A Solution Manual For

First order enumerated odes

INasser M. Abbasil December 3]., 2024 Compiled on December 31, 2024 at 7:27am



mailto:nma@12000.org




Contents

1 Lookup tables for all problems in current book

2 Book Solved Problems



CONTENTS




| 1
CHAPTER

LOOKUP TABLES FOR ALL PROBLEMS IN CURRENT
BOOK

1.1 section 1 . . . ..o L 6]
1.2 section 2 (system of first order odes) . . . . . ... ... .. L. 8
1.3 section 3. First order odes solved using Laplace method . . . ... .. .. B



CHAPTER 1. LOOKUP TABLES FOR ALL PROBLEMS IN CURRENT BOOK 6

1.1 section 1

Table 1.1: Lookup table for all problems in current section

ID problem ODE

1 y =0

2 ¥y =a

8663 3 Yy ==x

8664 4 y =

8665 5 y =ax

8666/ 6 y = azxy

8667 7 Y =ax+y
8668 8 y =ax+by
8669 9 Y=y

10 y =by

11 Yy = azx + by?
8672 12 cy =0

8673 13 cy =a

8674 14 cy =azx

8675 15 ¢y =ax+y
8676/ 16 cy =ax+ by
8677 17 cy =y

8678 18 cy = by

8679 19 cy' = ax + by?
8680 20 cy = et
8681 21 cy = =’
8682 22 cy = b
8683 23 oy =
8684 24 asin (z) yzy =0
8685 25 f(z)sin () yzy'mr =0
8686 26 y =sin(z)+y
8687 27 y' = sin (z) + 32
8688 28 Y =cos(z)+ L
8689 29 y = cos (z) + £
8690 30 Y =1z +y+ by?
8691 31 2y =0

8692 32 5y =0

8693 33 ey =0

Continued on next page
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problem ODE

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
95
96
o7
o8
99
60
61
62
63
64
65
66
67
68

7wy =0
sin(z)y =0
f@)y =0
xy =1

zy = sin (z)

(z-1)y' =0
yy' =0
zyy =0

zysin (z)y =0
mysin (z)y' =0
zsin(z)y =0

zsin (z)y* =0

yy =0
y" =0
zy" =0
Y=z
Y =z+y
2
y =1
y?=v
T
y ="
T
yi =L
T
2_ 1
Y= vz
2 _ 1
Y= e}
y,2: leys
4_ 1
y© = o
'3/2: x31y4
y=+y1+6z+y
y =(1+6z+y)?
y = (1+6z+y)"*
Y =(a+bz+y)*
y = (r+z+7y)"?
y' = (a+ bz + cy)°
y/_em-i—y
y' =10+ "t

Continued on next page
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Table 1.1 Lookup table

Continued from previous page

ID problem ODE
8729 69 Yy =z e +sin (z)
87300 70 y' = 5e* 2% 4 sin ()

1.2 section 2 (system of first order odes)

Table 1.2: Lookup table for all problems in current section

ID problem ODE

1 ['() +y/(t) — =(t) = y(t) +¢,2'(t) + ¢/ (t) = 2(t) + 3y(t) + €]

2 22/ (t) + o/ (t) — z(t) = y(t) + t,2/(t) + ¥/ (t) = 22(t) + 3y(t) + €]

8733 3 [2'(t) + ¢/ (t) — z(t) = y(t) + t + sin (¢) + cos (t),,Z'(t) + ¥/ (t) = 2z(t) +
3y(t) + €]

1.3 section 3. First order odes solved using Laplace
method

Table 1.3: Lookup table for all problems in current section

ID problem ODE
1 Yt+y=t
2 y—yt=0
3 Yt+y=0
4 Yt+y=0
8738 5 yt+y=0
8739 6 Yt+y=0
8740, 7 yt+y=0
8741 8 y't +y = sin (¢)
9 Yt+y=t
10 Yt+y=t
v +t2y=0

—_
[N

(at+1)y' +y=t
v+ (at+0t)y=0
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Y+ (at+0t)y=0
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2.1.1 problem 1
Solved as first order quadratureode . . . .. ... ... ... ...
Solved as first order homogeneous class D2ode . . . .. ... ... IR
Solved as first order ode of type differential . . . ... .. ... .. 14
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Internal problem ID [8661]

Book : First order enumerated odes
Section : section 1

Problem number : 1

Date solved : Tuesday, December 17, 2024 at 12:57:13 PM

CAS classification : [_quadrature]

Solve

y' =0

Solved as first order quadrature ode

Time used: 0.025 (sec)

Since the ode has the form 3y’ = f(z), then we only need to integrate f(z).

/dy:/de+cl
)

=Cl

y(x) 0

14

-3

% 2 ;
X

Figure 2.1: Slope field plot
y=0

Summary of solutions found

2
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Solved as first order homogeneous class D2 ode
Time used: 0.155 (sec)

Applying change of variables y = u(x) z, then the ode becomes

u'(z)z+u(z) =0

Which is now solved The ode v/'(z) = —@ is separable as it can be written as
IR C))
() = -2
= f(z)g(u)
Where
1
flz)=—_
9(u) =u

Integrating gives

/ﬁdu=/f(z)dx
/%du=/—%dw
In (u(z)) =In (i) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = In (%) +e

u(z) =0
Solving for u(z) gives
u(z) =0
et
u(z) = —
Converting u(x) = 0 back to y gives
y=0

Converting u(z) = <- back to y gives
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—21

% 2 ; ; y
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Figure 2.2: Slope field plot

y=0
Summary of solutions found

y=0

y=e"

Solved as first order ode of type differential
Time used: 0.010 (sec)

Writing the ode as

y' =0 (1)
Which becomes
(1) dy = (0) dz (2)
But the RHS is complete differential because
(0) dxz = d(0)
Hence (2) becomes
(1) dy = d(0)
Integrating gives
y=a
o]
yx) 0]
14
24
3
] ) 5 ; 7

X

Figure 2.3: Slope field plot
y=0

Summary of solutions found
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Maple step by step solution

Let’s solve
#wy(@) =0
° Highest derivative means the order of the ODE is 1
()
° Integrate both sides with respect to x
[ (Ly(z)) dz = [0dz + C1
° Evaluate integral
y(z) = C1
o Solve for y(x)
y(z) = C1

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

N\

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 5

‘dsolve(diff(y(x),x) = 0,
‘ y(x),singsol=all)

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7

'DSolve[{D[y[x],x1==0,{}},
y[x],x,IncludeSingularSolutions->True]

N\

y(z) =
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2.1.2 problem 2

Solved as first order quadrature ode
Solved as first order homogeneous class D2 ode

Solved as first order Exact ode

Maple step by step solution

Maple trace . . . . . .. ..
Maple dsolve solution . . .

Mathematica DSolve solution . . . . . . . . . . . . . ... .. ...

Internal problem ID [8662]

Book : First order enumerated odes

Section : section 1

Problem number : 2

Date solved : Tuesday, December 17, 2024 at 12:57:14 PM
CAS classification : [_quadrature]

Solve
Yy =a
Solved as first order quadrature ode

Time used: 0.036 (sec)

Since the ode has the form 3y’ = f(z), then we only need to integrate f(z).

[v=[ads

Yy=ax +C

Summary of solutions found

Yy=ar-+c

Solved as first order homogeneous class D2 ode
Time used: 0.186 (sec)

Applying change of variables y = u(x) z, then the ode becomes

v(z)x+u(z)=a

Which is now solved The ode v/'(z) = —% is separable as it can be written as
u'(x) _ _u(:c) —a
= f(z)g(v)
Where
1
flz)=_
g(u)=—-u+a

Integrating gives

—In(—u(z)+a)=ln(z)+c
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We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or —u + a = 0 for u(x)
gives

u(z) =a

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

—In(—u(z)+a) =In(z)+

u(z) =a

Solving for u(z) gives

u(z) =a
_ (re%a—1)e™™
u(z) = T
Converting u(z) = a back to y gives
Yy = ax

_ (zela—1)e°
r) = T

Converting u( > back to y gives

y=(rxera—1)e ™

Summary of solutions found

Yy =ax

y=(zea—1)e™

Solved as first order Exact ode
Time used: 0.060 (sec)
To solve an ode of the form

dy
T
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.

Taking derivative of ¢ w.r.t. z gives

d

Hence 06 06d
Y
T i A B
or + Oy dx 0 (B)
Comparing (A,B) shows that

8¢
5. =M
dp
=N
2 _ 9

But since ==

Budy = Dyos then for the above to be valid, we require that

oM _on
oy Oz
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘2: ;’y = aigz is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
dy = (a)dz
(—a)dz+dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —a
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM_o
dy  dy
And
ON
1
8 ( )
= ()
Since %]‘y/f = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)
¢

=M (1)
0¢
oy =V 2)

Integrating (1) w.r.t. z gives

@dx:/de
ozx

8¢ B
9z dz = / —adx

¢ = —ax + f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t y gives

¢
ay‘°+f() (4)

But equation (2) says that g—Z’ = 1. Therefore equation (4) becomes

1=0+f(y) (5)
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Solving equation (5) for f'(y) gives
f'y) =1

Integrating the above w.r.t y gives
[rway=[@ay
fy)=y+a
Where c¢; is constant of integration. Substituting result found above for f(y) into equation
(3) gives ¢

p=—-arx+y+c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢, constants into the constant c; gives the solution as

cp=—ar+vy
Solving for y gives
Yy=ax+c
Summary of solutions found
Yy=ar-+c
Maple step by step solution
Let’s solve
wy(@)=a
° Highest derivative means the order of the ODE is 1
=y(2)
° Integrate both sides with respect to x
[ (Ly(z)) dz = [adz+ C1
° Evaluate integral
y(z) = za+ C1
o Solve for y(x)
y(x) = za+ C1

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

N

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 9

‘dsolve(diff(y(x),x) = a,
‘ y(x),singsol=all)

Y=ar-+c
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Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 11

'DSolve[{D[y[x],xl==a,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(x) = ax + ¢
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2.1.3 problem 3

Solved as first order quadratureode . . . .. ... ... ... ...
Solved as first order Exactode . . . . ... ... ... .......
Maple step by step solution . . . . . . ... ... ... ...
Maple trace . . . . . . . . . . ...
Maple dsolve solution . . . . . ... .. ... L.
Mathematica DSolve solution . . . . ... ... ... ........

Internal problem ID [8663]

Book : First order enumerated odes

Section : section 1

Problem number : 3

Date solved : Tuesday, December 17, 2024 at 12:57:15 PM
CAS classification : [_quadrature]

Solve
y=x
Solved as first order quadrature ode

Time used: 0.038 (sec)

Since the ode has the form 3y’ = f(x), then we only need to integrate f(z).

[v=[zdo

72
y=5 ta

AV AV NVNNNNNN—~— 7 ]
RIS A A A A A
TR IR S 77777111
2V 0 VN N N N N 77 77711
VAN NNNNNNN—~— 7]
AR RS 777771
AT T T 77777111
VAN NNNNNNN—~— 7]
RIS 7777711
W ol VY VNNNNNNN—~— 7] ]
Y VAN NNNNNN—~—= 77T
TR TR 777711
VAV NNNNNNN—~—— 7]
ANV NNNNNN~—~ /777111
TR TR 7777711
AT TRTATRATRA RIS 77711
2TV AN NN NNNNN—~— 777 ] ]
TR R S 7777711
TR RS 77777111
S VANNNN NN~ ] ]
4 ) ) ) 7

X

Figure 2.4: Slope field plot
y=z
Summary of solutions found
22
y=—-ta
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Solved as first order Exact ode
Time used: 0.056 (sec)
To solve an ode of the form

dy
M(z,9) + N(z,5) £ =0 (A)
T
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.

Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06d
Y
— —_—— B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
9 M
o
TN
9y
But since ;;gy = ;): g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = a‘fgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
dy = (z) dz
(—z)dz+dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —zx
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM  ON
oy Oz
Using result found above gives
oM_ o
oy Oy
=0
And
ON 0

o~ oz
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Since %i; = %%’, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

o9
g—x—M (1)
¢ _
5 =N 2)

Integrating (1) w.r.t. = gives

%dx:/de
or

oo .
%dx—/—xdx

2

6= —5 + 1) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t y gives

99 _ :
5;—0+f@) (4)

But equation (2) says that g—‘z = 1. Therefore equation (4) becomes

1=0+f(y) (5)

Solving equation (5) for f’'(y) gives
flly) =1

Integrating the above w.r.t y gives

[rway=[way

fly)=y+a

Where c; is constant of integration. Substituting result found above for f(y) into equation

(3) gives ¢
2

z
¢=_E+y+cl

But since ¢ itself is a constant function, then let ¢ = c; where c; is new constant and
combining c¢; and ¢y constants into the constant c; gives the solution as

2

xr
Clz—?+y

Solving for y gives

y=—+a
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Figure 2.5: Slope field plot
y=z
Summary of solutions found
x? N
=—+4c
Y 5 1
Maple step by step solution
Let’s solve
d
wy(@) =z
° Highest derivative means the order of the ODE is 1
d
&Y()
. Integrate both sides with respect to x
[ (Ly(z)) dr = [ zdz + C1
. Evaluate integral
y(z) = 2—2 + C1
o Solve for y(x)
y(z) = ””2—2 + C1
Maple trace
“Methods for first order ODEs:
‘--— Trying classification methods --—-
‘trying a quadrature
‘<— quadrature successful”
Maple dsolve solution
Solving time : 0.002 (sec)
Leaf size : 11
‘dsolve(diff(y(x),x) = x,
‘ y(x) ,singsol=all)
2

y=—-+ta
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Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 15

'DSolve[{D[y[x],xl==x,{}},
‘ y[x],x,IncludeSingularSolutions->True]

CBZ

y(x) — 5 +c
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2.1.4 problem 4

Solved as first order quadratureode . . . .. ... ... ... ...
Solved as first order homogeneous class D2ode . . . .. ... ...
Solved as first order Exactode . . . . .. .. ... ... ......
Maple step by step solution . . . . .. ... ... ... ... .. ..
Maple trace . . . . . . . . . . e
Maple dsolve solution . . . ... ... ... ... . ... ...
Mathematica DSolve solution . . . . ... ... ... ........

Internal problem ID [8664]

Book : First order enumerated odes

Section : section 1

Problem number : 4

Date solved : Tuesday, December 17, 2024 at 12:57:15 PM
CAS classification : [_quadrature]

Solve
y =1
Solved as first order quadrature ode

Time used: 0.032 (sec)

Since the ode has the form 3y’ = f(z), then we only need to integrate f(z).

/dy=/1dx
Y

=r+C

y(x) 0

14
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Figure 2.6: Slope field plot
y=1

Summary of solutions found

y=c+c



CHAPTER 2. BOOK SOLVED PROBLEMS 27

Solved as first order homogeneous class D2 ode
Time used: 0.173 (sec)

Applying change of variables y = u(x) z, then the ode becomes

v(z)z+u(r)=1

Which is now solved The ode v/'(z) = —% is separable as it can be written as
/ _ _U(.’L‘) -1
u'(z) = —
= f(z)g(v)
Where
1
fl@)=~
glu)y=—-u+1

Integrating gives

[ gt 1
[ Mdu_/ i

—In(u(z) —1)=In(z) +

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or —u+ 1 = 0 for u(x)
gives

u(z) =1

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

—In(u(z) —1)=In(z) + ¢

u(z) =1

Solving for u(z) gives

u(z) =1

C1 1 —C1
w(z) = (e +1)e
x
Converting u(x) = 1 back to y gives
y==1

(zecl+l)e— 1
z

Converting u(z) = back to y gives

y=(zer+1)e ™
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Figure 2.7: Slope field plot
y=1

Summary of solutions found

y=x

y=(ze*+1)e @

Solved as first order Exact ode
Time used: 0.056 (sec)

To solve an ode of the form

M(z,) + N(z,3) 2 =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
el -0
7.0 Y)
Hence 06 06 d
Yy _
oxr  Oydr 0 (B)
Comparing (A,B) shows that
99 _
or
99 _
oy
But since %gy = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
(,f; g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,
which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore

(1)dy = d=
—dz+(1)dy =0 (2A)
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Comparing (1A) and (2A) shows that
M(z,y) =-1
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM  ON
oy Oz
Using result found above gives
oM 0
(1
o @( )
=0
And
ON
1
B = ()
= 0
Since %A;I = M , then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
9 M (1)
09
2 —N 2
o )

Integrating (1) w.r.t. z gives

%dx:/de
or
/—dx—/—ldm

¢=—z+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t y gives

9¢ :
5§=0+f@) (4)

But equation (2) says that a¢ = 1. Therefore equation (4) becomes

1=0+f(y) (5)

Solving equation (5) for f'(y) gives
f'ly) =1

Integrating the above w.r.t y gives

[rwa= [ mw

fly)=y+a

Where c¢; is constant of integration. Substituting result found above for f(y) into equation
(3) gives ¢
p=—-cr+y+a
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But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢y constants into the constant c; gives the solution as

01:—117+y
Solving for y gives
Yy=x+cC
NS ST
SIS
SIS T
A A A A A A A A SV AV SV SV SV SV SV SV SV eV avd
ST
ST TSI TS TS TSI
NIV AV AV A AV AN YA YAV AN Y AV AV AV AV SV aV ey ey
ST
ST TSI TS TS TSI
yX) N A A A N A A S N N S S S S S S S e e
SIS
ST TSI TS TS TSI TS
J TS
N, ST
ST TSI TS TS TSI TS
J TS
2SI TSI
ST TSI TS TS TSI TS
J TS
ST
] ) 5 ; 7
X
Figure 2.8: Slope field plot
y=1
Summary of solutions found
Y=+
Maple step by step solution
Let’s solve
d _
Ly(@) =1
° Highest derivative means the order of the ODE is 1
d
zY(@)
° Integrate both sides with respect to x
[ (Ly(z)) dz = [1dz + C1
. Evaluate integral
y(z) =z + CI
) Solve for y(x)
y(z) =z + C1

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 7

dsolve(diff(y(x),x) = 1,
y(x),singsol=all)

y=x+0

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 9

DSolve [{D[y[x],x]1==1,{}},
y[x],x,IncludeSingularSolutions->True]

ylz) > z+ a1
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2.1.5 problem 5
Solved as first order quadratureode . . . .. ... ... ... ...
Solved as first order Exactode . . . . .. ... ... ........
Maple step by step solution . . . . . ... ... ... .. ... ... 34
Maple trace . . . . . . . . . . .. 351
Maple dsolve solution . . . . . ... .. ... oL
Mathematica DSolve solution . . . . . .. ... ... ... .....
Internal problem ID [8665]
Book : First order enumerated odes
Section : section 1
Problem number : 5
Date solved : Tuesday, December 17, 2024 at 12:57:16 PM
CAS classification : [_quadrature]
Solve
v = ar
Solved as first order quadrature ode
Time used: 0.040 (sec)
Since the ode has the form 3y’ = f(x), then we only need to integrate f(z).
/ dy = / azx dx
= az’ +c
Y= 9 1
Summary of solutions found
_az? N
Y= 5 1
Solved as first order Exact ode
Time used: 0.061 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

Hence

Comparing (A,B) shows that

But since

8%¢ __ 82%¢
ozxdy ~ Oyoz

d

0p L 0bdy _

8x+8yd:v_0
0p
8_x_M
0p
B_y_N

then for the above to be valid, we require that

oM _ oN
oy Oz
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If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘2: ;’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,
which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
dy = (az)dz
(—az)dz+dy =0 (2A)

Comparing (1A) and (2A) shows that
M (IL' ) y) = —-ar
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oy Oy
=0
And
ON 0
-1
Oz ax( )
=0
Since %A;I = %, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
— =M 1
o (1)
09
— =N 2
5 )

Integrating (1) w.r.t. z gives

%dx:/de
or

op .
%dx—/—axdx

ax?

6=-"T+ 1) ()

Where f(y) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1"(y) (4)

But equation (2) says that g—z = 1. Therefore equation (4) becomes

1=0+f(y) (5)
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Solving equation (5) for f'(y) gives
fy) =1

Integrating the above w.r.t y gives

[rway=[@ay

fly)=y+a

Where c¢; is constant of integration. Substituting result found above for f(y) into equation
(3) gives ¢
ax?

¢:—T+Z/+Cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

2

azTg T
Solving for y gives
az? N
=—+c
Y 9 1
Summary of solutions found
Y= 9 1

Maple step by step solution

Let’s solve

%y(m) =za

° Highest derivative means the order of the ODE is 1

&y(x)

° Integrate both sides with respect to x
[ (Ly(z)) dz = [ zadz + C1

° Evaluate integral

y(z) = m;—“ + C1
o Solve for y(x)
y(z) = x;—“ + C1
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Maple trace

‘“Methods for first order ODEs:

‘——— Trying classification methods ——-
‘trying a quadrature

‘<- quadrature successful”

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 12

‘dsolve(diff(y(x),x) = a*x,
‘ y(x),singsol=all)

azr
y = — —|— Cl
Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 16

‘ DSolve [{D[y[x],x]==a*x,{}},
‘ y[x],x,IncludeSingularSolutions->True]

2

y(x) — % + ¢
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2.1.6 problem 6
Solved as first order linearode . . . . ... ... ... ....... 36
Solved as first order separableode . . . . .. .. ... ....... 37
Solved as first order homogeneous class D2ode . . . ... ... .. 37
Solved as first order Exactode . . . . .. .. ... ... ...... 38]
Solved using Lie symmetry for first order ode . . . . . .. 41l
Maple step by step solution . . . .. ... ... ... ... ..., 44
Maple trace . . . . . . . . . 44
Maple dsolve solution . . . . . . ... ... .. ... ... ... .. 44
Mathematica DSolve solution . . . . . ... ... ... ....... 44

Internal problem ID [8666]

Book : First order enumerated odes

Section : section 1

Problem number : 6

Date solved : Tuesday, December 17, 2024 at 12:57:17 PM
CAS classification : [_separable]

Solve
/
Y = azry
Solved as first order linear ode

Time used: 0.086 (sec)

In canonical form a linear first order is

Y +q(z)y = p(z)

Comparing the above to the given ode shows that

q(z) = —az
p(z)=0
The integrating factor u is
p= o) adz
— ef —axdx
GZ2
= e_ 2
The ode becomes
S =0
dx'uy
aa:2
e T) =0

Integrating gives

axT

ye 2 :/de+cl

=Cl

2

Dividing throughout by the integrating factor e~z

Summary of solutions found

gives the final solution
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Solved as first order separable ode
Time used: 0.109 (sec)

The ode y' = axy is separable as it can be written as

Y = azy

Where

Integrating gives

/ﬁdy=/f(x)dx
/idyz/axdx
I az?

(y)=7+01

We now need to find the singular solutions, these are found by finding for what values

9(y) is zero, since we had to divide by this above. Solving g(y) = 0 or y = 0 for y gives
y=0

Now we go over each such singular solution and check if it verifies the ode itself and any

initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

2
In(y) = ﬂ‘|‘C1

2
y=0
Solving for y gives
y=0
111‘2
Y= e 2 ta
Summary of solutions found
y=0
G(E2
Y= eT+cl

Solved as first order homogeneous class D2 ode
Time used: 0.126 (sec)

Applying change of variables y = u(x) z, then the ode becomes
v (z) 2 + u(z) = az’u(r)

Which is now solved The ode v/'(z) = w is separable as it can be written as
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Where

Integrating gives

/ﬁdu:/f(x)dx
/idu=/ax2$_1dz

In (u(z)) = “sz +n (1> to

T

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(z) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

2 z
u(z) =0
Solving for u(z) gives
u(z) =0
T 1
ez 7°¢
u(z) =
Converting u(x) = 0 back to y gives
y=0
N
Converting u(z) = ©-— back to y gives
ax2
Y= eT—i_cl
Summary of solutions found
y=0
awz
Y= e 2 Ta
Solved as first order Exact ode
Time used: 0.173 (sec)
To solve an ode of the form
d
M(z,y) + N(z,y) 52 =0 (8)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t.  gives

< owy) =0
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Hence 8¢ 8¢ p
ay
B
oz ay dr (B)
Comparing (A,B) shows that
o¢ _
or
o¢ _
oy
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘9: g’y = 6‘9 8¢ is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
dy = (azy) dz
(—azy)dz+dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —azy
N(z,y)=1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
0y Oz
Using result found above gives
oM 0
By ay( azy)
= —azx
And
ON
B (1)
= O

Since %]‘; %];’ , then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

3_M _9N
Oy ox
= 1((— z) — (0))
= —ax
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is
—e [Adz

I

— ef—a:z:da:
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The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M =uM
lle2
=e 2 (—axy)
lle2
= —arye 2
And
N =uN
=e 2 (1)
U/IL'Q
= e_ 2

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M + Ng—i =0
(o) () 2o

o= 1)
0p —
ay = (2)
Integrating (2) w.r.t. y gives
0 . [
a_y dy = /Ndy
0p . [ _az?
3_y dy = /e dy
¢p=ye t + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t x gives

6¢ a fL‘2

9wyt 4 (@) (@)
az2
But equation (1) says that % = —azye  z . Therefore equation (4) becomes
a:l:2 GIQ
—azye” 2 = —azye 2 + f'(z) (5)

Solving equation (5) for f'(z) gives

f'(z) =0
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Therefore

f@)=qa
Where ¢, is constant of integration. Substituting this result for f(x) into equation (3)
gives ¢

awz

¢=ye_ 2

+c
But since ¢ itself is a constant function, then let ¢ = c; where c; is new constant and
combining c¢; and cy; constants into the constant c; gives the solution as

01)2

cp=ye 2
Solving for y gives
0/1‘2
y=ez2 ¢
Summary of solutions found
0/22
y=ez ¢

Solved using Lie symmetry for first order ode
Time used: 0.212 (sec)

Writing the ode as

y = axy
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - gx) - w2€y - wxf — Wyl = 0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

§ = zay +yaz + a1 (1E)
1 = wby +ybs + by (2E)

Where the unknown coeflicients are

{a1, a3, a3,b1,b9, b3}
Substituting equations (1E,2E) and w into (A) gives
by + azy(bs — az) — a®x*y’az — ay(zas + yaz + a;) — azx(xby + ybs + b)) =0 (5E)
Putting the above in normal form gives
—a2w2y2a3 —az’hy — 2axyas — ay2a3 —azb; —aya; + by =0
Setting the numerator to zero gives
—a2w2y2a3 —az’hy — 2axyas — ay2a3 —azb; —aya; + by =0 (6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}
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The following substitution is now made to be able to collect on all terms with {z,y} in
them

{z =v1,y = v}
The above PDE (6E) now becomes
—a2a3va§ — 2aa9v1V9 — aa3v§ — abgvf — aa1v9 — abjv; + by =0 (TE)
Collecting the above on the terms v; introduced, and these are
{v1, v}
Equation (7E) now becomes
2

—a’a3vivs — 2aa201v5 — aazvs — abovi — aa1ve — abyvy + by =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

by =0
—aa; =0
—2aa, =0
—aaz =0
—ab; =0
—aby =0
—a%a; =0

Solving the above equations for the unknowns gives

a1 =0
a, =0
a3 =0
by =0
b, =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

£=0
n=y

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _

F=y =18 1)

The above comes from the requirements that (&a% —HI%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
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S is found from
5= [ Lay
n
Yy

S=In(y)

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

ﬁ — Sx +w(x,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R,, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

w(z,y) = azy

Evaluating all the partial derivatives gives

R, =1
R, =0
Sy =0

1
Sy=1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

dR
We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method. It

converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

ax (2A)

aR

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

/dSz/aRdR

2
S(R) = %HQ

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

2
azx
In(y) = N + c2

a 22
7+C2

y:e 2

Summary of solutions found

2
y = 9%4—02
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Maple step by step solution

Let’s solve
wy(z) = vay(z)

° Highest derivative means the order of the ODE is 1
=y(2)

) Solve for the highest derivative

i-y(z) = zay(z)

° Separate variables

d
Ey(z‘) _
Ty T r@

° Integrate both sides with respect to x

i:y(@) dz = [ zadz + C1
y(z) -

° Evaluate integral
In (y(z)) = %* + C1
o Solve for y(x)

Z2(l
y(@) =ez T

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 13

‘ dsolve(diff (y(x),x) = axxxy(x),
‘ y(x) ,singsol=all)

Mathematica DSolve solution

Solving time : 0.027 (sec)
Leaf size : 23

p
'DSolve [{D[y[x],x]==a*xxy[x],{}},
‘ y[x],x,IncludeSingularSolutions->True]

axz

y(z) = cre 2
y(z) =0
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2.1.7 problem 7
Solved as first order linearode . . . . ... ... ... ....... 45
Solved as first order Exactode . . . . ... ... ... ....... 46
Solved using Lie symmetry for first orderode . . . . . .. ... .. 48
Maple step by step solution . . . . .. ... ... ... ... ... . 531
Mapletrace . . . . . . . . . . . e H2]
Maple dsolve solution . . . ... ... ... ... ... .. ..., H2l
Mathematica DSolve solution . . . . . ... ... ... ....... 52

Internal problem ID [8667]

Book : First order enumerated odes

Section : section 1
Problem number : 7

Date solved : Tuesday, December 17, 2024 at 12:57:18 PM
CAS classification : [[_linear, ‘class A‘]]

Solve

v =ar+y

Solved as first order linear ode

Time used: 0.105 (sec)

In canonical form a linear first order is

Y +q(z)y = p(z)

Comparing the above to the given ode shows that

The integrating factor u is

The ode becomes

Integrating gives

g(z) = —1
p(z) = ax

’u:efqu

—T

=€

d
a(uy) = up

= (uy) = (1) (a)
d(ye™) = (aze™®) dz

ye ¥ = /axe_zd:c

=—(z+1)ae "+

Dividing throughout by the integrating factor e™* gives the final solution

Summary of solutions found

y=c e —a(zx+1)

y=ce —alz+1)
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Solved as first order Exact ode
Time used: 0.105 (sec)
To solve an ode of the form

dy
M(z,9) + N(z,5) £ =0 (A)
T
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.

Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06d
Y
— —_—— B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
9 M
o
TN
9y
But since ;;gy = ;): g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = a‘fgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (az +y) dz
(—az —y)dz+dy =0 (2A)

Comparing (1A) and (2A) shows that

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM  ON
oy Oz
Using result found above gives
oy Oy y
=-1
And
ON 0

o~ oz
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Since %i; # ‘98—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A= L(OM _ON
N\ oy oz
=1((-1) - (0))
=-1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
u= efAda:
— ef—l dz

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
=e *(—az —y)

=—(ax+y)e™®

And

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+N-2=0
+ dzx

(~(az+9)e) + () L =0

The following equations are now set up to solve for the function ¢(z,y)

o= 1)

Integrating (2) w.r.t. y gives

0 . [
a—ydy—/Ndy
g—jdy:/e_”dy
p=ye "+ f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t x gives

09 _

5y = Ve f'(z) (4)
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But equation (1) says that % = —(az + y) e *. Therefore equation (4) becomes

—(az+y)e " =—ye "+ f'(2) (5)
Solving equation (5) for f'(z) gives
f(x) = —axze™™

Integrating the above w.r.t = gives

/f’(:r)dm=/(—ame_””) dz

flx)=(x+1)ae ™+

Where c¢; is constant of integration. Substituting result found above for f(x) into equation
(3) gives ¢
p=ye ’+(z+1)ae "+

But since ¢ itself is a constant function, then let ¢ = ¢, where c; is new constant and
combining ¢; and ¢, constants into the constant c; gives the solution as

cg=ye "+ (x+1)ae’”

Solving for y gives

y=—(aze ™ +ae ™ —¢)e€”

Summary of solutions found

y=—(aze " +ae ™ —q¢)e€”

Solved using Lie symmetry for first order ode
Time used: 0.347 (sec)
Writing the ode as

Yy =az+y
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W(ﬂy - gx) - w2€y - wxf — Wy = 0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

§ = zaz + yas + a (1E)
n = xbs +ybs + by (2E)

Where the unknown coefficients are

{a1,as,a3,b1,b9, b3}
Substituting equations (1E,2E) and w into (A) gives

by + (az + ) (bs — a3) — (az +y)* as — a(zay + yas + a;) — xby — ybs — by =0 (5E)
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Putting the above in normal form gives
—a’z?as3 — 2azyas — 2axas + axbs — ayas — yas — aa; — by — yas — by + by =0
Setting the numerator to zero gives
—a’z%as — 2axyas — 2azway + axbs — ayas — y*as — aa; — xby —yas — by + by =0 (6E)
Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}

The following substitution is now made to be able to collect on all terms with {z,y} in
them

{z =v1,y = v}
The above PDE (6E) now becomes
—a2a3v? — 2003105 — 20090, — aa3Vy + absv; — a2 — aay — agvs — byvy — by + by =0 (7E)
Collecting the above on the terms v; introduced, and these are
{vr,va}
Equation (7E) now becomes
—a’azv} —2aa3v1vy + (—2aay + abs — by) v; — azvs + (—aaz —az) va —aa; — by +b, =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

—as = 0
—2aa3 =0
—a%a; =0

—aas —as =0
—aa —b1+b2 =0
—2aa2 + ab3 - bg =0

Solving the above equations for the unknowns gives

a = u

a, =0

a3 =0

b1 = —aaq + abs
by = abs

bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

£€=0

n=ar+a+y
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

F=, = (1)

The above comes from the requirements that (ﬁa% +n%> S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

Sz/ldy
n

1
My -
ar +a+vy

S is found from

Which results in
S=In(az+a+vy)

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

aS Sy +w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R,, R, S, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

w(z,y) =ax+vy

Evaluating all the partial derivatives gives

R, =1
R, =0
G __ @
ar+a+y
_ 1
Y o ar+a+ty

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

dR
We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR ~

1 (2A)

1

The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form ;%S(R) = f(R), then we only need to integrate f(R).

/dS:/ldR

S(R) = R—I—CQ
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To complete the solution, we just need to transform the above back to x,y coordinates.
This results in

In(az+a+y)=x+co
Which gives

=e*t2 _gr—a

Summary of solutions found

y=e"t2 _qx —aqa

Maple step by step solution

Let’s solve
wy(z) = za+y(z)

° Highest derivative means the order of the ODE is 1
=y(2)

° Solve for the highest derivative

wY(@) = za +y(z)

° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
#y(@) —y(z) = 70

° The ODE is linear; multiply by an integrating factor u(x)
u(@) (£y(@) — y(=)) = p(z)za

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

w(z) (Ly(@) —y(@)) = (Hy(@) p@) +y(2) (Fu))
e Isolate 2 u(z)

L u(z) = —p(x)

° Solve to find the integrating factor
pu(z) = e~
° Integrate both sides with respect to x
| (£ (@) p(@))) do = [ p(z) zade + O1
° Evaluate the integral on the lhs
y(2) p() = [ () sadz + C1
o Solve for y(x)

z)zadzx+C1
y(z) = S )u(x)

) Substitute pu(z) = e™*

T

e ®radz+C1
y(z) = Lotz
° Evaluate the integrals on the rhs
y(x) — —(z‘+l)ee__;a+01

° Simplify
y(x) = C1e* —a(zx+1)
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 15

-

dsolve(diff (y(x),x) = axx+y(x),
L y(x) ,singsol=all)

y=¢€"c; —alx+1)

Mathematica DSolve solution

Solving time : 0.027 (sec)
Leaf size : 18

‘DSolve[{D[y[x],x]==a*x+y[x],{}},
L y[x] ,x,IncludeSingularSolutions->True]

y(z) = —a(x + 1) + c1€”
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2.1.8 problem 8

Solved as first order linearode . . . . ... ... ... .......
Solved as first order Exactode . . . . ... ... ... .......
Solved using Lie symmetry for first orderode . . . . . .. ... ..
Maple step by step solution . . . . .. ... ... ... ... ... .
Mapletrace . . . . . . . . . . . e
Maple dsolve solution . . . ... ... ... ... ... .. ...,
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [8668]

Book : First order enumerated odes

Section : section 1

Problem number : 8

Date solved : Tuesday, December 17, 2024 at 12:57:19 PM
CAS classification : [[_linear, ‘class A‘]]

Solve
v =ar+by
Solved as first order linear ode

Time used: 0.124 (sec)

In canonical form a linear first order is

Y +q(z)y = p(z)

Comparing the above to the given ode shows that

q(z) = —b
p(z) = az
The integrating factor u is
o= el adz
— ef —bdz
— e—bx
The ode becomes
d
—(uy) = pp

dx

2 (uy) = (1) (a)

L (ye ) = () (a)
d(y e_b"") = (am e_bw) dx

Integrating gives

ye o = /aw e % dr

(br +1)ae™
= — b2 + C1

—bx

Dividing throughout by the integrating factor e™* gives the final solution

bep2 _ abx — a
b2

Cci1 €
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Summary of solutions found

c1 e —abz —a
Solved as first order Exact ode
Time used: 0.123 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
%Qs(x ) y) =0
Hence 96 06d
Y
— —_—— B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o¢
T M
Oz
o
T _N
Ay
But since ;;gy = ;): g; then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;’: gy = 88;5’; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (az + by) dz
(—azx —by)dz+dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —az — by
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM  ON
oy Oz
Using result found above gives
oM 0
By 8—y(—a$ — by)

=—b
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And
8N
1
. ( )
= 0
Slnce 7é aN , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratmg factor to make it exact. Let
‘9_M _oN
dy ox
= 1((— b) —(0))
=-b

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

w= efAdw
—e [ —bdz

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.
M = uM
= e "(—az — by)
= —(az +by)e ™

And
N = uN

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.

