 5.5 (15)
118 1.4 (423) 249. (874) 14.7 (578) 52.4 (255) 7. (515) 2.6 (5) 5.8 (513) 29.9 (520)
119 1. (1) 45.2 (153) 12.6 (284) 2.9 (65) 5.8 (227) 0. (-1) 7. (196) 15.1 (230)
120 1.7 (340) 55.8 (191) 46.5 (339) 3.7 (67) 34.3 (339) 13.1 (90) 7.1 (286) 48.1 (295)
121 1.3 (115) 2602.3 (169) 1152.4 (153) 37.5 (109) 8.8 (159) 0. (-1) 5.3 (197) 42.4 (195)
122 2.2 (197) 1877.2 (240) 7.1 (238) 43.2 (130) 15.3 (263) 3. (170) 4.4 (256) 112. (263)
123 1.3 (265) 350.5 (634) 15.8 (385) 52.6 (259) 8.2 (336) 2.2 (47) 6.9 (335) 33.7 (333)
124 1. (1) 3.6 (65) 24.1 (25) 13.5 (25) 2.6 (58) 2.9 (33) 2.7 (41) 6. (58)
125 1.2 (870) 383.4 (1373) 19.8 (970) 45.9 (1289) 7.3 (808) 3. (930) 7.6 (489) 193.5 (903)
126 1.3 (231) 66.8 (138) 544.5 (433) 47.4 (379) 27.3 (461) 7.4 (459) 4.6 (15) 1013.7 (117)
127 1. (1) 5.6 (42) 12.4 (21) 33.4 (39) 3.8 (42) 3.1 (1) 3.1 (41) 3.7 (61)
128 1. (1) 4. (25) 5.2 (74) 39.4 (15) 4.6 (69) 2.2 (53) 2.9 (61) 23. (27)
129 1. (1) 5.3 (36) 19.6 (18) 6.4 (13) 7.8 (20) 0. (-1) 13.6 (15) 34.8 (50)
130 1. (1) 2.5 (8) 4. (9) 4.9 (8) 3.7 (14) 0. (-1) 2.2 (8) 15.8 (9)
131 1.3 (20) 3.3 (10) 2.3 (22) 3.5 (1) 5. (22) 0. (-1) 2.2 (10) 28.1 (19)
132 1. (1) 2.7 (3) 2.2 (8) 2.5 (8) 2.3 (9) 4.9 (18) 3.3 (12) 3.9 (4)
133 1. (1) 1.2 (1) 1.8 (1) 0. (-1) 0. (-1) 0. (-1) 0. (-1) 0. (-1)
134 1. (12) 3.1 (18) 26.8 (15) 26.6 (13) 16.6 (11) 0. (-1) 5.3 (16) 22.2 (7)
135 1. (1) 29.1 (187) 4879055.9 (170) 85. (57) 7.2 (231) 330.6 (40) 78. (71) 8. (233)
136 3.3 (23) 25.3 (272) 5.9 (146) 9.5 (209) 8.5 (143) 18.9 (124) 65.7 (238) 54.3 (22)
137 1.1 (281) 9.2 (164) 14.6 (80) 58.4 (391) 13.8 (273) 10.3 (396) 81.4 (293) 3.1 (81)
138 1. (1) 2.7 (1) 6.9 (9) 0.4 (5) 12.2 (4) 1.1 (5) 0.7 (5) 2.2 (5)
139 4.3 (259) 8. (318) 12.8 (259) 90.9 (225) 3.1 (173) 7.6 (18) 73.7 (126) 4.1 (224)
140 19.2 (34) 9.1 (133) 40.1 (34) 81.3 (34) 4.2 (63) 10.8 (42) 266.8 (31) 8.6 (63)
141 10.8 (759) 718.9 (434) 651.2 (860) 178.8 (64) 27.7 (503) 1334.1 (478) 84.2 (904) 47.9 (509)
142 1.4 (107) 2.5 (95) 4.8 (156) 1.7 (155) 1.8 (7) 2.3 (11) 9.9 (145) 3. (150)
143 1.7 (100) 9.5 (655) 19.9 (90) 3.3 (195) 6. (642) 2.9 (413) 56.7 (620) 3. (662)
144 1.9 (147) 7. (85) 13.9 (55) 12.1 (177) 8.6 (103) 8.1 (206) 14. (233) 3. (12)
145 1.3 (168) 4.9 (41) 2.8 (156) 1.8 (155) 3. (7) 2.3 (11) 26.4 (147) 2. (150)
146 1. (1) 1.9 (10) 2.8 (13) 2.4 (11) 5.1 (33) 2. (23) 36.5 (23) 1.1 (21)
147 1. (1) 3.8 (13) 7.8 (12) 2.4 (24) 5.7 (29) 2. (58) 3.9 (31) 2.4 (27)
148 10. (146) 4.8 (83) 28.1 (148) 1.5 (165) 3.4 (112) 8.9 (105) 1.9 (134) 1.8 (21)
149 1.2 (25) 4.2 (25) 44.1 (20) 1.8 (8) 19.4 (21) 44.8 (8) 4.4 (24) 4.1 (7)
150 1.3 (152) 6.4 (429) 85.8 (146) 4.8 (218) 9.9 (1223) 4.2 (197) 2.4 (1279) 7.7 (1159)
151 1. (1) 3.3 (36) 80. (56) 26.3 (61) 3. (30) 9.8 (12) 1. (27) 5.2 (1)
152 2. (344) 2.7 (248) 13.6 (329) 9.6 (180) 10. (375) 11.5 (375) 8.4 (375) 4.2 (376)
153 1.1 (117) 11.4 (54) 27.1 (147) 5.4 (67) 5.6 (50) 13.1 (131) 5.8 (125) 5.5 (1)
154 1.3 (109) 11.4 (164) 72.1 (110) 13.3 (107) 6.8 (64) 5.9 (106) 27.2 (135) 5.5 (149)
155 1. (1) 1.2 (7) 1. (2) 1. (2) 1.1 (5) 2.7 (4) 1.1 (2) 0.9 (5)
156 1.2 (68) 2.6 (104) 11.9 (105) 3.4 (31) 8.7 (151) 2.5 (12) 75.8 (1) 2. (29)
157 1. (1) 3.3 (42) 4.2 (26) 1.7 (14) 4. (24) 2.7 (8) 2.6 (2) 1.2 (5)
158 1.4 (51) 2.8 (111) 11.9 (112) 1.9 (22) 8.7 (156) 2.6 (12) 27.3 (91) 1.9 (29)
159 1. (1) 3.3 (40) 4.9 (26) 1.6 (13) 4. (23) 2.7 (8) 3.5 (26) 1.3 (5)
160 1. (1) 16. (299) 7.5 (379) 3.7 (327) 18.6 (329) 7.4 (297) 8.7 (6) 16.6 (489)
161 1. (1) 5.4 (53) 3.4 (98) 12.9 (90) 6.6 (20) 1.9 (10) 6.9 (29) 1.7 (50)
162 1. (1) 1.5 (24) 1.9 (28) 6. (7) 5.4 (21) 0. (-1) 1.6 (29) 0. (-1)
163 1. (1) 8.7 (365) 8.4 (198) 21.3 (134) 32.5 (87) 16.3 (253) 25.9 (273) 22.4 (234)
164 1.3 (16) 9.9 (394) 15.3 (316) 21.9 (315) 64.5 (502) 103. (65) 23. (273) 45.2 (327)
165 1. (1) 13.6 (173) 6. (1) 3.6 (1) 16. (36) 4.1 (8) 8.7 (6) 2.4 (16)
166 1. (1) 1.8 (38) 3.6 (79) 3.5 (5) 4.3 (108) 2.3 (12) 18. (32) 1.7 (12)
167 1. (1) 2.1 (3) 3.4 (64) 12.9 (56) 6.6 (20) 1.9 (10) 5.2 (25) 1.9 (24)
168 1. (1) 1.5 (12) 1.9 (28) 6. (7) 5.4 (21) 0. (-1) 1.6 (29) 0. (-1)
169 1. (1) 8.7 (328) 7.4 (165) 11.4 (196) 40.1 (177) 22. (152) 25.9 (246) 21.4 (180)
170 1.3 (60) 2.5 (11) 8. (38) 7.4 (13) 56.7 (12) 414.7 (16) 5. (38) 53.8 (12)
171 1. (1) 3.7 (3) 9.8 (43) 3.2 (8) 23.5 (11) 1.7 (8) 3.4 (8) 1.6 (32)
172 1.2 (109) 3.5 (212) 6.6 (102) 12.6 (188) 65.9 (200) 42.3 (62) 4.2 (102) 11.1 (85)
173 1.3 (257) 10.5 (252) 14.4 (114) 23.3 (190) 89.5 (249) 36.6 (195) 21.1 (108) 27.4 (106)
174 1. (1) 5.1 (48) 11. (27) 3.7 (8) 20. (47) 11.7 (27) 3.2 (8) 1.6 (8)
175 1. (1) 7.6 (113) 6.2 (35) 13. (193) 66.3 (205) 11.6 (148) 7.1 (113) 11.1 (119)
176 1. (1) 6.7 (10) 9.2 (24) 6.3 (10) 89.6 (41) 6.4 (5) 8.7 (10) 19.2 (7)
177 1. (1) 3.8 (6) 2.9 (5) 2.5 (7) 16. (9) 0. (-1) 2.7 (7) 1.7 (7)
178 1. (1) 3.5 (18) 3.6 (79) 2. (15) 22.6 (82) 0. (-1) 2. (31) 4.7 (79)