The modified ODE is

—dy
M—I—Nazo
_ —bx —bx dy_
(—(az +by) e ™) + (e )_da:_o

The following equations are now set up to solve for the function ¢(z,y)

0p —
P M (1)
0p —
Integrating (2) w.r.t. y gives

0¢

8y dy = / N dy

6¢ _ —bz

6y dy = / e *dy
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Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

20— —ghe 4 f'a) @

But equation (1) says that % = —(az + by) e~*. Therefore equation (4) becomes
—(az + by)e™™ = —ybe ™" + f'(x) (5)
Solving equation (5) for f'(z) gives
fl(z) = —aze™
Integrating the above w.r.t = gives

/f'(x) dx=/(—axe_b’”) dz

(bx +1)ae™®
b2

flz) =

C1

Where c; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
(br +1)ae™

¢p=ye "+ 7

4]

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

e (bz+1)ae™™
+ B

cp=ye

Solving for y gives

(azbe™ —c; b2 + ae ™) eb®
y=—- b2

Summary of solutions found

(azbe™ — 1 b? + ae™") ™
y=— 2

Solved using Lie symmetry for first order ode
Time used: 0.415 (sec)
Writing the ode as

v =ar+by
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - fz) - w2€y - wz€ — Wyl = 0 (A)
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To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

£ =zaz +yas + a (1E)
n= wbg + yb3 + bl (QE)

Where the unknown coefficients are
{a1,a2,a3,b1,bs,b3}

Substituting equations (1E,2E) and w into (A) gives
by + (az + by) (bs — a3) — (az + by)® as — a(zas + yas + ay) — b(xby + ybs + b)) =0 (5E)
Putting the above in normal form gives

—a*z?ag — 2abxyas — b2y2a3 — 2azxag + axbs — ayasz — bxby — byay — aa; — bby + by =0
Setting the numerator to zero gives
—a’z%as — 2abryas — b2y2a3 —2azxas + arbs — ayaz — brby — byas —aa; —bb; + b, =0 (6E)
Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}

The following substitution is now made to be able to collect on all terms with {z,y} in
them

{z = v,y = v}

The above PDE (6E) now becomes

—a2a3vf — 2abazvive — b2a3v§ — 2aa9v1 — aazve + absv; — basvy — bbyvy — aay — bby +by =0

(7TE)
Collecting the above on the terms v; introduced, and these are
{v1, v2}
Equation (7E) now becomes
—a’azv? — 2abazv vy + (—2aay + abs — bby) vy (8E)

— b%a3v3 + (—aaz — bay) vy — aa; — bby + by =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—a’a3; =0
—b203 =0
—2abaz =0

—aaz —bas =0
—aa; — bbl + b2 =0
—2aa2 + ab3 - bbz =0
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Solving the above equations for the unknowns gives

a, = ap

a; =0

a3 =0

by =b:

by = aa; + bb;

by — b(aas + bby)

a

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

§=0
n_abx+b2y+a

a

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that (fa% +n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

S=/1dy
n

1
- / abz+b2y+a dy

a

S is found from

Which results in
aln (abz + by + a)
b2
Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

S =

as _ S tw(z,y)S, @)
dR R, +uw(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

w(z,y) = ax + by

Evaluating all the partial derivatives gives

R,=1
R,=0
a2
v b (abzr + b%y + a)
a

Sy = abx + b*y +a
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

a5 _a
dR b
We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

45 _a
dR b

(24)

The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

a
/dS—/ZdR
R

S(R) = “‘TJFC2

To complete the solution, we just need to transform the above back to x,y coordinates.
This results in

aln (abz + b’y +a) ax

=—+c¢
e b + co
Which gives
. e L _abr —a
y - b2
Summary of solutions found
_ Heairen) abzr — a
y - b2

Maple step by step solution

Let’s solve
ixy() = za + by(z)
. Highest derivative means the order of the ODE is 1
&y(@)
° Solve for the highest derivative
4y(z) = za + by(z)
° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
y(@) = by(z) = za

° The ODE is linear; multiply by an integrating factor u(x)

p(z) (Fy(e) — by(z)) = p(z) za

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
wz) (y(@) — by(z)) = (y(2)) u(z) +y(z) (Fu())

o Isolate L p(z)

Lu(z) = —p(z)b

° Solve to find the integrating factor
p(z) =e*
° Integrate both sides with respect to x
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[ (& (@) w(=))) dz = [ p(z) zadz + C1
o Evaluate the integral on the lhs
y(z) p(z) = [ p(z) zadz + C1

o Solve for y(x)

z)zadx+C1
y(z) = J )u(x) +

e  Substitute u(z) = e=t®

y(z) =
° Evaluate the integrals on the rhs
_ (bz+1)e_bza+cl
y(z) = —m——
° Simplify
b2 _bra—a
y(z) — C1 bb2 b

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 26

‘ dsolve(diff (y(x),x) = a*x+bxy(x),
‘ y(x) ,singsol=all)

e b? —axb—a
— b2

Mathematica DSolve solution

Solving time : 0.056 (sec)
Leaf size : 25

‘ DSolve [{D[y[x],x]==a*x+b*y[x],{}},
y[x],x,IncludeSingularSolutions->True]

N

abr + a
y(a:) — _b—2 + clebz
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2.1.9 problem 9
Solved as first order autonomousode . . . . . . ... ... ... .. 61]
Solved as first order homogeneous class D2ode . . . .. ... ... 62
Solved as first order Exactode . . . . . ... .. .. ... ... 631
Solved using Lie symmetry for first orderode . . . . ... ... .. 66!
Maple step by step solution . . . . . . ... ... ... 60]
Maple trace . . . . . . . . . L 701
Maple dsolve solution . . . .. ... ... .. ... ... ..., [7Q
Mathematica DSolve solution . . . . . . ... ... ... ...... [70]

Internal problem ID [8669]

Book : First order enumerated odes

Section : section 1

Problem number : 9

Date solved : Tuesday, December 17, 2024 at 12:57:20 PM
CAS classification : [_quadrature]

Solve
y=y

Solved as first order autonomous ode
Time used: 0.083 (sec)

Integrating gives

/ldyzl
Y

n(y) =2+a
eln(y) — ex—l—cl

y=rce”

The following diagram is the phase line diagram. It classifies each of the above equilibrium

points as stable or not stable or semi-stable.

y=0. unstable

Figure 2.9: Phase line diagram
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Figure 2.10: Slope field plot
y =y

Summary of solutions found

y=20
y=rc e’
Solved as first order homogeneous class D2 ode
Time used: 0.139 (sec)
Applying change of variables y = u(x) z, then the ode becomes
u'(z)x +u(z) =u(z)z
Which is now solved The ode v/'(z) = % is separable as it can be written as

u(z) (z —1)

(z) = 1O
= f(z)g(u)
Where
flo)="""
g(u) =u

Integrating gives

/ﬁdu=/f(m)dx
[lae 20

m@@»=x+m<i>+q

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

mw&»=x+m<i)+q
w(z) = 0
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Solving for u(z) gives

Converting u(x) = 0 back to y gives

back to y gives

ea:+c1
x

Converting u(x) =

y — e:c—i—cl

4/4/////////// 7/ ,, ,A \ \\\\\\‘\\“\N\

4/7///////////.,/ >/ x, \\\\\\\\‘y\w\
///7//////////// / ,,/ ,,A \ \\\\\\\‘v\e\\v

R R N N e e
sssSSNNNA s

///7/4//////////.,/ ,, ,,A \\\\\\\\J\\c\\v‘

NS NN ,,,,,,, ; ] ]
A NSNS NN ,,,,,,, x ] ]
A NSNS NN ,,,,,,, ; ] ]
SN S NN ,,,,,,, ; ]

///7/4/////////.,/ ,, ,,A \\\\\\:\\J\v\v‘

s~ossNN\W\N s
A S S SNNN ),,, ; ]S
SN NN R VPP o s
R NS NNN T \
AN NN NN NN / \ J S m s
AN NN NN NN / , \ J S m s
ss>o~scNN\\N s
RSSOV o s s srre

DSOS OO / ,, x \\\\\\\‘y\w\v‘

]

e

y(x)

X

Figure 2.11: Slope field plot

Summary of solutions found

Solved as first order Exact ode

Time used: 0.096 (sec)

To solve an ode of the form

d
M@w+N@wﬁ%=0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.

Taking derivative of ¢ w.r.t. x gives

0

d(z,y) =

d
dzx

Hence

Comparing (A,B) shows that
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But since aa g = a a then for the above to be valid, we require that
yox
oM _ ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
6'9; g’y = aa a? is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
dy = (y)dz
(—y)dz+dy =0 (2A)

Comparing (1A) and (2A) shows that

M(IL‘,y) =Y
N(J),y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM_o
oy oy’
=-1
And
8N
1
. ( )
= 0

Since %i; # %—];], then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

3_M _ON
Oy oz
= 1((—1) —(0))
=-1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
w= efAdm
—e J—1dz

The result of integrating gives
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M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M =uM
=e "(~y)
= —ye z
And
N =uN
=e (1)
=e %

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

—  —dy
M+N--=0

o) 4 (o) WY _
(—ye™) +(e7) 3 =0

The following equations are now set up to solve for the function ¢(z,y)

0p

Integrating (2) w.r.t. y gives

@dy = /Wdy
Oy

op . x
a—ydy—/e dy

¢=ye "+ f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

9 -
2 -yt () @
But equation (1) says that % = —ye *. Therefore equation (4) becomes
—ye " =—ye "+ f'(z) (5)
Solving equation (5) for f'(z) gives
f'(z) =0
Therefore
f@)=a

Where c; is constant of integration. Substituting this result for f(z) into equation (3)
gives ¢
p=ye " +a
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But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢y constants into the constant c; gives the solution as

Solving for y gives

LA R
AR S
AN S S
AN S S
AN S
R

\“ AR S

yox) o~
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Figure 2.12: Slope field plot
y =y
Summary of solutions found
y=rc e’
Solved using Lie symmetry for first order ode
Time used: 0.389 (sec)
Writing the ode as
y =y
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
2
7’z+w("7y_€z)_w€y_wz€_wy77:() (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

£ =zaz +yas + a (1E)
n= xbg + yb3 + bl (2E)

Where the unknown coefficients are
{a1,a9,a3,b1, b2, b3}
Substituting equations (1E,2E) and w into (A) gives
by +y(bs — az) — y’az — xby — ybs — by = 0 (5E)
Putting the above in normal form gives

—y’ag — xby —yag — by + by =0
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Setting the numerator to zero gives
—y2ag — by — yag — by + by, =0 (6E)
Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z, 9}
The following substitution is now made to be able to collect on all terms with {z,y} in
them
{z =v1,y = v}
The above PDE (6E) now becomes
—a3v3 — AUy — by — by + by =0 (7TE)
Collecting the above on the terms v; introduced, and these are
{v1, v2}
Equation (7E) now becomes

—a3’U% — AUy — b21)1 - bl + b2 =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

—as =0
—a3 =0
—by =0
—b1+by=0

Solving the above equations for the unknowns gives

a1 = a,
a, =0
a3 =10
by =0
by =0
bs = bs

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

£=0
n=y

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dz _dy _

F=, =4 1)
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The above comes from the requirements that (58% +77§—y> S(z,y) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

1
S=/—dy

n

Y

=1In(y)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

as _ S; tw(z,y)S,
dR R, +w(z,y)R,

(2)

Where in the above R, R,, S;, Sy are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

w(m,y) =Y

Evaluating all the partial derivatives gives

R, =1
R, =0
S, =0

1
Su=1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
=1 (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

as
-~ -1
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).
[ds= [1ar
S (R R +co

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

In(y)=z+c
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Which gives

xT+cCo

y=¢e

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ s _
=Y ar =1
R==x
S =In(y)
s/ 7707071017777 70707777777
VAR A A A A A A A A A A (A N R A A A |
VAR A AR SR R A A A S A A A R A A AV A |
A7 777777 7777777777777
777777 7777777777777
VAV YAV YAV Y SV Y Y SV
J s 7777777777777 777 777
ST TSI
PP A A A A A A A A A A A A A
yoo of T
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Figure 2.13: Slope field plot
y=y

Summary of solutions found

T+Cco

Maple step by step solution

Let’s solve

wy(@) =y()
° Highest derivative means the order of the ODE is 1

=y(@)
° Solve for the highest derivative
=y(@) = y(z)
° Separate variables
Ly@)
dy(w) =1
. Integrate both sides with respect to x
ay(@) o

° Evaluate integral
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In (y(z)) =z + C1
o Solve for y(x)

y(z) = et

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 8

‘ dsolve(diff (y(x),x) = y(x),
y(x) ,singsol=all)

y=-¢€"c

Mathematica DSolve solution

Solving time : 0.021 (sec)
Leaf size : 16

‘ DSolve [{D[y[x],x]==y[x],{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) = c1€”
y(z) =0
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2.1.10 problem 10

Solved as first order autonomousode . . . . . . ... ... ... ..
Solved as first order homogeneous class D2ode . . . .. ... ...
Solved as first order Exactode . . . . .. .. ... ... ......
Solved using Lie symmetry for first orderode . . . . ... ... ..
Maple step by step solution . . . . .. ... ... ... ... ...,
Maple trace . . . . . . . . . L
Maple dsolve solution . . . .. ... ... .. ... ... ...,
Mathematica DSolve solution . . . . . . ... ... ... ......

Internal problem ID [8670]

Book : First order enumerated odes

Section : section 1

Problem number : 10

Date solved : Tuesday, December 17, 2024 at 12:57:21 PM
CAS classification : [_quadrature]

Solve
Yy =by
Solved as first order autonomous ode

Time used: 0.155 (sec)

Integrating gives

1
—dy=d
by Y v
1
_Il (y) =T+
b
Singular solutions are found by solving
by =0

for y. This is because we had to divide by this in the above step. This gives the following

singular solution(s), which also have to satisfy the given ODE.

y=0
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The following diagram is the phase line diagram. It classifies each of the above equilibrium
points as stable or not stable or semi-stable.

Figure 2.14: Phase line diagram

Solving for y gives

y=0

y = eclb—i-xb
Summary of solutions found

y=20

y= eclb—i-xb

Solved as first order homogeneous class D2 ode

Time used: 0.115 (sec)

Applying change of variables y = u(x) z, then the ode becomes
v (z) z + u(z) = bu(z) z

u(z)(zb—1)

Which is now solved The ode v'(z) = is separable as it can be written as

Where
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Integrating gives

/ﬁdu=/f(x)dz
/%du:/wbx_ldx

In (u(z)) = b+ In (%) ta

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(z) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = b+ In (%) +o

u(z) =0
Solving for u(z) gives
u(z) =0
exb-l—cl
u(z) =
Converting u(x) = 0 back to y gives
y=0
Converting u(z) = ezb% back to y gives
y= exb+cl
Summary of solutions found
y=0
y= exb+c1
Solved as first order Exact ode
Time used: 0.104 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(z,y) = c where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. = gives

d

0p L 0bdy _
8w+8ydz_0 (B)

Hence

Comparing (A,B) shows that
9¢

or
¢

8;1/_
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But since aa g = a a then for the above to be valid, we require that
yox
oM _ ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
6'9; g’y = aa a? is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
dy = (by) dz
(—by)dz+dy=0 (2A)

Comparing (1A) and (2A) shows that

M(Q?,y) = —by
N(w’y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
n 8y( —by)
=-b
And
3N
1
. ( )
= 0

Since %i; # %—];], then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

3_M _ON
Oy oz
= 1((— b) - (0))
=-b
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
efAd:c

— ef—bdav

The result of integrating gives
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M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
=e~"(~by)
= —bye @

And
N = uN
— e—zb(l)
— e—zb

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

0p —
- N (2)
Integrating (2) w.r.t. y gives
09 . [
3_y dy = / N dy
a¢ _ —zb
By dy = / e " dy
¢ =e Py + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

a¢ —zb !
- —_ z 4
5p = e "+ f(@) (4)
But equation (1) says that % = —by e~. Therefore equation (4) becomes
~bye ™ = ~bye ™ + f'(z) (5)
Solving equation (5) for f'(z) gives
f'(z) =0
Therefore
f@)=a

Where c; is constant of integration. Substituting this result for f(z) into equation (3)
gives ¢
¢=e"y+c
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But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢y constants into the constant c; gives the solution as

b

co=e 7y
Solving for y gives

y=ac ewb
Summary of solutions found

y=c eacb

Solved using Lie symmetry for first order ode
Time used: 0.244 (sec)

Writing the ode as

y =by
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - 5:1:) - w2€y - wxf — Wyl = 0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

g = zas + yas +a (1E)
n = xbs +ybs + by (2E)

Where the unknown coefficients are
{a1,az,a3,b1,b9, b3}
Substituting equations (1E,2E) and w into (A) gives
by + by(bs — ag) — b*y*az — b(xby + ybs + b1) =0 (5E)

Putting the above in normal form gives

—b%y%ag — bxby — byay — bby + by =0
Setting the numerator to zero gives

—b%y%ag — bxby — byay — bby + by =0 (6E)
Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}

The following substitution is now made to be able to collect on all terms with {z,y} in
them

{z =v,y = v}
The above PDE (6E) now becomes

—b2a3v§ — ba2v2 - bbg’Ul - bbl + bg =0 (7E)



CHAPTER 2. BOOK SOLVED PROBLEMS 77

Collecting the above on the terms v; introduced, and these are
{v1,v2}
Equation (7E) now becomes

—bzagvg — ba2v2 — bb2v1 - bbl + bz =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

—bay =0
—bby =0
—b%a3 =0
—bby +b2 =0

Solving the above equations for the unknowns gives

a1 = ay
a; =10
a3 =10
by =0
by =0
bs = bs

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

£E=0
n=y
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that (fa% +n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

n
Y

S=In(y)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

ﬁ _ Sx +W($,y)Sy
dR R, +w(z,y)R,

(2)
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

w(z,y) = by

Evaluating all the partial derivatives gives

R, =1
R,=0
S, =0

1
Si=1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

as

ar ="

The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).
/ ds = / bdR
S (R) =bR +co

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

In(y) =xb+co

Which gives

__ abtco

Summary of solutions found

y= e:l:b-l—cz

Maple step by step solution

Let’s solve

y() = by(z)
° Highest derivative means the order of the ODE is 1

=y(@)
° Solve for the highest derivative
&y(@) = by(z)
° Separate variables
syl
e 0

° Integrate both sides with respect to x
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&V gy = [ bdz + O

y(z
° Evaluate integral

In (y(z)) = bz + C1
° Solve for y(x)

y(a:) — ebx+C’1

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 10

dsolve(diff (y(x),x) = bxy(x),
y(x),singsol=all)

y =e"c

Mathematica DSolve solution

Solving time : 0.024 (sec)
Leaf size : 18

DSolve [{D[y[x],x]==b*y[x],{}},

y[x],x,IncludeSingularSolutions->True]

y(z) = c1€b
y(z) =0

T
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2.1.11 problem 11

Solved as first order ode of type reduced Riccati . . . . .. ... ..
Maple step by step solution . . . . ... ... ... ... ...,
Maple trace . . . . . . . . . . ...

Maple dsolve solution
Mathematica DSolve solution

Internal problem ID [8671]

Book : First order enumerated odes

Section : section 1

Problem number : 11

Date solved : Tuesday, December 17, 2024 at 12:57:23 PM
CAS classification : [[_Riccati, _speciall]

Solve
Y = ax + by?
Solved as first order ode of type reduced Riccati

Time used: 0.135 (sec)

This is reduced Riccati ode of the form
yl =a xn + by2

Comparing the given ode to the above shows that

a=a
b
n=1

Since n # —2 then the solution of the reduced Riccati ode is given by

W=z

clBesselJ< 5% k abx ) +czBesselY< k,k abx > ab >0

¢1 Bessell (o, v/ —abz*) + c3 BesselK (5, 1vV/—abz¥) ab <0

__1w
b w
E=1+—
+ 2
EQ(1) gives
3
k=—
2

3/2 3/2
w=+z <C1 BesselJ (1 2vaba ) + ¢, BesselY (zl)) 2\/_?:

3’ 3

Therefore the solution becomes

1w

V= "bw

Substituting the value of b, w found above and simplyfing gives

)

( BesselY( 2 2‘/7”’3/2> — BesselJ ( 2 2‘/7””3/2> cl) Vab+/z

y:

b <cl BesselJ <1 2/aba?/ 2) + ¢ BesselY (1 2v/abs/2

)
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Letting co = 1 the above becomes

(— BesselY <—§, 2‘/‘7%-’”3/2) — Bessel] (_g, 2\/171;)’363/2) C1> Vab /3
b (61 BesselJ (%, 2v/aba®/ 2) + BesselY (1 2\/(Ex3/2>>

y:

3 39 3

Summary of solutions found

(— BesselY <—§, 2‘/‘7:’,'”3/2) — BesselJ <—§, 2\/(7;53/2) cl> Vab\/z

b (cl BesselJ (%, 2‘/‘%’””3/2) + BesselY (

y:

1
3 3
Maple step by step solution

Let’s solve
4y(z) =za+ by(z)*

° Highest derivative means the order of the ODE is 1
=Y(@)

° Solve for the highest derivative

#y(z) = za+by(z)*

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

Looking for potential symmetries
trying Riccati

trying Riccati Special

<- Riccati Special successful”

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 59

r

t

dsolve(diff (y(x),x) = a*x+b*xy(x)~2,
y(x),singsol=all)

(ba)l/3 (AiryAi (1, —(ba)l/3 x> ¢ + AiryBi (1, —(ba)l/3 x))
b <cl AiryAi <— (ba)'/? ac) + AiryBi (— (ba)'/? :v))

y:
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Mathematica DSolve solution

Solving time : 0.156 (sec)
Leaf size : 331

' DSolve [{D[y[x],x]==a*x+bxy[x]~2,{}},
‘ y[x],x,IncludeSingularSolutions->True] ‘

y(x)
. av/bx3/? (—2 BesselJ (—%, %ﬁ\/l_)x?’ﬂ) +c (BesselJ <§, 2 a\/l;x3/2> — BesselJ (—%, %ﬁ\/l_)x?’ﬂ)))

2bx <Besse1J <§, g\/ax/l_xc?’ﬂ) + ¢; BesselJ <_%, 2 \/5\/5z3/2>>

y(z) =

V/a/bz?/? Bessel] (—%, §\/5\/5x3/2> — /av/bz?/? BesselJ (%, §ﬁ¢éx3/2> + BesselJ (—%, 2\/av/bz®?
2bzx BesselJ (—%, gﬁﬁx3/2>




CHAPTER 2. BOOK SOLVED PROBLEMS 83
2.1.12 problem 12
Solved as first order quadratureode . . . .. ... ... ... ... B3
Solved as first order homogeneous class D2ode . . . .. ... ... 84
Solved as first order ode of type differential . . . . .. .. ... ..

Maple step by step solution . . . . .. ... ... ... ... ... .
Maple trace . . . . . . . . . e e
Maple dsolve solution . . . ... ... ... ... ... .. ...,
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [8672]

Book : First order enumerated odes

Section : section 1

Problem number : 12

Date solved : Tuesday, December 17, 2024 at 12:57:24 PM
CAS classification : [_quadrature]

Solve
cy =0
Solved as first order quadrature ode

Time used: 0.024 (sec)

Since the ode has the form 3y’ = f(z), then we only need to integrate f(z).

/dy:/de+cl
)

=Cl

y(x) 07

14

-3

% 2 ; ; 3
X

Figure 2.15: Slope field plot
cy) =0

Summary of solutions found
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Solved as first order homogeneous class D2 ode
Time used: 0.129 (sec)

Applying change of variables y = u(x) z, then the ode becomes

c(v'(z)z +u(z)) =0

Which is now solved The ode v/'(z) = —@ is separable as it can be written as
R C)
() = -2
= f(z)g(u)
Where
1
flz)=—_
9(u) =u

Integrating gives

/ﬁdu=/f(z)dx
/%du=/—%dw
In (u(z)) =In (i) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = In (%) + e

u(z) =0
Solving for u(z) gives
u(z) =0
et
u(z) = —
Converting u(x) = 0 back to y gives
y=0

Converting u(z) = <- back to y gives
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-2

% 2 ; ;
X

Figure 2.16: Slope field plot

cf/ =0
Summary of solutions found

y=0

y=e"

Solved as first order ode of type differential
Time used: 0.011 (sec)
Writing the ode as
¥ =0
Which becomes
(1)dy = (0) dz
But the RHS is complete differential because

(0) dz = d(0)
Hence (2) becomes
(1) dy = d(0)
Integrating gives
y=a
5]
y(x) o
14
24
3]
> 2 5 3

X

Figure 2.17: Slope field plot
cf/ =0

Summary of solutions found

(1)

2)
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Maple step by step solution

Let’s solve
c(Ly(z)) =0
° Highest derivative means the order of the ODE is 1
Ly(x)
° Separate variables
wy(@) =0
° Integrate both sides with respect to x
[ (Ly(z)) dz = [0dz + C1
° Evaluate integral
y(z) = C1
o Solve for y(x)
y(z) = C1

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 5

-

dsolve(cxdiff (y(x),x) = 0,
L y(x) ,singsol=all)

y=a

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7

‘ DSolve [{c*D[y[x],x]==0,{}},
L y[x],x,IncludeSingularSolutions->True]

y(z) =
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2.1.13 problem 13

Solved as first order quadrature ode
Solved as first order homogeneous class D2 ode
Solved as first order Exact ode
Maple step by step solution
Mapletrace . . . . . ... ... ... ... ...
Maple dsolve solution
Mathematica DSolve solution

Internal problem ID [8673]

Book : First order enumerated odes
Section :
Problem number : 13

Date solved : Tuesday, December 17, 2024 at 12:57:25 PM
CAS classification :

section 1

[_quadrature]
Solve

cy =a

Solved as first order quadrature ode
Time used: 0.038 (sec)
Since the ode has the form y' = f(x)

/dy—/ dz

:—+cl

Summary of solutions found

y=-—+ta
c

Solved as first order homogeneous class D2 ode
Time used: 0.174 (sec)

Applying change of variables y = u(x) z, then the ode becomes

c(v(z)z+u(z)) =a

Which is now solved The ode v/(x) = —%
oy _cuz) —a
u(z) = cx
= f(z)g(u)
Where
1
fz) = e

Integrating gives

In (—cu(z

c C

), then we only need to integrate f(x).

is separable as it can be written as

33|

90
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We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or cu — a = 0 for u(x)
gives

u(z) = a4

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In(—cu(z) +a) In(3)

= + cl
c
a
u(z) = c
Solving for u(z) gives
a
u(z) = c
() = (e™cazx — 1) 1€
cx
Converting u(z) = ¢ back to y gives
azr
Yy=—
c

Converting u(x) = (e7%ar—1)e” 1ok to y gives

(e — 1) e1€

y prd
c
Summary of solutions found
azx
Yy=—
c
e “qr — 1) e“€
L )
c
Solved as first order Exact ode
Time used: 0.066 (sec)
To solve an ode of the form
dy

dz

We assume there exists a function ¢(z,y) = c where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d

Hence 96 06 d
Yy _
Oox + oydr 0

Comparing (A,B) shows that
0

ox
¢

By_
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But since % = % then for the above to be valid, we require that
Y yox
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = ggx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(¢)dy = (a) dx
(—a)dz+(c)dy =0 (2A)

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM_o
dy Oy
And
ON 0
o~
=0

Since %i; = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

0p

g—x =M (1)
¢

oy =N )

Integrating (1) w.r.t. z gives

@dx=/de
ox

0¢ .
%dx = /—adw

¢ =—az+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t y gives

9¢ :
3y =0+ 1 () (4)
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But equation (2) says that g—‘z = c¢. Therefore equation (4) becomes

=0+ f(y) )

Solving equation (5) for f’(y) gives
flly)=c

Integrating the above w.r.t y gives
/f’(y) dy = /(C) dy
fy)=cy+a
Where ¢; is constant of integration. Substituting result found above for f(y) into equation
(3) gives ¢

p=—ax+cy+ac

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢y constants into the constant c; gives the solution as

€1 =—axr +cy
Solving for y gives
ar + C;
y =
c
Summary of solutions found
axr + ¢
y =
c

Maple step by step solution

Let’s solve

c(Ly(z)) =a
° Highest derivative means the order of the ODE is 1

=Y(@)

° Separate variables
wy(z) =12

° Integrate both sides with respect to x
[ (Ly(z)) dz = [ %dz + C1

° Evaluate integral

y(z) =% + C1

o Solve for y(x)
Clctza

y(z) = =%
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 12

-

dsolve(cxdiff (y(x),x) = a,
L y(x) ,singsol=all)

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 14

p
'DSolve[{c*D[y[x],x]==a,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) — ~ + ¢
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2.1.14 problem 14

Solved as first order quadratureode . . . .. ... ... ... ... 921
Solved as first order Exactode . . . . .. ... ... ........ 92
Maple step by step solution . . . . . . ... ... ... ... 94]
Maple trace . . . . . . . . . . .. 95]
Maple dsolve solution . . . . . ... .. ... oL 951
Mathematica DSolve solution . . . . . .. ... ... ... ..... 95

Internal problem ID [8674]

Book : First order enumerated odes

Section : section 1

Problem number : 14

Date solved : Tuesday, December 17, 2024 at 12:57:25 PM
CAS classification : [_quadrature]

Solve
/
cy =azx
Solved as first order quadrature ode

Time used: 0.042 (sec)

Since the ode has the form 3y’ = f(x), then we only need to integrate f(z).

/dyz/%dx
a x?

V=" T

Summary of solutions found
ax?
V=" ta
Solved as first order Exact ode
Time used: 0.061 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d

Hence 06 06d
vy _
ox + oydx 0 (B)
Comparing (A,B) shows that

0p
8_x_M
0p
B_y_N

8¢ 8¢

But since a0y = Byoa

then for the above to be valid, we require that

oM _ oN
oy Oz
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If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘2: ;’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,
which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(¢)dy = (azx)dz
(—az)dz+(c)dy =0 (2A)

Comparing (1A) and (2A) shows that
M (IL' ) y) = —-ar
N(z,y)=c

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oy Oy
=0
And
ON 0
o~ 5
=0
Since %A;I = %, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
o - M (1)
09
oy N (2)

Integrating (1) w.r.t. z gives

%dx:/de
or

op .
%dx—/—axdx

ax?

6=-"T+ 1) ()

Where f(y) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1"(y) (4)

But equation (2) says that g—z = c¢. Therefore equation (4) becomes

c=0+f(y) (5)
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Solving equation (5) for f'(y) gives
f'ly)=c

Integrating the above w.r.t y gives

/f’(y) dy=/(0) dy

fy)=cy+a

Where c¢; is constant of integration. Substituting result found above for f(y) into equation
(3) gives ¢

2

ax
¢=—T+cy+cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

az?
Ci = —T =+ cy
Solving for y gives
_azr®+2¢
y= 2c
Summary of solutions found
_ar®+2¢
B 2c

Maple step by step solution

Let’s solve

c(%y(m)) =za

° Highest derivative means the order of the ODE is 1

a=y(2)

° Separate variables
Y@ =7

° Integrate both sides with respect to x
[ (Ly(z)) dz = [ “dz+ C1

° Evaluate integral

y(z) = % + C1
) Solve for y(x)

_ z%a+420C1
y(zr) = Zaoee
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Maple trace

‘“Methods for first order ODEs:

‘——— Trying classification methods ——-
‘trying a quadrature

‘<- quadrature successful”

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 15

‘dsolve(c*diff(y(x),x) = ax*x,
‘ y(x),singsol=all)

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 19

DSolve [{c*D[y[x],x]==a*x,{}},
L y[x],x,IncludeSingularSolutions->True]

ar?

2 +C

y(z) —
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2.1.15 problem 15
Solved as first order linearode . . . . ... ... ... ....... 96
Solved as first order Exactode . . . . .. ... ... ........ 97
Solved using Lie symmetry for first orderode . . . . . .. ... .. 99
Maple step by step solution . . . . .. ... ... ... ... .. .. 102
Maple trace . . . . . . . . . .. 103
Maple dsolve solution . . . . .. ... ... .. .. ... ... .. 103
Mathematica DSolve solution . . . . ... ... ... ........ 103}

Internal problem ID [8675]

Book : First order enumerated odes

Section : section 1
Problem number : 15

Date solved : Tuesday, December 17, 2024 at 12:57:26 PM
CAS classification : [[_linear, ‘class A‘]]

Solve

cy =ar+vy

Solved as first order linear ode

Time used: 0.125 (sec)

In canonical form a linear first order is

Y + q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

The ode becomes

Integrating gives

@)=

p(z) = %

x
_z are c
ye ¢ :/ dx
c

= —(c+z)ae " +¢
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Dividing throughout by the integrating factor e < gives the final solution

y=ciec —alc+x)

Summary of solutions found

y=C1e%—a(c+x)

Solved as first order Exact ode
Time used: 0.128 (sec)

To solve an ode of the form

M(z,) + N(z,9) 2 =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
Hence 06 06d
Y
i st B
ox + Oy dz 0 (B)
Comparing (A,B) shows that
99 _
or
o
T _N
oy
But since aajgy = 8‘9; g’z then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5?: ;’y = aa;gm is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(c¢)dy = (az +y)dz
(—ax —y)dz+(c)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —az —y
N(z,y)=c

The next step is to determine if the ODE is is exact or not. The ODE is exact when the

following condition is satisfied
oM _ ON

oy Or
Using result found above gives

oM _ o
oy Oy y

=-1
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And
ON 0
% = 929
=0

Since %iy/[ %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let
A= 1 /0M ON
N\ 9y oz

1
=—((-1) - (0))
c
1
o
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
p=e JAdz
—e J —%dw

The result of integrating gives

=
|
Q)
ol [XE]

Il
o

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

And

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+N%=0
dz

(—(az +y)e™e) + (ce™c) j_z ~0

The following equations are now set up to solve for the function ¢(z,y)

- o
2w ©)
Integrating (2) w.r.t. y gives

@dy = /Ndy
Ay

op . s
a—ydy—/ce dy

¢ =ce cy+ f(z) (3)



CHAPTER 2. BOOK SOLVED PROBLEMS 99

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

% eyt 4 1) @

99

22 = —(ax + y) e~ . Therefore equation (4) becomes

But equation (1) says that
—(azx+y)e e = —ye ¢ + f'(2) (5)
Solving equation (5) for f'(z) gives
f'(z) = —aze e
Integrating the above w.r.t = gives
/f'(a:) dz = / (—aze <) dx

f(@)=clc+z)ae +¢

Where c; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
p=cecy+clc+z)ae s +¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and cy constants into the constant c; gives the solution as

¢ =cecy+clct+z)ae e

Solving for y gives

o8

(ae”cc?+caze e —ci)e

y=-
c

Summary of solutions found

o8

(ae”cc?+caze e —ci)e

y=-
c

Solved using Lie symmetry for first order ode
Time used: 0.365 (sec)
Writing the ode as

;e +y
C
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W("?y - gm) - w2£y —we€ — wyn =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

£ =zaz +yaz +a (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

b+ (az +y) (b3 —a2) (az+ y)2 a3 a(xas+yas+a1) xby 4+ ybs + by
2 - 2 -
c c c c

=0 (5E)

Putting the above in normal form gives

a’r’a3 + 2acway — acxbs + acyas + 2azxyas + acay — bac® + cwby + cyas + y?as +cby

c? 0

Setting the numerator to zero gives

—a?z%a3 — 2aczas + acxbs — acyas — 2azryas — aca, + boc? — cxby — cyas — y2a3 —cb; =0
(6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y} in

them

{r =v1,y = v}

The above PDE (6E) now becomes

—a2a3'vf — 2acasvy — acasvy + acbsvy — 2aa3v1v; ("E)
— acay + byc® — casvy — chovy — agvg —cb; =0

Collecting the above on the terms v; introduced, and these are
{v1,v2}

Equation (7E) now becomes

—a2a3vf — 2aa3v1v9 + (—2acas + acbs — cby) v1 (8E)
— asvs + (—acas — cay) vy — acay + byc® — cby =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—a3 = 0
—2aa3 =0
—a%a; =0

—acas —cag =0
—acay +byc® —cby =0

—2acag + acbs — cby =0
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Solving the above equations for the unknowns gives

a; = aq
CL2=0
a3=0

b1 = acbs — aa,
b2 = ab3
b3 = bs

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

§€=0
n=ac+axr+vy
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _ dy _

F=y =48 1)

The above comes from the requirements that (fa% +n%> S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

n

/ 1
ac+ar +y

S =1n(ac+ az +y)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

ar +
w(z,y) = Y
c
Evaluating all the partial derivatives gives
R, =1
R,=0
G-
alc+z)+y
1
Sy =

a(c+z)+vy



CHAPTER 2. BOOK SOLVED PROBLEMS 102

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
R 2A
dR ¢ (24)
We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

a5 _1
dR ¢
The above is a quadrature ode. This is the whole point of Lie symmetry method. It

converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).
[as= [ ar
c
R
S (R) = Z + Co

To complete the solution, we just need to transform the above back to x,y coordinates.
This results in

ln(a(c+m)+y)=§+02

Which gives

coctzx
Yy=—ac—ar+e ¢
Summary of solutions found
cgctx
Yy=—ac—ar—+e c

Maple step by step solution

Let’s solve

o(Ly(@)) = za + y(o)
° Highest derivative means the order of the ODE is 1

()
° Solve for the highest derivative
Lya) = 22

) Collect w.r.t. y(z) and simplify
ty(e) =12 4 o
° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE

dz y(flf) y(Z) acz

° The ODE is linear; multiply by an integrating factor u(x)
u(@) (@) - 12) = o=

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
w(z) (Ly(@) - 12) = (L£y(2) ple) +y(@) (L))

e Isolate L u(z)

dahle) = =4

° Solve to find the integrating factor
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p(z) =e<
° Integrate both sides with respect to x
J (& (@) pl2))) do = [ #*dz + C1
° Evaluate the integral on the lhs
y(@) plz) = [ 9= dw + CI
) Solve for y(x)

L e
@) ="

o Substitute pu(z) = e ¢

-z
€

£ 9% dp+ C1
y(z) = [Pt ‘T
° Evaluate the integrals on the rhs
y(z) = —‘(“cle__;“wl
° Simplify

y(z) = C1ec —a(z +c)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 19

‘ dsolve(cxdiff (y(x),x) = axx+y(x),
‘ y(x),singsol=all)

y=ecc; —alc+x)

Mathematica DSolve solution

Solving time : 0.052 (sec)
Leaf size : 22

‘ DSolve [{c*D[y[x],x]==axx+y[x],{}},
L y[x],x,IncludeSingularSolutions->True]

y(z) = —a(c+z) + cree
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2.1.16 problem 16
Solved as first order linearode . . . . ... ... ... ....... 104
Solved as first order Exactode . . . . .. ... ... ........ 1051
Solved using Lie symmetry for first orderode . . . . . .. ... .. 108]
Maple step by step solution . . . . .. ... ... ... ... .. .. 111l
Maple trace . . . . . . . . . .. 112
Maple dsolve solution . . . ... ... ... ... . ... ... 112
Mathematica DSolve solution . . . . ... ... ... ........ 112

Internal problem ID [8676]

Book : First order enumerated odes

Section : section 1
Problem number : 16

Date solved : Tuesday, December 17, 2024 at 12:57:27 PM
CAS classification : [[_linear, ‘class A‘]]

Solve

Solved as first order linear ode

Time used: 0.124 (sec)

cy' = azx + by

In canonical form a linear first order is

Y +q(z)y = p(z)

Comparing the above to the given ode shows that

The integrating factor u is

The ode becomes

Integrating gives

(b +c)ae e
_ °

+c
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Dividing throughout by the integrating factor e gives the final solution

crecb? —a(bs + ¢

Summary of solutions found

_a ecb? — a(bz + c)

B2
Solved as first order Exact ode
Time used: 0.140 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
Hence 06 06d
Y
I T - A B
ox + Oy dz 0 (B)
Comparing (A,B) shows that
0¢ _
or
o¢
dy
But since % = % then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
(,;9; (ffy = aizgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or

might not exist. The first step is to write the ODE in standard form to check for exactness,

which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(c)dy = (ax + by) dz
(—az —by)dz+(c)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —az — by
N(z,y)=c

The next step is to determine if the ODE is is exact or not. The ODE is exact when the

following condition is satisfied
oM  ON

9y Oz
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Using result found above gives

And
ON 0
2~ 929
=0

Since %i; %—];], then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

Sl <aM 6N)

~ N\dy Oz
1

= (-5 - )
b
c
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is
= efAdm
—e J —%dz

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
= e_b?m(—ax — by)
= —(azx + by) e

And

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+N% =0
dz
(—(aw—i—by) e_bTZ> + (ce_bTZ> j—i =0

The following equations are now set up to solve for the function ¢(z,y)
% _m 1)

L=~ 2)
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Integrating (2) w.r.t. y gives

%dy = /Ndy
dy

@dy = /ce_bf dy
Oy

¢=ce cy+ f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

% byt f() @

But equation (1) says that % = —(az + by) e~ . Therefore equation (4) becomes

bz

~(az +by) e = ~be “y + f(a) (5)
Solving equation (5) for f'(z) gives
bx

fl(z) = —aze e

Integrating the above w.r.t = gives

/f'(x)dx:/(—axe_b:> dz

clbx + ¢ aeF
f(z) = ( bQ) +a

Where ¢; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢

e c(br+c)ae

¢=ce Fy+ S

&1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢y constants into the constant c; gives the solution as

Solving for y gives
(e_%xabcx +eFac—¢ b2> e

c b?

Yy=-

Summary of solutions found

bx bz bx
(e_?abcx +e cacd—¢ b2> ec

c b?