179 3.5 (186) 6.4 (145) 12.7 (186) 8.6 (59) 84. (136) 2.2 (119) 5.4 (186) 7.5 (116)
180 1.4 (54) 14.4 (168) 13.9 (169) 21.9 (158) 87.8 (209) 5.4 (142) 5. (167) 18.2 (31)
181 1. (1) 9.1 (26) 5. (29) 3.1 (7) 15.7 (9) 0. (-1) 2.8 (7) 2.2 (25)
182 1. (1) 5.2 (18) 3.9 (78) 2.3 (15) 28.8 (15) 0. (-1) 1.9 (5) 9.7 (81)
183 3.3 (160) 6.7 (24) 22.3 (24) 8.9 (91) 33.8 (124) 0. (-1) 9. (24) 8.2 (120)
184 1.1 (12) 3.4 (24) 16.5 (8) 6.2 (1) 58. (14) 0. (-1) 8.8 (22) 9.5 (1)
185 1.9 (192) 515.8 (777) 140.9 (767) 26. (100) 63.7 (794) 57.3 (808) 12.2 (11) 24.9 (100)
186 1. (1) 1.9 (141) 2.7 (38) 1.4 (15) 3.3 (7) 1. (22) 2.3 (19) 0.9 (5)
187 2.1 (73) 3.5 (230) 10. (313) 3.5 (219) 6. (651) 3.5 (255) 2.6 (118) 1.9 (531)
188 1.2 (170) 4.7 (46) 6.2 (151) 12.3 (115) 5.3 (11) 8.2 (147) 8.2 (115) 2.7 (354)
189 1.1 (163) 3.2 (39) 2.3 (18) 1.2 (135) 2. (7) 1.1 (135) 2. (19) 0.9 (136)
190 1.7 (322) 5.5 (516) 17.2 (93) 2.6 (22) 7. (508) 1.7 (528) 2.2 (528) 1.6 (347)
191 1.3 (73) 6.9 (167) 26. (291) 9.2 (93) 9.7 (20) 7.6 (122) 6.1 (93) 88.8 (279)
192 8.1 (149) 1.9 (31) 49.6 (28) 5.3 (202) 9.9 (216) 29.6 (63) 7.5 (1) 3.3 (200)
193 1.6 (21) 4. (12) 56.2 (20) 2.3 (40) 27.6 (32) 62.6 (8) 19. (8) 8.9 (28)
194 1.6 (538) 4. (156) 74.3 (235) 16.1 (244) 7.1 (516) 4.5 (307) 6.7 (15) 6.9 (244)
195 1. (43) 8.2 (42) 62.1 (46) 5.2 (15) 5. (37) 20.4 (22) 28.3 (37) 16. (22)
196 2. (172) 3.7 (868) 16.4 (867) 18.3 (1152) 12.2 (1368) 30.7 (997) 9.7 (1368) 11.7 (652)
197 1.7 (81) 24. (319) 24.6 (312) 4.3 (72) 6.3 (315) 2.9 (277) 7.6 (133) 30.3 (131)
198 1.2 (78) 24. (238) 3055.9 (185) 3.9 (95) 8.4 (181) 14.4 (107) 0.8 (298) 9.4 (176)
199 1.9 (172) 4.9 (430) 14.9 (117) 3.5 (37) 4.3 (130) 12.1 (767) 5.1 (235) 2.8 (584)
200 1. (1) 16.3 (85) 19.3 (124) 1.4 (47) 8.9 (168) 1.5 (35) 0. (-1) 1.2 (27)
201 2.8 (38) 5.6 (18) 40.2 (80) 1. (34) 9.3 (6) 0.7 (93) 3.3 (47) 9.3 (74)
202 1.2 (75) 2.9 (111) 11.5 (112) 2.1 (10) 9.7 (156) 1.2 (9) 0. (-1) 1.2 (9)
203 1.6 (55) 8.2 (13) 5.2 (65) 2.7 (31) 7.3 (71) 2. (31) 2.8 (31) 1.5 (31)
204 1. (1) 1.7 (102) 2.5 (221) 1.1 (31) 2. (140) 2.7 (221) 1.6 (18) 4.4 (48)
205 1. (1) 2.5 (57) 1.5 (92) 0. (-1) 0. (-1) 2. (179) 0. (-1) 0. (-1)
206 1. (1) 2.6 (41) 3.3 (134) 0. (-1) 0. (-1) 7.3 (69) 62.4 (135) 0. (-1)
207 1. (1) 2.5 (131) 1.3 (35) 0. (-1) 0. (-1) 8.5 (69) 0. (-1) 0. (-1)
208 1.1 (174) 1.3 (195) 2.4 (144) 4.1 (155) 2.7 (28) 4.9 (30) 0. (-1) 1.6 (155)