Yy=-
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Solved using Lie symmetry for first order ode
Time used: 0.383 (sec)

Writing the ode as

) = azr + by
c
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny —-&) — w2€y —wf —wyn=0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

§ = zaz + yas + o (1E)
n = xby + ybs + by (2E)

Where the unknown coeflicients are

{ala aq, as, b17 b2? b3}

Substituting equations (1E,2E) and w into (A) gives

2
byt (ax + by)c(bg az) (az +cgy) az _a(zaz + Zag +a1)  b(zby + Zb3 +b1) _ 0 (5E)

Putting the above in normal form gives

a’z?a3 + 2abryas + b*y?as + 2aczay — acxbs + acyas + bexbs + beyay + acay + beby — byc?
2

=0
Setting the numerator to zero gives

—a’z?as — 2abzyas — b*y’as — 2acxas + acxbs (6E)

— acyas — bexby — beyay — acaq — beby + bac? = 0
Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}
The following substitution is now made to be able to collect on all terms with {z,y} in
them
{z =v1,y =v2}

The above PDE (6E) now becomes

—azagvf — 2abasv vy — b2a3v§ — 2acaqyv — acazvs (TE)

+ acbsv; — beaguy — bebyvy — acay — beby + boc? = 0

Collecting the above on the terms v; introduced, and these are

{v1,v2}
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Equation (7E) now becomes

—azagvf — 2abazvive + (—2acay + achs — beby) vy (8E)

— b%azv3 + (—acas — beay) vy — aca; — beby + byc® =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—a%a3 =0
—b2a3 =0
—2abaz =0

—acaz — bca; =0
—aca; — beby +byc® =0

—2acas + acbs — beby = 0

Solving the above equations for the unknowns gives

a; = aq
QAo = 0
as = 0
a(ba; — cbs)
b = B TR
ab
by ="
b3 = bs

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

§=0
abx + b%*y + ac
n= b2

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

do _dy _

F=y =48 1)

The above comes from the requirements that (56% +77%> S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

[ 3
n

—1 d
abz+b2y+ac Y
2

S is found from

S

Which results in

S=In (abx + b2y + ac)
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Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS S +w(z,y)S,

R~ R, +w(z, )R, ®

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

ar +b
w(z,y) = v
c
Evaluating all the partial derivatives gives

R, =1

R,=0

s = ab

a(bx +c) + by

b2

S,
Y abr +b%y +ac
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds b
P 2A
dR ¢ (24)
We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

dS b
dR ¢
The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration

when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

/dS:/l—)dR
C

b
S(R):?Fz‘FCQ

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

b
In (a(bz + ¢) + b%y) = ?a; + ¢

Which gives

coc+bzx
—abxr —ac+e ¢

y= b2

Summary of solutions found

coc+bx
—abr —ac+e .
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Maple step by step solution

Let’s solve
c(Ly(z)) = za + by(z)
° Highest derivative means the order of the ODE is 1

=Y(@)
° Solve for the highest derivative
Ly(o) = =2

o Collect w.r.t. y(z) and simplify

fy(@) =22 4o

) Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE

y(e) -2 =

° The ODE is linear; multiply by an integrating factor u(x)

by(x T)ax
u(o) (yta) - P2 ) = e

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

w(a) (Ly() — 22 = (Ly(@)) p(z) + y(2) (Lu())
o Isolate L (z)

() = —Hek

. Solve to find the integrating factor

xb

p(z) =€
° Integrate both sides with respect to x

[ (L (y(z) p(x))) de = [ 24y 4 C1
° Evaluate the integral on the lhs

y(z) p(z) = [ D24y + C1
) Solve for y(x)
w@lez g1 01
Vi) =

zb

) Substitute u(z) = e~ -

_zb
[ cemgpycn

y(z) = ce_%b
° Evaluate the integrals on the rhs
zb
_ (bm+c)e_7a+c‘l
y(z) = Z—%b
° Simplify

zb
__ Cle'c b?>—a(bz+c)
ylo) = ——p
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 29

-

dsolve(cxdiff (y(x),x) = axx+b*y(x),
L y(x) ,singsol=all)

_ eccb? — a(bz + c)

y_

Mathematica DSolve solution

Solving time : 0.061 (sec)
Leaf size : 28

‘ DSolve [{c*D[y[x],x]==a*x+b*y[x],{}},

L y[x],x,IncludeSingularSolutions->True]

y(z) —

_a(bz +c) N

ba
C1€ ¢
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2.1.17 problem 17

Solved as first order autonomousode . . . . . . ... ... ... .. 113}
Solved as first order homogeneous class D2ode . . . .. ... ... 114
Solved as first order Exactode . . . . .. .. ... ... ...... 115l
Solved using Lie symmetry for first orderode . . . . ... ... .. 118]
Maple step by step solution . . . . .. ... ... ... ... ..., 1211
Maple trace . . . . . . . . . L 1211
Maple dsolve solution . . . .. ... ... .. ... ... ..., 121]
Mathematica DSolve solution . . . . . . ... ... ... ...... 121

Internal problem ID [8677]

Book : First order enumerated odes
Section : section 1

Problem number : 17

Date solved : Tuesday, December 17, 2024 at 12:57:28 PM
CAS classification : [_quadrature]

Solve

/

Yy =Y

Solved as first order autonomous ode
Time used: 0.161 (sec)

Integrating gives

/Edyzdz
)

cln(y)=z+ ¢

Singular solutions are found by solving

y:()

c

for y. This is because we had to divide by this in the above step. This gives the following

singular solution(s), which also have to satisfy the given ODE.

y=0
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The following diagram is the phase line diagram. It classifies each of the above equilibrium
points as stable or not stable or semi-stable.

Figure 2.18: Phase line diagram

Solving for y gives

y=0
z+cy
y = e c
Summary of solutions found
y=0
z+cy
'y = e c

Solved as first order homogeneous class D2 ode
Time used: 0.184 (sec)

Applying change of variables y = u(x) z, then the ode becomes

c(v(z) z + u(z)) = u(z) z

Which is now solved The ode v'(z) = —W is separable as it can be written as
u'(m) — _u(x) (C — 117)
cx
= f(z)g(u)
Where
c—7z
fla)=-
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Integrating gives

/ﬁdu=/f(m)dx
o -2

In (u(z)) = In (%) e

dx

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(z) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

1
1 =In|( - -
n(u(z)) =In (x) tota
u(z) =0
Solving for u(z) gives
u(z) =0
In % c+ciet+zx
u(z) =e ( )c :
Converting u(x) = 0 back to y gives
y=0
ln(%)cﬁ-clc-ﬁ—x
Converting u(x) =e— < back to y gives
ln(%)c-f-clc-ka:
y=e c x
Summary of solutions found
y=0
ln(%)c+c1c+z
y=e <
Solved as first order Exact ode
Time used: 0.170 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
%QS(:E, y) =

Hence 96  96d
Yy _
or + oydr 0 (B)
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Comparing (A,B) shows that

But since ;’zig;/ = aa;—g; then for the above to be valid, we require that

oM  ON

By Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
(,;9; (ffy = aizg; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,
which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
c)dy = (y) dz
(—y)dz+(c)dy =0 (2A)

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ 9N
oy Oz
Using result found above gives
oM_o,
ay oy °
=-1
And
ON 0
o~ )
=0

Since %i; %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

Sl (8M azv)

- N Oy ox
= (- - )
_ 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

M:efAdx

— ef—%dw
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The result of integrating gives

=
|
Q)
o8 [XE]

Il
o

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
=e < (-y)
= —ye_%
And
N = uN
=e ()
= ce_%

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+N@=0
dz
dy
=0
dz

(~yeF) + (ce?)

The following equations are now set up to solve for the function ¢(z,y)

% _w (1)
op

Integrating (2) w.r.t. y gives

%dy = /Ndy
Ay

0¢ _a
a—ydy—/ce e dy

¢p=ce cy+ f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

0 s
% ey () @
But equation (1) says that 52 = —ye~<. Therefore equation (4) becomes
—ye e =—ye < + f() (5)
Solving equation (5) for f'(z) gives
f'(®) =0

Therefore
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Where ¢; is constant of integration. Substituting this result for f(z) into equation (3)

gives ¢
p=ce cy+c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining ¢; and ¢, constants into the constant c; gives the solution as

cp = ce_%y
Solving for y gives
C1 e%
y =
c
Summary of solutions found
C1 e%
y =
c

Solved using Lie symmetry for first order ode
Time used: 0.201 (sec)

Writing the ode as

y ="
C
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - Em) - w2€y - wx€ - Wy77 =0

(A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree

1 to use as anstaz gives
§ = zay +yaz + a;
nsz2+yb3+b1

Where the unknown coeflicients are
{a1,as,a3,b1,b9, b3}
Substituting equations (1E,2E) and w into (A) gives

byt y(bs — az) B y2as _ zbha+ybs+ b
2 c c? c

=0

Putting the above in normal form gives

boc? — cxby — ycas — y?az — chy
2

=0

Setting the numerator to zero gives

boc? — cxby — ycas — y2az — cby =0

(1E)
(2E)

(5E)

(6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}
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The following substitution is now made to be able to collect on all terms with {z,y} in
them

{z =v1,y = v}
The above PDE (6E) now becomes
bac? — cagvy — chyvy — aszvs —cby =0 (TE)
Collecting the above on the terms v; introduced, and these are
{v1, 02}
Equation (7E) now becomes
bac? — cagvy — chyvy — aszvs —cby =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

—a3z3 =0

—cas =0
—cby =0

boc? —cby =0

Solving the above equations for the unknowns gives

a=a
a; =10
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

£=0
n=y

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
13 n

The above comes from the requirements that (&a% —H]%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S:/ldy
n
Y

S is found from
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Which results in
S =1n(y)

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R,, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

Yy
w(z,y) = p

Evaluating all the partial derivatives gives

R, =1
R, =0
Sy =0

1
Sy=1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
— == 2A
dR c (24)
We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR ™ ¢
The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).
[as=[ar
c
R
S (R) = Z + co

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

x
ln(y)=z+02

Which gives

Summary of solutions found
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Maple step by step solution

Let’s solve

c(4y(@) =y(@)
° Highest derivative means the order of the ODE is 1

=Y(@)
° Solve for the highest derivative

&y(@) =13
° Separate variables

d
LY@ 1

yl@) o
° Integrate both sides with respect to x
=y(e)
dy?x) dz = [ ldz + C1
. Evaluate integral
In (y(x)) = £ + C1

o Solve for y(x)

Clct+zx

y(z) =e -

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 12

‘ dsolve(cxdiff (y(x),x) = y(x),
‘ y(x) ,singsol=all)

x
Yy =-ecc,

Mathematica DSolve solution

Solving time : 0.024 (sec)
Leaf size : 20

p
'DSolve [{c*D[y[x],x]==y[x],{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(x) — clec
y(z) = 0
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2.1.18 problem 18
Solved as first order autonomousode . . . . . . ... ... ... .. 122
Solved as first order homogeneous class D2ode . . . .. ... ... 123]
Solved as first order Exactode . . . . .. .. ... ... ...... 124
Solved using Lie symmetry for first orderode . . . . ... ... .. 127
Maple step by step solution . . . . .. ... ... ... ... ..., 130
Maple trace . . . . . . . . . L 130
Maple dsolve solution . . . .. ... .. .. ... ... ..., 130
Mathematica DSolve solution . . . . . ... ... ... .. ..... 1301

Internal problem ID [8678§]

Book : First order enumerated odes

Section : section 1

Problem number : 18

Date solved : Tuesday, December 17, 2024 at 12:57:29 PM
CAS classification : [_quadrature]

Solve
cy =by

Solved as first order autonomous ode
Time used: 0.173 (sec)
Integrating gives

Cc

dy=d
by Y v
Cln—(y) =2 _.|_ cl
b
Singular solutions are found by solving
b
b _,
c

for y. This is because we had to divide by this in the above step. This gives the following

singular solution(s), which also have to satisfy the given ODE.

y=0
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The following diagram is the phase line diagram. It classifies each of the above equilibrium
points as stable or not stable or semi-stable.

Figure 2.19: Phase line diagram

Solving for y gives

y=0
b(z+cqp)
y = e c
Summary of solutions found
y=0
b(z+cy)
y = e c

Solved as first order homogeneous class D2 ode
Time used: 0.202 (sec)

Applying change of variables y = u(x) z, then the ode becomes
c(v'(z) z + u(z)) = bu(z) z

Which is now solved The ode v/'(z) = % is separable as it can be written as

= f(z)g(u)
Where
f(z) = xbxz c

g(u) =u
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Integrating gives

/ldu—/ _cd:c
U zCc

In (u(z)) = In (i) + %b to

/ﬁdu=/f§)x)dm

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = In (1) L

x
u(z) =0
Solving for u(z) gives
u(z) =0
In % ctcqictxb
u(z) =e = =
Converting u(x) = 0 back to y gives
y=0
1n(%)c+clc+zb
Converting u(x) =e— < back to y gives
ln(%)c+c1c+zb
y =xTe c
Summary of solutions found
y=0
ln(%)c-ﬁ—clc-ﬁ-mb
y =xTe c
Solved as first order Exact ode
Time used: 0.170 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d

Hence 06 06 d
0¢ , 0ddy _

dor ' dydz 0 (B)
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Comparing (A,B) shows that

o9
M
Oz
9 _ n
Oy
But since aa;;’y = ;’; ;’x then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

gj gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz +N(z,y)dy =0 (1A)

Therefore

(c)dy = (by) dz
(=by)dz+(c)dy =0 (2A)

Comparing (1A) and (2A) shows that

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
By 8_y(_by)
=-b
And
ON 0
o~ o)
=0

Since %‘/[ # %_1;/, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

am k(2 o)

- N Oy ox
= (=)~ (0)
__°

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

'u=efAdx

— ef—%dx
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The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M =uM
_zb
=e < (—by)
= —bye_%b
And
N =uN
=e % (c)
_zb
= ce c

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

_dy

M+N-2=0
_zb _ab 3;_
(—bye c)—|—<ce c)a_o

The following equations are now set up to solve for the function ¢(z,y)

0p —
b~

Integrating (2) w.r.t. y gives

@dy = /Ndy
Ay

%dy = /ce_mcb dy
Oy

¢=ce cy+ f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t x gives

% byt 4 a) @
But equation (1) says that ¢ = —by e . Therefore equation (4) becomes
~bye ¥ = ~bye  + f'(x) (5)

Solving equation (5) for f'(z) gives
fi(x)=0

Therefore

f@)=a
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Where ¢; is constant of integration. Substituting this result for f(z) into equation (3)

gives ¢
¢ = ce_%by +c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining c¢; and cy constants into the constant c; gives the solution as

_ab
cp=ce cy

Solving for y gives

Ci€c
y =
c
Summary of solutions found
zb
Ci€c
y =
c

Solved using Lie symmetry for first order ode
Time used: 0.231 (sec)
Writing the ode as

, by
Yy =—
C

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - €z) - w2€y —wg€ — Wy = 0

(A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree

1 to use as anstaz gives
£=xa2+ya3+a1
n:xb2+yb3+b1

Where the unknown coefficients are
{al,az, a3,bl,b2, b3}
Substituting equations (1E,2E) and w into (A) gives

by(b3 — az) _ b2y2a3 _ b(-’L‘bz + yb3 + bl)
c c? c

by + =0

Putting the above in normal form gives

B b*yas + beaby + bycas + beby — bac®

2 0

Setting the numerator to zero gives

—b%y?as — bexby — bycas — beby + bac? =0

(1E)
(2E)

(5E)

(6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}
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The following substitution is now made to be able to collect on all terms with {z,y} in
them

{z =v1,y = v}
The above PDE (6E) now becomes
—b%a3v3 — beayvy — bebyvy — beby + byc® =0 (TE)
Collecting the above on the terms v; introduced, and these are
{v1, 02}
Equation (7E) now becomes
—b%a3v3 — beayvy — bebyvy — beby + byc® =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

—b2(13 =0
—bcas =0
—bez =0

—bel + b202 =0

Solving the above equations for the unknowns gives

a =a
a; =10
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

£=0
n=y

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
13 n

The above comes from the requirements that (&a% —H]%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S:/ldy
n
Y

S is found from
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Which results in
S =1n(y)

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

aS _ Sp+w(z,y)Sy
dR R, +w(z,y)R,

(2)

Where in the above R,, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

by
w(x ) y) - ?
Evaluating all the partial derivatives gives
R, =1
R,=0
S, =0
1
Sy - &

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds b
— =- 2A
dR c (24)
We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

s b

dR ¢
The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).
/ ds = / b dR
c
bR
S (R) = ? + co

To complete the solution, we just need to transform the above back to x,y coordinates.
This results in

xb
In(y)=—+c
Which gives
coc+xzb
y = e c
Summary of solutions found
coctxb
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Maple step by step solution

Let’s solve

o(£y(@)) = by(z)
° Highest derivative means the order of the ODE is 1

=Y(@)
° Solve for the highest derivative

ay(@) ="

° Separate variables

Ly@) _ b

y() e
° Integrate both sides with respect to x
Ly@ ;o
. Evaluate integral

In (y(2)) = 2 + C1
) Solve for y(x)

Clc+bz

y(@)=e -

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 13

'dsolve(cxdiff (y(x),x) = b¥y(x),
‘ y(x),singsol=all)

Mathematica DSolve solution

Solving time : 0.025 (sec)
Leaf size : 21

e

DSolve [{c*D[y[x],x]==bxy[x],{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(x) — clesz
y(z) =0
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2.1.19 problem 19

Solved as first order ode of type reduced Riccati . . . . .. .. ... [131]
Maple step by step solution . . . . ... ... ... ... ... ... 132
Maple trace . . . . . . . . . . ... e 132
Maple dsolve solution . . . . . . ... ... ... ... ... ..., 132
Mathematica DSolve solution . . . . . ... ... ... ....... 133

Internal problem ID [8679]

Book : First order enumerated odes

Section : section 1

Problem number : 19

Date solved : Tuesday, December 17, 2024 at 12:57:31 PM
CAS classification : [[_Riccati, _speciall]

Solve

cy = ax + by?

Solved as first order ode of type reduced Riccati
Time used: 0.151 (sec)

This is reduced Riccati ode of the form
y/ =a :L,n _+_ by2

Comparing the given ode to the above shows that

a
a=—
c
b
b= -
c
n=1

Since n # —2 then the solution of the reduced Riccati ode is given by

c1 BesselJ (i, %\/@ﬂ“) + ¢, BesselY (i, z abx’“) ab >0

w =z (1)
c1 Bessell (5, v/ —abz*) + ¢y BesselK (5, v/ —abz¥) ab <0
_ v
y= bw
n
k=142
+ 2
EQ(1) gives
3
k=2
2
Besscly [ 1,2V E Bessaly | 1,2V &7
w = /z | ¢, Besse PR + ¢, Besse 33
Therefore the solution becomes
_ 1o
v= bw

Substituting the value of b, w found above and simplyfing gives

2 “—3:1:3/2 2 a—é’z3/2
(— BesselY (—%, 3 ) ca — BesselJ (—é, 3 ) Cl) c\/ %V
y prnd
2./ab 23/2 2./ab 43/2
b (01 BesselJ (%, \/E ) + co BesselY (%a < ))

w



CHAPTER 2. BOOK SOLVED PROBLEMS

132

Letting co = 1 the above becomes

2,/ab 23/2 9. [ab 43/2
(— BesselY <— T) — BesselJ <— T) C1> c t;_g Vz
a9 23/2 ab ,3/2
b (cl BesselJ <§, 2+> + BesselY (%’ 2\/% >)

Summary of solutions found

ab ,3/2
( BesselY < 3 ) BesselJ < 27) cl> c\/ 2z

zb ab ,3/2
b (cl BesselJ (% QT) + BesselY (%’ 2\/?23 ))

Maple step by step solution

y:

y:

Let’s solve
c(Ly(z)) = za+ by(z)®

° Highest derivative means the order of the ODE is 1
2y(z)

° Solve for the highest derivative

2
%y(ﬂ?) — xa+bcy(x)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

Looking for potential symmetries
trying Riccati

trying Riccati Special

<- Riccati Special successful’

Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 75

‘ dsolve(c*diff (y(x),x) = a*x+b*xy(x)~2,
‘ y(x),singsol=all)

( ) <A1ryA1 <1 —(—‘21)1/3 ) c1 + AiryBi (1 —(b—“)l/?’ x)) c
b (cl AiryAi (— (—‘2‘)1/ > + AiryBi < (ba)1/3 J:>>

y:
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Mathematica DSolve solution

Solving time : 0.186 (sec)
Leaf size : 437

' DSolve [{c*D[y[x],x]==a*x+b*y[x]~2,{}},
‘ y[x],x,IncludeSingularSolutions->True] ‘

y(@)
< 3/2\/_\/7< 2 BesselJ <—§ %ﬂ\/z 3/2> +01<BesselJ <3,3\/_\/Z 3/2> — BesselJ <—§ g\/_\/
2bx (BesselJ (3’ 3\/_\/7353/2) + ¢; Bessel] <_% % \/7 /

C<x3/2\/§\/§BesselJ (—‘—;, g\/%\/ga:?’ﬂ) 3/2\/_\/7BesselJ <3, 3\/_\/; 3/2) + Bessel] <—% 2
) 2bx BesselJ (—%, %ﬂ\/;x?»ﬂ)

_>
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2.1.20 problem 20

Solved as first order ode of type reduced Riccati . . . . . . . ..
Maple step by step solution . . . . . .. ... ... ..
Mapletrace . . . . . . . . . . . ...
Maple dsolve solution . . . .. . ... ... ... ........
Mathematica DSolve solution . . . . . ... ... ........

Internal problem ID [8680]
Book : First order enumerated odes
Section : section 1
Problem number : 20
Date solved : Tuesday, December 17, 2024 at 12:57:32 PM
CAS classification : [[_Riccati, _speciall]
Solve
b 2
o — BT

r

Solved as first order ode of type reduced Riccati
Time used: 0.155 (sec)

This is reduced Riccati ode of the form
y/ =a xn + by2

Comparing the given ode to the above shows that

a
a=—
re
b
b= —
cr
n=1

Since n # —2 then the solution of the reduced Riccati ode is given by

¢, BesselJ (i, %\/%m’ﬁ + o BesselY (i, 2 abmk> ab>0
c1 Bessell (5, 1+/—abz*) + c; BesselK (5, v/—abz¥) ab < 0

W=z

1 w’
T obw
n
k=14+—
+ 2
EQ(1) gives
3
k=—
2
1 2/ 2% 1 2/ 2%
w = v/z | c; Bessel] U — + ¢y BesselY LA —
Therefore the solution becomes
1 w’
vy= bw

Substituting the value of b, w found above and simplyfing gives

5 2 ng 23/2 5 2 gb2 z3/2 "
—BesselY | —5, —5—— | co—Bessel] | -5, ~5— | a1 | cry/ 3=

N

y =
2 ab x3/2 2 ab 13/2
b <C1 BesselJ (%, L) + ¢, BesselY (é, \/E >)

3

(1)
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Letting co = 1 the above becomes

<— BesselY (—2 ﬂ) — BesselJ (—2 ) >
3 3 3 'r2c2

NZ7

y:

12 b, 43/2 1 2
b( c1Bessel] | 3, +—5—— | + BesselY g

Summary of solutions found

[_ab_ 43/2
<— BesselY (—%, %) — BesselJ (—% ) ) TQCQ

N7

y:

_ab_ 3/2 £3/2
b (Cl BeSSGIJ (%, @) -|- BesselY (% 1‘20 ))

Maple step by step solution

Let’s solve
za+by(z)?
° Highest derivative means the order of the ODE is 1
=y(@)
° Solve for the highest derivative
xra x 2
Ly(z) = 2ol

Maple trace

p

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

Looking for potential symmetries
trying Riccati

trying Riccati Special

<- Riccati Special successful’

Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 91

‘ dsolve(cxdiff (y(x),x) = (a*xx+b*y(x)~2)/r,
y(x) ,singsol=all)

N

(TZCQ)I <A1ryA1 <1 —( )1/3 :c) c1 + AiryBi <1 — (r;"cg)l/?’ x)) re
b (1 AiryAi (- (%)) + AiryBi (- (%) z))

y:
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Mathematica DSolve solution

Solving time : 0.21 (sec)
Leaf size : 517

' DSolve [{c*D[y[x],x]==(a*x+b*y[x]~2)/r,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z)

cr<x3/2\/g\/g<—2 BesselJ (—5, 5\/;\/3 3/2> +c <BesselJ <§ g\/_\/g 3/2> — BesselJ (
2
'3

4 2

373
- 2bx (BesselJ <3, 3\/_\/7x3/2> + ¢; BesselJ (—% \/:\/Z
y(z) =

cr<x3/2\/§ b Bessel] <—§,§\/_\/7 3/2> 3/2\/_\/7Bessel <§ %F\/T 3/2>—|-BesselJ (—
) 2bz BesselJ (—5, é\/g\/gaﬁ/?)
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2.1.21 problem 21

Solved as first order ode of type Riccati . . .. ... .. ... ... 137
Maple step by step solution . . . . ... ... ... ... ... ... [140]
Maple trace . . . . . . . . . . ... e 140
Maple dsolve solution . . . . . . .. ... ... ... .. ... 141
Mathematica DSolve solution . . . . . ... ... ... ....... 141

Internal problem ID [8681]

Book : First order enumerated odes

Section : section 1

Problem number : 21

Date solved : Tuesday, December 17, 2024 at 12:57:34 PM
CAS classification : [_rational, _Riccatil

Solve

,  ar+ by?
V="

Solved as first order ode of type Riccati
Time used: 2.946 (sec)

In canonical form the ODE is

y = F(z,y)
by’ tax
o rxc

This is a Riccati ODE. Comparing the ODE to solve

’—14_%

rc crx

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fo(z)y®

Shows that fo(z) = £, fi(z) =0 and fo(z) = 2. Let

Ccrx

y:

= Twb (1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou"(€) = (fo + fufo) v/ (z) + f3 fou(z) = 0 (2)
But
, b
f2= cra?
fifa=0
2 b?
5P = g

Substituting the above terms back in equation (2) gives

bu (x) N b/ (z) N bau(x)

cre cr 2 c3riz?

=0
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In normal form the ode

b(f%) N b(%L)  blau B 1)

cre crz?  3ri3xg?
Becomes
d*u du
T 90 () +al@)u=r(e) @)
Where
1
p(z) = o
ab
9(z) r2c’x

The Lagrange adjoint ode is given by

€ —(Ep) +€&4=0
" z)\’ abé(z
(8] (32) -
x r2c2x
d? de(x) (A + abx) £()
@f(x) - + r2x?c? =0
Which is solved for £(x). Writing the ode as
b
r’¢" — x€ + (1 + %) £=0 (1)
Bessel ode has the form
2" +x¢ + (—n*+2*) =0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

2"+ (1-20) 2€' + (2% —n®y +0?) € =0 (3)
With the standard solution

& = x%(cs BesselJ (n, Bx7) + c¢ BesselY (n, 5 z7)) 4)

Comparing (3) to (1) and solving for a, 8, n,y gives

a=1
B_zx/_
re
n=>0
1
=3

Substituting all the above into (4) gives the solution as
2 2
& = csx BesselJ ( Vab \/_> + cgx BesselY < Vab \/_)

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

£() o — ug(z) + £(z) plo) u = /s

, x x)dz
u—i—u( x) a:) §(z
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Or

¢5/z Bessel] 1,2\/5\/5 Vab c BesselY (1,2Y
¢ Bessel] (O’ 2@\/5) - = ), + co BesselY (0, N‘i‘/’z) s (L

rc rc

v csx BesselJ (0, @) + cex BesselY (0, Nﬁ vz )

Which is now a first order ode. This is now solved for «. In canonical form a linear first
order is

'+ q(z)u = p(z)
Comparing the above to the given ode shows that
Vab <BesselJ <1, M%‘/ﬂ cs + BesselY (1, 2@‘/5) Ce>
Vzre <c5 BesselJ <O, M%‘/E) + ¢ BesselY (0, 2\/‘2\/&))
p(z) =0

The integrating factor y is

q(z) =

'u,:efqda:

m(BesselJ( 2\/7f)c5+BesselY( 2\/7\/>> 6)
ﬁrc(csBesselJ( 2rf)+66BesselY( ZFW»

de
=e
1

cs BesselJ (O, 2‘/‘?; x) + c¢ BesselY <0, 2‘/7%‘/5)

The ode becomes

d u —0

dz \ ¢, Bessel] (0, 2\/'?;‘/‘%) + cg BesselY (0, 2\/%\/5)

Integrating gives

u
¢s Bessel] <O 2\Ff) + ¢ BesselY (0 Wf’;ﬁ) - / 0dz + ¢

T . . 1 .
Dividing throughout by the integrating factor - ( 2rf> oo BesselY( 0,5/ ﬁ) gives

the final solution
U= <c5 BesselJ ( 2\/_\/_> + c¢ BesselY ( 2\/_\/_>>

Hence, the solution found using Lagrange adjoint equation method is

U= <c5 BesselJ ( 2\/_\/_> + c¢ BesselY < 2\/_\/_>>

rc

The constants can be merged to give

u = c5 BesselJ ( 2v/ab \/_> ~+ c¢ BesselY

[+5)

Will add steps showing solving for IC soon.
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Taking derivative gives

cs BesselJ (1, 2‘/‘;7"/5> Vab  cgBesselY (1, NEﬁ) Vab

C rc

u'(z) = — —

rey/T rey/T

Doing change of constants, the solution becomes

rc rc

rev/T revT
b <Cs BesselJ (0, M) + BesselY (O, M%‘ﬁ’))

rC

( cg BesselJ (l,zmﬁ>\/$ BesselY<1,2mﬁ)\/E)
— crx

Summary of solutions found

reve reVa
b (Cs BesselJ (0, @) + BesselY (O, @))

( cg BesselJ (1’2\/€+\/5) Vab BesselY(l,Nfil;ﬁ) \/E)
— crx

Maple step by step solution

Let’s solve

C(%y(ﬂ?)) _ zatby(z)?

T

° Highest derivative means the order of the ODE is 1

()
° Solve for the highest derivative
za+by(z)?
ay(z) = =k

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries

trying exact

Looking for potential symmetries

trying Riccati

trying Riccati sub-methods:
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

<- Abel AIR successful: ODE belongs to the OF1 l-parameter (Bessel type

class®
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Maple dsolve solution

Solving time : 0.016 (sec)
Leaf size : 98

‘ dsolve(cxdiff (y(x),x) = (a*x+b*y(x)~2)/r/x,
‘ y(x) ,singsol=all)

\/%cr (BesselY <1, 2 %) cicr + BesselJ (172 ;bc%>>

b (clcr BesselY (O, 2 %) + BesselJ (O, 2,/ 2 >>

262

y:

Mathematica DSolve solution

Solving time : 0.288 (sec)
Leaf size : 207

' DSolve [{c*D[y[x],x]==(a*x+b*y [x]~2)/ (r*x) ,{}},
‘ y[x],x,IncludeSingularSolutions->True]

cr

\/5\/5<2 BesselY (1, M) + ¢1 BesselJ <1’ %ﬂ)

y(z) = Vb (2 BesselY (0, %) + 1 Bessel] (0’ %ﬁ»

v a+/z BesselJ <1, %)
/b BesselJ (0, @)

y(z) -
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2.1.22 problem 22

Solved as first order ode of type Riccati . . ... ... ... .... 142
Maple step by step solution . . . . ... ... ... ... ..., 145
Maple trace . . . . . . . . . . ... 146
Maple dsolve solution . . . . . . ... ... ... ... ... ..., 146
Mathematica DSolve solution . . . . . ... ... ... ....... 146

Internal problem ID [8682]

Book : First order enumerated odes

Section : section 1

Problem number : 22

Date solved : Tuesday, December 17, 2024 at 12:57:38 PM
CAS classification : [_rational, _Riccatil

Solve
,  ar+ by?
cy = ———

r 2

Solved as first order ode of type Riccati
Time used: 4.780 (sec)
In canonical form the ODE is
y =F(z,y)
by’ tax
- ra2c
This is a Riccati ODE. Comparing the ODE to solve
a by?
/ + 3/2
xer  rz?c

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fo(z)y®

Shows that fo(z) = -%, fi(z) =0 and fao(z) = —2;. Let

y_fzu

= ub_ (1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou" () = (f5 + frfa) w'(z) + f3 fou(z) = 0 (2)
But
, 2b
f2= or a3
fif2=0
2 v?
510 = g

Substituting the above terms back in equation (2) gives

bu" (z) N 2bu/ () N bau(z)

cr 2 cr 3 c3r3xd

=0
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In normal form the ode

b(%) N 2b (%) N blau

— 1
cr 2 cr 3 c3rigd 0 1)
Becomes
d*u du
90 (%) +al@)u=r(@) @)
Where
2
p(z) = o
ba
r(z) =0

The Lagrange adjoint ode is given by
£ —(€p) +&g=0

- (50 (2 -

L o) - 2(%5@)) N (zcw;; fg)f(w) o
Which is solved for £(z). Writing the ode as
226" — 226 + ( ba ) £=0 (1)
Bessel ode has the form
2"+ + (—n*+2*) =0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

2?€" + (1 —2a)z¢ + (B°7*2* —n*y* +a?) € =0 (3)
With the standard solution

€ = x%(c5 BesselJ (n, Bx”) + c¢ BesselY (n,82”)) 4)

Comparing (3) to (1) and solving for a, 8, n,~y gives

yod
2
2v/ba
B:
rc
n=-—1
1
7=

Substituting all the above into (4) gives the solution as

= —c5 ;,;3/2 BesselJ (1, @) _ 06w3/2 BesselY (1, 2\/%)
reV's rey/T

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

£() o — u€(z) + £(z) plo) u = /s

I T de‘
u—i—u( a: a:) §(z
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Or
rcy/z BesselJ (1, 2\/%>
c5 | BesselJ O,M — reva Vba ce | BesselY
3c5+/z Bessel] (1,2!\%) ° ( ( mﬁ) 2vba 3cev/T BesselY( ) ¢
’U,/ +ul = - _ 2 + rc —
z —c5 73/2 BesselJ (1, 282 ) _ ¢, £3/2 Bessel Y
) rey/T

Which is now a first order ode. This is now solved for u. In canonical form a linear first
order is

v + q(z)u = p(z)
Comparing the above to the given ode shows that

Vba (BesselJ (O 2\/5) cs + BesselY (0 2\/’Z> Cﬁ)

q(z) = v v
13/2rc (BesselJ ( , i@) cs + BesselY <1, fﬁ) cs>
p(z) =0

The integrating factor u is

p=e Jqdz
Vba (BesselJ ( c\\/;) c5+BesselY ( fc@) )
—e 3/2rc(BesselJ( 2;/\37»)c5+BesselY< 33/53) ) do

rey/T

Vba (2 BesselJ (1, fﬂ) cs + 2 BesselY <1, 2

2) co)
The ode becomes

d

dz pu=20

d urc\/x

dz \ \/pg (2 Bessel] <1, 2@) ¢5 + 2 BesselY (1’ §> ‘ >

=0

Integrating gives

urey/'s = / 0dz + c7
Vba (2 BesselJ ( 2‘/E> cs + 2 BesselY (1 f) cG>
Ve Ve
= C7
o e e . . 'r'c\/i .
Dividing throughout by the integrating factor N (2 — (1’5 Z%)cy{& — ( L@)cs) gives

the final solution

2v/ba <BesselJ < , 2 f> cs + BesselY (1, f;{?) Cs) cr
rey/T

Hence, the solution found using Lagrange adjoint equation method is

u =

2v/ba (BesselJ (1, fﬂ) cs + BesselY <1, fﬂ) Cﬁ) cr

rey/T

u =

The constants can be merged to give

2v/ba (BesselJ ( f) cs + BesselY ( ‘/\/;) Ce)
rey/z

u =
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Will add steps showing solving for IC soon.

Taking derivative gives

u'(z)

NE 2vba

2/ba | — —

rex3/2 rcx3/?

rey/@ Bessell (1 M)
) B ) reva 2v/ba

s rcy/z BesselY 1,M
(BesselJ <0, % reve Vba cs (BesselY (0, 2‘/5) — ( TCﬁ) ) Vba cg

rey/T

Vba (BesselJ (1, fc@) cs + BesselY (1, %) CG)

rcx3/?

Doing change of constants, the solution becomes

y =
rcy/z Bessell 1,@ rey/T BesselY (1, 2v/ba
(BesselJ(O,fX}E)_ 2\/é rcﬁ) Vbacg BesselY(O,zﬁ%)— 2\/ng rcﬁ) Vba
2\/b> B rcz3/2 - rez3/2

Vba (BesselJ (1,%

rcy/T

2bv/ba (BesselJ (1, fﬁg) cs + BesselY (1, %))

Summary of solutions found

y =
vz BesselJ|( 1, 2vba rcy/z BesselY( 1, 2vba
esse 2vba ) _ i ( reya ac esse 2vba \ _ rcy/T -
B lJ(O,Tc\’ﬁ) o Vibacg B 1Y<o, mﬁ) o NG
2vb B rcax3/2 - rex3/2

Vba (BesselJ (1,%

rcy/T

2bv/ba <BesselJ (1, f;@%) cs + BesselY (1, f;{%’))

Maple step by step solution

Let’s solve

c(hylo)) = e

° Highest derivative means the order of the ODE is 1

=Y(@)
° Solve for the highest derivative

d _ zatby(z)®
%y(x) - rx2c
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries

trying exact

Looking for potential symmetries

trying Riccati

trying Riccati sub-methods:
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

<- Abel AIR successful: ODE belongs to the OF1 l-parameter (Bessel type) class”

Maple dsolve solution

Solving time : 0.020 (sec)
Leaf size : 110

‘dsolve(cxdiff (y(x),x) = (a*x+by(x)~2)/r/x"2, |
L y(x) ,singsol=all) J

. a(Bessely (0, 2,/ 2% ) erer + Besseld (0,2y/ %))
cr\/% (clcr BesselY (1 2 62 % ) + BesselJ ( c2l;~a?m>>

Mathematica DSolve solution

Solving time : 0.341 (sec)
Leaf size : 492

==(a*x+bxy [x]"2) /(r*x~2) ,{}},
‘ y[x] ,x,IncludeSingularSolutions->True] ‘

y(z)
2cr BesselY <1, Qﬁf\/z>
2/a+/bBesselY ( 2[{[) - — 2\/a/bBesselY ( M) — iy/aVbe; Bess
% x
v /1
2b\/g (2 BesselY (1, %) — 4c, Bessel.
y(z)

(fffBesselJ( 2ff\f> +chesselJ< M) \/—\/—\/’Besseu< Qﬁ\c/f\/g))

%
2b BesselJ (1, M)
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2.1.23 problem 23

Solved as first order Bernoulliode . . . . . . . ... ... ...... 147
Solved as first order Exactode . . . . ... ... ... ....... 149
Maple step by step solution . . . . . . ... ... ... ... 152
Maple trace . . . . . . . . . . ... 152
Maple dsolve solution . . . . . ... .. ... L. 152
Mathematica DSolve solution . . . . ... ... ... ........ 152

Internal problem ID [8683]

Book : First order enumerated odes

Section : section 1

Problem number : 23

Date solved : Tuesday, December 17, 2024 at 12:57:44 PM
CAS classification : [_rational, _Bernoulli]

Solve
. ax+by?
cf = ——=—
Yy
Solved as first order Bernoulli ode
Time used: 0.301 (sec)
In canonical form, the ODE is
y = F(z,y)

by tax
-

MOGF »

The standard Bernoulli ODE has the form

This is a Bernoulli ODE.

Y = fo(@)y + fi(z)y" (2)
Comparing this to (1) shows that
b
fo=~-
c
ar
=%
c
The first step is to divide the above equation by y™ which gives
yl _ 1-n
i fo@)y ™ + fi(z) (3)

1-n

The next step is use the substitution v = y'~™ in equation (3) which generates a new

ODE in v(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows
that

fo(z) =
fi(z) = -

n=-—1

QO Ilc

Xz
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Dividing both sides of ODE (1) by y" = , gives

, by? Lo

Let

Taking derivative of equation (5) w.r.t z gives
v = 2yy’
Substituting equations (5) and (6) into equation (4) gives

v'(z) _ b(z) | az

2 c c
,_ 2bv | 2ax

v
C C

The above now is a linear ODE in v(z) which is now solved.

In canonical form a linear first order is

V() + q(z)v(z) = p(z)

Comparing the above to the given ode shows that

2b
q(z) = -
2ax
p(z) = —
The integrating factor u is
b= o) adz
_ ef—%bda:
_ 2
= e c
The ode becomes
d
E(lw) = pp

Integrating gives

_ 2z
_2b 2are” .
ve ¢ = | —————dzx

c

2bx + ¢ ae 2
:—( ) +Cl

2b?