1.5 Pass/Fail per test file for each CAS system

The following table gives the number of passed integrals and number of failed integrals per test number. There are 208 tests. Each tests corresponds to one input file.

Table 1.7:Pass/Fail per test file for each CAS


































Test #
Rubi
MMA
Maple
Maxima
FriCAS
Sympy
Giac
Mupad

















Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail

















1 175 0 175 0 173 2 166 9 172 3 158 17 169 6 169 6
2 33 2 35 0 27 8 15 20 24 11 7 28 17 18 9 26
3 13 1 13 1 11 3 8 6 12 2 9 5 10 4 11 3
4 48 2 50 0 33 17 24 26 48 2 19 31 41 9 12 38
5 279 5 283 1 282 2 252 32 280 4 249 35 269 15 270 14
6 3 4 7 0 5 2 3 4 7 0 5 2 5 2 7 0
7 7 2 9 0 9 0 7 2 9 0 5 4 9 0 9 0
8 113 0 112 1 113 0 111 2 112 1 104 9 109 4 106 7
9 376 0 376 0 376 0 374 2 376 0 348 28 375 1 372 4
10 705 0 705 0 655 50 564 141 652 53 430 275 587 118 542 163
11 100 16 95 21 77 39 20 96 89 27 29 87 31 85 37 79
12 8 0 8 0 8 0 7 1 8 0 8 0 8 0 8 0
13 1917 0 1917 0 1560 357 1328 589 1603 314 1201 716 1276 641 1241 676
14 3201 0 3201 0 2870 331 2048 1153 2535 666 1547 1654 2403 798 1884 1317
15 158 1 155 4 128 31 39 120 47 112 40 119 42 117 49 110
16 34 0 34 0 28 6 16 18 28 6 13 21 28 6 4 30
17 78 0 78 0 78 0 27 51 44 34 14 64 33 45 40 38
18 35 0 35 0 35 0 0 35 0 35 0 35 0 35 0 35
19 1071 0 1071 0 755 316 632 439 674 397 1013 58 616 455 695 376
20 349 0 349 0 260 89 79 270 141 208 103 246 108 241 66 283
21 1156 0 1156 0 1041 115 682 474 856 300 594 562 822 334 730 426
22 115 0 114 1 105 10 27 88 30 85 27 88 31 84 27 88
23 51 0 51 0 14 37 14 37 14 37 25 26 14 37 14 37
24 174 0 174 0 170 4 170 4 158 16 140 34 170 4 129 45
25 3078 0 3044 34 2591 487 2196 882 2370 708 2688 390 1990 1088 2228 850
26 385 0 383 2 197 188 167 218 213 172 144 241 134 251 170 215
27 1081 0 1081 0 749 332 391 690 663 418 380 701 535 546 531 550
28 46 0 46 0 12 34 12 34 12 34 14 32 11 35 12 34
29 594 0 594 0 577 17 422 172 341 253 444 150 420 174 449 145
30 454 0 454 0 385 69 153 301 256 198 114 340 238 216 193 261
31 298 0 296 2 275 23 212 86 228 70 126 172 213 85 197 101
32 143 0 143 0 113 30 108 35 113 30 47 96 106 37 132 11
33 2590 0 2584 6 2325 265 1428 1162 2096 494 1037 1553 1678 912 1589 1001
34 2646 0 2646 0 2584 62 1720 926 2299 347 1214 1432 2153 493 1685 961
35 958 0 942 16 729 229 331 627 594 364 260 698 279 679 276 682
36 123 0 123 0 121 2 67 56 111 12 43 80 90 33 53 70
37 143 0 142 1 141 2 15 128 69 74 11 132 50 93 19 124
38 400 0 394 6 388 12 290 110 330 70 141 259 335 65 195 205
39 1126 0 1126 0 1062 64 688 438 846 280 476 650 799 327 695 431
40 412 1 378 35 399 14 113 300 210 203 188 225 177 236 184 229
41 413 0 400 13 376 37 173 240 256 157 126 287 264 149 218 195
42 111 0 103 8 111 0 83 28 83 28 47 64 100 11 106 5
43 145 0 145 0 143 2 73 72 115 30 79 66 139 6 143 2
44 42 0 38 4 40 2 0 42 9 33 6 36 5 37 1 41
45 4 0 4 0 4 0 0 4 0 4 0 4 0 4 0 4
46 664 0 662 2 496 168 303 361 535 129 282 382 412 252 360 304