Dividing throughout by the integrating factor e~ gives the final solution

2bx

crecb—(bz+$<)a
b2

v(z) =

(5)

(6)

(7)
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The substitution v = y'~™ is now used to convert the above solution back to y which
results in
, C e p? — (bz+%)a
Yy = b2

Solving for y gives

\/401 e’ b2 — dazb — 2ac
T 2b

Y

\/4c1 e’ b2 — daxb — 2ac
N 2b

Y

Summary of solutions found

\/401 e’ b2 — dazb — 2ac

Y

2b
2bx
\/401 ec b2 —4azxb — 2ac
y= %

Solved as first order Exact ode

Time used: 0.322 (sec)

To solve an ode of the form

dy

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
el =0
pRACE)
Hence 96 0d
Y
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
99
T M
ox
9 _ n
Oy
But since aiig;, = (,;9; g; then for the above to be valid, we require that
oM _ oN
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
;’; ;’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,
which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(ye)dy = (by® + az) dz
(=by® — az) dz +(yc)dy =0 (2A)
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Comparing (1A) and (2A) shows that
M(z,y) = —by® —ax
N(z,y) = yc

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
0y Oz
Using result found above gives
oM 0
T = (—py? =
Oy 8y< y* — az)
= —2by
And
ON 0
or %(yc)
=0

Since %iy/[ %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

am k(2o

- N oy ox
- i((—%y) — (0))
_ 2%

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

,u=efAdx

zef—%bdx

The result of integrating gives

_2bz
/1,:6 c
_ 2bz
= e c

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM

_ 2bz

=e ¢ (—by’ —az)

2bx

=—(by*+az)e

And
N =uN
_2bw
=e < (yc)
_2bw
=yce c

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+NZ =0
X
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The following equations are now set up to solve for the function ¢(z,y)

-
g—x_M (1)
¢
9 =N 2)

Integrating (1) w.r.t. z gives

@dm= /de
ox

o¢ Y ) —2bz
6_zdx_/ (by* +az)e " dz

2bx

_ c(20%y* 4 2axb +ac)e” o

¢ 4b?

+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t y gives
8¢ 2bzx

9y — Ve T (4)

But equation (2) says that g—z = yce~¢". Therefore equation (4) becomes

_2bw _2bz
yce ¢ =yce < + f(y) (5)

Solving equation (5) for f'(y) gives
f'ly) =0
Therefore

fly)=a

Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

2bx

_ c(2b*y® + 2axb +ac)e

¢ 4b?

&1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and cy constants into the constant c¢; gives the solution as

2bx

o c(20?y? + 2axb +ac)e” e
b 4p?

Solving for y gives

262 _ 2o _ 2 _ 2
ec /—2e cc(2e c abcx + e cac2—4clb2)

Yy==-

2cb

el [—2e ¢ <2e_2szabcac+e_¥ac2 —4¢; b2>

y= 2cb
Summary of solutions found
e’ | —2e ¢ (2e_%abcx+e_2%ma02 —4¢ b2>

v=- 2cb

e’ | —2e ¢ (Qe_z%mozbcac—l—e_%ac2 —4c; b2>
y =

2¢b
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Maple step by step solution

Let’s solve
za+by(z)?
c(fy(x) = =
° Highest derivative means the order of the ODE is 1
=y(@)
° Solve for the highest derivative

d __ zatby(z)?
@y(x) = y(g)c

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful”

N

Maple dsolve solution

Solving time : 0.017 (sec)
Leaf size : 69

‘ dsolve(c*diff (y(x),x) = (a*x+bxy(x)~2)/y(x),
‘ y(x) ,singsol=all)

2b
\/4 eszquz —4azb — 2ac
2b

Mathematica DSolve solution

Solving time : 5.76 (sec)
Leaf size : 85

' DSolve [{c*D[y[x],x]==(axx+b*y[x]~2) /y [x] ,{}},

L y[x],x,IncludeSingularSolutions->True]
z'\/abz + % + b%c; (—e#)
y(@) = — 2

i\/abx + % + b (—e#)

b

y(z) —
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2.1.24 problem 24

Solved as first order quadratureode . . . .. ... ... ... ... 153
Solved as first order homogeneous class D2ode . . . .. ... ... 1541
Solved as first order ode of type differential . . . . .. .. ... ..
Maple step by step solution . . . . .. ... ... ... ... ... . 156
Maple trace . . . . . . . . . e e 156]
Maple dsolve solution . . . ... ... ... ... ... .. ..., 156
Mathematica DSolve solution . . . . . ... ... ... ....... 1561

Internal problem ID [8684]
Book : First order enumerated odes
Section : section 1
Problem number : 24
Date solved : Tuesday, December 17, 2024 at 12:57:46 PM
CAS classification : [_quadrature]
Solve
asin (z)yzy' =0
Factoring the ode gives these factors
y=0 (1)
y' =0 (2)
Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

Solving gives y = 0

Solving equation (2)

Solved as first order quadrature ode
Time used: 0.013 (sec)
Since the ode has the form 3y’ = f(x), then we only need to integrate f(zx).

/dy—/Odm—i—cl

y(x) 0]

3

= 2 5 ; 3
X

Figure 2.20: Slope field plot
y =0
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Summary of solutions found

y=a

Solved as first order homogeneous class D2 ode
Time used: 0.152 (sec)

Applying change of variables y = u(x) z, then the ode becomes

u(z)z+u(z)=0

Which is now solved The ode v/'(z) = —@ is separable as it can be written as
(2) = -2
u'(z) = .
= f(z)g(u)
Where
1
flz)=—_
g(u) =u

Integrating gives

/ﬁdu=/f(m)dm
/%du=/—£dm
In (u(z)) =In (i) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(z) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = In (%) tor

u(z) =0
Solving for u(z) gives
u(z) =0
et
u(z) = —
Converting u(x) = 0 back to y gives
y=0

Converting u(z) = <- back to y gives
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-2

% 2 ; ;
X

Figure 2.21: Slope field plot

y=0
Summary of solutions found

y=0

y=e"

Solved as first order ode of type differential
Time used: 0.012 (sec)
Writing the ode as

y' =0
Which becomes
(1)dy = (0)dzx

But the RHS is complete differential because

(0) dz = d(0)
Hence (2) becomes
(1) dy = d(0)
Integrating gives
y=a
5]
y(x) o
14
24
3]
> 2 5 3

X

Figure 2.22: Slope field plot

Summary of solutions found

(1)

2)
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Maple step by step solution

Let’s solve
asin (z) y(z) z(Ly(z)) =0

° Highest derivative means the order of the ODE is 1
2y(z)

° Solve for the highest derivative
&y(@) =0

° Integrate both sides with respect to x
[ (Ly(z)) dz = [0dz + C1

° Evaluate integral
y(z) = C1

° Solve for y(z)
y(z) = CI

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 9

-

dsolve (a*sin(x)*y(x)*x*diff (y(x) ,x) = O,
L y(x) ,singsol=all)

&1

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 12

‘DSolve [{axSin[x]*y [x]*x*D [y [x],x]==0,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) =0
y(z) = a
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2.1.25 problem

Solved
Solved
Solved
Maple
Maple
Maple

25

as first order quadratureode . . . .. ... ... ... ...
as first order homogeneous class D2ode . . ... ... ...
as first order ode of type differential . . . . . ... ... ..
step by step solution . . . . ... ... ... L.
trace . . . . . L
dsolve solution . . . . ... ... ... ... ... ... ..

Mathematica DSolve solution . . . . . . . . . . . . . ... .. ...

Internal problem ID [8685]
Book : First order enumerated odes

Section : section 1

Problem number : 25
Date solved : Tuesday, December 17, 2024 at 12:57:47 PM

CAS classification :

Solve

[_quadrature]

f(z)sin (z) yzy'm =0

Factoring the ode gives these factors

Now each of the above

Solving equation (1)

Solving for y from

Solving gives y = 0

Solving equation (2)

y=0
y' =0

equations is solved in turn.

Solved as first order quadrature ode

Time used: 0.013 (sec)

Since the ode has the form 3y’ = f(x), then we only need to integrate f(zx).

3

/dy—/Odm—i—cl

= 2 5 ; 3
X

Figure 2.23: Slope field plot
y =0



CHAPTER 2. BOOK SOLVED PROBLEMS 158

Summary of solutions found

y=a

Solved as first order homogeneous class D2 ode
Time used: 0.158 (sec)

Applying change of variables y = u(x) z, then the ode becomes

u(z)z+u(z)=0

Which is now solved The ode v/'(z) = —@ is separable as it can be written as
(2) = -2
u'(z) = .
= f(z)g(u)
Where
1
flz)=—_
g(u) =u

Integrating gives

/ﬁdu=/f(m)dm
/%du=/—£dm
In (u(z)) =In (i) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(z) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = In (%) tor

u(z) =0
Solving for u(z) gives
u(z) =0
et
u(z) = —
Converting u(x) = 0 back to y gives
y=0

Converting u(z) = <- back to y gives
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-2

% 2 ; ;
X

Figure 2.24: Slope field plot

y=0
Summary of solutions found

y=0

y=e"

Solved as first order ode of type differential
Time used: 0.012 (sec)
Writing the ode as
¥ =0
Which becomes
(1)dy = (0) dz
But the RHS is complete differential because

(0) dz = d(0)
Hence (2) becomes
(1) dy = d(0)
Integrating gives
y=a
5]
y(x) o
14
24
3]
> 2 5 3

X

Figure 2.25: Slope field plot

/

y:

Summary of solutions found

(1)

2)
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Maple step by step solution

Let’s solve
f(z)sin () y(z) z(Gy(2)) 7 =0

° Highest derivative means the order of the ODE is 1
=Y(@)

° Solve for the highest derivative
wy(@) =0

° Integrate both sides with respect to x
[ (Ly(z)) dz = [0dz + C1

° Evaluate integral
y(z) = C1

o Solve for y(x)
y(z) = C1

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 9

-

dsolve (f (x)*sin(x)*y (x) *x*diff (y(x) ,x)*Pi = O,
L y(x) ,singsol=all)

&1

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 12

‘ DSolve [{f (x)*Sin [x] *y [x] *x*D [y [x] ,x]*Pi==0,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) =0
y(z) = a
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2.1.26 problem 26

Solved as first order linear ode
Solved as first order Exact ode

Maple step by step solution
Maple trace . . . . . . . . . . ...
Maple dsolve solution . . . . . ... .. ... L.
Mathematica DSolve solution

Internal problem ID [8686]

Book : First order enumerated odes
Section : section 1

Problem number : 26

Date solved : Tuesday, December 17, 2024 at 12:57:48 PM
CAS classification : [[_linear, ‘class A‘]]

Solve

y' =sin(z) +y

Solved as first order linear ode
Time used: 0.148 (sec)

In canonical form a linear first order is

Y + q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

The ode becomes

Integrating gives

ye ® = /sin (x) e "dz

__cos (x)

e—(l?

_sin(z)e”

z

2

Dividing throughout by the integrating factor e™* gives the final solution

cos ()

2

sin ()

y=rc e —

2

2

+c
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Figure 2.26: Slope field plot
y =sin(z) +y
Summary of solutions found
cos (z sin (x
oo co8() _sin(@)
2 2
Solved as first order Exact ode
Time used: 0.120 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
Hence 06 06 d
Yy _
Oxr  Oydr 0 (B)
Comparing (A,B) shows that
0¢ _
or
0¢ _
oy
But since % = 66—284’— then for the above to be valid, we require that
0y yOx
oM _oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; g’y = afg; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore

dy = (sin (z) + y)dz
(—sin(z) —y)dz+dy =0 (2A)
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Comparing (1A) and (2A) shows that
M(z,y) = —sin (z) —y
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0
By 6_y(_ sin (z) — y)
=-1
And
ON 0
o~ o)
=0

Since %iy/f # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

Sl (aM azv)

~ N\dy Oz

=1((-1) - (0))

=-1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is
— efAd:t

— ef—ldz

7

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = puM
— =2(—sin (z) - 1)
= —(sin(z) +y)e™®

And

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+N%:0

dz

. . o Ay
(—(s1n(:c)+y)e )—l—(e )azo
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The following equations are now set up to solve for the function ¢(z,y)

3(;5_—
g—w—M (1)
6
8_y_N (2)

Integrating (2) w.r.t. y gives
% dy = /Ndy
Ay
90 . [ o
B_ydy = /e dy
p=ye "+ f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

% = —ye "+ f'(x) (4)

But equation (1) says that % = —(sin (z) + y) e~*. Therefore equation (4) becomes
—(sin(z) +y)e™ = —ye + f'(z) (5)

Solving equation (5) for f'(z) gives

f'(z) = —sin(z)e™™
Integrating the above w.r.t = gives

/ (z)dz = / (= sin (z) e ) dz

fz) = cos (z) e N sin (x2) e te

Where ¢, is constant of integration. Substituting result found above for f(x) into equation

(3) gives ¢
cos(x)e™ sin(x)e™®
poyery D@ @

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

cos(z)e™® sin(z)e™®

2 2

co=ye *+

Solving for y gives




CHAPTER 2. BOOK SOLVED PROBLEMS 165

—~
—~
—~

A

~N—a—

/////

A NN

AN NN
\\ AN NN

[
Lo\
P\

[

\

b\

~

|\
N

/

X \V \\\\\\\\\ NN
\ \ \\\\\\\\ NN

/
12

|
/

" \ \\ AN S NN

|
y
/o)
/o
/

AR

/
/

/
|
4

\V \\ \\ N N Y
4//////// / & \V \\\\\\\\\\A\x\ a—

— = //// / § \,‘ \ \\\\\\ NN
\V \\\\\\\\\ N

) ‘\\\\\ AN~
' \\“ \\\\\\ AT

/

/
14

|
|
]
)
/

/

N
N
N
\
\
N

/
/

/
/
/
/

/////////

|

’
7/ ] NN

-2

S /
c/ﬁ/ﬂ////// /

e 2/ ) VNN
= ////// ““" \\\\\\\\ AN

s/

— = ///// ’,' ‘\V \\“\\\\\\\ AN
NPV

44///4/4//////
— = /////

N
N
N\
\
\ \l
\\‘
\\“
\

S

-3

Mecrrrs /]

s
o
B

X

Figure 2.27: Slope field plot
y =sin(z) +y

Summary of solutions found

Maple step by step solution

Let’s solve
Y (z) = y(z) +sin (z)
° Highest derivative means the order of the ODE is 1
=y(2)
° Solve for the highest derivative
#y(@) = y(z) + sin (2)
° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
=y(z) — y(z) = sin (z)
° The ODE is linear; multiply by an integrating factor u(x)
() (4y(2) — y(z)) = p(z)sin (2)
o Assume the lhs of the ODE is the total derivative 2 (y(z) u(z))
w(@) (£y(2) —y(2) = (£y(@)) u@) +y(2) ()
e Isolate 2 u(z)
h(@) = —p(z)
. Solve to find the integrating factor
u(z) = e”
° Integrate both sides with respect to x
[ (E(y(z) p(z))) dz = [ p(z)sin (z) dz + C1
° Evaluate the integral on the lhs
y(z) p(z) = [ p(z)sin (z) dz + C1
o Solve for y(x)

) sin(x)dz+C1
y(z) = [ (=) #((x)) +

o Substitute u(z) = e™*

T

~Zsin(z)dz+C1
y(z) = IGS%
° Evaluate the integrals on the rhs

" cos(z) _ e~ ¥ sin(x)
€ cosz_e 521'[1.73 +Cl

y(z) = —F——=
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° Simplify

y(z) — (Ol e* — cosz(ac) _ sin2(m)

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

N

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 17

‘ dsolve(diff(y(x),x) = sin(x)+y(x),
‘ y(x) ,singsol=all)

_cos(z) sin(z)

2

Mathematica DSolve solution

Solving time : 0.037 (sec)
Leaf size : 24

'DSolve [{D[y[x] ,x]==Sin[x]+y [x],{}},

‘ y[x],x,IncludeSingularSolutions->True]

sin(z)  cos(z)

y(z) = ——,
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2.1.27 problem 27

Solved as first order ode of type Riccati . . .. ... .. ... ... 167
Maple step by step solution . . . . ... ... ... ... ... ... 168
Maple trace . . . . . . . . . . ... e 169
Maple dsolve solution . . . . . . ... ... ... ... ... ..., 170
Mathematica DSolve solution . . . . . ... ... ... ....... 170

Internal problem ID [8687]

Book : First order enumerated odes

Section : section 1

Problem number : 27

Date solved : Tuesday, December 17, 2024 at 12:57:49 PM
CAS classification : [_Riccati]

Solve

y = sin (z) + 3°

Solved as first order ode of type Riccati
Time used: 0.641 (sec)
In canonical form the ODE is
y =F(z,y)
= sin (z) + ¢*
This is a Riccati ODE. Comparing the ODE to solve

y = sin (z) +3°

With Riccati ODE standard form

Y = fo(z) + filz)y + folz)y®

Shows that fo(z) =sin(z), fi(z) =0 and fo(x) = 1. Let

_u/

B f2u

= (1)

u

Y

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou" (@) — (fy + fufo) W' (z) + f3 fou(z) = 0 (2)
But
fo=0
fifa=0

f3 fo = sin (z)
Substituting the above terms back in equation (2) gives
u"(z) +sin (z) u(z) =0

Unable to solve. Will ask Maple to solve this ode now.
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Solution obtained is

u(z) = ¢; MathieuC <O, -2, _rT + z

1 2) + ¢, MathieuS <0, -2, s + E)

4 2

Taking derivative gives

_a MathieuCPrime (0, —2, —% + £) LG MathieuSPrime (0, —2, —Z + Z)

u'(z) 5 5

Doing change of constants, the solution becomes

c1 MathieuCPrime(0,—2,— 5 +%) + MathieuSPrime(0,—2,— 2 +2)
2 2

_qMamemfﬁpﬁ+§)+MaMwSm;z—g+9

y:
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Figure 2.28: Slope field plot
v = sin (z) + y2

Summary of solutions found

c1 MathieuCPrime(0,—2,—5+%) + MathieuSPrime(0,—2,— %
2 2

~ ¢ MathieuC (0, —2, —% + £) + MathieuS (0, —2, — 7 + 2)

+5)

Maple step by step solution

Let’s solve
aey(@) = sin () + y(z)°

° Highest derivative means the order of the ODE is 1
()

° Solve for the highest derivative

2 y(z) = sin (z) + y(z)*
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Maple trace

“Methods for first order ODEs:
-—- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE", diff(diff(y(x), x), x) = -y(x)*sin(x), y(x)°
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x),
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformationms,
to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moel
Equivalence transformation and function parameters: {t = 1/2%t+1/2}, {l
<- Equivalence to the rational form of Mathieu ODE successful
<- Mathieu successful

<- special function solution successful
Change of variables used:
[x = arccos(t)]
Linear ODE actually solved:
(-t72+1) " (1/2) *¥u(t) -t*diff (u(t) ,t)+(-t"2+1)*diff (diff (u(t),t),t)
<- change of variables successful
<- Riccati to 2nd Order successful”

I
o
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Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 59

‘ dsolve(diff (y(x),x) = sin(x)+y(x)~2,
‘ y(x) ,singsol=all)

—c1 MathieuSPrime (0, —2, —Z + £) — MathieuCPrime (0, —2, —

£+9)
2c; MathieuS (0, —2, —F + £) + 2 MathieuC (0, -2, — % + %)

y:

Mathematica DSolve solution

Solving time : 0.174 (sec)
Leaf size : 105

'DSolve[{D[y[x],x]==Sin[x]+y[x]"2,{}},
‘ y[x],x,IncludeSingularSolutions->True]

(2) = —MathieuSPrime [0, —2, (7 — 2z)] + ¢;MathieuCPrime[0, —2, 1 (7 — 2z)]
x
Y 2 (MathieuS [0, —2, 1 (2 — )] + c;MathieuC [0, —2, L (7 — 2z)])
MathieuCPrime [0, —2, 1 (7 — 27)
J(z) —» MatbieuCPrimel, -2, ,(r — 20)
2MathieuC [0, -2, 3 (7 — 2z)]



CHAPTER 2. BOOK SOLVED PROBLEMS

171

2.1.28 problem 28

Solved as first order linearode . . . .. ... ... ... ......
Solved as first order homogeneous class D2ode . . . .. ... ...
Solved as first order Exactode . . . . . ... .. .. ... ...
Solved using Lie symmetry for first orderode . . . . ... ... ..

Maple step by step solution . . . . . . ... ... ...

Maple trace

Maple dsolve solution . . . .. ... ... .. ... ... ...,
Mathematica DSolve solution . . . . . . . . . .. ... ... ....

Internal problem ID [8688]

Book : First order enumerated odes

Section : section 1
Problem number : 28

Date solved : Tuesday, December 17, 2024 at 12:57:52 PM
CAS classification : [_linear]

Solve

)
L =
Yy —cos(x)—i-x

Solved as first order linear ode

Time used: 0.105 (sec)

In canonical form a linear first order is

yl

+ q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

The ode becomes

Integrating gives

= efqdac
_ef—ldav
_ 1
oz
—(uy) = pp
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gives the final solution

y=2xz(Ci(z) + ¢1)

Dividing throughout by the integrating factor
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Figure 2.29: Slope field plot

cos (z) + £

y/

Summary of solutions found

y =(Ci(z) + 1)

Solved as first order homogeneous class D2 ode

Time used: 0.030 (sec)

Applying change of variables y = u(x) z, then the ode becomes

cos (z) + u(x)

v (z) z + u(z)

Which is now solved Since the ode has the form «'(z) = f(x), then we only need to

integrate f(z).

Ci(z) +c

Ci(z) + ¢ back to y gives

Converting u(zx)

y=2z(Ci(z) + ¢1)
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Figure 2.30: Slope field plot

cos (z) + £

yl

Summary of solutions found

y=z(Ci(z) + ¢1)
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Solved as first order Exact ode
Time used: 0.109 (sec)

To solve an ode of the form

M(z,) + N(z,9) 2 =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. z gives

d
Hence 96 04d
Yy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
99
T M
ox
09
T _N
dy
But since % = % then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
(;f g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,
which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
_ (v
dy = (z + cos (a:)> dz
<— cos (z) — %) dz+dy=0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —cos (z) — g
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ ON
9y Oz
Using result found above gives
oM 0
¥ = %<—cos(x) - %)
1
Tz
And
ON 0
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Since %i; # 88—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

Al L(0M _oN
N\ 0y Ox

((D)-0)

T

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p= efAdw
= ef_% dz
The result of integrating gives
p=e" In(z)
1
oz

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
1 y
a2
—cos(z)z —y

And
N = uN

(1)

Il
|8 Imy |~ T

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+Nd—y=0
dz

(=) () -

The following equations are now set up to solve for the function ¢(z,y)

=M 1
5~ M 1)
0p
- = 2
=T @)
Integrating (2) w.r.t. y gives

Pay- [Wa

9¢

a_y dy= [ —dy
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Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

0
. L (4)
— cos(

But equation (1) says that % = % Therefore equation (4) becomes

—en@ey 3 pg &)

Solving equation (5) for f'(z) gives

Integrating the above w.r.t = gives

/f'(x)dw=/(—%(””)> dz

f(x)=—-Ci(z) + &

Where ¢; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
= % —Ci(z) + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

_Y_
o= Ci(z)

Solving for y gives
y=z(Ci(z) + ¢1)
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Figure 2.31: Slope field plot
y =cos(z) + 2

Summary of solutions found

y=2z(Ci(z) + c1)
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Solved using Lie symmetry for first order ode
Time used: 0.398 (sec)
Writing the ode as

, _cos(z)r+y

/

y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - gx) - w2§y - wx§ — Wyl = 0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

§ = zaz + yaz + a; (1E)
1 = xbs + ybs + by (2E)

Where the unknown coeflicients are

{ala a2, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

by + (cos(z)x +y) (bs — a2) B (cos (x) xQ_I_ y)2 as

B (— sin (z) Z-i- cos () _ Cos (zz)zz + y) (xag+yas+ay) —

(5E)
be + yb3 + bl .
—;1; =

0

Putting the above in normal form gives

cos ()% z2a3 — sin () 23ay — sin () 2yas + cos () z2a; — cos () z2bs + 2 cos (z) Tyas — sin () 22a; +
)

=0

Setting the numerator to zero gives

— cos (2)° 2%a3 + sin (z) °ay + sin (z) 2%yas — cos (z) z2ay (6E)
+ cos () x%b3 — 2 cos (z) zyas + sin (z) %a; — xby +ya; =0

Simplifying the above gives

z?a3  x’a3cos(2x)
2 2
— cos (z) z%ay + cos (x) x2bs — 2 cos () Tyas + sin (z) z%a; = 0

—zb + ya, — + sin (z) z°ay + sin (z) ryas3 (6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y,cos (x),cos (2z),sin (z)}

The following substitution is now made to be able to collect on all terms with {z,y} in
them
{z = v1,y = vg, cos (z) = vs3, cos (2z) = vy, sin (z) = vs}
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The above PDE (6E) now becomes

1 1
—v1by + v0a; — 51}%0/3 — §vfa3v4 + v5vfa2 + 1)51)%’02&3 (TE)

— vgvfag + vgvfbg — 2u3V1V2a3 + v5vfa1 =0
Collecting the above on the terms v; introduced, and these are
{'U17U277}37'U4a U5}
Equation (7E) now becomes

2
via
3 2 2 143 2
+ VsV G2 + (b3 — ag) VU3 + V5V1a1 — — ’Ulbl +vo01 + VsV V203 — 2’1)3’(}11)2(13 =0

2
(8E)

_viaguy

Setting each coefficients in (8E) to zero gives the following equations to solve

ar =0
a, =0
a3 =0
—2a3 =0
as
_520
-b;=0
b3 —ay=0

Solving the above equations for the unknowns gives

a; =0
a, =0
a3 =0
by =0
by = by
bs =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

0
z

§
U]

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

do _dy _

F=y =48 1)

The above comes from the requirements that (fa% +n§—y> S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx



CHAPTER 2. BOOK SOLVED PROBLEMS 178

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

as _ St w(z,y)S,
dR R, +w(z,y)R,

(2)

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

w(z,y) = cos (:vix +y
Evaluating all the partial derivatives gives
R, =1
R,=0
Se=—2%
1
Sy = o

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS _ cos(z)
dR =«

(24)

We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

dS _ cos(R)
dR R

The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).
/ ds = / cos (R) 1o
=Ci (R) + ¢

To complete the solution, we just need to transform the above back to x,y coordinates.
This results in

% =Ci(z) + ¢
Which gives

y=(Ci(z)+c)x



CHAPTER 2. BOOK SOLVED PROBLEMS 179

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy __ cos(z)z+y dS __ cos(R)
de — T dR~ R
R=z
g9
T
sNNNNNNNNN VTS
NNNNNNNN N VT s
NNNNNNNNN VT s
ANNNNNNNNN 7T e e————
NONNNNNNNN LT e
NONN N NN N LT T e
ANN N N NNNNN T T S NN N
NONN N NN ST N N N
NONN NN NN ] N N N
ol NN NN NI T T NN NN
y(x) NONN NN S e OO N NN
NONN NN N NN NN
SNONNN TS 7 SN NN NN
TN 7 7 TN N N N NN
—~Ns— 7 7T N NN N NN NN
—~w=— 7 7 T VNN N NN N NN
2=~ 77T 1T L VNN NN NN NN
——~—~—— 7 7 1 7T L VNN NN NN NN
e 7 7 71T VNN NN NN NN
=7 7 7T 1T L VNN NN NN NN
o > 5 3 3

X

Figure 2.32: Slope field plot
y =cos(z) + 2

Summary of solutions found

y=(Ci(z)+c)z

Maple step by step solution

Let’s solve
Ly(z) = "2 1 cos (2)
° Highest derivative means the order of the ODE is 1
()
° Solve for the highest derivative
4y(z) = @ + cos (z)
) Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE

Ly(z) — Y2 = cos (2)

° The ODE is linear; multiply by an integrating factor u(x)
u(z) (Ly(e) — 12 = u(z) cos (x)

o Assume the lhs of the ODE is the total derivative - (y(z) u(x))
(@) (Ly(@) — 12 = (Ly()) p(@) + y(z) (Lu())

o Isolate - /()
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an(z) =42
° Solve to find the integrating factor

px) = 3
° Integrate both sides with respect to x

[ (L (y(z) u(z))) dz = [ p(z)cos (z) dz + C1
° Evaluate the integral on the lhs

y(@) u(x) = [ p(z) cos (z) da + C1
o Solve for y(x)

x) cos(z)dz+ C1
y(z) = [ u(@) ”((m)) +

U Substitute u(z) = %
y(z) = :p(f cos(a) gz, 4 01)

° Evaluate the integrals on the rhs

y(z) = z(Ci(z) + C1)

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 10

-

dsolve(diff (y(x),x) = cos(x)+y(x)/x,
L y(x) ,singsol=all)

y=(Ci(z)+c)zx

Mathematica DSolve solution

Solving time : 0.034 (sec)
Leaf size : 12

'DSolve [{D[y[x],x]==Cos [x]+y[x]/x,{}},
L y[x] ,x,IncludeSingularSolutions->True]

y(z) — z(Coslntegral(z) + ¢)
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2.1.29 problem 29

Maple step by step solution . . . . . . ... ... ... ... ... [187]
Maple trace . . . . . . . . . L 181l
Maple dsolve solution . . . . .. ... ... ... ... .. ..., 183
Mathematica DSolve solution . . . . . ... ... ... ....... 183

Internal problem ID [8689]

Book : First order enumerated odes

Section : section 1

Problem number : 29

Date solved : Tuesday, December 17, 2024 at 12:57:54 PM
CAS classification : [_Riccati]

Solve
y' = cos(z) + v

Unknown ode type.

Maple step by step solution

Let’s solve
4y(z) = cos (z) + @

° Highest derivative means the order of the ODE is 1
()

° Solve for the highest derivative

%y(w) = cos (z) + @

Maple trace

"Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE™, diff(diff(y(x), x), x) = -(diff(y(x),
Methods for second order ODEs:
-—- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases unde:
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp
-> Trying changes of variables to rationalize or make the ODE simple:

x))/x-cos (3

r a power Q@
(int (r(x), «
r
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trying a symmetry of
checking if the LODE
-> Heun: Equivalence
-> trying a solution

trying a symmetry of
checking if the LODE
-> Heun: Equivalence
-> trying a solution

<- unable
trying
trying
trying
trying
trying
trying
checking if the LODE
-> Heun: Equivalence
-> trying a solution
-> Trying changes of

trying to convert to an ODE of Bessel type

->

-> Trying a change of variables to reduce to Bernoulli
-> Calling odsolve with the ODE™, diff(y(x), x)-(y(x)~2/x+y(x)+x"2*cos(3
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature

the form [xi=0, eta=F(x)]
is missing y

trying a symmetry of the form [xi=0, eta=F(x)]

trying 2nd order exact linear

trying symmetries linear in x and y(x)

trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients

the form [xi=0, eta=F(x)]

is missing y

to the GHE or one of its 4 confluent cases ul
of the form rO(x) * Y + r1(x) * Y where Y =
trying a symmetry of the form [xi=0, eta=F(x)]

trying 2nd order exact linear

trying symmetries linear in x and y(x)

trying to convert to a linear ODE with constant coefficients
to find a useful change of variables

a symmetry of the form [xi=0, eta=F(x)]

2nd order exact linear

symmetries linear in x and y(x)

to convert to a linear ODE with constant coefficients
2nd order, integrating factor of the form mu(x,y)

a symmetry of the form [xi=0, eta=F(x)]

is missing y

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y

-> Heun: Equivalence to the GHE or one of its 4 confluent cases

-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficient
-> trying with_periodic_functions in the coefficients
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y

-> Heun: Equivalence to the GHE or one of its 4 confluent cases

-> trying a solution of the form rO0(x) * Y + r1(x) * Y where Y
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
unable to find a useful change of variables

trying a symmetry of the form [xi=0, eta=F(x)]

trying with_periodic_functions in the coefficients

(2]

to the GHE or one of its 4 confluent cases under a power C
of the form rO0(x) * Y + r1(x) * Y where Y = exp(int(r(x),

nder a power C
exp (int (r(x),

to the GHE or one of its 4 confluent cases under a power C
of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x),
variables to rationalize or make the ODE simpler

under a powe
exp (int (r (

under a powe
exp (int (r (

x))/x, y(x), €
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trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
-> trying a symmetry pattern of the form [F(x)*G(y), O]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
-—— Trying Lie symmetry methods, 1st order ——-
*, ~—> Computing symmetries using: way = 4
, —> Computing symmetries using: way = 2
, —> Computing symmetries using: way = 6°

~

~

Maple dsolve solution

Solving time : 0.543 (sec)
Leaf size : maple_leaf size

‘dsolve(diff(y(x),x) = cos(x)+y(x)"2/x,
1 y(x) ,singsol=all)

No solution found

Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0

B
 DSolve [{D[y[x],x]==Cos[x]+y[x]~2/x,{}},
y[x],x,IncludeSingularSolutions->True]

N

Not solved
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2.1.30 problem 30

Solved as first order ode of type Riccati . . ... ... ... .... 184
Maple step by step solution . . . . ... ... ... ... ..., 1R5)
Maple trace . . . . . . . . . . ... 186
Maple dsolve solution . . . . . . ... ... ... ... ...
Mathematica DSolve solution . . . . . ... ... ... ....... 186

Internal problem ID [8690]

Book : First order enumerated odes

Section : section 1

Problem number : 30

Date solved : Tuesday, December 17, 2024 at 12:57:58 PM
CAS classification : [_Riccati]

Solve

v =x+y+by?

Solved as first order ode of type Riccati
Time used: 0.185 (sec)
In canonical form the ODE is
y = F(z,y)
=by’+r+y
This is a Riccati ODE. Comparing the ODE to solve
Y =by*+z+y

With Riccati ODE standard form

Y = fo(z) + fi(z)y + foz)y”

Shows that fo(z) =z, fi(x) =1 and fo(z) = b. Let

_u’

'y =
fou
_ul

= (1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou"(x) = (fo + fifo) ' (2) + f3 fou(z) = 0 (2)
But
fa=0
fifa=1b
f22fo = b’z

Substituting the above terms back in equation (2) gives
b’ (z) — bu'(z) + bzu(z) = 0
This is Airy ODE. It has the general form

v du
as s + b% + cux = F(x)
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Where in this case

a=1b

b=—-b

c="b
=0

Therefore the solution to the homogeneous Airy ODE becomes

. b — 1p? . Bz — ;b
u = ¢y e2 AiryAi <_xbs—/34) + cpe2 AiryBi (_ xb8/34 )

Will add steps showing solving for IC soon.

Taking derivative gives

E . biz—1p2
c1 e2 AiryAi (—128—/;,‘)

(@) ;
b3z — 1p2\  c2e? AiryBi (—%) br — 1p2
— ¢ e3bY3 AiryAi (1, — b8/34 > + 5 —cye3b3 AiryBi (1, _bs—/;)
Doing change of constants, the solution becomes
Y= . WBo 152
e’ A“yAiS‘:w> — cyeTb9 AiryAi (1,- 55547 ) + M (; ) e 61/3 AiryBi (1,— "5,

x _1 z _1
b <03 ez AiryAi (_1)3928_/31)2) +e2 AiryBi (‘bsxbs—/ng»

Summary of solutions found

y =
z . . p3p—1p2
c3e2 AiryAi (—W

2

b8/3 2

x _1 z _1
b <03 ez AiryAi (_1;3928_/3172) + e2 AiryBi (‘bsxbs—/éle»

ol p3p—1p2
- 1 e2 AiryBi| ———24A— . ]
) — cge2b'/? AiryAi <1,—b3z 4b2> + ( Gk ) — e2b/3 AiryBi (1,—%

Maple step by step solution

Let’s solve
2y(z) =z +y(z) + by(z)”

° Highest derivative means the order of the ODE is 1
=y(@)

° Solve for the highest derivative

4y(z) = 7 + y(z) + by(z)’
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Maple trace

“Methods for first order ODEs:
-—- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
<- Abel AIR successful: ODE belongs to the OF1 O-parameter (Airy type) class’

N\ J

Maple dsolve solution

Solving time : 0.022 (sec)
Leaf size : 105

‘ dsolve(diff (y(x),x) = x+y(x)+b*y(x)~2, ‘
‘ y(x) ,singsol=all) ‘

(]
_ 2AiryAi (1, 957 ) b3, — AiryAi (- 457 ) e + 2 AiryBi (1, - 357 ) b'/° — AiryBi (- 3354)

2b (AiryAi ( ‘ﬁ’; /31) c1 + AiryBi ( %))

Mathematica DSolve solution

Solving time : 0.201 (sec)
Leaf size : 211

‘DSolve[{D[y[x],x]==x+y[x]+b*y[x]‘2,{}}, ‘
y[x],x,IncludeSingularSolutions->True]

y(z) —
—(—b)?/3 AiryBi (( 7 /3> + 2b AiryBiPrime <( Bk /3> + <2b AiryAiPrime < = b;%) — (—b)?/3 AiryAi

bx
( )5/3 (AlryB1 (( b)2/3> + c; AiryAi (( b)2/3>>
—b AiryAiPrime (%)

T
A1ryA1<( b)2/3)
2b

+1

y(z) = —
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2.1.31 problem 31

Solved as first order quadratureode . . . .. ... ... ... ... 187
Solved as first order homogeneous class D2ode . . . .. ... ... 188]
Solved as first order ode of type differential . . . . .. .. ... .. 189
Maple step by step solution . . . . .. ... ... ... ... ... . 190
Maple trace . . . . . . . . . e e 1901
Maple dsolve solution . . . ... ... ... ... ... .. ..., 190
Mathematica DSolve solution . . . . . ... ... ... ....... 1901

Internal problem ID [8691]

Book : First order enumerated odes

Section : section 1

Problem number : 31

Date solved : Tuesday, December 17, 2024 at 12:58:00 PM
CAS classification : [_quadrature]

Solve
zy =0
Solved as first order quadrature ode

Time used: 0.026 (sec)

Since the ode has the form 3y’ = f(z), then we only need to integrate f(z).

/dy:/de+cl
)

=Cl

y(x) 07

14

-3

% 2 ; ; 3
X

Figure 2.33: Slope field plot
zy' =0

Summary of solutions found
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Solved as first order homogeneous class D2 ode
Time used: 0.132 (sec)

Applying change of variables y = u(x) z, then the ode becomes

z(u'(z)z +u(z)) =0

Which is now solved The ode v/'(z) = —@ is separable as it can be written as
R C)
() = -2
= f(z)g(u)
Where
1
flz)=—_
9(u) =u

Integrating gives

/ﬁdu=/f(z)dx
/%du=/—%dw
In (u(z)) =In (i) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = In (%) + e

u(z) =0
Solving for u(z) gives
u(z) =0
et
u(z) = —
Converting u(x) = 0 back to y gives
y=0

Converting u(z) = <- back to y gives
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-2

% 2 ; ;
X

Figure 2.34: Slope field plot

zy =0
Summary of solutions found

y=0

y=e"

Solved as first order ode of type differential
Time used: 0.010 (sec)
Writing the ode as
¥ =0
Which becomes
(1)dy = (0) dz
But the RHS is complete differential because

(0) dz = d(0)
Hence (2) becomes
(1) dy = d(0)
Integrating gives
y=a
5]
y(x) o
14
24
3]
> 2 5 3

X

Figure 2.35: Slope field plot
zy =0

Summary of solutions found

(1)

2)
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Maple step by step solution

Let’s solve
z(Ly(z)) =0

° Highest derivative means the order of the ODE is 1
=Y(@)

° Solve for the highest derivative
wy(@) =0

° Integrate both sides with respect to x
[ (Ly(z)) dz = [0dz + C1

° Evaluate integral
y(z) = C1

o Solve for y(x)
y(z) = C1

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 5

-

dsolve(diff(y(x),x)*x = 0,
L y(x) ,singsol=all)

y=a

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7

‘DSolve [{x*D[y[x],x1==0,{}},
L y[x],x,IncludeSingularSolutions->True]

y(z) =
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2.1.32 problem 32

Solved as first order quadratureode . . . .. ... ... ... ...
Solved as first order homogeneous class D2ode . . . .. ... ...
Solved as first order ode of type differential . . . . .. .. ... ..
Maple step by step solution . . . . .. ... ... ... ... ... .
Maple trace . . . . . . . . . e e
Maple dsolve solution . . . ... ... ... ... ... .. ...,
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [8692]

Book : First order enumerated odes

Section : section 1

Problem number : 32

Date solved : Tuesday, December 17, 2024 at 12:58:01 PM
CAS classification : [_quadrature]

Solve

50 =0

Solved as first order quadrature ode

Time used: 0.025 (sec)
Since the ode has the form 3y’ = f(z), then we only need to integrate f(z).