47 96 0 92 4 49 47 17 79 47 49 40 56 37 59 49 47
48 156 0 147 9 137 19 69 87 108 48 75 81 110 46 122 34
49 17 0 14 3 2 15 2 15 7 10 1 16 4 13 5 12
50 140 0 139 1 136 4 24 116 129 11 53 87 106 34 72 68
51 491 3 494 0 489 5 409 85 431 63 431 63 421 73 485 9
52 1007 18 997 28 841 184 385 640 697 328 256 769 484 541 455 570
53 98 0 98 0 78 20 64 34 93 5 40 58 55 43 58 40
54 93 0 84 9 75 18 72 21 93 0 50 43 52 41 53 40
55 766 8 751 23 621 153 503 271 694 80 335 439 370 404 580 194
56 193 0 193 0 98 95 106 87 123 70 76 117 102 91 60 133
57 456 0 449 7 309 147 245 211 280 176 231 225 200 256 146 310
58 249 0 243 6 78 171 68 181 90 159 42 207 58 191 46 203
59 288 26 298 16 187 127 238 76 210 104 118 196 152 162 200 114
60 249 14 249 14 98 165 179 84 156 107 50 213 88 175 127 136
61 106 2 108 0 24 84 68 40 39 69 22 86 34 74 35 73
62 543 4 543 4 309 238 223 324 221 326 164 383 214 333 209 338
63 641 0 621 20 337 304 389 252 393 248 177 464 350 291 326 315
64 314 0 314 0 234 80 219 95 279 35 127 187 191 123 183 131
65 538 0 538 0 442 96 243 295 286 252 99 439 191 347 248 290
66 348 0 348 0 264 84 194 154 322 26 113 235 162 186 143 205
67 72 0 72 0 47 25 32 40 39 33 32 40 39 33 36 36
68 113 0 113 0 113 0 53 60 113 0 26 87 65 48 20 93
69 357 0 345 12 245 112 260 97 305 52 105 252 182 175 129 228
70 653 0 638 15 562 91 288 365 358 295 96 557 278 375 258 395
71 36 0 36 0 34 2 34 2 36 0 20 16 34 2 16 20
72 206 2 203 5 178 30 142 66 178 30 4 204 127 81 154 54
73 837 0 820 17 635 202 217 620 512 325 153 684 302 535 344 493
74 1560 3 1519 44 1380 183 984 579 1216 347 222 1341 1111 452 1131 432
75 51 0 51 0 50 1 16 35 30 21 4 47 6 45 13 38
76 358 0 348 10 290 68 133 225 275 83 90 268 130 228 178 180
77 19 0 15 4 12 7 13 6 13 6 8 11 12 7 13 6
78 34 0 32 2 5 29 7 27 8 26 1 33 1 33 9 25
79 590 4 583 11 521 73 332 262 397 197 64 530 321 273 334 260
80 9 0 9 0 9 0 2 7 9 0 5 4 9 0 9 0
81 19 0 19 0 19 0 5 14 15 4 6 13 9 10 19 0
82 294 0 294 0 196 98 92 202 93 201 15 279 26 268 80 214
83 189 0 187 2 135 54 137 52 133 56 54 135 111 78 74 115
84 62 0 62 0 45 17 37 25 39 23 32 30 39 23 35 27
85 99 0 99 0 87 12 81 18 91 8 33 66 51 48 30 69
86 88 0 88 0 88 0 27 61 32 56 22 66 32 56 34 54
87 34 0 34 0 32 2 32 2 34 0 18 16 32 2 15 19
88 22 0 22 0 22 0 17 5 21 1 1 21 20 2 18 4
89 932 0 923 9 854 78 291 641 443 489 95 837 269 663 310 622
90 4 0 4 0 4 0 0 4 0 4 0 4 0 4 0 4
91 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0
92 644 0 634 10 634 10 189 455 317 327 63 581 196 448 231 413
93 393 0 389 4 236 157 119 274 121 272 9 384 17 376 75 318
94 1541 0 1534 7 1533 8 451 1090 734 807 122 1419 505 1036 629 912
95 98 0 98 0 98 0 70 28 73 25 18 80 75 23 67 31
96 21 0 21 0 21 0 2 19 16 5 6 15 15 6 19 2
97 20 0 20 0 20 0 4 16 16 4 5 15 12 8 20 0
98 387 0 386 1 264 123 137 250 153 234 13 374 67 320 122 265
99 62 1 63 0 58 5 45 18 63 0 28 35 31 32 32 31
100 66 0 66 0 36 30 49 17 48 18 36 30 36 30 38 28
101 700 0 700 0 580 120 405 295 452 248 122 578 247 453 369 331
102 91 0 90 1 83 8 79 12 83 8 8 83 75 16 83 8
103 1328 0 1210 118 1114 214 577 751 921 407 289 1039 478 850 835 493
104 855 0 798 57 780 75 428 427 583 272 205 650 225 630 529 326
105 171 0 169 2 122 49 84 87 84 87 58 113 79 92 103 68
106 499 0 497 2 406 93 269 230 406 93 91 408 209 290 283 216
107 51 0 51 0 40 11 0 51 16 35 0 51 0 51 0 51
108 52 0 52 0 37 15 37 15 21 31 8 44 16 36 26 26
109 61 0 61 0 58 3 46 15 61 0 28 33 35 26 28 33
110 23 0 23 0 23 0 19 4 23 0 6 17 22 1 23 0
111 19 0 19 0 19 0 15 4 19 0 4 15 19 0 19 0
112 106 0 105 1 103 3 79 27 31 75 2 104 3 103 103 3
113 64 0 64 0 63 1 21 43 64 0 12 52 36 28 39 25
114 32 0 32 0 25 7 0 32 16 16 0 32 0 32 0 32
115 299 0 299 0 225 74 93 206 106 193 21 278 35 264 78 221
116 46 0 45 1 42 4 29 17 46 0 20 26 21 25 24 22
117 83 0 79 4 51 32 28 55 63 20 37 46 43 40 47 36
118 879 0 869 10 735 144 309 570 393 486 49 830 262 617 323 556
119 305 1 304 2 267 39 175 131 191 115 7 299 191 115 193 113
120 364 1 344 21 331 34 213 152 260 105 40 325 251 114 181 184
121 240 1 227 14 216 25 96 145 145 96 5 236 44 197 56 185
122 286 0 273 13 262 24 166 120 236 50 1 285 82 204 191 95
123 634 0 634 0 586 48 193 441 300 334 8 626 209 425 195 439
124 70 0 70 0 70 0 48 22 49 21 3 67 46 24 49 21
125 1373 0 1340 33 1263 110 459 914 732 641 11 1362 545 828 552 821
126 468 2 424 46 431 39 286 184 401 69 21 449 163 307 243 227
127 70 0 70 0 53 17 28 42 31 39 9 61 31 39 16 54
128 84 0 80 4 52 32 35 49 64 20 37 47 44 40 47 37
129 59 0 53 6 41 18 25 34 41 18 3 56 38 21 33 26
130 16 0 16 0 16 0 12 4 16 0 0 16 16 0 16 0
131 23 0 23 0 23 0 18 5 23 0 0 23 23 0 23 0
132 24 0 24 0 24 0 24 0 24 0 9 15 24 0 24 0
133 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1
134 27 0 27 0 27 0 17 10 27 0 0 27 17 10 8 19
135 254 0 252 2 215 39 159 95 209 45 54 200 139 115 169 85
136 294 0 294 0 289 5 271 23 290 4 64 230 279 15 290 4
137 397 0 396 1 359 38 302 95 365 32 121 276 219 178 155 242
138 9 0 9 0 9 0 1 8 9 0 1 8 1 8 1 8
139 254 76 305 25 107 223 139 191 148 182 65 265 74 256 149 181
140 140 2 142 0 114 28 114 28 115 27 38 104 63 79 50 92
141 944 6 938 12 908 42 651 299 851 99 418 532 705 245 700 250
142 227 0 226 1 216 11 66 161 79 148 100 127 163 64 75 152
143 700 3 694 9 554 149 251 452 265 438 202 501 234 469 146 557
144 472 2 464 10 376 98 112 362 185 289 162 312 246 228 89 385
145 227 0 227 0 214 13 67 160 79 148 100 127 163 64 73 154
146 33 0 33 0 30 3 12 21 15 18 11 22 15 18 3 30
147 118 0 113 5 78 40 31 87 48 70 33 85 51 67 22 96
148 157 9 163 3 144 22 93 73 92 74 91 75 80 86 108 58
149 29 2 28 3 30 1 14 17 11 20 11 20 7 24 14 17
150 1301 0 1287 14 1200 101 416 885 554 747 553 748 365 936 754 547
151 70 0 67 3 69 1 37 33 28 42 23 47 6 64 30 40
152 385 0 368 17 203 182 134 251 286 99 71 314 117 268 147 238
153 153 0 153 0 133 20 86 67 131 22 50 103 61 92 55 98
154 234 0 230 4 228 6 142 92 168 66 82 152 111 123 108 126
155 12 0 12 0 6 6 1 11 6 6 3 9 1 11 6 6