/dy:/de+cl
)

=Cl

y(x) 07

14

-3

) 2 5 3 )
X
Figure 2.36: Slope field plot
5y =0

Summary of solutions found

y=a
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Solved as first order homogeneous class D2 ode
Time used: 0.130 (sec)

Applying change of variables y = u(x) z, then the ode becomes

5u'(z) z + 5u(z) =0

Which is now solved The ode v/'(z) = —@ is separable as it can be written as
R C)
() = -2
= f(z)g(u)
Where
1
flz)=—_
9(u) =u

Integrating gives

/ﬁdu=/f(z)dx
/%du=/—%dw
In (u(z)) =In (i) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = In (%) + e

u(z) =0
Solving for u(z) gives
u(z) =0
et
u(z) = —
Converting u(x) = 0 back to y gives
y=0

Converting u(z) = <- back to y gives
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-2

% 2 ; ;
X

Figure 2.37: Slope field plot

5y =0
Summary of solutions found

y=0

y=e"

Solved as first order ode of type differential
Time used: 0.010 (sec)
Writing the ode as
¥ =0
Which becomes
(1)dy = (0) dz
But the RHS is complete differential because

(0) dz = d(0)
Hence (2) becomes
(1) dy = d(0)
Integrating gives
y=a
5]
y(x) o
14
24
3]
> 2 5 3

X

Figure 2.38: Slope field plot

Summary of solutions found

(1)

2)
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Maple step by step solution

Let’s solve
54y(z) =0
° Highest derivative means the order of the ODE is 1
=y(2)
° Separate variables
wy(@) =0
° Integrate both sides with respect to x
[ (Ly(z))dz = [ 0dz + C1
° Evaluate integral
y(z) = C1
o Solve for y(x)
y(z) = C1

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 5

'dsolve(5*diff (y(x),x) = 0,
y(x) ,singsol=all)

N

y=a

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7

e

DSolve [{5%D[y[x],x]==0,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(x) =
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2.1.33 problem 33

Solved as first order quadratureode . . . .. ... ... ... ...
Solved as first order homogeneous class D2ode . . . .. ... ... 196
Solved as first order ode of type differential . . . . .. .. ... .. 197
Maple step by step solution . . . . .. ... ... ... ... ... . 198
Maple trace . . . . . . . . . e e 198
Maple dsolve solution . . . ... ... ... ... ... .. ..., 198
Mathematica DSolve solution . . . . . ... ... ... ....... 198}

Internal problem ID [8693]

Book : First order enumerated odes

Section : section 1

Problem number : 33

Date solved : Tuesday, December 17, 2024 at 12:58:02 PM
CAS classification : [_quadrature]

Solve
ey =0
Solved as first order quadrature ode

Time used: 0.023 (sec)

Since the ode has the form 3y’ = f(z), then we only need to integrate f(z).

/dy:/de+cl
)

=Cl

y(x) 07

14

-3

% 2 ; ; 3
X

Figure 2.39: Slope field plot
ey =0

Summary of solutions found
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Solved as first order homogeneous class D2 ode
Time used: 0.132 (sec)

Applying change of variables y = u(x) z, then the ode becomes

e(v'(z)z +u(z)) =0

Which is now solved The ode v/'(z) = —@ is separable as it can be written as
R C)
() = -2
= f(z)g(u)
Where
1
flz)=—_
9(u) =u

Integrating gives

/ﬁdu=/f(z)dx
/%du=/—%dw
In (u(z)) =In (i) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = In (%) + e

u(z) =0
Solving for u(z) gives
u(z) =0
et
u(z) = —
Converting u(x) = 0 back to y gives
y=0

Converting u(z) = <- back to y gives
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X

Figure 2.40: Slope field plot

ey =0
Summary of solutions found

y=0

y=e"

Solved as first order ode of type differential
Time used: 0.010 (sec)
Writing the ode as
¥ =0
Which becomes
(1)dy = (0) dz
But the RHS is complete differential because

(0) dz = d(0)
Hence (2) becomes
(1) dy = d(0)
Integrating gives
y=a
5]
y(x) o
14
24
3]
> 2 5 3

X

Figure 2.41: Slope field plot
ey =0

Summary of solutions found

(1)

2)
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Maple step by step solution

Let’s solve
e(Ly(z)) =0
° Highest derivative means the order of the ODE is 1
Ly(x)
° Separate variables
wy(@) =0
° Integrate both sides with respect to x
[ (Ly(z)) dz = [0dz + C1
° Evaluate integral
y(z) = C1
o Solve for y(x)
y(z) = C1

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 5

-

dsolve(exp(1)*diff(y(x),x) = 0,
L y(x) ,singsol=all)

y=a

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7

‘DSolve [{Exp[1]*D[y[x],x]==0,{}},
L y[x],x,IncludeSingularSolutions->True]

y(z) =
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2.1.34 problem 34

Solved as first order quadratureode . . . .. ... ... ... ... 199
Solved as first order homogeneous class D2ode . . . .. ... ...
Solved as first order ode of type differential . . . . .. .. ... .. 2011
Maple step by step solution . . . . .. ... ... ... ... ... . 202
Maple trace . . . . . . . . . e e 2021
Maple dsolve solution . . . ... ... ... ... ... .. ...,
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [8694]

Book : First order enumerated odes

Section : section 1

Problem number : 34

Date solved : Tuesday, December 17, 2024 at 12:58:02 PM
CAS classification : [_quadrature]

Solve
my =0
Solved as first order quadrature ode

Time used: 0.023 (sec)

Since the ode has the form 3y’ = f(z), then we only need to integrate f(z).

/dy:/de+cl
)

=Cl

y(x) 07

14

-3

% 2 ; ; 3
X

Figure 2.42: Slope field plot
7y =0

Summary of solutions found
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Solved as first order homogeneous class D2 ode
Time used: 0.132 (sec)

Applying change of variables y = u(x) z, then the ode becomes

m(u'(z) z 4+ u(z)) =0

Which is now solved The ode v/'(z) = —@ is separable as it can be written as
R C)
() = -2
= f(z)g(u)
Where
1
flz)=—_
9(u) =u

Integrating gives

/ﬁdu=/f(z)dx
/%du=/—%dw
In (u(z)) =In (i) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = In (%) + e

u(z) =0
Solving for u(z) gives
u(z) =0
et
u(z) = —
Converting u(x) = 0 back to y gives
y=0

Converting u(z) = <- back to y gives
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X

Figure 2.43: Slope field plot

7wy =0
Summary of solutions found

y=0

y=e"

Solved as first order ode of type differential
Time used: 0.010 (sec)
Writing the ode as
¥ =0
Which becomes
(1)dy = (0) dz
But the RHS is complete differential because

(0) dz = d(0)
Hence (2) becomes
(1) dy = d(0)
Integrating gives
y=a
5]
y(x) o
14
24
3]
> 2 5 3

X

Figure 2.44: Slope field plot
7wy =0

Summary of solutions found

(1)

2)



CHAPTER 2. BOOK SOLVED PROBLEMS

202

Maple step by step solution

Let’s solve
m(Ly(z)) =0
° Highest derivative means the order of the ODE is 1
Ly(x)
° Separate variables
wy(@) =0
° Integrate both sides with respect to x
[ (Ly(z)) dz = [0dz + C1
° Evaluate integral
y(z) = C1
o Solve for y(x)
y(z) = C1

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 5

-

dsolve(Pixdiff (y(x),x) = 0,
L y(x) ,singsol=all)

y=a

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7

'DSolve [{Pi*D[y[x],x]1==0,{}},
L y[x],x,IncludeSingularSolutions->True]

y(z) =
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2.1.35 problem 35
Solved as first order quadratureode . . . .. ... ... ... ...
Solved as first order homogeneous class D2ode . . . .. ... ... 2041
Solved as first order ode of type differential . . . . .. .. ... ..
Maple step by step solution . . . . .. ... ... ... ... ... . 206
Maple trace . . . . . . . . . e e 206
Maple dsolve solution . . . ... ... ... ... ... .. ..., 206
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [8695]

Book : First order enumerated odes

Section : section 1

Problem number : 35

Date solved : Tuesday, December 17, 2024 at 12:58:03 PM
CAS classification : [_quadrature]

Solve

sin(z)y =0

Solved as first order quadrature ode

Time used: 0.026 (sec)

Since the ode has the form 3y’ = f(z), then we only need to integrate f(z).

/dy:/de+cl
)

=Cl

y(x) 07

14

-3

% 2 ; ;
X

Figure 2.45: Slope field plot
sin(z)y =0

Summary of solutions found
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Solved as first order homogeneous class D2 ode
Time used: 0.156 (sec)

Applying change of variables y = u(x) z, then the ode becomes

sin (z) (v/'(z) £ + u(z)) =0

Which is now solved The ode v/'(z) = —@ is separable as it can be written as
R C)
() = -2
= f(z)g(u)
Where
1
flz)=—_
9(u) =u

Integrating gives

/ﬁdu=/f(z)dx
/%du=/—%dw
In (u(z)) =In (i) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = In (%) + e

u(z) =0
Solving for u(z) gives
u(z) =0
et
u(z) = —
Converting u(x) = 0 back to y gives
y=0

Converting u(z) = <- back to y gives
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X

Figure 2.46: Slope field plot

sin(z)y =0
Summary of solutions found
y=0
y=e"

Solved as first order ode of type differential
Time used: 0.012 (sec)
Writing the ode as
¥ =0
Which becomes
(1)dy = (0) dz
But the RHS is complete differential because

(0) dz = d(0)
Hence (2) becomes
(1) dy = d(0)
Integrating gives
y=a
5]
y(x) o
14
24
3]
> 2 5 3

X

Figure 2.47: Slope field plot
sin(z)y =0

Summary of solutions found

(1)

2)
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Maple step by step solution

Let’s solve
sin (z) (Ly(z)) =0

° Highest derivative means the order of the ODE is 1
Ly(z)

° Solve for the highest derivative
&y(@) =0

° Integrate both sides with respect to x
[ (Ly(z)) dz = [0dz + C1

° Evaluate integral
y(z) = C1

° Solve for y(z)
y(z) = C1

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 5

-

dsolve(sin(x)*diff(y(x),x) = 0,
L y(x) ,singsol=all)

y=a

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7

'DSolve[{Sin[x]*D[y[x],x]1==0,{}},
L y[x],x,IncludeSingularSolutions->True]

y(z) =
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2.1.36 problem 36
Solved as first order quadratureode . . . .. ... ... ... ...
Solved as first order homogeneous class D2ode . . . .. ... ...
Solved as first order ode of type differential . . . . .. .. ... .. 209
Maple step by step solution . . . . .. ... ... ... ... ... . 210
Mapletrace . . . . . . . . . . .. 2101
Maple dsolve solution . . . ... ... ... ... ... .. ..., 210
Mathematica DSolve solution . . . . . ... ... ... ....... 210

Internal problem ID [8696]

Book : First order enumerated odes

Section : section 1

Problem number : 36

Date solved : Tuesday, December 17, 2024 at 12:58:04 PM
CAS classification : [_quadrature]

Solve
f@)y' =0

Solved as first order quadrature ode
Time used: 0.026 (sec)

Since the ode has the form 3y’ = f(z), then we only need to integrate f(z).

/dy:/de+cl
)

=Cl

y(x) 07

14

-3

% 2 ; ; 3
X

Figure 2.48: Slope field plot
f(@)y' =0

Summary of solutions found
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Solved as first order homogeneous class D2 ode
Time used: 0.145 (sec)

Applying change of variables y = u(x) z, then the ode becomes

f@) (W(z)z +u(z)) =0

Which is now solved The ode v/'(z) = —@ is separable as it can be written as
R C)
() = -2
= f(z)g(u)
Where
1
flz)=—_
9(u) =u

Integrating gives

/ﬁdu=/f(z)dx
/%du=/—%dw
In (u(z)) =In (i) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = In (%) + e

u(z) =0
Solving for u(z) gives
u(z) =0
et
u(z) = —
Converting u(x) = 0 back to y gives
y=0

Converting u(z) = <- back to y gives
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Figure 2.49: Slope field plot

f@)y =0
Summary of solutions found
y=0
y=e"

Solved as first order ode of type differential
Time used: 0.012 (sec)
Writing the ode as
¥ =0
Which becomes
(1)dy = (0) dz
But the RHS is complete differential because

(0) dz = d(0)
Hence (2) becomes
(1) dy = d(0)
Integrating gives
y=a
5]
y(x) o
14
24
3]
> 2 5 3

X

Figure 2.50: Slope field plot

f@)y' =0

Summary of solutions found

(1)

2)
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Maple step by step solution

Let’s solve
f(2) (fy(2)) =0

° Highest derivative means the order of the ODE is 1
=Y(@)

° Solve for the highest derivative
wy(@) =0

° Integrate both sides with respect to x
[ (Ly(z)) dz = [0dz + C1

° Evaluate integral
y(z) = C1

o Solve for y(x)
y(z) = C1

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 5

-

dsolve(f (x)*diff(y(x),x) = 0,
L y(x) ,singsol=all)

y=a

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7

‘DSolve[{f [x]*D[y[x] ,x1==0,{}},
L y[x],x,IncludeSingularSolutions->True]

y(z) =
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2.1.37 problem 37

Internal problem ID [8697]

Solved as first order quadrature ode

Solved as first order Exactode . . . . . . . . ... ... ... ...
Maple step by step solution . . . . . . ... ... ... ...

Maple trace
Maple dsolve solution

Mathematica DSolve solution . . . . . . . . . . . . .. ... ....

Book : First order enumerated odes
Section : section 1

Problem number : 37

Date solved : Tuesday, December 17, 2024 at 12:58:05 PM
CAS classification : [_quadrature]

Solve

zy =1

Solved as first order quadrature ode

Time used: 0.036 (sec)

Since the ode has the form 3y’ = f(x), then we only need to integrate f(z).

Summary of solutions found
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Slope field plot

zy =1

y=In(z)+ ¢
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Solved as first order Exact ode
Time used: 0.075 (sec)
To solve an ode of the form

dy
M(z,9) + N(z,5) £ =0 (A)
T
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.

Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06d
Y
— —_—— B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
9 M
o
TN
9y
But since ;;gy = ;): g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = a‘fgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(z)dy = dz
—dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
ZC - 2 (1
=0
And
ON 0

or %(x)
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Since %i; # 88—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

1 /0M ON
TN (6_y - %)
= (- )
1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
— ef —Ldz
The result of integrating gives
b= e In(z)
1
oz

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
1
= 5(—1)
__t
oz
And
N =uN
1
= 5(95)
=1

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+N%:0
dz

(—%) Y=o

The following equations are now set up to solve for the function ¢(z,y)

0p —
i M (1)
0p —
oy N (2)
Integrating (1) w.r.t. = gives
op .
o9 . 1

¢ =—In(z) + f(y) 3)
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Where f(y) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t y gives

99 _ /
5;—0+f@) (4)

But equation (2) says that g—‘z = 1. Therefore equation (4) becomes

1=0+f"(y) (5)

Solving equation (5) for f’'(y) gives
flly)=1

Integrating the above w.r.t y gives
[rwa=[way
fy)=y+a
Where ¢, is constant of integration. Substituting result found above for f(y) into equation
(3) gives ¢

¢=-In(z)+y+ac

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢, constants into the constant c; gives the solution as

aa=—-In(x)+y

Solving for y gives

+
e

y =In(z)

\
\

w
/
4
/

/
14
/
/
/
v
/

\

NN\ N\
\

\

\

\
\
L N L O W W

AR

\\\\ \\\‘ \\\‘ \\\\ \
\ \

k\kk\kk\kk\‘

19—

[ 1111111011017

v/

LSS
LSS LSS S S S

‘«\\\

24—~

N N N N I N N N N I I NN

AR e Y NN

AR R R R R R R R RN R RN R RN RN
l\)—\\\\

% 2 ;

X
Figure 2.52: Slope field plot
zy =1

Summary of solutions found

y=In(z)+ ¢
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Maple step by step solution

Let’s solve

z(Ly(z)) =1
° Highest derivative means the order of the ODE is 1

=Y(@)

° Solve for the highest derivative
wy(@) =3

° Integrate both sides with respect to x
[ (Ly(z)) de = [ idz+ C1

° Evaluate integral

y(z) =In(z) + C1
o Solve for y(x)
y(z) =1n(z) + C1

Maple trace

-

“Methods for first order ODEs:
‘——— Trying classification methods ——-

‘trying a quadrature
‘<— quadrature successful”

- @@

Maple dsolve solution

Solving time : 0.000 (sec)
Leaf size : 8

‘dsolve(diff(y(x),x)*x = 1,
‘ y(x) ,singsol=all)

y=In(z)+c

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 10

p
‘ DSolve [{x*D[y[x],x]==1,{}},
‘ y [x] ,x,IncludeSingularSolutions->True]

y(x) — log(z) + 1
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2.1.38 problem 38
Solved as first order quadratureode . . . .. ... ... ... ...
Solved as first order Exactode . . . . .. ... ... ........ 217
Maple step by step solution . . . . . . ... ... ... ... 220
Maple trace . . . . . . . . . . .. 220
Maple dsolve solution . . . . . ... .. ... oL 220
Mathematica DSolve solution . . . . . .. ... ... ... ..... 220)

Internal problem ID [8698]

Book : First order enumerated odes

Section : section 1
Problem number : 38

Date solved : Tuesday, December 17, 2024 at 12:58:05 PM
CAS classification : [_quadrature]

Solve

zy = sin (z)

Solved as first order quadrature ode

Time used: 0.086 (sec)

Since the ode has the form 3y’ = f(x), then we only need to integrate f(z).

y(x) 0
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Figure 2.53: Slope field plot

Summary of solutions found

zy = sin (x)

y=19Si(z)+a
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Solved as first order Exact ode
Time used: 0.085 (sec)
To solve an ode of the form

dy
M(z,9) + N(z,5) £ =0 (4)
T
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.

Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06d
Y
— —_—— B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
i M
o
T _N
9y
But since ;;gy = ;): g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = a‘fgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(xz)dy = (sin (z)) dz
(—sin(z))dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
)
=0
And
ON 0

or %(x)
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Since %i; # 88—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

Sl <aM aN)

~ N\dy Oz

= (- )
1

T

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
— ef —Ldz
The result of integrating gives
b= e~ In(z)
1
oz

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM

And

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+N-—=2=0
+ dzx

(_m@)) +)% g

T dzx

The following equations are now set up to solve for the function ¢(z,y)
o= (1)

0 _w ®

Integrating (1) w.r.t. = gives

¢ = —Si(z) + f(y) (3)
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Where f(y) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t y gives

99 _ /
5;—0+f@) (4)

But equation (2) says that g—‘z = 1. Therefore equation (4) becomes
1=0+f(y) ()

Solving equation (5) for f’'(y) gives
flly)=1

Integrating the above w.r.t y gives

[rwa=[way

fly)=y+a

Where ¢; is constant of integration. Substituting result found above for f(y) into equation
(3) gives ¢
p=-Si(x)+y+a

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢, constants into the constant c; gives the solution as

cg=-Si(z)+y

Solving for y gives

y = Si(z)

+
Ay
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Figure 2.54: Slope field plot
zy =sin (z)

Summary of solutions found

y=3Si(z)+a
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Maple step by step solution

Let’s solve

z(Ly(z)) = sin(z)

° Highest derivative means the order of the ODE is 1

=Y(@)

° Solve for the highest derivative
Hy(@) =2

° Integrate both sides with respect to x

[ (Ly(z))de= | Sinxﬂdx + C1

° Evaluate integral
y(z) = Si(z) + C1

o Solve for y(x)
y(z) = Si(z) + C1

Maple trace

“Methods for first order ODEs:

‘——— Trying classification methods ——-
‘trying a quadrature

‘<— quadrature successful”

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 8

‘ dsolve(diff (y(x),x)*x = sin(x),
y(x) ,singsol=all)

N

y==5i(z)+a

Mathematica DSolve solution

Solving time : 0.006 (sec)
Leaf size : 10

‘ DSolve [{x*D[y[x],x]==Sin[x],{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(x) — Si(z) + 1
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2.1.39 problem 39

Solved as first order quadratureode . . . .. ... ... ... ...
Solved as first order homogeneous class D2ode . . . .. ... ...
Solved as first order ode of type differential . . . . .. .. ... ..
Maple step by step solution . . . . .. ... ... ... ... ... .
Maple trace . . . . . . . . . e e
Maple dsolve solution . . . ... ... ... ... ... .. ...,
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [8699)

Book : First order enumerated odes

Section : section 1

Problem number : 39

Date solved : Tuesday, December 17, 2024 at 12:58:06 PM
CAS classification : [_quadrature]

Solve

-1y =0

Solved as first order quadrature ode
Time used: 0.024 (sec)
Since the ode has the form 3y’ = f(z), then we only need to integrate f(z).

/dy:/de+cl
)

=Cl

y(x) 07

14

-3

) 2 5 3 )
X
Figure 2.55: Slope field plot
(z—1)y' =0

Summary of solutions found
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Solved as first order homogeneous class D2 ode
Time used: 0.130 (sec)

Applying change of variables y = u(x) z, then the ode becomes

(z—1) (w(z)z + u(z)) =0

Which is now solved The ode v/'(z) = —@ is separable as it can be written as
R C)
() = -2
= f(z)g(u)
Where
1
flz)=—_
9(u) =u

Integrating gives

/ﬁdu=/f(z)dx
/%du=/—%dw
In (u(z)) =In (i) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = In (%) + e

u(z) =0
Solving for u(z) gives
u(z) =0
et
u(z) = —
Converting u(x) = 0 back to y gives
y=0

Converting u(z) = <- back to y gives
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-2

% 2 ; ;
X

Figure 2.56: Slope field plot

-1y =0
Summary of solutions found
y=0
y=e"

Solved as first order ode of type differential
Time used: 0.010 (sec)
Writing the ode as
¥ =0
Which becomes
(1)dy = (0) dz
But the RHS is complete differential because

(0) dz = d(0)
Hence (2) becomes
(1) dy = d(0)
Integrating gives
y=a
5]
y(x) o
14
24
3]
> 2 5 3

Figure 2.57: Slope field plot
(z—1)y' =0

Summary of solutions found

(1)

2)
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Maple step by step solution

Let’s solve
(z—1) (Ly(@)) =0

° Highest derivative means the order of the ODE is 1
=Y(@)

° Solve for the highest derivative
wy(@) =0

° Integrate both sides with respect to x
[ (Ly(z)) dz = [0dz + C1

° Evaluate integral
y(z) = C1

o Solve for y(x)
y(z) = CI

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 5

-

dsolve((x-1)*diff (y(x),x) = 0,
L y(x) ,singsol=all)

y=a

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7

‘DSolve[{(x-1)*D[y[x],x]1==0,{}},
L y[x],x,IncludeSingularSolutions->True]

y(z) =
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2.1.40 problem 40

Solved as first order quadratureode . . . .. ... ... ... ...
Solved as first order homogeneous class D2ode . . . .. ... ... 226
Solved as first order ode of type differential . . . . .. .. ... .. 227
Maple step by step solution . . . . .. ... ... ... ... ... . 228
Maple trace . . . . . . . . . e e 228]
Maple dsolve solution . . . ... ... ... ... ... .. ..., 228
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [8700]

Book : First order enumerated odes

Section : section 1

Problem number : 40

Date solved : Tuesday, December 17, 2024 at 12:58:07 PM
CAS classification : [_quadrature]

Solve
yy' =0
Factoring the ode gives these factors
y=0 (1)
y' =0 (2)

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

Solving gives y = 0

Solving equation (2)

Solved as first order quadrature ode
Time used: 0.013 (sec)
Since the ode has the form 3y’ = f(x), then we only need to integrate f(zx).

/dy—/Odm—i—cl

y(x) 0]

3

= 2 5 ; 3
X

Figure 2.58: Slope field plot
y =0
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Summary of solutions found

y=a

Solved as first order homogeneous class D2 ode
Time used: 0.154 (sec)

Applying change of variables y = u(x) z, then the ode becomes

u(z)z+u(z)=0

Which is now solved The ode v/'(z) = —@ is separable as it can be written as
(2) = -2
u'(z) = .
= f(z)g(u)
Where
1
flz)=—_
g(u) =u

Integrating gives

/ﬁdu=/f(m)dm
/%du=/—£dm
In (u(z)) =In (i) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(z) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = In (%) tor

u(z) =0
Solving for u(z) gives
u(z) =0
et
u(z) = —
Converting u(x) = 0 back to y gives
y=0

Converting u(z) = <- back to y gives
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-2

% 2 ; ;
X

Figure 2.59: Slope field plot

y=0
Summary of solutions found

y=0

y=e"

Solved as first order ode of type differential
Time used: 0.009 (sec)
Writing the ode as
¥ =0
Which becomes
(1)dy = (0) dz
But the RHS is complete differential because

(0) dz = d(0)
Hence (2) becomes
(1) dy = d(0)
Integrating gives
y=a
5]
y(x) o
14
24
3]
> 2 5 3

X

Figure 2.60: Slope field plot

/

y:

Summary of solutions found

(1)

2)
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Maple step by step solution

Let’s solve
y(z) (Ly(z)) =0

° Highest derivative means the order of the ODE is 1

=Y(@)
° Separate variables
wy(@) =0
° Integrate both sides with respect to x

[ (Ly(z)) dz = [ 0dz + C1

° Evaluate integral
y(z) = C1

o Solve for y(x)
y(z) = CI

Maple trace

“Classification methods on request
Methods to be used are: [exact]

* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact

<- exact successful"

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 11

‘ dsolve(y(x)*diff(y(x),x) = 0,
‘ y(x) ,singsol=all)

®w
Il

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 12

‘DSolve[{y[x]*D[y[x],X]==0,{}},

‘ y[x],x,IncludeSingularSolutions->True]

y(z) =0
y(z) =
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2.1.41 problem 41

Solved as first order quadratureode . . . .. ... ... ... ... 229
Solved as first order homogeneous class D2ode . . . .. ... ... 230
Solved as first order ode of type differential . . . . .. .. ... .. 231]
Maple step by step solution . . . . .. ... ... ... ... ... . 232
Maple trace . . . . . . . . . e e 232
Maple dsolve solution . . . ... ... ... ... ... .. ...,
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [8701]

Book : First order enumerated odes

Section : section 1

Problem number : 41

Date solved : Tuesday, December 17, 2024 at 12:58:07 PM
CAS classification : [_quadrature]

Solve
zyy =0
Factoring the ode gives these factors
y=0 (1)
y' =0 (2)

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

Solving gives y = 0

Solving equation (2)

Solved as first order quadrature ode
Time used: 0.013 (sec)
Since the ode has the form 3y’ = f(x), then we only need to integrate f(zx).

/dy—/Odm—i—cl

y(x) 0]

3

o 3 5 3 7
X
Figure 2.61: Slope field plot
y =0
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Summary of solutions found

y=a

Solved as first order homogeneous class D2 ode
Time used: 0.152 (sec)

Applying change of variables y = u(x) z, then the ode becomes

u(z)z+u(z)=0

Which is now solved The ode v/'(z) = —@ is separable as it can be written as
(2) = -2
u'(z) = .
= f(z)g(u)
Where
1
flz)=—_
g(u) =u

Integrating gives

/ﬁdu=/f(m)dm
/%du=/—£dm
In (u(z)) =In (i) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(z) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = In (%) tor

u(z) =0
Solving for u(z) gives
u(z) =0
et
u(z) = —
Converting u(x) = 0 back to y gives
y=0

Converting u(z) = <- back to y gives
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X

Figure 2.62: Slope field plot

y=0
Summary of solutions found

y=0

y=e"

Solved as first order ode of type differential
Time used: 0.009 (sec)
Writing the ode as
¥ =0
Which becomes
(1)dy = (0) dz
But the RHS is complete differential because

(0) dz = d(0)
Hence (2) becomes
(1) dy = d(0)
Integrating gives
y=a
5]
y(x) o
14
24
3]
> 2 5 3

X

Figure 2.63: Slope field plot

/

y:

Summary of solutions found

(1)

2)
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Maple step by step solution

Let’s solve
zy(@) (Ly(z)) =0

° Highest derivative means the order of the ODE is 1
=Y(@)

° Solve for the highest derivative
&y(@) =0

° Integrate both sides with respect to x
[ (Ly(z)) dz = [0dz + C1

° Evaluate integral
y(z) = C1

o Solve for y(x)
y(z) = C1

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 9

-

dsolve(x*y(x)*diff (y(x),x) = 0,
L y(x) ,singsol=all)

&1

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 12

‘ DSolve [{x*y [x]*D [y [x],x]==0,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) =0
y(z) = a
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2.1.42 problem 42
Solved as first order quadratureode . . . .. ... ... ... ...
Solved as first order homogeneous class D2ode . . . .. ... ... 234
Solved as first order ode of type differential . . . . .. .. ... ..
Maple step by step solution . . . . .. ... ... ... ... ... . 236
Maple trace . . . . . . . . . e e 236
Maple dsolve solution . . . ... ... ... ... ... .. ..., 236
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [8702]

Book : First order enumerated odes
Section : section 1

Problem number : 42

Date solved : Tuesday, December 17, 2024 at 12:58:08 PM

CAS classification : [_quadrature]

Solve

zysin (z)y' =0

Factoring the ode gives these factors
y=0
y =0

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

Solving gives y = 0

Solving equation (2)

Solved as first order quadrature ode

Time used: 0.013 (sec)

Since the ode has the form 3y’ = f(x), then we only need to integrate f(zx).

/dy—/Odm—i—cl

y(x) 0]

3

= 2 5
X

2

Figure 2.64: Slope field plot

y =0



CHAPTER 2. BOOK SOLVED PROBLEMS 234

Summary of solutions found

y=a

Solved as first order homogeneous class D2 ode
Time used: 0.153 (sec)

Applying change of variables y = u(x) z, then the ode becomes

u(z)z+u(z)=0

Which is now solved The ode v/'(z) = —@ is separable as it can be written as
(2) = -2
u'(z) = .
= f(z)g(u)
Where
1
flz)=—_
g(u) =u

Integrating gives

/ﬁdu=/f(m)dm
/%du=/—£dm
In (u(z)) =In (i) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(z) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = In (%) tor

u(z) =0
Solving for u(z) gives
u(z) =0
et
u(z) = —
Converting u(x) = 0 back to y gives
y=0

Converting u(z) = <- back to y gives
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Figure 2.65: Slope field plot

y=0
Summary of solutions found

y=0

y=e"

Solved as first order ode of type differential
Time used: 0.009 (sec)
Writing the ode as
¥ =0
Which becomes
(1)dy = (0) dz
But the RHS is complete differential because

(0) dz = d(0)
Hence (2) becomes
(1) dy = d(0)
Integrating gives
y=a
5]
y(x) o
14
24
3]
> 2 5 3

X

Figure 2.66: Slope field plot

/

y:

Summary of solutions found

(1)

2)



CHAPTER 2. BOOK SOLVED PROBLEMS 236

Maple step by step solution

Let’s solve
zy(@) sin (2) (Ly(z)) =0

° Highest derivative means the order of the ODE is 1
2y(z)

° Solve for the highest derivative
&y(@) =0

° Integrate both sides with respect to x
[ (Ly(z)) dz = [0dz + C1

° Evaluate integral
y(z) = C1

o Solve for y(x)
y(z) = C1

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 9

-

dsolve (x*y(x)*sin(x)*diff (y(x) ,x) = O,
L y(x) ,singsol=all)

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 12

‘ DSolve [{x*y [x]*Sin[x]*D[y[x],x]==0,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) =0
y(z) = a
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2.1.43 problem 43

Solved as first order quadrature ode

Solved as first order homogeneous class D2ode . . . .. ... ...

Solved as first order ode of type differential

Maple step by step solution . . . . .. ... ... ... ... ... .
Maple trace . . . . . . . . . e e
Maple dsolve solution . . . ... ... ... ... ... .. ...,
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [8703]

Book : First order enumerated odes
Section : section 1

Problem number : 43

Date solved : Tuesday, December 17, 2024 at 12:58:09 PM

CAS classification : [_quadrature]

Solve

mysin (z)y' =0

Factoring the ode gives these factors
y=0
y =0

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

Solving gives y = 0

Solving equation (2)

Solved as first order quadrature ode

Time used: 0.014 (sec)

Since the ode has the form 3y’ = f(x), then we only need to integrate f(zx).

/dy—/Odm—i—cl

y(x) 0]

3

= 2 5
X

2

Figure 2.67: Slope field plot

y =0
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Summary of solutions found

y=a

Solved as first order homogeneous class D2 ode
Time used: 0.153 (sec)

Applying change of variables y = u(x) z, then the ode becomes

u(z)z+u(z)=0

Which is now solved The ode v/'(z) = —@ is separable as it can be written as
(2) = -2
u'(z) = .
= f(z)g(u)
Where
1
flz)=—_
g(u) =u

Integrating gives

/ﬁdu=/f(m)dm
/%du=/—£dm
In (u(z)) =In (i) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(z) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = In (%) tor

u(z) =0
Solving for u(z) gives
u(z) =0
et
u(z) = —
Converting u(x) = 0 back to y gives
y=0

Converting u(z) = <- back to y gives
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Figure 2.68: Slope field plot

y=0
Summary of solutions found

y=0

y=e"

Solved as first order ode of type differential
Time used: 0.010 (sec)
Writing the ode as
¥ =0
Which becomes
(1)dy = (0) dz
But the RHS is complete differential because

(0) dz = d(0)
Hence (2) becomes
(1) dy = d(0)
Integrating gives
y=a
5]
y(x) o
14
24
3]
> 2 5 3

X

Figure 2.69: Slope field plot

/

y:

Summary of solutions found

(1)

2)
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Maple step by step solution

Let’s solve
my(x)sin (z) (Ly()) = 0

° Highest derivative means the order of the ODE is 1
2y(z)

° Solve for the highest derivative
&y(@) =0

° Integrate both sides with respect to x
[ (Ly(z)) dz = [0dz + C1

° Evaluate integral
y(z) = C1

o Solve for y(x)
y(z) = C1

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 9

-

dsolve (Pixy(x)*sin(x)*diff(y(x),x) = 0,
L y(x) ,singsol=all)

&1

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 12

‘DSolve[{Pi*y[x]*Sin[x]*D[y[x],X]==0,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) =0
y(z) = a
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2.1.44 problem 44

Solved as first order quadrature ode . . . . . .
Solved as first order homogeneous class D2 ode
Solved as first order ode of type differential . .
Maple step by step solution . . . ... ... ..
Maple trace . . . . . .. .. ... ... ... ..
Maple dsolve solution . . ... .. ... .. ..

Mathematica DSolve solution . . . . . . . . . . . . . ... .. ...

Internal problem ID [8704]

Book : First order enumerated odes

Section : section 1

Problem number : 44

Date solved : Tuesday, December 17, 2024 at 12:58:10 PM
CAS classification : [_quadrature]

Solve

zsin(z)y' =0

Solved as first order quadrature ode

Time used: 0.026 (sec)

Since the ode has the form 3y’ = f(z), then we only need to integrate f(z).

/dy:/de+cl
)

=Cl

y(x) 07

14

-3

% 2 ; ;
X

Figure 2.70: Slope field plot
zsin(z)y =0

Summary of solutions found

24 1]
249
1244
244
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Solved as first order homogeneous class D2 ode
Time used: 0.158 (sec)

Applying change of variables y = u(x) z, then the ode becomes

zsin (z) (v (z) z +u(z)) =0

Which is now solved The ode v/'(z) = —@ is separable as it can be written as
R C)
() = -2
= f(z)g(u)
Where
1
flz)=—_
9(u) =u

Integrating gives

/ﬁdu=/f(z)dx
/%du=/—%dw
In (u(z)) =In (i) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = In (%) + e

u(z) =0
Solving for u(z) gives
u(z) =0
et
u(z) = —
Converting u(x) = 0 back to y gives
y=0

Converting u(z) = <- back to y gives
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-2

% 2 ; ;
X

Figure 2.71: Slope field plot
zsin(z)y =0

Summary of solutions found

y=0

y=e"
Solved as first order ode of type differential
Time used: 0.012 (sec)
Writing the ode as

¥ =0
Which becomes

(1)dy = (0) dz

But the RHS is complete differential because

(0) dz = d(0)
Hence (2) becomes
(1) dy = d(0)
Integrating gives
y=a
5]
y(x) o
14
24
3]
> 2 5 3

X

Figure 2.72: Slope field plot
zsin(z)y =0

Summary of solutions found

(1)

2)
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Maple trace

Maple step by step solution

Let’s solve

zsin (z) (Ly(z)) =0
Highest derivative means the order of the ODE is 1

=Y(@)
Solve for the highest derivative
wy(@) =0

Integrate both sides with respect to x
[ (Ly(z)) dz = [0dz + C1
Evaluate integral

y(z) = C1
Solve for y(x)
y(z) = C1

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 5

dsolve(x*sin(x)*diff (y(x),x) = 0,
y(x) ,singsol=all)

y=a

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7

'DSolve [{x*Sin[x]*D[y[x],x]==0,{}},

N

y[x],x,IncludeSingularSolutions->True]

y(z) =
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2.1.45 problem 45

Maple step by step solution . . . . . . ... ... ... ... ... 240
Maple trace . . . . . . . . . L 246
Maple dsolve solution . . . . .. ... ... ... ... .. ..., 246
Mathematica DSolve solution . . . . . ... ... ... ....... 246

Internal problem ID [8705]

Book : First order enumerated odes

Section : section 1

Problem number : 45

Date solved : Tuesday, December 17, 2024 at 12:58:10 PM
CAS classification : [_quadrature]

Solve
. 12
zsin(z)y”“ =0

Solving for the derivative gives these ODE’s to solve

Now each of the above is solved separately.

Solving Eq. (1)

Since the ode has the form 3y’ = f(x), then we only need to integrate f(z).

/dy=/0dm+cl

y==a

Solving Eq. (2)

Since the ode has the form 3y’ = f(z), then we only need to integrate f(z).

/dy:/de+02

Yy==c

Maple step by step solution

Let’s solve

z sin (z) (%y(ac))2 =0
° Highest derivative means the order of the ODE is 1

=y(2)

° Solve for the highest derivative
wy(@) =0

° Integrate both sides with respect to x
[ (Ly(z)) dz = [0dz + C1

° Evaluate integral
y(z) = C1

o Solve for y(x)
y(z) = C1
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Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

<- differential order: 1; missing y(x) successful”

Maple dsolve solution

Solving time : 0.029 (sec)
Leaf size : 5

e

dsolve(x*sin(x)*diff (y(x),x)"2 = 0,
y(x) ,singsol=all)

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 7

DSolve [{x*Sin[x]*D[y[x],x]~2==0,{}},
y[x],x,IncludeSingularSolutions->True]

yx) = a
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2.1.46 problem 46

Maple step by step solution . . . . . . ... ... ... ... ... 248
Maple trace . . . . . . . . . L 248]
Maple dsolve solution . . . . .. ... ... ... ... .. ..., 248
Mathematica DSolve solution . . . . . ... ... ... ....... 248

Internal problem ID [8706]

Book : First order enumerated odes

Section : section 1

Problem number : 46

Date solved : Tuesday, December 17, 2024 at 12:58:11 PM
CAS classification : [_quadrature]

Solve
vy’ =0
Factoring the ode gives these factors
y=0 (1)
Yy =0 (2)

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

Solving gives y = 0

Solving equation (2)

Solving for the derivative gives these ODE’s to solve

y =0 (1)
Yy =0 (2)

Now each of the above is solved separately.

Solving Eq. (1)

Since the ode has the form 3y’ = f(z), then we only need to integrate f(z).

/dy:/de+cl

y=a

Solving Eq. (2)

Since the ode has the form y' = f(x), then we only need to integrate f(zx).

/dyz/de—l-cz

Yy==c
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Maple step by step solution

Let’s solve

y(@) (Fy(@) =0

° Highest derivative means the order of the ODE is 1
()

° Solve for the highest derivative
#wy(@) =0

. Integrate both sides with respect to x
[ (Ly(z)) dz = [0dz + C1

. Evaluate integral
y(z) = C1

o Solve for y(x)
y(z) = C1

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 9

‘ dsolve(y(x)*diff(y(x),x)"2 = 0,
y(x),singsol=all)

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 12

e

DSolve [{y[x]*(D[y[x],x])~2==0,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) =0
y(z) =
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2.1.47 problem 47

Solved as first order quadratureode . . . .. ... ... ... ... 229
Solved as first order homogeneous class D2ode . . . .. ... ... 250
Maple step by step solution . . . . . . ... ... ... ... 251]
Maple trace . . . . . . . . . . ... 2511
Maple dsolve solution . . . . . ... .. ... L. 2511
Mathematica DSolve solution . . . . . .. .. ... ... ......