156 174 0 169 5 139 35 84 90 108 66 67 107 92 82 53 121
157 50 0 49 1 37 13 18 32 28 22 13 37 27 23 10 40
158 178 0 173 5 144 34 82 96 110 68 63 115 94 84 57 121
159 49 0 49 0 36 13 15 34 27 22 12 37 25 24 12 37
160 502 0 466 36 340 162 294 208 456 46 118 384 199 303 209 293
161 102 0 101 1 80 22 84 18 78 24 31 71 54 48 29 73
162 33 0 33 0 31 2 31 2 33 0 9 24 31 2 9 24
163 369 0 369 0 318 51 266 103 304 65 115 254 276 93 221 148
164 525 0 501 24 488 37 196 329 366 159 72 453 267 258 247 278
165 183 0 181 2 110 73 143 40 150 33 61 122 103 80 70 113
166 111 0 111 0 111 0 64 47 111 0 26 85 71 40 20 91
167 68 0 68 0 58 10 62 6 60 8 23 45 43 25 21 47
168 33 0 33 0 31 2 31 2 33 0 9 24 31 2 9 24
169 336 0 335 1 293 43 208 128 283 53 103 233 259 77 190 146
170 85 0 84 1 85 0 34 51 67 18 17 68 46 39 55 30
171 72 5 71 6 69 8 63 14 64 13 30 47 46 31 39 38
172 206 41 247 0 207 40 151 96 209 38 67 180 187 60 175 72
173 263 0 263 0 249 14 177 86 246 17 40 223 233 30 185 78
174 61 0 60 1 58 3 55 6 61 0 28 33 35 26 28 33
175 183 41 224 0 164 60 105 119 177 47 32 192 137 87 131 93
176 53 0 53 0 43 10 16 37 50 3 6 47 27 26 32 21
177 16 0 16 0 8 8 5 11 12 4 3 13 4 12 4 12
178 84 0 80 4 50 34 39 45 63 21 34 50 44 40 47 37
179 201 0 192 9 140 61 90 111 142 59 9 192 114 87 94 107
180 220 0 220 0 180 40 147 73 211 9 10 210 141 79 121 99
181 29 0 29 0 19 10 13 16 25 4 4 25 8 21 8 21
182 83 0 74 9 49 34 55 28 62 21 34 49 43 40 47 36
183 175 0 175 0 136 39 111 64 132 43 0 175 107 68 91 84
184 27 0 27 0 14 13 10 17 24 3 0 27 20 7 5 22
185 1059 0 1049 10 936 123 762 297 975 84 313 746 802 257 740 319
186 156 0 156 0 109 47 51 105 43 113 48 108 36 120 30 126
187 663 0 663 0 498 165 259 404 241 422 185 478 95 568 133 530
188 370 1 370 1 233 138 117 254 147 224 93 278 97 274 78 293
189 166 0 166 0 112 54 57 109 52 114 53 113 39 127 32 134
190 569 0 558 11 471 98 245 324 236 333 154 415 106 463 144 425
191 295 1 288 8 185 111 81 215 122 174 80 216 84 212 64 232
192 216 27 231 12 195 48 154 89 147 96 83 160 127 116 128 115
193 46 3 47 2 48 1 29 20 16 33 10 39 17 32 17 32
194 538 0 536 2 508 30 270 268 256 282 144 394 175 363 175 363
195 62 0 60 2 61 1 34 28 17 45 14 48 17 45 17 45
196 1378 0 1353 25 1100 278 619 759 1118 260 454 924 675 703 698 680
197 361 0 361 0 342 19 267 94 338 23 78 283 257 104 239 122
198 300 0 294 6 273 27 246 54 223 77 100 200 30 270 153 147
199 935 0 914 21 784 151 502 433 838 97 200 735 490 445 518 417
200 190 0 185 5 151 39 86 104 120 70 48 142 45 145 52 138
201 100 0 98 2 74 26 21 79 69 31 1 99 6 94 56 44
202 178 0 173 5 100 78 84 94 113 65 32 146 46 132 49 129
203 71 0 71 0 53 18 42 29 49 22 32 39 23 48 41 30
204 311 0 300 11 179 132 140 171 258 53 168 143 133 178 203 108
205 218 0 190 28 154 64 60 158 60 158 114 104 60 158 60 158
206 136 0 134 2 118 18 34 102 34 102 50 86 104 32 34 102
207 136 0 136 0 104 32 34 102 34 102 50 86 34 102 34 102
208 198 0 195 3 144 54 127 71 102 96 46 152 16 182 71 127

















1.6 Timing

The command AboluteTiming[] was used in Mathematica to obtain the elapsed time for each integrate call. In Maple, the command Usage was used as in the following example

cpu_time := Usage(assign ('result_of _int',int(expr,x)),output='realtime'

For all other CAS systems, the elapsed time to complete each integral was found by taking the difference between the time after the call has completed from the time before the call was made. This was done using Python’s time.time() call.

All elapsed times shown are in seconds. A time limit of 3 minutes was used for each integral. If the integrate command did not complete within this time limit, the integral was aborted and considered to have failed and assigned an F grade. The time used by failed integrals due to time out is not counted in the final statistics.

1.7 Verification

A verification phase was applied on the result of integration for Rubi and Mathematica. Future version of this report will implement verification for the other CAS systems. For the integrals whose result was not run through a verification phase, it is assumed that the antiderivative produced was correct.

Verification phase has 3 minutes time out. An integral whose result was not verified could still be correct. Further investigation is needed on those integrals which failed verifications. Such integrals are marked in the summary table below and also in each integral separate section so they are easy to identify and locate.

1.8 Important notes about some of the results

1.8.1 Important note about Maxima results

Since these integrals are run in a batch mode, using an automated script, and by using sagemath (SageMath uses Maxima), then any integral where Maxima needs an interactive response from the user to answer a question during evaluation of the integral in order to complete the integration, will fail and is counted as failed.

The exception raised is ValueError. Therefore Maxima result below is lower than what could result if Maxima was run directly and each question Maxima asks was answered correctly.

The percentage of such failures were not counted for each test file, but for an example, for the Timofeev test file, there were about 14 such integrals out of total 705, or about 2 percent. This pecrentage can be higher or lower depending on the specific input test file.

Such integrals can be indentified by looking at the output of the integration in each section for Maxima. The exception message will indicate of the error is due to the interactive question being asked or not.

Maxima integrate was run using SageMath with the following settings set by default

'besselexpand : true' 
'display2d : false' 
'domain : complex' 
'keepfloat : true' 
'load(to_poly_solve)' 
'load(simplify_sum)' 
'load(abs_integrate)' 'load(diag)'

SageMath loading of Maxima abs_integrate was found to cause some problem. So the following code was added to disable this effect.

 from sage.interfaces.maxima_lib import maxima_lib 
 maxima_lib.set('extra_definite_integration_methods''[]') 
 maxima_lib.set('extra_integration_methods''[]')

See https://ask.sagemath.org/question/43088/integrate-results-that-are-different-from-using-maxima/ for reference.

1.8.2 Important note about FriCAS and Giac/XCAS results

There are Few integrals which failed due to SageMath not able to translate the result back to SageMath syntax and not because these CAS system were not able to do the integrations.

These will fail With error Exception raised: NotImplementedError

The number of such cases seems to be very small. About 1 or 2 percent of all integrals.

Hopefully the next version of SageMath will have complete translation of FriCAS and XCAS syntax and I will re-run all the tests again when this happens.

1.8.3 Important note about finding leaf size of antiderivative

For Mathematica, Rubi and Maple, the buildin system function LeafSize is used to find the leaf size of each antiderivative.

The other CAS systems (SageMath and Sympy) do not have special buildin function for this purpose at this time. Therefore the leaf size for Fricas and Sympy and Giac antiderivatives is determined using the following function, thanks to user slelievre at https://ask.sagemath.org/question/57123/could-we-have-a-leaf_count-function-in-base-sagemath/


For Sympy, which is called directly from Python, the following code is used to obtain the leafsize of its result


1.8.4 Important note about Mupad results

Matlab’s symbolic toolbox does not have a leaf count function to measure the size of the antiderivative, Maple was used to determine the leaf size of Mupad output by post processing.

Currently no grading of the antiderivative for Mupad is implemented. If it can integrate the problem, it was assigned a B grade automatically as a placeholder. In the future, when grading function is implemented for Mupad, the tests will be rerun again.

The following is an example of using Matlab’s symbolic toolbox (Mupad) to solve an integral


Which gives sin(x)^2/2

1.9 Design of the test system

The following diagram gives a high level view of the current test build system.