Internal problem ID [8707]

Book : First order enumerated odes
Section : section 1

Problem number : 47

Date solved : Tuesday, December 17, 2024 at 12:58:11 PM
CAS classification : [_quadrature]

Solve
y" =0

Solved as first order quadrature ode
Time used: 0.043 (sec)

Since the ode has the form 3y’ = f(x), then we only need to integrate f(z).

/dy=/0dm+cl

y==a

y(x) 07

14

-3

4 2 0 2 4
X
Figure 2.73: Slope field plot
y" =0

Summary of solutions found

y=a



CHAPTER 2. BOOK SOLVED PROBLEMS 250

Solved as first order homogeneous class D2 ode

Time used: 0.228 (sec)
Applying change of variables y = u(x) z, then the ode becomes
(v'(z) 2 +u(z)" =0

Which is now solved The ode v/'(z) = —%w) is separable as it can be written as
R )
u'(z) = .
= f(z)g(u)
Where
1
flz)=—_
9(u) = u
Integrating gives
1
——du = / f(x)dz
/ 9(w) @)
1 du = / 1 dx
u x

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Solving for u(z) gives

Converting u(z) = < back to y gives

y(x) 0]

14

24

] ) 3 3 )
X
Figure 2.74: Slope field plot
y" =0

Summary of solutions found
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Maple step by step solution

Let’s solve
(#y(2))" =0

° Highest derivative means the order of the ODE is 1
()

° Solve for the highest derivative
wy(@) =0

° Integrate both sides with respect to x
[ (Ly(z)) dz = [0dz + C1

° Evaluate integral
y(z) = C1

o Solve for y(x)
y(z) = C1

Maple trace

"Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

<- differential order: 1; missing y(x) successful’

Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 5

'dsolve(diff(y(x),x)"n = 0,
‘ y(x),singsol=all)

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 15

e

DSolve [{(D[y[x],x]) n==0,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(x) — 0"z 4 ¢
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2.1.48 problem 48
Solved as first order quadratureode . . . .. ... ... ... ...
Solved as first order homogeneous class D2ode . . . .. ... ...
Maple step by step solution . . . . . . ... ... ... ... 254
Maple trace . . . . . . . . . . .. 254
Maple dsolve solution . . . . .. .. ... ... ...
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [8708]

Book : First order enumerated odes

Section : section 1
Problem number : 48

Date solved : Tuesday, December 17, 2024 at 12:58:12 PM
CAS classification : [_quadrature]

Solve

zy" =0

Solved as first order quadrature ode

Time used: 0.026 (sec)

Since the ode has the form 3y’ = f(x), then we only need to integrate f(z).

/dy=/0dm+cl

y==a

14

-3

Summary of solutions found

2 ; ; y
X

Figure 2.75: Slope field plot
zy" =0

y=a
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Solved as first order homogeneous class D2 ode
Time used: 0.155 (sec)

Applying change of variables y = u(x) z, then the ode becomes

(v (z) z 4+ u(z))" =0

Which is now solved The ode v/'(z) = —@ is separable as it can be written as
IR C))
() = -2
= f(z)g(u)
Where
1
flz)=—_
9(u) =u

Integrating gives

/ﬁdu=/f(z)dx
/%du=/—%dw
In (u(z)) =In (i) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)) = In (%) +e

u(z) =0
Solving for u(z) gives
u(z) =0
et
u(z) = —
Converting u(x) = 0 back to y gives
y=0

Converting u(z) = <- back to y gives
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—21

-3

% 2 ; ; y
X

Figure 2.76: Slope field plot

zy" =0
Summary of solutions found

y=0

y=e”

Maple step by step solution

Let’s solve

z(Ly(z))" =0
° Highest derivative means the order of the ODE is 1

=Y(@)
° Solve for the highest derivative
&y() =0

. Integrate both sides with respect to x
[ (Ly(z)) dz = [0dz + C1

° Evaluate integral
y(z) = C1

o Solve for y(x)
y(z) = C1

Maple trace

"Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

<- differential order: 1; missing y(x) successful”
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Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 5

‘ dsolve(x*diff (y(x),x)"n = 0,
‘ y(x) ,singsol=all)

y=a

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 15

‘DSolve [{x*(D[y[x],x])"n==0,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(x) — 0nz 4 ¢
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2.1.49 problem 49

Maple step by step solution . . . . . . ... ... ... ... ... 256
Maple trace . . . . . . . . . 257
Maple dsolve solution . . . . . ... .. ... ... ... .. ..., 257
Mathematica DSolve solution . . . . . ... ... ... ....... 257

Internal problem ID [8709]

Book : First order enumerated odes

Section : section 1

Problem number : 49

Date solved : Tuesday, December 17, 2024 at 12:58:13 PM
CAS classification : [_quadrature]

Solve

2
/:x

Solving for the derivative gives these ODE’s to solve

y =z
y=—vz (2)
Now each of the above is solved separately.

Solving Eq. (1)

Since the ode has the form 3y’ = f(x), then we only need to integrate f(z).

/dy:/\/idx

2()’)3/2
¥y=73

+c

Solving Eq. (2)

Since the ode has the form 3y’ = f(x), then we only need to integrate f(z).

21.3/2
y=-"3 +c
Maple step by step solution
Let’s solve
2
(y(@) =2
° Highest derivative means the order of the ODE is 1
=Y(@)
° Solve for the highest derivative

[Ly(2) = vz, Ly(2) = —V/7]
O Solve the equation Ly(z) = \/z
o Integrate both sides with respect to

[ (Ly(2)) do = [ xdz +_C1

o Evaluate integral

y(z) = 2“’;/2 +_C1
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o Solve for y(z)

y(x) = 2$§/2 +_C1
O Solve the equation y(z) = —\/z

o Integrate both sides with respect to
[ (Ly(z))dz = [ —/zdz +_C1

o Evaluate integral
y(z) = —2z§/2 +_C1

o Solve for y(x)
y(z) = —% +_C1

° Set of solutions

{y(a}) = —2””;/2 + C1,y(z) = 2“”;/2 + CI}

Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

<- differential order: 1; missing y(x) successful”

Maple dsolve solution

Solving time : 0.040 (sec)
Leaf size : 21

e

dsolve(diff(y(x),x)"2 = x,

L y(x) ,singsol=all)
2.’1,'3/2
y= 3 +a
21,,3/2
y=-—"3 +ta

Mathematica DSolve solution

Solving time : 0.004 (sec)
Leaf size : 33

‘DSolve[{(D[y[x],X])“2==X,{}},
y[x],x,IncludeSingularSolutions->True]

2:1;3/2
y(x) = — 3 +
21%/2
y(x) — +c
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2.1.50 problem 50

Solved as first order ode of type dAlembert . . .. ... ... ... 258
Maple step by step solution . . . . ... ... ... ... ..., 259
Maple trace . . . . . . . . . . ... 260
Maple dsolve solution . . . . . . ... ... ... ... ... ..., 260
Mathematica DSolve solution . . . . . ... ... ... ....... 260

Internal problem ID [8710]

Book : First order enumerated odes

Section : section 1

Problem number : 50

Date solved : Tuesday, December 17, 2024 at 12:58:14 PM
CAS classification : [[_homogeneous, ‘class C‘], _dAlembert]

Solve

!/

Y =z+y

Solved as first order ode of type dAlembert
Time used: 0.226 (sec)

Let p = v the ode becomes
P=z+y

Solving for y from the above results in
y=p' -z (1)
This has the form

y=zf(p) +9(p) *)

Where f,g are functions of p = y/(x). The above ode is dAlembert ode which is now
solved.

Taking derivative of (*) w.r.t. z gives

p=f+(af +9)

p—f=@f+9) D e

Comparing the form y = zf + g to (1A) shows that

f=-1
g=p"
Hence (2) becomes
p+1=2pp(z) (24)

The singular solution is found by setting g—ﬁ = 0 in the above which gives
p+1=0
Solving the above for p results in

pr=-—1
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Substituting these in (1A) and keeping singular solution that verifies the ode gives
y=1-—zx
The general solution is found when j—g # 0. From eq. (2A). This results in
oy _ Pp@)+1
pl(z) = 3
@)= Q

This ODE is now solved for p(z). No inversion is needed. Integrating gives

2p
— dp=dx
p+1 P

2p—2ln(p+1)=x+¢

Singular solutions are found by solving

oy 0

for p(z). This is because we had to divide by this in the above step. This gives the following

singular solution(s), which also have to satisfy the given ODE.

p(z) = -1

Solving for p(z) gives

p(z) = -1

p(x) = — LambertW (—e_l_%_T) -1

Substituing the above solution for p in (2A) gives

y= (— LambertW (—e‘1—5—7> B 1>2 .

Summary of solutions found

y=1-z

N
N

s = (- Lot (7478 -] -2

Maple step by step solution

Let’s solve
2
(&v(@) =z +y(2)
° Highest derivative means the order of the ODE is 1

()
° Solve for the highest derivative

Ly(e) = Vo ty (@), Ly@) = —Vo+y @)
e  Solve the equation Ly(z) = \/z +y ()
) Solve the equation Ly(z) = —\/z + y (z)

° Set of solutions
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{workingODE, workingODE}

Maple trace

"Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying dAlembert

<- dAlembert successful’

N

Maple dsolve solution

Solving time : 0.048 (sec)
Leaf size : 33

-

dsolve(diff (y(x),x)"2 = x+y(x),
L y(x) ,singsol=all)

y = LambertW (—cie”71)” + 2 LambertW (—c;e™#7!) — g + 1

Mathematica DSolve solution

Solving time : 14.92 (sec)
Leaf size : 100

'DSolve[{(D[y[x],x]) 2==x+y[x],{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) — W(e%(_””_”‘:l)) 242w (e%(_””_”cl)) —z+1
y(z) > 1—z
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2.1.51 problem 51

Solved as first order homogeneous class Aode . . . . . .. .. ... 2611
Solved as first order ode of type nonlinear p but separable . . . . . 264
Solved as first order ode of type dAlembert . . . . ... ... ... 266]
Maple step by step solution . . . . .. ... ... ... ... ... . 267

Maple trace . . . . . ... ... ... ..
Maple dsolve solution . . ... ... ..
Mathematica DSolve solution . . . . . .

Internal problem ID [8711]

Book : First order enumerated odes
Section : section 1

Problem number : 51

Date solved : Tuesday, December 17, 2024 at 12:58:14 PM
CAS classification : [[_homogeneous, ‘class A‘], _rational, _dAlembert]

Solve

12 ()
y _—
xz

Solved as first order homogeneous class A ode
Time used: 0.832 (sec)

Solving for 3’ gives

1 VY
y=—
x
/ vZY
Yy =—-——"
x
In canonical form, the ODE is
y =F(z,y)
_ V™
x
/! M(a:,y)
An ode of the form ¢ = N(zs)

1)
2)

(1)

is called homogeneous if the functions M (z,y) and N(z,y)

are both homogeneous functions and of the same order. Recall that a function f(z,y) is

homogeneous of order n if

f@ "z, t"y) =t"f(z,y)

In this case, it can be seen that both M = ,/xy and N = z are both homogeneous and of
the same order n = 1. Therefore this is a homogeneous ode. Since this ode is homogeneous,
it is converted to separable ODE using the substitution u = ¥, or y = uz. Hence

% = %x +u
dz dz
Applying the transformation y = uz to the above ODE in (1) gives
d—ux +u=+u
dx
du _ u(z) —u(z)
dr x
Or
u'(a:) VvV ’U,(I) B ’U,(iB) =0
z
Or

u(z)x —u(z)+u(z) =0
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Which is now solved as separable in u(z).

The ode v/(z) = —Vu(xl_u(@ is separable as it can be written as

’LLI(.’L‘) — U (x)x_ U’(x)
= f(z)g(u)
Where
f@) =~

Integrating gives

/ﬁdu:/f(ac)dx
/\/El_udu:/%dx

—2ln< u(z) — 1> =In(z)+ ¢

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or /u —u = 0 for u(x)
gives

u(z) =0
u(z) =1

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

—21In (m— 1) =In(z) + ¢
u(z) =0
u(z) =1

Converting —21n (N/u (x) — 1) = In (z) + ¢; back to y gives

2l <\/g_1) —In(2) +

Converting u(x) = 0 back to y gives

y=0
Converting u(x) = 1 back to y gives

y=g
In canonical form, the ODE is

y' = F(z,y)
__v¥ 1)
x

An ode of the form ¢ = %((:;’)) is called homogeneous if the functions M (z,y) and N(z,y)

are both homogeneous functions and of the same order. Recall that a function f(z,y) is
homogeneous of order n if

[z, t"y) =" f(z,y)
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In this case, it can be seen that both M = —,/ry and N = x are both homogeneous and of
the same order n = 1. Therefore this is a homogeneous ode. Since this ode is homogeneous,
it is converted to separable ODE using the substitution u = £, or y = uz. Hence

%_du

dx—£x+u

Applying the transformation y = uz to the above ODE in (1) gives

3—1;36+u=—\/ﬁ
du _ —vu(z) —u(x)
dx x
Or
’U/(CL‘) TV U(xz)_ —’LL(.’L') =0
Or

v(z)z+ vu(r) +u(z) =0

Which is now solved as separable in u(z).

The ode v/'(z) = ——Vu(zz:r"(m) is separable as it can be written as
V) - V@ ()
x
= f(2)g(u)
Where
1
fl@)=~

Integrating gives

( u(z) + 1>2

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or —y/u — u = 0 for
u(z) gives

u(z) =0

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are
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Converting In ( > = In (z) + ¢2 back to y gives

1
(Vu(@)+1)

1
In| —— | =h(z)+c
()

Converting u(x) = 0 back to y gives
y=0

Solving for y gives

Summary of solutions found

y=0
y==z

2rxe(v/xresr —1
y= ( ) —zet +1
VT et

2rxe(v/xetr +1
Y= ( ) —zet +1
VT ea

B 2z e (Vze —1)
V= VT e

B 2z e (/ze + 1)
v= JTen

+ zxe®

+ze? —

e &

e @

— 1) e

1) e

Solved as first order ode of type nonlinear p but separable

Time used: 0.242 (sec)
The ode has the form

Where n =2,m =1, f =1, g =y. Hence the ode is

w)»=2
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Solving for 3 from (1) gives

- Vs
- —VFs

To be able to solve as separable ode, we have to now assume that f > 0,g > 0.

1
->0
x

y>0

Under the above assumption the differential equations become separable and can be

written as
v =VIvg
SN
Therefore
1
% dy = <\/?) dz
1
_ﬁ dy = <\/?> dz

Replacing f(z), g(y) by their values gives

Integrating now gives the following solutions

—dy /\[dercl
a1
[y N
gL

1 c
y=zr\/—Cc1+—+x
z 4
1 c
T\ —a+— -+
x 4

1 a
y=zy\/ -+ —-+2
z 4

Therefore

Y

Summary of solutions found
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Solved as first order ode of type dAlembert
Time used: 0.071 (sec)

Let p = ¢ the ode becomes

=2
x
Solving for y from the above results in
y=p'z (1)
This has the form
y=zf(p) +9(p) (*)

Where f,g are functions of p = y/(x). The above ode is dAlembert ode which is now
solved.

Taking derivative of (*) w.r.t. z gives

dp
_ ! AN 4
dp

/ /
— f= = 2
p—f=@f+g) (2)
Comparing the form y = zf + g to (1A) shows that
f=p
g=0
Hence (2) becomes
—p* +p = 2app/(z) (24)

The singular solution is found by setting g—ﬁ = 0 in the above which gives

—p’+p=0
Solving the above for p results in
=0
p2=1

Substituting these in (1A) and keeping singular solution that verifies the ode gives
y=0

y=z

The general solution is found when g—z # 0. From eq. (2A). This results in

—p(z)* + p(x)
2zp (z) ®)

p(z) =

This ODE is now solved for p(z). No inversion is needed. In canonical form a linear first
order is

p'(z) + q(z)p(z) = p(z)

Comparing the above to the given ode shows that

q@%=%
p(z) .

T2
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The integrating factor u is

p= efqda:
_ ef sdx
=z
The ode becomes
g (HP) = kp

Love - o (5
Alpva) = (5= ) da
Integrating gives

= \/5 +c
Dividing throughout by the integrating factor \/z gives the final solution

:\/E-I-cl
NZ7

Substituing the above solution for p in (2A) gives

y= (\/5'1‘01)2

p(z)

Summary of solutions found

y=20
y==x

2
y=(Vz+a)
Maple step by step solution

Let’s solve

2 x
(@) =12
° Highest derivative means the order of the ODE is 1

=y(2)
° Solve for the highest derivative
y(e) =, dy(a) = -
e  Solve the equation Ly(z) = %(m)
d Vzy(z)

o Solve the equation Zy(r) = —

T

° Set of solutions
{workingODE, workingODE}
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Maple trace

“Methods for first order ODEs:
*xx Sublevel 2 *x*x*
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful’

Maple dsolve solution

Solving time : 0.048 (sec)
Leaf size : 39

‘ dsolve(diff (y(x),x)"2 = y(x)/x,
‘ y(x) ,singsol=all)

y=0
y = (:c + ,/C1x)2
T
Y= (—z+ \/0115)2
T

Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 46

'DSolve[{(D[y[x],x])"2==y[x]/x,{}},
L y[x],x,IncludeSingularSolutions->True]

y(x) — éll(_2\/5 +c1)?

y(z) = %(2\/5 +c1)?

y(x) =0
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2.1.52 problem 52

Maple step by step solution . . . . . . ... ... ... ... ...
Maple trace . . . . . . . . . L
Maple dsolve solution . . . . .. ... ... ... ... .. ...,
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [8712]

Book : First order enumerated odes

Section : section 1

Problem number : 52

Date solved : Tuesday, December 17, 2024 at 12:58:16 PM
CAS classification : [_separable]

Solve

Now each of the above is solved separately.

Solving Eq. (1)

In canonical form a linear first order is
Y + q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

The ode becomes

Integrating gives
ye VT = /de—l—cz
= CZ

Dividing throughout by the integrating factor e =2V gives the final solution

Y= ezﬁcz

(2)
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We now need to find the singular solutions, these are found by finding for what values

(%) is zero. These give

y=0
Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.
The solution y = 0 satisfies the ode and initial conditions.

Solving Eq. (2)

In canonical form a linear first order is
Y +q(z)y = p(x)

Comparing the above to the given ode shows that

1
q(z) = N
p(z) =0
The integrating factor u is
p=e [qdz
= e2ﬁ
The ode becomes
d
d 2\/5)
4 =0
dx (y ©

Integrating gives

ye?VT = /Odz +cs3
= 03
Dividing throughout by the integrating factor e?v® gives the final solution

y=e Ve

We now need to find the singular solutions, these are found by finding for what values
(—\%) is zero. These give

y=0
Now we go over each such singular solution and check if it verifies the ode itself and any

initial conditions given. If it does not then the singular solution will not be used.

The solution y = 0 satisfies the ode and initial conditions.
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Maple step by step solution

Let’s solve
2 )2
(y(@)" =¥
° Highest derivative means the order of the ODE is 1
=y(@)
° Solve for the highest derivative

Av@) =12, ky(@) = 2]

m

O Solve the equation Ly(z) = e

o Separate variables

Ly@) 1
y@) T Vo
o Integrate both sides with respect to
zy(w
ORG = fdac +_C1

o Evaluate integral

In (y(z)) = 2y/z +__C1
o Solve for y(x)
y(w) — e2Vz+_C1

O Solve the equation %y(z) = —&\/?
o Separate variables
sy@ 1
yz) = Vm

o Integrate both sides with respect to x

a x
ity = [~ Ldw+_C1

y(z)
o Evaluate integral
In(y(z)) = —2y/x+_C1
o Solve for y(x)
y(w) = e~ 2Vz+_CI

° Set of solutions
{y(x) — e—2\/5+017y(x) — e2\/a?+6‘1}

Maple trace

"Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying simple symmetries for implicit equations

<- symmetries for implicit equations successful”
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Maple dsolve solution

Solving time : 0.061 (sec)
Leaf size : 27

‘ dsolve(diff(y(x),x)"2 = y(x)~2/x,
y(x) ,singsol=all)

y=0
y = cre 2V
y = ce?v®

Mathematica DSolve solution

Solving time : 0.067 (sec)
Leaf size : 38

'DSolve [{(D[y[x],x])"~2==y[x]"2/x,{}},
y[x],x,IncludeSingularSolutions->True]

y(x) — cle 2V®
y(x) — c e?V®
y(z) =0
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2.1.53 problem 53
Solved as first order ode of type nonlinear p but separable 273]

Maple step by step solution . . . . ... ... ... ... ... ...
Maple trace . . . . . . . . . . ... e
Maple dsolve solution . . . . . . ... ... ... ... ... ...,
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [8713]

Book : First order enumerated odes

Section : section 1

Problem number : 53

Date solved : Tuesday, December 17, 2024 at 12:58:18 PM
CAS classification : [[_homogeneous, ‘class G‘]]

Solve

Solved as first order ode of type nonlinear p but separable
Time used: 0.425 (sec)
The ode has the form

(y)= = f(z)9(y)
Wheren=2m=1, f = %,g = y3. Hence the ode is

Solving for ' from (1) gives

3

y =
y =

3

To be able to solve as separable ode, we have to now assume that f > 0,9 > 0.

(1)

1
->0
x
>0
Under the above assumption the differential equations become separable and can be
written as
v =Vfvg
v =—VfVe
Therefore

Ldy = <\/?) dx

——dy = (ﬁ) dx

)dx
)dx

A

Replacing f(z), g(y) by their values gives

&
<
I

R

8- 9~
(9% (9%

N~
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Integrating now gives the following solutions

Therefore

[ = [ [Lia s

\/_ _op /L

/- fdy_/[dm

2Vy? 1

=2z
y? x
4
y:
4x\/gc1+c%+4x
4

'y:
4x\/%cl—|—c%—|—4x

Summary of solutions found

4
y:
4x\/§cl—|—c%—|—4x

Maple step by step solution

Maple trace

Let’s solve

2 x
(fy(@)” =¥
Highest derivative means the order of the ODE is 1

3

=y ()

Solve for the highest derivative

[d%y(x) = VO () = V@)
Solve the equation %y(x) = M
Solve the equation Ly(z) = _—@ y(@)

Set of solutions
{workingODE, workingODE}

“Methods for first order ODEs:

‘—> Solving 1st order ODE of high degree, 1st attempt
‘trying 1st order WeierstrassP solution for high degree ODE
L<- 1st_order WeierstrassP successful’

Maple dsolve solution

Solving time : 0.045 (sec)

Leaf size : 27

‘dsolve(diff (y(x),x)"2 = y(x)"3/x,
y(x) ,singsol=all)

t

y=0
WeierstrassP (1,0,0) 2%/3

(\/521/3 + 01)2

y:
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Mathematica DSolve solution

Solving time : 0.071 (sec)
Leaf size : 42

'DSolve [{(D[y[x],x])~2==y[x]"3/x,{}},
‘ y[x],x,IncludeSingularSolutions->True]

4
y(z) — (—2\/;?"‘01)2
y(z) — m
y(z) =0




CHAPTER 2. BOOK SOLVED PROBLEMS 276
2.1.54 problem 54
Solved as first order ode of type nonlinear p but separable 2706}
Maple step by step solution . . . . ... ... ... ... ..., 27T
Maple trace . . . . . . . . . . ... 278
Maple dsolve solution . . . . . . ... ... ... ... ... ..., 279
Mathematica DSolve solution . . . . . ... .. ... ... ..... 2779

Internal problem ID [8714]

Book : First order enumerated odes

Section : section 1

Problem number : 54

Date solved : Tuesday, December 17, 2024 at 12:58:19 PM
CAS classification : [[_homogeneous, ‘class G‘], _rationall

Solve

Solved as first order ode of type nonlinear p but separable
Time used: 0.947 (sec)
The ode has the form

(W)= = f(z)g(y)
Where n=3,m =1, f = 1, g = y*. Hence the ode is
/)3 )
Solving for y' from (1) gives

y = (fg)"*

y— 9" iV3(f9)"

2 2
(9 B(f9)?
2 2

y:

To be able to solve as separable ode, we have to now assume that f > 0,g > 0.

1
- >0
x

>0

(1)

Under the above assumption the differential equations become separable and can be

written as

y' _ fl/3gl/3
N 2
fl/3gl/3(1+i\/§)
2

Y

Therefore
1
e

dy = (f1/3) dx

2
g3 (=143

dy = (f**) dz

B 2 _ (413
g3 (1 +iv/3) dy = (%) dx
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Replacing f(z), g(y) by their values gives

1 1 1/3
wr= () )
2 1\3
dy = — dx
@7 (c1+v3) 0 \\z
2 1\ 3
— dy = — dx
@) 1+ iv3) (w)

Integrating now gives the following solutions

1 1 1/3
[mn=](2) v

3" (-1+iv3) _3z(1)”
2y 2
Therefore
1/3
3@ _32(0) " |
Y 2 '
2, O ()P g
Y78 1 6 27
2 OMas ()Vde g
Y78 4 6 27
Summary of solutions found
1/3
3@ _32(0) " |
Y 2 '
2/3 1/3
2 OMas ()Vde g
Y78 1 6 27

Maple step by step solution

Let’s solve

3 z
()" =47
° Highest derivative means the order of the ODE is 1

2

&y(@)
° Solve for the highest derivative
a2y(x)?) "’ 2y@?)”" 13 (a2y(@?)
£1(a) = 2T gyt - - WA
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(r2y(w)2)1/3

o Solve the equation Ly(z) = =

2 2 1/3 I\/g 2 2 1/3
° Solve the equation %y(m) =— (= y(;i ) - G ;,ix) )

22 m21/3 13 (22 m21/3
) Solve the equation -Ly(z) = —< y(2i ) + ( i ')
° Set of solutions

{workingODE, workingODE, workingODE}

Maple trace

“Methods for first order ODEs:
*xx Sublevel 2 *x*x*
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting
*xx Sublevel 3 **x*
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful
* Tackling next ODE.
*xx Sublevel 3 *x*x*
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful
* Tackling next ODE.
*xx Sublevel 3 **x*
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful

<- homogeneous successful”
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Maple dsolve solution

Solving time : 0.104 (sec)
Leaf size : 341

‘ dsolve(diff(y(x),x)"3 = y(x)~2/x,
‘ y(x) ,singsol=all)

y=0
_ _33:4/301 3.’172/30% B C_‘;’ N x_Q
N 8 8 8 ' 8
_ 3(—1'\/3 - 1) 3?3 N 3¢, (1 — z\/g) 24/3 & ) 2
v= 16 16 3 3
B 3c2(iv3 — 1) 2%/3 N 3¢, (14iv3)z¥? ¢ N 22
v= 16 16 3 3
Y= 3x4/361 3332/303 N c_? . x_Q
16 32 64 8
. 3(—1\/5 — 1) 6%1172/3 N 301 (’l\/§ _ 1) 1174/3 C:f N IE2
T 64 32 64" 3
32(iv/3—1) 2% 3¢ (—iv/3-1)2%3 & g2
_ _31'4/301 32%/3¢2 g
T 6 32 648
_ 3(—iv3—1) 32 N 31 (1—iv3) 2?3 L
. 64 32 64 8
y = 30%(7»\/5— 1) x2/3 N 3¢, (1 +’L\/§) z4/3 ~ C_% s 1,'_2
64 32 64 8

Mathematica DSolve solution

Solving time : 0.084 (sec)
Leaf size : 152

DSolve[{(D[y[x],x])"3==y[x]"2/x,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) — % (32%/3 4 2¢1)®

y(x) — 1 (182’ <\/§ + z) ci2x?® — 270 (\/g — z) c1rt® + 272 + 8(:13)
:

y(@) > 51z (—18i(\/§ - z) 22?3 4 272’(\/3 + z) cra?/? + 272 + 8013>

y() =0



CHAPTER 2. BOOK SOLVED PROBLEMS

280

2.1.55 problem 55

Solved as first order ode of type nonlinear p but separable
Maple step by step solution . . . ... ... ... .....
Mapletrace . . . . . . . . . . . ... ...
Maple dsolve solution . . . . ... ... ... .......
Mathematica DSolve solution . . . . . ... .. ......

Internal problem ID [8715]

Book : First order enumerated odes

Section : section 1

Problem number : 55

Date solved : Tuesday, December 17, 2024 at 12:58:21 PM
CAS classification : [[_homogeneous, ‘class G‘]]

Solve

Solved as first order ode of type nonlinear p but separable
Time used: 0.305 (sec)
The ode has the form

()~ = f(z)g(y)

Where n =2,m=1, f = %,g = ‘% Hence the ode is

(v)" = y_w

Solving for y' from (1) gives
¥y =V/fg
¥y =-Vfg

To be able to solve as separable ode, we have to now assume that f > 0,9 > 0.

280)
287
2321
2851
28]

1
->0
x
1
->0
Yy
Under the above assumption the differential equations become separable and can be
written as
v =VIvg
v =—VfVe
Therefore

Ldy = <\/?) dx
——dy = <\/?> dx

Replacing f(z), g(y) by their values gives
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Integrating now gives the following solutions

2 /1
20y e
= €T —
3 T
1 1
/——dy=/ —dz + ¢
1 z
Yy
2 /1
2y 0o /1
J— = 2 —
3 T
Therefore
2’y2 1 1
3 Y = 2x\/; +c
29/

w
< =
[l
N
)
g
+
o

Solving for y gives

~18 2x[+cl )1/3 i\/?,(—18<2z\/g+c1)2)1/3 ’
2:1:\/7+cl N 6<2m\/g+cl>

—18 29:\/74—01 )1/3 i\/ﬁ(—ls(u\/;ucl)z)l/a ’
2w\/7+01 + 12:1;\/g+601

6 2x\/>+cl N 6 (2x\/g+cl)
1

181/3( 2m\/7+01 )1/3 i\/§181/3<(2x\/3+01>2>1/3)2
+

1 1
6(20\/L+e1) 122,/1 +6c:

( N (i)

Summary of solutions found

y:

_ (_18(29:\/%"'01)2) e B iv3 (_18<2m\/g+61>2) 1/3\ 2
o) 6(22y/1+1)
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i 2 (<2x\/§+ 01)2)

18 2m\f+c1) )1/3 i\/ﬁ(—ls(2z\/g+c1>2>1/3 ’
2ac\/7+cl) + 122\/5—1—601

1

1/3\ 2

6 227\/g+cl> B 6(2m\/g+cl>

1

1/3 N 1/3\ 2
181/3( % %+c1 ) i\/§181/3(<2x\/g+c1>)
+

6(20\/L+e1) 122,/ +6c:

( 155 (2 2er)”) " w18 ( (20 Trer))

2
(20/2+c:) 1813

2/3

Maple step by step solution

Maple trace

Let’s solve
d 2
(@y(x)) = ﬁ(z)
Highest derivative means the order of the ODE is 1

&y(@)
Solve for the highest derivative

— d ___ 1
Ly(e) = A, dyle) = ——L
Solve the equation Ly(z) = NCTO)

Solve the equation Ly(z) = — NCTO)

Set of solutions
{workingODE, workingODE}

"Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE

trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying simple symmetries for implicit equations

Successful isolation of dy/dx: 2 solutions were found. Trying to solve eacl

**x* Sublevel 2 **x
Methods for first order ODEs:
-—— Trying classification methods ---

trying homogeneous types:
trying homogeneous G

h resulting OC
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1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful
* Tackling next ODE.
*xx Sublevel 2 *x*x*
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful

<- homogeneous successful”

Maple dsolve solution

Solving time : 0.085 (sec)
Leaf size : 51

‘dsolve(diff(y(x),x)? = 1/x/y(x),
y(x) ,singsol=all)

Y\/TY — c1/T — 32
N
Yy/TY — ca1/T + 3

7 -

=0

0

Mathematica DSolve solution

Solving time : 3.342 (sec)
Leaf size : 53

'DSolve[{(DIy[x],x])~2==1/(y[x]*x),{}},
‘ y[x] ,x,IncludeSingularSolutions->True]

2/3

(2vE + 1) ¥

y(z) —

i@ (3)" (2
(2
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2.1.56 problem 56

Solved as first order ode of type nonlinear p but separable
Maple step by step solution . . . ... ... ... .....
Mapletrace . . . . . . . . . . . ... ...
Maple dsolve solution . . . . ... ... ... .......
Mathematica DSolve solution . . . . . ... .. ......

Internal problem ID [8716]

Book : First order enumerated odes

Section : section 1

Problem number : 56

Date solved : Tuesday, December 17, 2024 at 12:58:22 PM
CAS classification : [[_homogeneous, ‘class G‘]]

Solve

Solved as first order ode of type nonlinear p but separable
Time used: 0.294 (sec)
The ode has the form
(y) = f(z)9(y)
Wheren=2m=1, f = %,g = y—13 Hence the ode is
)= xiyg

Solving for y' from (1) gives

v =\/fg
Y =—Vfg

To be able to solve as separable ode, we have to now assume that f > 0,9 > 0.

1
->0
x
1
E >0
Under the above assumption the differential equations become separable and can be
written as
v =VIvg
v =—VfVe
Therefore

Ly

) deo

dx

>dx
)dx

~%
e

———dy =

S

Replacing f(z), g(y) by their values gives

1 !
! (
3
(

- %
==

<
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Integrating now gives the following solutions

y3

2y4 y13 5 1
5 \z
1 1

/— dyz/ —dr + ¢

1 x
y3
4 /1

Therefore
22/4\/ l3 1
L 2z — + 1
5 T
2y*\/ 35 1
— Y =24/ — + C1
5 T

Summary of solutions found

— ) VOO
5 T = +a
4 /1
2w 1
=2z\/ -+
) x
Maple step by step solution
Let’s solve
d 2_ 1
(¥(@)” = ey
° Highest derivative means the order of the ODE is 1
=Y(@)
° Solve for the highest derivative
d _ 1 d — _ 1
[%y(w) = V@ @Y%) = T e
e  Solve the equation Ly(z) = W

ion & -1
o Solve the equation 7-y(x) NCTEID)
. Set of solutions
{workingODE, workingODE}
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Maple trace

-

N

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying simple symmetries for implicit equations

Successful isolation of dy/dx: 2 solutions were found. Trying to solve eacl

*xx Sublevel 2 **x*
Methods for first order ODEs:
-—- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful
* Tackling next ODE.
*xx Sublevel 2 **x*
Methods for first order ODEs:
-—- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful”

h resulting OL

Maple dsolve solution

Solving time : 0.109 (sec)
Leaf size : 55

dsolve(diff(y(x),x)"2 = 1/x/y(x)"3,
y(x),singsol=all)

VIYY? — c1/T — 5z
\AE
VIYY? — c1/T + 5z
=0
VT

=0
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Mathematica DSolve solution

Solving time : 0.109 (sec)
Leaf size : 53

' DSolve [{(D[y[x],x])"2==1/(x*y[x]~3),{}},
‘ y[x],x,IncludeSingularSolutions->True]

2/5

(—2\/5 + Cl) 2/5

y(z) - < >
(O e

y(z) —
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2.1.57 problem 57

Solved as first order ode of type nonlinear p but separable
Maple step by step solution . . . ... ... ... .....
Mapletrace . . . . . . . . . . . ... ...
Maple dsolve solution . . . . ... ... ... .......
Mathematica DSolve solution . . . . . ... .. ......

Internal problem ID [8717]

Book : First order enumerated odes

Section : section 1

Problem number : 57

Date solved : Tuesday, December 17, 2024 at 12:58:23 PM
CAS classification : [_separable]

Solve

Solved as first order ode of type nonlinear p but separable
Time used: 0.325 (sec)
The ode has the form

(y) = f(z)9(y)

Wheren=2m=1, f = $—12,g = 1% Hence the ode is

1
12:
%) P

Solving for y' from (1) gives

v =\/fg
Y =—Vfg

To be able to solve as separable ode, we have to now assume that f > 0,9 > 0.

1
= >0
1
E >0
Under the above assumption the differential equations become separable and can be
written as
v =VIvg
v =—VfVe
Therefore

Ly

) deo

> dz
Replacing f(z), g(y) by their values gives

1 1
3

dy =

-5

———dy =

S
B

- %

Q-
N
&M| —
~_—
IS
8



CHAPTER 2. BOOK SOLVED PROBLEMS

289

Integrating now gives the following solutions

2"/ 1
= Emln(m)
/ L dy—/ dz +c
— = — 1
\/yzg 2
4 /1

Therefore

Summary of solutions found

2"/ ok 1
- ! =\/E:L'ln(z)+c1
1
E =\/ﬁx1n(x)+c1

Maple step by step solution

Let’s solve

(@) = e

° Highest derivative means the order of the ODE is 1
=Y(@)
° Solve for the highest derivative
d _ 1 d _ 1
[@y(x) = o7 @y (@) = —y(x)—a/zm}
O Solve the equation -Ly(z) = m

o Separate variables
(y(x)) y(=)** = 1
o Integrate both sides with respect to
[ (Ly(z)) y(z)*? dz = [Lidz+_C1
o Evaluate integral
M =In(z)+_C1
o Solve for y(z)

80In(z)+80__ C'1 2
y(w) = ( 4 )

O Solve the equation -Ly(z) =

1
y(z)® %z

o Separate variables
3/2
(Ly()) y(x)** = -1
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o Integrate both sides with respect to x
[ (Ly(z)) y(z)*?dz = [ —2dz+_C1
o Evaluate integral
)5/
% =—In(z)+_C1
o Solve for y(z)

—80In(z)+80_ C1)*/°
y(m) = ( 4 )

° Set of solutions

)

—801In(z C1)%/5
{y(:c) _ (=801 )Igo 1)

Maple trace

In(z C1)?/%
y(z) = (801n( )-1;80 1) }

“Methods for first order ODEs:

trying differential order: 1; missing variables
trying simple symmetries for implicit equations

<- symmetries for implicit equations successful

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

Maple dsolve solution

Solving time : 0.158 (sec)
Leaf size : 29

‘ dsolve(diff(y(x),x)"2 = 1/x72/y(x)"3,
y(x) ,singsol=all)

2 5/2

In(z) — y5 —c=0
9 5/2

In (z) + y5 —c =

Mathematica DSolve solution

Solving time : 0.132 (sec)
Leaf size : 45

'DSolve[{(D[y[x],x])"2==1/(x 2%y [x]°3),{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) = (g)z/"’ (—log(z) + ¢1)*/®
y(z) — (2)2/5 (log(z) + ¢1)*°
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2.1.58 problem 58

Solved as first order ode of type nonlinear p but separable . . . . . 20T}
Maple step by step solution . . . . ... ... ... ... ... ... 293
Maple trace . . . . . . . . . . ... e 293
Maple dsolve solution . . . . . . ... ... ... ... ... ..., 294
Mathematica DSolve solution . . . . . ... ... ... ....... 295

Internal problem ID [8718]

Book : First order enumerated odes

Section : section 1

Problem number : 58

Date solved : Tuesday, December 17, 2024 at 12:58:24 PM
CAS classification : [[_homogeneous, ‘class G‘], _rationall

Solve

Solved as first order ode of type nonlinear p but separable
Time used: 0.720 (sec)
The ode has the form
) = f(z)9(y) )

Hence the ode is

1
N4 __
(y) _il'y3

1
y3°

Wheren=4,m=1,f=%,g

Solving for ' from (1) gives
v = (fo)'*
y =i(fg)""
v =—(fg)""
y = —i(fg)"*

To be able to solve as separable ode, we have to now assume that f > 0,g > 0.

1
- >0
x

1
E >0
Under the above assumption the differential equations become separable and can be

written as
yl — f1/4gl/4
y' _ Z-fl/4gl/4
y' _ _f1/4g1/4
y' _ —if1/4g1/4

Therefore
1
gy = (/") dz
7
— gty = (") da
1

# dy = (f/*) do
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Replacing f(z), g(y) by their values gives

1 1\
dy = — dx
7 (()
<y3z'> 1\
— dy = — dx
o (()
<y31> 1\
—Fdy=1||—- dx
o (()
<yz'> 1\
e (()7)
v?

Integrating now gives the following solutions

1 1)\ Y4
e (1) e
/<L>1/4 Y T !
y

' (3)"_aa
I B y
/ (2%31/4@—/ i) dr + c;
w'(3)" )
I AE y
[ Q) e
()"
7 3

Therefore

3/
() ae)”
7 ~ 3 @
af 1)\ 1/4
() e

7 3 @
it L 3/4 1\1/4
v\ 4z(3)
7 == 3 +Cl
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Summary of solutions found

~

7 = 3 +a
Qi i_3/ 1\1/4
W(5) ()
Y = L + C1
7 3
3/4
W) e
7 3 .
4 4 i 3/4 1 1/4
Y\w) (D)
T 3 “
Maple step by step solution
Let’s solve
4
(@y@)" = oep
° Highest derivative means the order of the ODE is 1
=Y(@)
° Solve for the highest derivative
d _ @y@)'"" 4 _ _Ey@)" 4 _ —1ey@)"
%y(x) - zy(z) ’Ey(x) T oyl 75?/(9”) - zy(z)
1/4
o Solve the equation -Ly(z) = (9”3:;—?3
1/4
o Solve the equation -Ly(z) = —@;—fg
—I(z z 1/4
o Solve the equation Ly(z) = I(;Jy—((x)))
1/4
o Solve the equation Ly(z) = %
° Set of solutions

{workingODE, workingODE, workingODE, workingODE}

Maple trace

4
d

a%yw

(z) =

zy(z)

"Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE

trying 1st order WeierstrassPPrime solution for high degree ODE

trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations

Successful isolation of dy/dx: 4 solutions were found. Trying to solve eacl

***x Sublevel 2 k%

Methods for first order ODEs:

--- Trying classification methods ---
trying homogeneous types:

trying homogeneous G

1st order, trying the canonical coordinates of the invariance group

<- 1st order, canonical coordinates successful
<- homogeneous successful

1(z®y(2))"/*

h resulting
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* Tackling next ODE.

*xx Sublevel 2 *x*x*

Methods for first order ODEs:

--- Trying classification methods ---

trying homogeneous types:

trying homogeneous G

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful

<- homogeneous successful

* Tackling next ODE.

*xx Sublevel 2 *x*x*

Methods for first order ODEs:

--- Trying classification methods ---

trying homogeneous types:

trying homogeneous G

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful

<- homogeneous successful

* Tackling next ODE.

***x Sublevel 2 k%

Methods for first order ODEs:

--- Trying classification methods ---

trying homogeneous types:

trying homogeneous G

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful

<- homogeneous successful”

Maple dsolve solution

Solving time : 0.223 (sec)
Leaf size : 121

‘dsolve(diff(y(x),x)“i = 1/x/y(x) "3,

y(x),singsol=all)

Ta® — 3(yz®)** y + c12%/4 B

2974 0
—723 + 3i(yz®)* y — 129/ _
19/4 =0
72 + 3i(ya®)** y — ez _
29/4 =0

T3 + 3(y:v3)3/4 y — cz¥/*

7974 =0
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Mathematica DSolve solution

Solving time : 6.693 (sec)
Leaf size : 129

‘DSolve[{(Dly[x],x])~4==1/ (x*y [x]°3) ,{}}, |
‘ y[x],x,IncludeSingularSolutions->True] ‘

e ( 228\7/53/4) 4/7
7cp — S
y(z) — 272
y(z) = (5 + 7e) 7
2V/2
(2257 4 7er) 47

y(z) = 273
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2.1.59 problem 59
Solved as first order ode of type nonlinear p but separable 290}
Maple step by step solution . . . ... ... ... ..... 297
Maple trace . . . . . . . . . . ... 298
Maple dsolve solution . . . . . . ... ... ... ... ... ..., 299

Mathematica DSolve solution . . . . . . . . . . .. ... .. ....

Internal problem ID [8719]

Book : First order enumerated odes

Section : section 1

Problem number : 59

Date solved : Tuesday, December 17, 2024 at 12:58:25 PM
CAS classification : [_separable]

Solve

Solved as first order ode of type nonlinear p but separable
Time used: 0.469 (sec)
The ode has the form

(y)m = f(z)g(y)
Wheren=2m=1, f = $—13,g = % Hence the ode is
1
N2 _
(v) = x3_y4
Solving for y' from (1) gives
¥y =V/fg
Yy =—fg

To be able to solve as separable ode, we have to now assume that f > 0,9 > 0.

1
oo >0
1
E >0
Under the above assumption the differential equations become separable and can be
written as
v =VIvg
v =—VfVe
Therefore

Ly

) deo

> dz
Replacing f(z), g(y) by their values gives

1 1
1

-5

———dy =

S
B

-5

Q|
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Integrating now gives the following solutions

Therefore

Summary of solutions found

Maple step by step solution

Let’s solve

(£y(@)" =

z)*x3
° Highest derivative means the order of the ODE is 1
=Y(@)
° Solve for the highest derivative

[£4(@) = sk £9(0) = ~iar]

O Solve the equation -Ly(z) = W
o Separate variables
2
y(z) (i (z )) = /
o Integrate both sides with respect to x

[ y(z) (dw z))dz = [ F5dz+_ClI
o Evaluate integral

@° _ _ 2
55 =—-5+_01

o Solve for y(x)
1/3
y(z) = (2280
O Solve the equation -Ly(z) = —m

o Separate variables

(.’E) (dx (x)) _m?’%
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o Integrate both sides with respect to x

Jy(@)* (Ey(@)) dz = [~ Frdz +_C1
o Evaluate integral

@)°
Y= +_C1

o Solve for y(z)

y(x) = <3VFV£71+6>1/3

° Set of solutions

{y(x) — <3\/5\/C%1—6>1/3 Ly(z) = (3\/5\/%1-1-6)1/3}

Maple trace

"Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve eacl
***% Sublevel 2 k%
Methods for first order ODEs:
-—— Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
* Tackling next ODE.
*** Sublevel 2 k%
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli

h resulting OC

<- Bernoulli successful”
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Maple dsolve solution

Solving time : 0.070 (sec)
Leaf size : 133

‘dsolve(diff(y(x),x)’? = 1/x73/y(x)"4,

‘ y(x) ,singsol=all)
B (clf - 6) 1/3
B Nz

()" 0+

y 2
(25) " (v3-1)
v= 2
_(avz+
y‘( Ve )/
. (2t ) (1+v3)
2
(c1\§>+6> /3(\/3_1)
y= 2

Mathematica DSolve solution

Solving time : 3.383 (sec)
Leaf size : 157

‘ DSolve [{(D[y[x],x])~2==1/(x"3x*y[x]"4),{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(x) — \/_3—74—01

y(z) - V3§ —%—kcl
y(@) = (~1)23 3¢ —% +e

y(m)%—\ﬁ/—_s%m

2
y(z) = V3¢ —x+01

N

y(z) = <—1>2/3€/§,3/% +o
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2.1.60 problem 60
Solved as first order homogeneous class Code . . . . . . .. 300
Solved using Lie symmetry for first order ode . . . . . . ..
Solved as first order ode of type dAlembert . . .. ... ..
Maple step by step solution . . . . .. ... ... ...... 307
Mapletrace . . . . . . . . . . . ..
Maple dsolve solution . . . ... ... ... .........
Mathematica DSolve solution . . . ... ... ........
Internal problem ID [8720]
Book : First order enumerated odes
Section : section 1
Problem number : 60
Date solved : Tuesday, December 17, 2024 at 12:58:26 PM
CAS classification : [[_homogeneous, ‘class C‘], _dAlembert]
Solve
y=\1+6z+y
Solved as first order homogeneous class C ode
Time used: 0.536 (sec)
Let
z=1+6x+y (1)
Then
Z(z)=6+y
Therefore
y =2(x)—6

This is separable first order ode. Integrating

/dw:/\/;—i—Gdz

T+c =2Vz—6In(v/z2+6) +6In(—6+/2z) —6In(—36 + 2)

Replacing z back by its value from (1) then the above gives the solution as Solving for y

gives

_1_L_ﬂ _1_L_ﬂ
—2LambertW (-‘52212> _9_z_¢ — LambertW (_9121> 1

y=e ?—12e

— 6x + 35
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Figure 2.77: Slope field plot
Y =+1+6z+y

Summary of solutions found

1 —1-z
—2 LambertW (—92212> —2—z_°1 — LambertW <—91212) -1-z-4

y=e
Solved using Lie symmetry for first order ode
Time used: 1.181 (sec)
Writing the ode as

V= ViT6ty

Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by

Mo +w(ty — &) — W€y — wef —wyn =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

g = zaz + yaz + a; (1E)
1N = xbs + ybs + by (2E)

Where the unknown coeflicients are

{ala asz, ag, b17 b2a b3}
Substituting equations (1E,2E) and w into (A) gives

3(zas +yas +a1) by + ybs + by
by++/1+6z+y(bs—az)—(1+6x+y)as— - =0 (5E
2 Yy (b3 —az) —( y) as JIt6z+y 2/1+6x+y (5E)

Putting the above in normal form gives

_12a3/1+ 62 + yz + 2a3/1 + 62 + yy + 2a3/1 + 62 + y — 2boy/1 + 62 + y + 18zas + xby — 12b3z +
2y/1+6x+y

=0

Setting the numerator to zero gives

“12a31/1+ 62 + y& —2as\/1 + 62 + yy —2a3\/1 + 62 + y+2by /1 + 6z +y (O6F)

— 18zagy — xby 4+ 12bsx — 2a9y — 6yas + ybs — 6a; — 2a3 — by +2b3 =0
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Simplifying the above gives

—2(14+6z+y)as+2(1+6x+y)bs —12a3\/1 + 6z +yz — 2a3\/1+6z+yy (6E)

—2a3+/1+ 62 + y+ 2bs+/1 + 6z + y — 6xas — xby — 6yas — ybs — 6a; — by =0

Since the PDE has radicals, simplifying gives

—12a3\/1+ 62+ yz — 2a3/1+ 6 +yy — 2a3/1 + 62+ y+ 2bsy/1+ 62+ y

— 18zay — xby + 12bsx — 2a9y — 6yas + ybs — 6a; — 2a3 — by +2b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

(a0, v+ 67}

The following substitution is now made to be able to collect on all terms with {z,y} in
them

{$=Ul,y=02,\/1+6$+y=v3}

The above PDE (6E) now becomes

—12(13’03’01 - 2&3@31)2 - 18’01&2 - 2@2’02 - 6’(12(13 - 2(13’03 (7E)
- ’l)1b2 + 2b2’U3 + 12b31}1 + ’Uzb3 - 6(],1 — 2a2 - bl =+ 2b3 =0

Collecting the above on the terms v; introduced, and these are
{,017 V2, '1)3}

Equation (7E) now becomes

—126131)31)1 + (—180,2 — b2 + 12b3) v — 20,3’03’02 + (—2a2 — 6&3 + b3) V2 (8E)
+ (—2CL3 + 2b2) V3 — 6&1 - 20,2 — bl + 2[)3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—12@3 =0
—2(13 =0
—2a3 + 2b2 =0

—18(12 - b2 + 12b3 =0
—2(1,2 - 6&3 + b3 =0
—6a1 - 2&2 - bl + 2b3 =0

Solving the above equations for the unknowns gives

a; = aq

Ao = 0

as =

bl = —6a1
by =
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

n=-6
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-wy)
=—6— (W) (1)
=—y/14+6x+y—6
£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=y =48 1)

The above comes from the requirements that (53% +77%> S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

n

1
_ d
/—\/_1+—6z+y—6 Y

S is found from

Which results in

S=—2\/1+6x+y+61n(«/1+6z+y+6) —61n<—6+\/1+6z+y> +61n (=35 + 62 +y)

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

as _ S+ w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

w(z,y) =+/1+6z+y

Evaluating all the partial derivatives gives

R, =1

R, =0

g __ 6

T T /Tt6zty+6
1

S =
v it6aty—6
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

IR=
We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

ds

R
The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

-1 (2A)

-1

Since the ode has the form ;%S(R) = f(R), then we only need to integrate f(R).

/dS=/—1dR
S(R)=—-R+cy

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

—2\/1+6x—|—y+6ln<\/1+6x+y+6> —6ln<—6+\/1+6x+y> 4 6In(=35+62+y) = -+

Which gives

c2

-1-{5+15 °2
—2LambertW | —*———= _2_%4_%2

-1-{5+15 c
— LambertW —ef _1_%_{_1%
—12e

y=e — 6z + 35

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
.. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’

s Ala 2 2

%=\/1+6x+y ZTS:;=—1

v

R=x=x

S =—-2/1+6z+y+6]

A
SN
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Figure 2.78: Slope field plot
Y =+1I+6z+y
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Summary of solutions found

_1_L+2
—2LambertW <— ‘32212> _2_%4_2

6 — LambertW | —&—F~—= | -1-{5+ 2
—12e

y=e

Solved as first order ode of type dAlembert
Time used: 0.268 (sec)

Let p = ¢ the ode becomes

p=+1+6x+y

Solving for y from the above results in
y=p*—6z—1 (1)

This has the form

y = zf(p) + g(p) *)

Where f,g are functions of p = y/(x). The above ode is dAlembert ode which is now
solved.

Taking derivative of (*) w.r.t. = gives

p=f+@af+9) L

p—f =Gl +9) L @)

Comparing the form y = zf + g to (1A) shows that

f=-6
g=p"-1
Hence (2) becomes
p+6=2pp'(z) (2A)

The singular solution is found by setting j—m = 0 in the above which gives
p+6=0

No valid singular solutions found.

The general solution is found when 2 # 0. From eq. (2A). This results in

p(z) = (3)

2p—12In(p+6)=z+¢

Singular solutions are found by solving
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for p(x). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

p(z) = —6
Solving for p(z) gives
p(z) = —6
1
p(z) = —6 LambertW ) 6
Substituing the above solution for p in (2A) gives
y = —6x + 35
- ’
y = | —6 LambertW —— % |- 6] —6z—1
The solution
y=—6x+ 35

was found not to satisfy the ode or the IC. Hence it is removed.

3 ~ 77 111111
A
AR EERERE
ror 7T
2] VAR A A S A A |
77711111
AR
Y2/ A S A S A A
REREEERE
1 ;;/;AAM”MI'”'”
/2N S S A S S
777111111
AREEEREE
y(x) 0 AV AR R AR A A A
77111111
2NERERERE
1 Cr 111109
A
771
VY S S S A A
2 77101111
AEEEREEE
S S S S A A
77111111
" AR RN
) 3 5 5 7
X
Figure 2.79: Slope field plot
/
Yy =+1+6zx+y
Summary of solutions found
N 2
e 1271
y= | —6LambertW | -———— | — 6| —6zx—1
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Maple step by step solution

Let’s solve
dy(z) = \/1+6z+y(z)

° Highest derivative means the order of the ODE is 1
=y(@)

° Solve for the highest derivative

%y(w) =/1+6zx+y(x)

Maple trace

e N

"Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
-> Calling odsolve with the ODE™, diff(y(x), x) = -6, y(x)° *x*%* Sublevel 2 *%:
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- 1st order, canonical coordinates successful
<- homogeneous successful’

Maple dsolve solution

Solving time : 0.029 (sec)
Leaf size : 57

dsolve(diff (y(x),x) = (1+6%x+y(x))~(1/2), |
‘ y(x) ,singsol=all) ‘

z—2y/T+60+y+6 (64 /1+6z+y)
—6In (=6+/T+62+y) +6In(-35+y+62) —c; =0

Mathematica DSolve solution

Solving time : 10.898 (sec)
Leaf size : 112

DSolve[{Dly[x] ,x]==(1+6xx+y [x])"(1/2) , {}},
L y[x],x,IncludeSingularSolutions->True] J

y(z) — 36W (—%eé<—6x—73+6°1>) 24 2W (—%e#z<—6x—73+601>) — 62+ 35
y(x) — 35 — 6z

1 . 2 1
y(z) — 36W <—6672(_6"'_73)> + 72W (—66712(_6“’_73)) — 6z 435
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2.1.61 problem 61
Solved as first order homogeneous class Code . . . . . .. ... ..
Solved using Lie symmetry for first orderode . . . . ... ... .. 3091
Maple step by step solution . . . . . . ... ... ... .......
Maple trace . . . . . . . . . . e e 313
Maple dsolve solution . . . . . ... .. ... oL 313l
Mathematica DSolve solution . . . . . .. ... ... ... ..... 313}

Internal problem ID [8721]

Book : First order enumerated odes
Section : section 1

Problem number : 61

Date solved : Tuesday, December 17, 2024 at 12:58:29 PM
CAS classification : [[_homogeneous, ‘class C‘], _dAlembert]

Solve

y = (1+6z+1y)"?

Solved as first order homogeneous class C ode

Time used: 0.240 (sec)

Let

z=1+6zx+y
Then

Z(z)=6+1y
Therefore

y =7(z) -6

Hence the given ode can now be written as
Z(z) —6 =23

This is separable first order ode. Integrating

1

322/3

r+c =

Replacing z back by its value from (1) then the above gives the solution as

3 77 7777777717
A A A A
2777001177

2] J7 7707
22NN
VA A A A A A B

4 27777717
AR
A A A A A A
2777707777

ol ’ 77777
Y AR RA
77 7 ] 7

??Z/V’f'f'f'f’;

-1 A A A A
/ Lol /

;;/{{

A

A A A A

2] A A A A A A
JJ 7777777

VAV A A A A

-3 77777777
4 2 2 4

Figure 2.80: Slope field plot

y =(1+6z+y)"°

1)

—361n (%% — 62"/* + 36) + 72In (2"/* + 6) + 361n (216 + z) — 182"/
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Summary of solutions found

3(1+ 6z +y)*°
2
—6(1+6z+y)1/3+36> +721n ((1+6x+y)1/3+6> +361n (217+62+y) —18(1+6z+y) /> = z+¢,

—36In ((1 + 6z +y) ¥

Solved using Lie symmetry for first order ode
Time used: 0.928 (sec)
Writing the ode as

y = (1+6x+7y)"?
Yy =uw(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - €z) - w2€y — wz€ — wyn =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

§ = zas + yas + o (1E)
n = xbs +ybs + by (2E)

Where the unknown coefficients are

{ala a2, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

by + (1 + 6z +y)"/® (bs — ag) — (1 + 62 + ) a (5E)
_ 2(117(12 + yas + a1) . xby 4+ ybsz + by .
(1+6z+9)"°  3(1+6z+y)*°

Putting the above in normal form gives

23 4 24xas + xby — 18b3x + 3asy + 6yas — 2ybs + 6a1 + 3as + by

3(1+ 6z +y)°

3(1+ 6z + )% a3 — 3by(1 + 6z + 1)

Setting the numerator to zero gives

—3(1 + 6z + )% ag + 3by(1 + 6z + )*/® — 24za, — zb (6E)
+ 18bsx — 3asy — 6yas + 2ybs — 6a; — 3az — by +3b3 =0
Simplifying the above gives
—3(1 462 +y)** as — 3(1 + 62 +y) az + 3(1 + 62 + y) bs (6E)

+ 3b2(1 4 62 + y)2/3 — 6xas — xby — 6yaz — ybs — 6a; — by =0

Since the PDE has radicals, simplifying gives

—18(1 + 62 + y)"/% asz + 3by(1 + 6z + )** — 3(1 + 6z +1)"/*

+ 18b3z — 3(1 4 6z + y)l/3 az — 3asy — 6yas + 2ybs — 6a; — 3az — by + 3b5 =0

asy — 24xas — xby
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Looking at the above PDE shows the following are all the terms with {z,y} in them.
{x,y, (1+6z+y)"3, (1+6z +y)2/3}

The following substitution is now made to be able to collect on all terms with {z,y} in
them

{x =v1,y = v, (1462 +9)"° = v3, (L + 62+ )" = v4}
The above PDE (6E) now becomes

—18?)3@3’01 - 31130,3’02 - 24’01(1,2 - 3(12’02 - 6’02&3 - 3’(]3&3 (7E)
— ’Ulbz + 3b2’U4 + 18b3’l)1 + 2’02b3 — 6(11 — 3(12 — bl + 3b3 =0

Collecting the above on the terms v; introduced, and these are
{Ul7 V2, Vs, 'U4}

Equation (7E) now becomes

—18’03&3’01 + (—240,2 — bg + 18b3) V1 — 3’03&3’02 (8E)
+ (—3a2 — 6(13 + 2b3) Vo — 3’03&3 + 3b2’U4 - 60,1 — 30,2 - b1 + 3b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—18a3 =0
—3a3 =0
3bp =0

—24&2 — b2 + 18b3 =0
—3(12 - 6a3 + 2b3 =0
—6(11 - 3a2 - b1 + 3b3 =0

Solving the above equations for the unknowns gives

ay = a
a; =0
a3 =0
by = —6a;
b =0
bs =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

n=—6

Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-—wy)
=—6— ((1 +6x+y)1/3) (1)
= —(1+6z+y)"* -6
£E=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

do _dy _

F=y =4S 1)

The above comes from the requirements that (53% +77%> S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==z

S is found from

U
Il

Which results in

3(1+ 6z +1y)**

S=-— 5

+361n ((1 + 62 +9)% — 6(1+ 62 + )2 + 36> —72In ((1 +6z+y)°+ 6) :

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

ﬁ _ Sz +CU(.’L',y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

w(z,y) = (1+6z +y)""

Evaluating all the partial derivatives gives

R, =1
R, =0
6
Sz = — 1/3
(1+6zx+y)’"+6
1
Sy =

—(1+6z+y)/*—6
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s
-~ -1 2A
iR (2A)
We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

ds
B |
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration

when the ode is in the canonical coordiates R, S.
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Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).
[ds= [-1ar
S (R) =—R + co

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

_3(L+6z+y)*°
2

+361n ((1 + 62 +y)%% — 6(1 + 62 + 1) + 36) —72In ((1 +6z+y) %+ 6) — 361n

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

C ical
. . . ano.mca ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’

W = (1462 +y)"° s — 1

o

AN

AN OO OO N N N
A N O N NN

N N N e N NN
N e

~
~

y(x) 07

~
~

——

14

s
~ ~

N Y
N Y

NN N e e e e T N
N e O T e e e U N N

N O e N N U N
N N e N N Y
NN N T N N N N N NN

STAT™
~STAT™

34

N e e N T S e e e e N N

INY

4 2
X

Figure 2.81: Slope field plot
y = (1+6z+y)"°

Summary of solutions found

3(1+6z +y)*°

2
—6(1+6x+y)1/3+36) —721n ((1+6r+y)1/3+6) —361n (217+6z+y)+18(1+6z+y)"/> = —z+c

+361n ((1 + 6z +1)*°
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Maple step by step solution

Let’s solve
Ly(z) = (1462 +y())"”°
° Highest derivative means the order of the ODE is 1
=Y(@)
° Solve for the highest derivative
Ly(@) = (1+ 6 +y(z))"?

Maple trace

~

"Methods for first order ODEs:

--- Trying classification methods ---

trying homogeneous types:

trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful

<- homogeneous successful”

N\

Maple dsolve solution

Solving time : 0.029 (sec)
Leaf size : 79

‘ dsolve(diff (y(x),x) = (1+6xx+y(x))~(1/3),
‘ y(x) ,singsol=all)

2/3

L, 3(1+6z+y)
2
+361n <(1+6x+y)2/3—6(1+6:c+y)1/3+36> —361n (217+y+6x)+18(1+6z+y)" /> —¢; =0

—721n (6+ (1462 +3)"°)

Mathematica DSolve solution

Solving time : 0.229 (sec)
Leaf size : 66

'DSolve [{D[y[x],x]==(1+6xx+y[x])~(1/3),{}},
y[x],x,IncludeSingularSolutions->True]

N J

Solve E (y(z) — 9(y(z) + 62 + 1)%/3 + 108{/y(z) + 6z + 1
_ 6481og (5/y(x) Y6z +1+ 6) + 61+ 1) _Y@) @)

6
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2.1.62 problem 62
Solved as first order homogeneous class Code . . . . . .. .. .. [314]
Solved using Lie symmetry for first orderode . . . . ... .. ..
Maple step by step solution . . . . ... ... ... ... ... .. 319
Maple trace . . . . . . . . . . . .. 319
Maple dsolve solution . . . . . ... ... ... oL 319
Mathematica DSolve solution . . . . . ... ... ... ......
Internal problem ID [8722]
Book : First order enumerated odes
Section : section 1
Problem number : 62
Date solved : Tuesday, December 17, 2024 at 12:58:31 PM
CAS classification : [[_homogeneous, ‘class C‘], _dAlembert]
Solve
y'=(1+6z+y)"
Solved as first order homogeneous class C ode
Time used: 0.237 (sec)
Let
z=1+6x+y (1)
Then
Z(z)=6+y
Therefore
y=2(z)—6

Hence the given ode can now be written as
Z(z) — 6 =24

This is separable first order ode. Integrating

1

T+ ¢y = —2161n (—z + 1296) — 124/z + 2161n (v/z + 36) — 2161n (v/z — 36)
423/4

+ 1442"/* — 4321In (2'/* + 6) + 4321n (2'/* — 6) + 3

Replacing z back by its value from (1) then the above gives the solution as
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AN Y

AN NN
D e N O N D N N NN

y(x) 0

-2

3

N N e O N N N N N N

N N T e e e N e N
LS NN N N T N N N N N N T T T SN N NN

N O I N e T N N N NN

N O e N N N U NN
N O T N T N N T N

A N e D e e N O S e NN
D NN NN N D N N N NN NN D NN

INY

3 2 5
X

Figure 2.82: Slope field plot
Y = (1+ 6z +y)"*

Summary of solutions found

—~2161n (1295 — 62 — y) — 12y/1+ 62 + y + 2161n (/1 + 62 + y + 36)
—~2161n (\/1+6z+y 36> + 144(1 + 62 + y)/4

4(1 + 6z + )%/

—4321n ((1+62+y)"/*+6) +432In ((1+63+)"* ~6) + - —zta
Solved using Lie symmetry for first order ode
Time used: 0.756 (sec)
Writing the ode as
= (1+ 6z +1y)"*
Yy =uw(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - Ez) - w2§y - wx§ — Wyl = 0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

§ = zaz + yas + a (1E)
n = xby + ybs + by (2E)

Where the unknown coeflicients are

{ala a2, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

3(ras +yaz +a1)  xby +ybz + by
by + (1462 +4)"* (bs — as) — /1 + 6z + yas — - =
2(146z+y)"*  4(1+6z+1y)>*

(5E)

Putting the above in normal form gives

3/4

_4(1 + 6x + y)5/4 az — 4bo(1 + 6z + y)”'" + 30zas + xby — 24bsx + 4asy + 6yas — 3ybs + 6a1 + 4as + by

4:(1+637:-i-y)3/4
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Setting the numerator to zero gives

—4(1 + 62 +y)** a3 + 4by(1 + 6z + y)*/* — 30zas — zby (6E)
+ 24bsx — 4asy — 6yas + 3ybs — 6a; — 4as — by +4b3 =0

Simplifying the above gives

—4(14 6z + y) ag + 4(1 + 6z + ) by — 4(1 + 6z + ) * as (6E)

+ 4b2(1 + 6z + y)3/4 — 6xa2 — .’Ebz — 6ya3 — yb3 — 6&1 — bl =0

Since the PDE has radicals, simplifying gives

by (1 4 6z + 3)¥* — 24(1 4 62 + y)/* asz — 4(1 + 6z + ) /* asy — 30zay — by
+ 24bsz — 4(1 + 62 + y)1/4 a3 — 4agy — 6yaz + 3ybs — 6a; — 4ay — by +4b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{23, 1+ 6z+9)"", (1+62+9)""]

The following substitution is now made to be able to collect on all terms with {z,y} in
them

The above PDE (6E) now becomes

—24v3a3v1 - 4’030,3’02 - 30’01(1,2 - 4(12’02 - 6’02&3 - 4’03a3 (7E)
— ’Ulbz + 4b2v4 + 24b37)1 + 3’02b3 — 6(11 — 4(12 — bl + 4b3 =0

Collecting the above on the terms v; introduced, and these are
{Ula V2, U3, ’U4}

Equation (7E) now becomes

—24’03(13’01 + (—30(12 - b2 + 24b3) V1 — 4’03(131)2 (SE)
+ (—40,2 — 6(13 + 3b3) Vo — 4’()3&3 + 4b2’l}4 — 6(11 - 4CL2 - bl + 4b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—24(1,3 =0
—4a3 =0
4by =0

—30a2 — b2 + 24b3 =0
—4ay — 6as +3b3 =0
—6(11 - 4a2 — bl + 4b3 =0

Solving the above equations for the unknowns gives

apr=a
a, =0
a3 =0
b; = —6a,
by =0
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

n=—6

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

F=, = 1)

The above comes from the requirements that (fa% +77§’—y> S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy _m
dr ¢
_=6
1
=—6
This is easily solved to give
y=—6x+c

Where now the coordinate R is taken as the constant of integration. Hence

R=6x+y
And S is found from
dx
dS = —
§
_do
1

Integrating gives
dz
S=[| —
/7
=z

Where the constant of integration is set to zero as we just need one solution. Now that
R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

aS _ S;+w(z,y)Sy
dR R, +w(z,y)R,

(2)

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

w(z,y) = (14 6z + y)1/4

Evaluating all the partial derivatives gives

R, =6
R,=1
Sy =1

S, =0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
AR (1+6z+1y)"/* +6

(24)

We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

as 1
dR  (1+R)"*+6

The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).

/w=/ o
(1+R)"* +6

4(1 3/4
ﬂ@z—L%@—HJAH+R+MMHJWM—%Mn«HJWM+®+®

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

4(1 5/
v = (+6§+w —12\/T+ 62+ y+ 144(1 + 62 +9)""* — 8641n ((1+ 60+ )" +6) + ¢,

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . .
. . ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
d 1/4 ds _ 1
Y ’ SR
i R=6zx+y
S==zx
A AR
3 77777777
JJ7 777777777
JJ7 777777777
2] JJ7 7777 77777
777777 7777
7777777777
R ST T 7T T
7777 7777
AR
ye) o 7777777
JJ7 77777777
777 777 777
1 777777777
777777777
77777 7777
27 777 777 77T
JJ7 777 7777
7777 7777
-3 JJ7 7777777
2 ; 3 3

X

Figure 2.83: Slope field plot
y' = (1+6z+y)"*
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Summary of solutions found

A(1+6 3
I ”;*y) —12y/T+ 62 + y+ 144(1+6z+1)"/* ~ 8641n (1+62+1)"/*+6) +c,

Maple step by step solution

Let’s solve
Ly(z) = (1463 +y(z)"*

° Highest derivative means the order of the ODE is 1

=Y(@)
° Solve for the highest derivative

y(@) = (1+ 6z +y(a))"*

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---

trying homogeneous types:

trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful

<- homogeneous successful”

N\ J

Maple dsolve solution

Solving time : 0.030 (sec)
Leaf size : 109

‘dsolve (diff (y(x),x) = (1+6*xx+y(x))~(1/4), ‘
‘ y(x) ,singsol=all) ‘

2+ 2161n (—y — 62 + 1295) + 121/1 + 62 + y — 2161n <\/1+6m+y+36>
+2161n(\/1+6x+ )—144 1+ 6z +y)"/*

4(1+6 8/4

3

—01:0

Mathematica DSolve solution

Solving time : 0.325 (sec)
Leaf size : 79

p
DSolve [{D[y[x],x]==(1+6*x+y[x])~(1/4),{}}, |
‘ y[x],x,IncludeSingularSolutions->True] ‘

Solve [% (y(w) — 8(y(z) + 62+ 1)¥* + 72\ /y(x) + 62 + 1 — 864{/y(z) + 6z + 1
+51841og (4/y(z) + 62+ 1+6) + 62 +1) IO N—

6
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2.1.63 problem 63

Solved as first order homogeneous class Code . . . . . .. ... .. 320)
Solved using Lie symmetry for first orderode . . . . ... ... .. 321
Maple step by step solution . . . . . . ... ... ... .......
Maple trace . . . . . . . . . . .. 326
Maple dsolve solution . . . . . ... .. ... oL 326
Mathematica DSolve solution . . . . . .. ... ... ... .....

Internal problem ID [8723]

Book : First order enumerated odes

Section : section 1

Problem number : 63

Date solved : Tuesday, December 17, 2024 at 12:58:33 PM
CAS classification : [[_homogeneous, ‘class C‘], _dAlembert]

Solve

y' = (a+bz+y)’

Solved as first order homogeneous class C ode

Time used: 0.510 (sec)

Let

z=a+br+y (1)
Then

Z(x)=b+y
Therefore

y =2(x)—b

Hence the given ode can now be written as
Z(z) —b=z*

This is separable first order ode. Integrating

1
/dx—/z4+bdz

V2 <ln (%ﬁﬁiﬁ) + 2arctan <})/1§/f 1) + 2arctan (bf/f — 1))
8b3/4

S

T+c =

Replacing z back by its value from (1) then the above gives the solution as

Summary of solutions found

a+br+y)>4+b1/4(a+bz+y)vV2+VD V2 (a+bz+ V2 (at+bz+
V2 (ln <Ea+bx+:ty/;2—b1/4Ea+bw+z;\/§+\/5> + 2 arctan <% + 1) + 2arctan (% — 1))
]p3/4

=z
+c
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Solved using Lie symmetry for first order ode
Time used: 0.961 (sec)

Writing the ode as

y' = (b +a+7y)*
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W(ﬂy - Ez) - w2€y - wx€ — Wy = 0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

£ =zaz +yaz +a (1E)
n = xby + ybs + by (2E)

Where the unknown coefficients are

{al, a2, as, bl) b2, b3}

Substituting equations (1E,2E) and w into (A) gives

by + (bz +a+y)* (bs — az) — (bv +a+y)°as (5E)
— 4(bz + a +y)* b(zas + yas + a1) — 4(bz + a + y)* (zby + ybs + by) = 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

Expression too large to display (6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}
The following substitution is now made to be able to collect on all terms with {z,y} in
them
{z =v1,y =v2}
The above PDE (6E) now becomes

Expression too large to display (TE)

Collecting the above on the terms v; introduced, and these are

{vl’ ’02}
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Equation (7E) now becomes

—56a b%azvlv, — 168a*b°azviv, — 168a b2 azvivs
— 280a%b*azvivy — 420a2b4(131)1112 280a b*azvivi
— 560a®b’asviv: — 560a’b>aszvivi — 280a bazviv,
— 560a*b*azvivi — 420ab*aszv?vy — 168a b?azvivs
— 280a3ba3v1v2 — 168a2ba3vlv2 — 56aba3vlvg
+ (—280a'b’az — 4b*as — 16b°ay — 126%b;) viv,
+ (—420a"b’az — 12b%az — 18b%as — 6bb; — 12bb,) viv)
+ (—168a5b2a3 — 12a b%a3 — 36a b%as
— 12b%a; — 24abb, — 126°b;) vivs
+ (—280a"bas — 12b°as — 8bay — 8bbs — 4by) v1v3
+ (—168a’bas — 24a b*az — 24abas — 12abbs — 12b%a; — 12abs
— 12bb1) vlvg ( 56a°bas — 12a2b%as — 24abas — 24a b*a,
—12a%by — 24abb1) V1Vg — 28b2a301 Vg — 8ba3vlv2 —8a b7a31)1
— 8b"azvivy — 28a?b0azv’ — 28b5azvSv2 — 56a3b3asv?
— 56b°asviud — T0b*asvivs — 56b3asvdvs + by — 4a3ba,
+ (=70a*b*a — 5b*ay + b*bs — 4b%by) v} + (—56a°b%as
— 16ab’as + 4a b°b; — 4b*a; — 12a b°by — 46%b1) 03
+ (—28a°%as — 18a°b%ay + 6a’b’bs — 12ab’a; — 12a°bb,
—12a b2b1) v% + (—8a7ba3 — 8a3bay + 4a®bbs — 12a%b%a,
— 4a%by — 12a2bb1) v + (—70a4a3 — 4bas — ag — 3b3) 'Ug
+ (—56a’az — 12abas — 4aas — 8abs — 4ba; — 4b;) v3
+ (—28a6a3 — 12a%bas — 6a2ay — 6abs — 12aba; — 12ab1) vg
+ ( —8a"az — 4a3ba3 4a3ay — 12a%ba; — 12a2b1) Vg
— b¥azv? — 56a*azvi — 28a’azvs — 8aazvy
— a*ay + a’bs — aaz — 4a’b; — azvi =0

(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

—a3 =0

—8aasz =0
—28a%a3 =0
—56a%as = 0
—8bas; =0
—28b%a3 =0
—56b%a3 =0
—T70b%as =0
—56b°a3 = 0
—28b%a3 =0
—8b’as =0
—bBaz =0
—56abas =0
—168a b’as =0
—280a b®as =0
—280a b*as =0
—168ab’as = 0
—56a b%as = 0
—8ab’az =0
—168a%bag = 0

—420a2b%a3 = 0

—560a%b%a3 = 0

—420a%b%a; = 0

—168a%b%as = 0

—28a%b%a3 =0

—280a®bag = 0

—560ab%as = 0

—560a3b%a3 = 0

—280a3b*as = 0

—56a3b%as = 0

—280a*b®ag — 4b*as — 16b%ay — 12b%b, = 0

—70a%as; — 4bas — as — 3b3 =0

—T70a*b*as — 5btay + bbs — 430, = 0

—8a" a3 — 4a3bas — 4a3as — 12a%ba; — 12a%b; = 0

—280a*bas — 12b%a3 — 8bay — 8bbg — 4by = 0

—420a*b%as — 12b%a3 — 18b%ay — 6b%bs — 12bby = 0

—168a’b%as — 12a b3ag — 36a b%ay — 12b%a; — 24abby — 12b%b, = 0
—56a%bas — 12a*b%as — 24abay — 24a b*a; — 12a%by — 24abb, = 0
—56a’as — 12abas — 4aas — 8abs — 4ba; — 4by =0

—28a%a3 — 12a%bas — 6a’ay — 6a’bs — 12aba; — 12ab; = 0
—56a°b%a3 — 16a b3ay + 4a b3bs — 4b*a; — 12a b%b, — 4636, = 0
—28a5b%a3 — 18a%b%ay + 6a2b?bs — 12a b2a; — 12a%bby — 12ab%b; = 0
—8a"bas — 8abas + 4a3bbs — 12a*b%a; — 4aby — 12a%bb; = 0
—alas — a*as + a*bs — 4a®ba; — 4a3b, + b, = 0

—168a’bas — 24a b®as — 24abay — 12abbs — 12b%a; — 12aby — 12bb; = 0
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Solving the above equations for the unknowns gives

a; = ap
a, =0
a3 =0
b; = —bay
by =0
bs =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=y =48 1)

The above comes from the requirements that (fa% +7759—y> S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy _n
de £
_ b
1
=-b
This is easily solved to give
y=—-bxr+c

Where now the coordinate R is taken as the constant of integration. Hence

R=bx+y
And S is found from
dz
dS = —
§
_do
1

Integrating gives
dx
S=[| —=
/7
=z

Where the constant of integration is set to zero as we just need one solution. Now that
R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

ﬁ _ Spt+w(z,y)S, @)
dR R, +w(z,y)R,
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

w(z,y) = (bz+a+y)

Evaluating all the partial derivatives gives

R,=b
R,=1
S, =1
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
dR ™~ b+ (bz+a+y)!

(24)

We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

a_ 1
dR b+ (R+a)'

The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

1
/ds_/R4+4R3a+6R2a2+4Ra3+a4+bdR

In (R—_R)
3 2 5 3
_R:RootOf(_Z4+4_Z3a+6_Z2a2+4a3_Z+a4+b) —R +3—R a+3_Ra ta

S(R) = ;

+ co

1
S(R) = / Rt iRat 0RE TARG Tt e

This results in

Y 1
/ 4 3 2 d _a+c
(bx+_a)"+4(bz+_a)’a+6(bzr+_a)*a®+4(bx+_a)a®+a*+Dd

Summary of solutions found

y 1
/ 1 3 3 d_a+02
(bx+_a)" +4(bx+_a)’a+6(bz+_a)a®>+4(br+_a)a®+a*+b

Maple step by step solution

Let’s solve
£y(@) = (a+ bz +y(z))"
° Highest derivative means the order of the ODE is 1
=y(@)
° Solve for the highest derivative
£y(@) = (a+ bz +y(z))*
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous C

1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE", diff(y(x), x) = -b, y(x)° **xx Sublevel 2 **x

Methods for first order ODEs:
-—- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful

<- homogeneous successful’

Maple dsolve solution

Solving time : 0.040 (sec)
Leaf size : 49

‘ dsolve(diff(y(x),x) = (a+b*x+y(x))~4, ‘
y(x) ,singsol=all)

N\ J

z
— 1
= —bz + RootOf | — d
y T+ Roo ( x+/ _a*+4 aPa+6_a%a?+4 aat+a*+b _a+c1>

Mathematica DSolve solution

Solving time : 0.413 (sec)
Leaf size : 163

p
‘ DSolve [{D[y[x],x]==(a+b*x+y[x])~(4),{}}, ‘
‘ y[x],x,IncludeSingularSolutions->True] ‘

24/2 arctan (1 - %) — 24/2 arctan (% - 1) ++/2log ((a + bz +y(z))? — V2

8b3/4

Solve
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2.1.64 problem 64
Solved as first order homogeneous class Code . . . . . .. .. .. 327
Solved using Lie symmetry for first orderode . . . . ... .. .. 328}
Solved as first order ode of type dAlembert . . . . ... ... ..
Maple step by step solution . . . . .. ... ... ... ...... [3441
Maple trace . . . . . . . . . . . [344)
Maple dsolve solution . . . . .. ... ... ... .. .......
Mathematica DSolve solution . . . . . ... ... .........
Internal problem ID [8724]
Book : First order enumerated odes
Section : section 1
Problem number : 64
Date solved : Tuesday, December 17, 2024 at 01:01:14 PM
CAS classification : [[_homogeneous, ‘class C‘], _dAlembert]
Solve
y = (r+z+Ty)"?
Solved as first order homogeneous class C ode
Time used: 0.861 (sec)
Let
z=7m+x+ Ty (1)
Then
Z(x)=1+T7y
Therefore
Z(z) 1
l f— — —
Y= T

Hence the given ode can now be written as

Z(xz) 1
7 7
This is separable first order ode. Integrating

1
/dx=/—7z7/2+1dz

_ R=RootOf (49_2"—1) _R n _ R=RootOf (7_Z"+1) _R

Tra=- 343 49
In \/E—_R
n _ R=RootOf (7_2Z"—-1) —
49

Replacing z back by its value from (1) then the above gives the solution as
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y(x) 0] / “‘;,)/ 71 y

—21

-3

% 2 ; ; y
X

Figure 2.84: Slope field plot
y=(m+z+ 7y)7/2

Summary of solutions found

( 5 m(ﬁﬁzﬁ__R)) ( 5 ln(@__zz))

R=RootOf (49_Z"-1) — R=RootOf(7_Z"+1) —

343 49
n(va+atTy-_R)
Z R5
_ R=RootOf (7_Z7 —1) —

49 Srra

Solved using Lie symmetry for first order ode
Time used: 2.738 (sec)
Writing the ode as

Y = (m+z+7y)"?
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W(ﬂy - €ac) - w2€y - wx€ — Wy = 0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

§ =zas +yas + a; (1E)
n = xbs +ybs + by (2E)

Where the unknown coefficients are

{al, a2, as, b17 b2, b3}

Substituting equations (1E,2E) and w into (A) gives

by + (1 + 2+ Ty)""? (bs — az) — (1 +z + Ty)" az (5E)
_M(rt+z+ 7y)*? (zay + yas + a;) 49tz + 7y)*? (zby + ybs + by)

2 2 =0
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Putting the above in normal form gives

—a"a3 — 823543y7as + (m +x + 7y) 2 by — (m+ z + Ty) 2 ay — 77as

r+z+7)" %0 49(r +z + Ty)** by (7 + z + Ty)"* zay
B 2 B 2 i 2
_Mr+z+ 7y)°% yas A9+ + 7y)°/% wby A9+ + 7y)*'% ybs
2 2 2

— Tn%zas — 497%yas — 217522a; — 10297°y2as — 35m*z3as — 120057%yas
— 35m3ztas — 840357m3ytas — 21m%xPas — 352947n%y5as — T 25as

— 8235437 y%as — 492%yas — 1029z5y2a; — 120052y a5 — 8403523y a5
—3529472%y a3 — 823543z ybas — 7351 x?yas — 51457 x y2as — 980T 2 yas
— 1029073 z%y%as — 480207z y3as — 7357z yas — 10290723y as

— 7203072 z%y% a3 — 25210572z y*as — 2947 xoyas — 51457 2*y’as

— 480207 z®y3a3 — 2521057 z2y*as — 7058947z y°as — 2947 zyas = 0

Setting the numerator to zero gives

—22"a3— 1647086y  az+2(r+z+7y) "> bs—2(m+2+7y)"? ay— 21" as—7(r+z+Ty)* (GE)
—49(n+z+Ty)%? by +2by—T(w+2+Ty)*"? zag—T(n+z+7y)*? yas—49(w +2+Ty)*? Tby— 49 (1 +z+Ty)

I
<
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Since the PDE has radicals, simplifying gives

—22" a3 — 1647086y as — 27" as + 2b,
— 14wzmyb3 — 27r3\/ma2
+2m /T + x4+ Tybs — 92°\/7 + x4+ Ty ay
490 [T T T F Ty by + 207/ F 2 T Tybs
— 686/ + 2z + Tyylas — 343 /7 + x + Ty yas
—1715\/7 + = + Ty y°bs — 77r2\/m+7ya1
— 4972 \/mbl — 722 \/m ay
— 4922\ /T + x + Ty b, — 343\ /7 + z + Ty y’ay
— 2401+\/7 + x + Ty y?by — 1827z /7 + = + Ty yas,
— l4mz\/7m+x + Ty yas — 6867ra:\/myb2
— 147%zas — 987%yas — 427°x2a; — 205875y2as
— 70m*23a3 — 240107*y3as — T0m3zas — 16807073y as
— 421%z%ag — 7058941y a3 — 147 25%a3 — 16470867 1%as
— 982%yas — 20582°y2as — 24010z*y>as
— 168070z3y*as — 7058942y’ a3 — 1647086z y®as
—137%2\/T + z + Ty ay — 497%x\/T + x + Ty by
+ 67r2x\/mb3 — 4272\ /7 + x + Ty yas
—Tn?\/T 4z + Tyyas — Tr%\/7 + = + Ty ybs
— 207r:c2\/m+7ya2 — 987r9:2\/m+7yb2
+ 6w 22\/7 + x + Ty bs — 2947/ + = + Ty y’a,
—987m\/7 + 2 + Tyylas — 392w/ + x + Ty y>bs
— 14022 \/m yag — Tz’ \/m yas
— 68622/ + = + Ty yby — T2%\/7T +  + Ty ybs
—637z\/7 + z + Ty y?as — 98z+\/7 + z + Ty yas
— 2401z /7 + = + Ty y?by — 392z /7 + = + Ty y?bs

— lnx\/m+x+ Tya, — 98mx/7m+x + Ty by
—98m\/m+x + Tyya; — 6867+\/7 + = + Ty yby

—98x+\/m 4+ x + Tyya; — 686z+\/7 + x + Ty yb;

— 14707r4$2ya3 — 102907z y2a3 — 19607r3z3ya3

— 2058073x%y%as3 — 960407z y3as — 1470m° 2 yas

— 20580723y % a3 — 1440607 2%y3as — 5042107%z yas
— 5887 z%yas — 102907 z'y’as — 960407 23y3as

— 5042107 zy*as — 14117887z yPas — 588m°ryas = 0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

(o o+ 7)

The following substitution is now made to be able to collect on all terms with {z,y} in
them

{x:vl,y:vz,\/w+x+7y=v3}
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The above PDE (6E) now becomes

—21"ag — 147%v,a5 — 9878vea3 — 427 v%ag — 58815 v;v5a3
— 20587° v2a3 707 v1a3 — 14707* v1v2a3 — 1029071'41)111%(13
— 240107* v2a3 70m*vias — 19607° v1v2a3 20580#31)%@%(13
— 9604073v,v3a3 — 168070m3v3a3 — 421705 as — 1470w v vsa3
- 205807r2v§’v§a3 — 1440607*v?vias — 504210m%v v5a;3
— 7058947%*v5a3 — 14mvlas — 5887rv1v2a3 — 102907vivias
— 960407v3v3a; — 504210mvvias — 14117887 v5as
— 1647086mv5as — 2vias — 98v1v2a3 2058vv3a3
— 24010viviaz — 168070v3v5a3 — 705894vivsas (7E)
— 1647086v,v5a3 — 1647086v5a3 — 2m3vsay + 2m3vsbs
— 13720 0309 — 427205909 — T V30903 — 497201 V3bs
+ 6720 v3bg — Tmv3v9bs — 207rva3a2 — 1827v1v3v2a9
— 2947v3v5ay — 14mv1v3v0a3 — 98TVUsVIa3 — 98TV U3by
— 6867Tv1v3U2bs + 67'("0%’03()3 — 14mvv3v9b3 — 39277213v§b3
— Qvagag — 140va3v2a2 — 637vlv3vga2 — 686v3v§’a2
— 7va3v2a3 — 981)1'03'0%(13 — 343v3v§’a3 — 49va3b2
— 6861)%'031)2()2 — 2401v1v3v§b2 + 203u3bs — 7v%v3v2b3
— 3921)12;3115113 — 1715v3v§’b3 — Trvga; — 49%vshy — l4mv1v501
- 987’[”03’1}2&1 — 987T1)1U3b1 — 6867T1)3U2b1 — 7U%U3(11 — 981)1’1)3’1)2&1
— 343v3v3a; — 49v3vsh; — 686v,v3vb; — 2401v5v3b; + 2by = 0

Collecting the above on the terms v; introduced, and these are
{U17 V2, ’U3}

Equation (7E) now becomes

—2nTag — 147O7r4vlv2a3 — 1029074 vlv2a3 — 196073 ’Ul’l)zag
— 205807 v2vias — 9604073 v vias — 1470mviveas
— 205807 vivaas — 1440607r2v§vga3 5042107r2v1v§a3
— 588mvivaas — 10290mvivias — 96040mvivias — 504210mvivsas
— 1411788mv1v5a3 — 5881V v9a3 + (—9ay — 49by + 2b3) vivs
(—20may — 987y + 67b3 — Ta; — 49b;) vivs
(—137r2a2 — 497%by + 67%b; — 147a, — 987rb1) V1U3
(—686ay — 343a3 — 1715b3) vivs
(—2947ay — 98maz — 392mbs — 343a; — 2401b;) v3vs (8E)
(—427%ay — Tn’az — Tnbs — 98may — 686mhy ) vovs + 2by
(—27T3a2 +273bs — Trlay — 497r2b1) v3 — 21}{&3 — 16470861}%&3
— 147%a3 — 9870%v0as — 427r5v%a3 — 20587r5v%a3 — 707r4vfa3
— 240107*v3as — 70m3vias — 16807013 v5as — 421203 as
— 7058947m%v5a3 — 14mvlas — 1647086mv5as — 98vsvsas
— 2058v5v3as — 240100 vias — 168070v3vyas — 7058941)11)2a3
- 16470861}12)2a3 + ( 140&2 7&3 - 686b2 7b3) ’Ul VU3
+ (—637ay — 98a3 — 2401, — 392b3) v1v5v3
+ (—1827way — 14mwas — 6867by — 147bs — 98a; — 686b; ) v1v2v3 =0

+ 4+ ++ ++
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Setting each coefficients in (8E) to zero gives the following equations to solve

—1647086a3 = 0

—705894a3 =0
—168070a3 =0
—24010a3 =0
—2058a3 =0
—98a3 =0
—2a3 =0

—16470867as = 0
—1411788maz =0
—504210ma3z =0

—96040maz = 0
—102907a3z =0
—588masz =0
—14mas =0

—7058947%a3 = 0
—5042107%a3 = 0
—1440607%as = 0
—2058072%a3 = 0
—14707%a3 = 0
—421%a3 =0
—16807073a3 = 0
—9604073a3 = 0
—2058073a3 = 0
—196073a3 = 0
—70m3a3 =0
—240107%az = 0
—102907%as = 0

—14707*a3 = 0
—70m*a3 =0
—20587°az =0
—588m5a3 =0
—421°a3 =0
—987%a3 =0
—147%a3 =0

—686as — 343a3 — 1715b3 = 0

—9ay — 49bs + 2b5 =0

—637ay — 98az — 2401by — 392b3 = 0

—140ay — Taz — 686by — Tbs = 0

—217ag + 2b, =0

—2m3aq + 273by — Tmw2a; — 497%b; = 0

—294may — 98mas — 3927wbs — 343a; — 24016, =0
—427%ay — Tnlaz — Tnby — 98ma; — 686mb; = 0
—20may — 987by + 6mbs — Ta; — 496, = 0
—13n%ay — 497°by + 6m°by — 1dma; — 987b; = 0
—182may — 14mwas — 686mwby — 147bs — 98a; — 686b; = 0
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Solving the above equations for the unknowns gives

a; = —Th;
a; =0
a3 =0
by =0b;
by =0
bs =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

n=1

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

do _dy _

F=y =48 1)

The above comes from the requirements that (Ea% -I-n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy _m
de ¢
1
I
1
T
This is easily solved to give
_ T,
Y= 7 1
Where now the coordinate R is taken as the constant of integration. Hence
x
R=_-
7Y
And S is found from
dx
dsS = —
3
_dx
=7
Integrating gives
dz
S=[| =
/7
T
T

Where the constant of integration is set to zero as we just need one solution. Now that
R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

ﬁ S+ w(z,y)S, @)
dR R, +w(z,y)R,
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

w(z,y) = (r+z+Ty)"

Evaluating all the partial derivatives gives

1
R, =
7
Ry=1
1
Sy =—2
7
Sy, =0
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as 1

o 2A
dR 147 (r+z+7y)"? (24)

We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR 1+ 7(r+7R)"
The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).

1
/dS=/— 5 dR
147 (7 +17R)

9 ( ] Z ln<\/7?7£5—_R) >

_ =RootOf (7_Z"+1) —

1
S(R =/— dR + ¢
B 1+7(7+7R)? ’

This results in

a /y_ L d _a+c
7 1+ 7(r+z+7_a)?

[ N
[ N

yx) 0] - b — 711 1

24

-4 2 0 2 4
X

Figure 2.85: Slope field plot
Yy = (7r+ﬂc—|-7y)7/2

Summary of solutions found

v 1
_z :/ — 7/2d_a+62
7 1+7(r+z+7_a)
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Solved as first order ode of type dAlembert
Time used: 12.446 (sec)
Let p = ¢ the ode becomes

p:(7r+ac+7y)7/2

Solving for y from the above results in

_p T _z

Y= r (1)
cos (Z) +icos (27)) " p?/7 T

,- (o) i G s s N
—cos (37) + 4 cos () p2/7 x

y=( (7) - (14)) _g_? (3)
—cos (%) +icos ()T n &

o o (@) s ()P x o “
(—COS(%)—’L'COS(?—Z))ZPQH Tz

v= 7 "7y ©)
—cos (37) —icos (Z))’p?7 1 &

- o) e () s s o
cos () —jcos (37))% p2/7

y=( (7) - (14)) p _g_g (7)

This has the form
y=zf(p) +9(p) *)

Where f, g are functions of p = y/(z). Each of the above ode’s is dAlembert ode which is
now solved.

Solving ode 1A

Taking derivative of (*) w.r.t. z gives
dp
_ ! /
p=[+(zf +g)_da:
dp
! /
— f= = 2
p=f=Gf+4) (2)
Comparing the form y = zf + g to (1A) shows that

Hence (2) becomes

1 2p/(x)
P+ 7= dgpr

The singular solution is found by setting j—i = 0 in the above which gives

1
2 =0
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Solving the above for p results in

The general solution is found when g—z # 0. From eq. (2A). This results in

z) + 1) p(z)®"
p(z) = 49 (p( )+27)p( ) 3)

This ODE is now solved for p(z). No inversion is needed. Unable to integrate (or intergal
too complicated), and since no initial conditions are given, then the result can be written

p(x) 2 p
/ Ty nonT A

Singular solutions are found by solving

as

7(Tp+ 1) p*/"

2 =0

for p(x). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

p(z) =0
p(z) = —%

Substituing the above solution for p in (2A) gives

7 9 2/7
RootOf (— f_ Weﬁ' +x+ Cl)

_ _r_Zz
V= 7 77
__r_z
Y=
o VS A
T 77
Solving ode 2A
Taking derivative of (*) w.r.t. z gives
dp
dp
p—f=Gf +d) 2 @)
Comparing the form y = zf + g to (1A) shows that
1
f=-3
_ p*T(—cos (F) +isin (7))
g 7 7

Hence (2) becomes

1 2cos (3)  2sin (37) )
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The singular solution is found by setting 3_5 = 0 in the above which gives

1

=0
P+ 7
Solving the above for p results in
1
P = 7

Substituting these in (1A) and keeping singular solution that verifies the ode gives

71~ 1 oz
T R

The general solution is found when 2 # 0. From eq. (2A). This results in

: p(@) + 3
p(x) = 2cos(3$’)) 217'sin(3—7') (3)

— 7 7
49p(2)*’" " 49p(x)>"

This ODE is now solved for p(z). No inversion is needed. Unable to integrate (or intergal
too complicated), and since no initial conditions are given, then the result can be written
as

dT:IE+Cz

/ o)

77T+ 1) 757
Singular solutions are found by solving
(=1 (Tp+ 1) p°/"

_ 5 =0

for p(x). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

p(z) =0
p@)=—%

Substituing the above solution for p in (2A) gives

w
w

7))

RootOf <— -7 B ICSV )y cz>2/7 (—cos () + isin (

_ T 7(7Tr+1)75/7 e T
A 7 7
__rT_Zz
V=TT
S DT (s () +isin (5))
7 49 7
Solving ode 3A
Taking derivative of (*) w.r.t. z gives
dp
dp
p—f=(zf+9)- (2)

dx
Comparing the form y = 2 f + g to (1A) shows that
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Hence (2) becomes

1 2isin (Z)  2cos (%))
The singular solution is found by setting g—m = 0 in the above which gives
1
- =0

No valid singular solutions found.

The general solution is found when 2 # 0. From eq. (2A). This results in

, p(z) + %
p (.Z') - _ 2isin(g7')) ’27005(5) (3)

— 7
49p(z)®’"  49p(z)®/"

This ODE is now solved for p(z). No inversion is needed. Unable to integrate (or intergal
too complicated), and since no initial conditions are given, then the result can be written

o (z) 1/7
3
B Sk S
/ 7(TT + 1) 75/7 T=r4ces

Singular solutions are found by solving
(=1 (Tp+ 1) 9"
2

for p(x). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

=0

p(z) =0
p(z) = —%

Substituing the above solution for p in (2A) gives

RootOf (— [ 2T ey 03> T (—isin (%) —cos (%))

_ .z ~7(7r+1)75/7 T
y=7 7 7
__r_z
Y=o
_ % (—1)%7 75/7(—isin (Z) — cos (Z)) om
Y= 49 7
Solving ode 4A
Taking derivative of (*) w.r.t. = gives
AP
dp
_f_ / n YP 9
p—f=@f+9) (2)
Comparing the form y = zf + g to (1A) shows that
1
f==3
__m_ pT(=isin () + cos (7))
T 7

Hence (2) becomes

1 2isin () 2cos (&)
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The singular solution is found by setting 3_5 = 0 in the above which gives

1
Z =0

No valid singular solutions found.

The general solution is found when g—z # 0. From eq. (2A). This results in

27") 2 cos(27")
49p(2)®" " 49p(x)®/"

p(z) =

24 sin (

This ODE is now solved for p(z). No inversion is needed. Unable to integrate (or intergal
too complicated), and since no initial conditions are given, then the result can be written

as @) 57
o)
_ dr =
/ AT

Singular solutions are found by solving
1= (T4 )P _
5 =

for p(x). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

0

p(z) =0
p(z) = —%

Substituing the above solution for p in (2A) gives

- RootOf (— f_Z—7(275__+1))5:57/7d7’ +z+ C4> 7 (—isin (%) + cos (%))

.z n T
YT 7
__rT_z
=TT
_ o m ()T (—isin () + cos ()
YT 49
Solving ode 5A
Taking derivative of (*) w.r.t. z gives
L nap
dp
_ — / / et 2
p—f=@f+9) (2)
Comparing the form y = zf + g to (1A) shows that
1
f=-3
S m Pl () cos ()
7 7
Hence (2) becomes
1 24 sin (27”) 2 cos (27”) ,

The singular solution is found by setting % = 0 in the above which gives

1
- =0
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No valid singular solutions found.

The general solution is found when S—Z # 0. From eq. (2A). This results in

p(z) + 3
Pz) = 2isin(2F) 2(:70s(27“) (3)
49p(2)*/" " 49p(x)>/"

This ODE is now solved for p(z). No inversion is needed. Unable to integrate (or intergal
too complicated), and since no initial conditions are given, then the result can be written

as
We) (1)
/ 7(7T+1)75/7

Singular solutions are found by solving

dr =x +cs

UGV GRSV 2.
2

for p(x). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

p(z)=0
pe) =2

Substituing the above solution for p in (2A) gives

- RootOf (— 7 2V g 4o+ c5> o (isin (%) + cos (%))

_ _E . 7(7TT+1)73/7 T
y= ot 7
__r_z
V=TT
o m, (UM () + con ()
A 49
Solving ode 6A
Taking derivative of (*) w.r.t. z gives
dp
dp
! /
— f = = 2
p—f=@f+g) 2)
Comparing the form y = zf + g to (1A) shows that
1
f==
_pT(isin (F) —cos(3)) _m
9= 7 7
Hence (2) becomes
1 2isin (Z)  2cos (%)) ,
g — 2A
The singular solution is found by setting g—m = 0 in the above which gives
1
=0

Solving the above for p results in

P1r=—5
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Substituting these in (1A) and keeping singular solution that verifies the ode gives

The general solution is found when 2 # 0. From eq. (2A). This results in

p'(x) - 21s1n(’7() ) 200s(7) (3)

7
49p(9:)5 /7 49p(z)5/7

This ODE is now solved for p(z). No inversion is needed. Unable to integrate (or intergal
too complicated), and since no initial conditions are given, then the result can be written

e @ /7
ne o 2(-1)
_ N7 g =
/ AT r

Singular solutions are found by solving
1(=1)"" (7p+ 1) p*"

— =0
2

for p(x). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

p(z) =0
p(z) = —%

Substituing the above solution for p in (2A) gives

2/7
RootOf (— [~ -2 dr +a+¢)  (isin (5) — cos ()

_ T, T
¥=7 7 7
__r_z
A
e (DTG (5) ~cos(5)
Y= 49 7
Solving ode 7A
Taking derivative of (*) w.r.t. z gives
dp
dp
— 2
p=f=(f+4) (2)
Comparing the form y = zf + g to (1A) shows that
1
f==
_ p*"(—cos () —isin (7))«
9= 7 o7

Hence (2) becomes

1 2cos (37)  2isin (37) )

The singular solution is found by setting j—z = 0 in the above which gives

- =0
Pt
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Solving the above for p results in

1
P = 7
Substituting these in (1A) and keeping singular solution that verifies the ode gives
_ T m s
v 9 7 7

The general solution is found when g—ﬁ # 0. From eq. (2A). This results in

, p(z) + 1
p (IL‘) = 2cos(3§r)) 2:sin(37’r) (3)

- 49p(a:)5/7 49p(9:)5/7

This ODE is now solved for p(z). No inversion is needed. Unable to integrate (or intergal
too complicated), and since no initial conditions are given, then the result can be written

p(z) 2(_1)3/7
S S A M
/ 7(TT + 1) 75/7 T=rto

Singular solutions are found by solving

as

7(=1)"" (7p + 1) p?/"
2

=0

for p(z). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

p(z) =0
p(z) = —%

Substituing the above solution for p in (2A) gives

w

RootOf (— [~ — 207 dr a4 ) (= cos (%) — isin (%))

_ .z T (Tr+1)75/7 T
y=-7% 7 7
__mT_ =z
y==7"7%
e DTN (Coos(F) —isn (%)
7 49 7
The solution
__r_z
L

was found not to satisfy the ode or the IC. Hence it is removed. The solution

2/7
RootOf (— f—Z%dT +x+ 05) (¢sin (%) + cos (%))
-

r
77 7

was found not to satisfy the ode or the IC. Hence it is removed. The solution

/7
RootOf (— f—Z—7(27(T_+1))5T/;7dT +z+ C4>2 (—isin (%) + cos (%))

__T_
y=77% 7

was found not to satisfy the ode or the IC. Hence it is removed. The solution

yo @ _m VT (isin () + cos (%))
777 49
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was found not to satisfy the ode or the IC. Hence it is removed. The solution

yo & CUPTT(isin (%) +cos (7))

T 7 49

was found not to satisfy the ode or the IC. Hence it is removed. The solution

RootOf (— [ G ) c3> 2/7 (—isin (%) —cos (%))

oz T 7(Tr1)75/7 s
=gt 7 7
was found not to satisfy the ode or the IC. Hence it is removed. The solution
RootOf _Z  2(=1)37 d 27 3 s i (3T
o Rt ([ i) (o () —isin (9)
Y= 7 7
was found not to satisfy the ode or the IC. Hence it is removed. The solution
RootOf _Z -7 d 27 3 i (3w
_ =, oot (—f T T+£L'+Cz> (—cos (%) +isin (37))
v=7 7 7
was found not to satisfy the ode or the IC. Hence it is removed. The solution
_Z 2(=1)%/7 27, . -
; RootOf (— [ —7(75'+1))7'5/7d7- +x+ c6> (isin (%) —cos(¥)) .
y=Tg T 7 w7

was found not to satisfy the ode or the IC. Hence it is removed. The solution

_ T (=1)¥7 75/T(—isin (Z) —cos (%))
v= 49 7
was found not to satisfy the ode or the IC. Hence it is removed.
311
11
11
21 ]
11
R
11
y) OiA/?/ . ;""’)/ 71 | A: [
7 |
1 - / !
24
34
4 2 0 2 4

Figure 2.86: Slope field plot
y = (1+z+7y)"
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Summary of solutions found

_ oz ()P (isin(7) —cos(5) o«
y=Tg T 49 o7
oz (—1)2/7 75/7(— cos (37”) — isin (37”))
y=-7+ 49
_ T (=17 75/7(—cos (37) + isin (37))
¥="7 49
_ DT s
V=" T7T7
2/7
_ ROOtOf (- f_Z Wd’r +x 4+ Cl> _ E
v= 7 7
(—1)2/7 YA
V=" TT777
7/7(=1)"/" z
Y="" T 7
75/7(—1)6/7 T
e N

Maple step by step solution

Let’s solve
Ly(z) = (7 + 2+ Ty(z)""”

. Highest derivative means the order of the ODE is 1

=y(2)
° Solve for the highest derivative

2y(@) = (r+ 2+ Ty(z))"

Maple trace

RS I

~|

"Methods for first order ODEs:

-—- Trying classification methods ---
trying homogeneous types:

trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
-> Calling odsolve with the ODE™, diff(y(x), x) = -1/7, y(x)°

Methods for first order ODEs:
-—- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- 1st order, canonical coordinates successful
<- homogeneous successful”

KKK

Sublevel 2 *x*
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Maple dsolve solution

Solving time : 0.061 (sec)
Leaf size : 33

‘ dsolve(diff (y(x),x) = (Pi+x+7*xy(x))~(7/2),
‘ y(x) ,singsol=all)

T —Z 1
=——+RootOf | —x+ 7 / d al|+c
Y= ( ( 1+7(mr+7_a)"? ) 1)

Mathematica DSolve solution

Solving time : 30.453 (sec)
Leaf size : 43

‘ DSolve [{D[y[x],x]==(Pi+x+7*y[x])~(7/2),{}},
‘ y[x],x,IncludeSingularSolutions->True]

2
Solve [—(7y(z) +z+m) (HypergeometricQFl (—, 1,

’ 2 Tz +Ty(x) + 77)7/2> - 1)

7
= Ty(e) = 1,3(a)]
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2.1.65 problem 65
Solved as first order homogeneous class Code . . . . . .. ... ..
Solved using Lie symmetry for first orderode . . . . ... ... .. 347
Solved as first order ode of type dAlembert . . . . ... ... ...
Maple step by step solution . . . . .. ... ... ... ... .. .. 360
Maple trace . . . . . . . . . .. 360
Maple dsolve solution . . . ... ... ... ... . ... ... 360
Mathematica DSolve solution . . . . ... ... ... ........
Internal problem ID [8725]
Book : First order enumerated odes
Section : section 1
Problem number : 65
Date solved : Tuesday, December 17, 2024 at 01:01:31 PM
CAS classification : [[_homogeneous, ‘class C‘], _dAlembert]
Solve
Y = (a+ bz +cy)®
Solved as first order homogeneous class C ode
Time used: 1.395 (sec)
Let
z=a+br+cy (1)
Then
Z(xz)=b+cy
Therefore
y/ — z’(m) -b
c

Hence the given ode can now be written as

/ —_—
z(:c) b:z6
c

This is separable first order ode. Integrating

1
/dm_/cz6+bdz

V3(1)"'1n <z2 +v3(4)" 2+ (2)1/3> (4)° arctan <<bz)zl/6 + \/g)

c

Tr+c = 195

+
\/3(2)1/6111 (zz—\/g(‘g)l/6z+ (2)1/3>

12b

(&)™"

+

6b

8\ Y6 s retan | -2 — \/§> 5)/8 srctan (%)
(0" st (st |

+

6b

3b

Replacing z back by its value from (1) then the above gives the solution as



CHAPTER 2. BOOK SOLVED PROBLEMS 347

Summary of solutions found

V3 (’E’)l/6 In ((a + bz +cy)® + 3 (2)1/6 (a+ bz + cy) + (2)1/3>
12b

(f_)) 176 retan ( 2ey+2brida \/g)

° (5)"

* 6b
V3 (’—0’)1/6 In ((a +bz+cy)’ -3 (2)1/6 (a+ bz + cy) + (2)1/3>
12b
(1_0,)1/ % arctan (—26?’(4;2)61”/:2“ — \/§> (2)1/ ®arctan (“E’S—fﬁ’)
+ 6b + 3D =xr+c
Solved using Lie symmetry for first order ode
Time used: 1.539 (sec)
Writing the ode as
y = (bz+cy+a)°
y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo+ w1y — &) — W€y — wef —wyn =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

f =zas +yas + a; (1E)
n = xbs +ybs + by (2E)

Where the unknown coefficients are

{ala az, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

by + (bz + cy + a)°® (bs — ag) — (b + cy + a) as (5E)
— 6(bx + cy + a)’ b(zay + yas + a1) — 6(bz + cy + a)® c(wby + ybs + by) = 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

Expression too large to display (6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y} in
them

{r =v1,y = v}
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The above PDE (6E) now becomes

Expression too large to display
Collecting the above on the terms v; introduced, and these are
{v1, v}

Equation (7E) now becomes

Expression too large to display

(7E)

(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

—b12a3 =0
—c?a3=0
—12ab'tas =0

—12acttas =0
—66a2b*%a3 =0
—66a2c'%a3 =0
—220a%b%a5 = 0
—220a3c’as = 0
—495a*b%a3 = 0
—495a*c®a; = 0
—792a%b"as = 0
—792a5¢"az = 0

—12bcttas =0
—66b%c'%a3 =0
—220b3c%5 = 0
—495b*cPaz =0
—792b%c"as = 0
—924b5¢8a3 =0
—792b"c’ag = 0
—495b%ctas = 0
—2206%c2as = 0
—66b'°%a3 =0

—12b'tcas =0

—132abcta3 =0
—660a b*c®as =0
—1980ab*ctaz =0
—3960a b*c’as =0
—5544a b°c®as = 0
—5544ab%c’az = 0
—3960ab’clas =0
—1980ab®c®as =0
—660a b°c’as =0
—132ab%caz =0
—660a’bc’a3 =0
—2970a*b*c®az = 0
—7920a2b%c"az = 0
—13860ab*cas = 0
—16632a*b°c’az = 0
—13860a2b5c'as = 0
—7920a%b"c*az = 0
—2970a*b%c*a3 = 0
—660a%b°cas = 0
—1980a®bcaz =0
—7920a%b%c"a3 = 0
—18480a3b3cPas = 0
—27720ab*c’as = 0
—27720a%bctas = 0
—18480a3b5c3as = 0

~Aaan 2317 2 ~
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Solving the above equations for the unknowns gives

_ch
ap=——°
a; =0
a3 =0
by =b
by =0
b3 =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
3 n

The above comes from the requirements that (58% +n§—y> S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy _n
de £
1
=
b
o
This is easily solved to give
bz
y=——+a

And S is found from

Integrating gives

Where the constant of integration is set to zero as we just need one solution. Now that
R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

ﬁ _ Spt+w(z,y)S, @)
dR R, +w(z,y)R,
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

w(z,y) = (bz +cy +a)°

Evaluating all the partial derivatives gives

Pt
C
R, =1
6o
C
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS b
> 2A
dR c(b+ (bz +cy +a)°) 28)

We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

as b

dR~  RSc™ + 6R5ac + 15R*a2c® + 20R3a3ct + 15R2a*c3 + 6R a5c? + aSc + b

The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).

b

dsS= | — dR
/ / R8¢" + 6R%a b + 15R*a2c® + 20R3a3c* + 15R2%a%c® + 6Ra’c? + abc+ b
In(R—_
b 2 R°c45 Rlact+10 ]§32<
_R:RootOf(c7_Zﬁ+6_Z5acG—|—15_Z4a2c5+20_Z3a3c4+15_Z2a4c3+6a562_Z+a60+b) — At +5_[tact+10__11 a%c
S(R) = — -

b
R)=|[| -
() / Rb¢" + 6R%a b + 15R*a2cd + 20R3a3c* + 15R2%a%c® + 6Ra’c2 + abc+ b

S dR+cy

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

cy+bx

bx c b
_2 _ d
c / _a%c"+6_a%ac®+15 a*a’c® 420 adadct+ 15 a2atc® +6_aa®c?+aSc+b —a+

Summary of solutions found

b

C
cy+bz
c

b

- d
_a8c"+6_a%ac+15 a*a2cd 4+ 20 adadct + 15_a2a*c® +6_aadc? +abc+ b —a
+c
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Solved as first order ode of type dAlembert
Time used: 2.337 (sec)
Let p = ¢ the ode becomes

p=(bx+cy+a)°

Solving for y from the above results in

bz p'/f—a
STt

bz (% + %) p%—a
V=" :
_ bx+<_%+%§>pl/6 a
y=" c

br —p/—a
y=——+=

c c
B bx+<—%—%>p1/6—a
y=" c
B bx+<%_% p% —a
y="

This has the form

y = zf(p) + g(p)

1)

(4)

(5)

(*)

Where f, g are functions of p = y/(z). Each of the above ode’s is dAlembert ode which is

now solved.

Solving ode 1A

Taking derivative of (*) w.r.t. x gives
dp
_ / /

p—f=@f+g)P

dz
Comparing the form y = zf + g to (1A) shows that
b
f=-2
c
6 —q
g =
c
Hence (2) becomes
_ ?(z)
Pt c 6pd/c

The singular solution is found by setting j—i = 0 in the above which gives

b
p+-=0
C

Solving the above for p results in

| S

D1

2)

(24)
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Substituting these in (1A) and keeping singular solution that verifies the ode gives

—bz+ (-2)/°—a
()

c

The general solution is found when 2 # 0. From eq. (2A). This results in

p@) =6(p(a)+ ! ) o) ®)

This ODE is now solved for p(z). No inversion is needed. Unable to integrate (or intergal
too complicated), and since no initial conditions are given, then the result can be written
as

p(z) 1 4
/ 6 (cT + b) T5/6 T=rta

Singular solutions are found by solving
6(pc +b)p*° =0

for p(x). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

p(z) =0
p(z) = —g

Substituing the above solution for p in (2A) gives

7 . 1/6
br RootOf (- f_ WdT +x+ Cl> —a
y=—-——=
c c
bx a
Yy=——7—-
c c
b _b\1/6 _
c c
Solving ode 2A
Taking derivative of (*) w.r.t. z gives
dp
dp
/ /
— f = = 2
p—f=@f+g) (2)
Comparing the form y = zf + g to (1A) shows that
b
f=-
c
g _ ipl/ﬁ\/§+p1/6 _ 2a

2c

Hence (2) becomes

p+9=< W3 1 )ﬂ@) (24)

c 12cp®/6 ~ 12pd/Sc
The singular solution is found by setting g—z = 0 in the above which gives

b
p+-=0
Cc
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Solving the above for p results in
b
c

1=
Substituting these in (1A) and keeping singular solution that verifies the ode gives

(=) /3= 2z + (=2)° — 24
2c

y:

The general solution is found when g—g # 0. From eq. (2A). This results in

Py = — e ®

12cp(z)>/6 + 12p(z)®/S¢

This ODE is now solved for p(z). No inversion is needed. Unable to integrate (or intergal
too complicated), and since no initial conditions are given, then the result can be written
as

dr =x+c

/1’(“’) 1443
12 (e + b) 75/6
Singular solutions are found by solving

12(pc + b) p*/
1+iv/3

for p(x). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

=0

p(z) =0
p(z) = —g

Substituing the above solution for p in (2A) gives

12(cT+b)75/6 12(cT+b)T5/6

. 1/6 , 1/6
by RootOf (— f_Z S EXVE T/ cz> v/3 + RootOf <— f_Z S EX\VE cz> -
=4

vy= c 2c

Yy=——
c
Solving ode 3A
Taking derivative of (*) w.r.t. z gives
dp
dp
/ /
— f= = 2
p—f=@f+9) (2)
Comparing the form y = zf + g to (1A) shows that
b
f=—2
c
4= ’Lpl/G\/§ _ pl/ﬁ —%a

2c

Hence (2) becomes

i3 1
b _ / 2A
P+ (1201)5/6 12p5/60) P () (2A)
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The singular solution is found by setting 3° 9% — () in the above which gives

b

p+-=0
c
Solving the above for p results in
b
pr=—-
c

Substituting these in (1A) and keeping singular solution that verifies the ode gives

i(=2)"° /3 —2br — (=2)"° — 24
2c

y:

The general solution is found when 2 # 0. From eq. (2A). This results in

2) b
I p—C ®

12cp(z)%/6 o 12p(z)%/S¢

This ODE is now solved for p(z). No inversion is needed. Unable to integrate (or intergal
too complicated), and since no initial conditions are given, then the result can be written

p(z) 2'\/3_1
/ 12( dT:.’E+03

et + b) 5/6

Singular solutions are found by solving

as

12(pc + b) p°/® B
iW3-1
for p(x). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

p(z) =0
p(z) = —g

Substituing the above solution for p in (2A) gives

1/6 1/6
- z'RootOf( f— S/ S dT—I—x—|—03> v/3 — RootOf (—f—ZM—ldT—l—x-l—%)
+

12(cr+b)75/8 12(cT+b)75/6
Yy=——
c 2c
br
Yy=——
c
be i(=4)" VB (=)™
y=——+
c 2c
Solving ode 4A
Taking derivative of (*) w.r.t. z gives
dp
dp
p—f=@f+9) (2)

dz
Comparing the form y = zf 4+ g to (1A) shows that

b
f==2
Cc
—pt/6 —q
g =
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Hence (2) becomes

b p(x)
D+ ¢ = “ophoc (2A)

The singular solution is found by setting 3_95 = 0 in the above which gives

b
p+-=0
c
Solving the above for p results in
b
br=—
c

Substituting these in (1A) and keeping singular solution that verifies the ode gives

b= (-4)"° —a
C

y:

The general solution is found when 2 # 0. From eq. (2A). This results in

(@) = =6 (pla) + - ) o) ®)

This ODE is now solved for p(z). No inversion is needed. Unable to integrate (or intergal
too complicated), and since no initial conditions are given, then the result can be written

() 1 p
/ _6(07+b)75/6 T=rta

Singular solutions are found by solving

as

—6(pc+b)p”° =0

for p(x). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

p(z) =0
M@=—g

Substituing the above solution for p in (2A) gives

1/6
b — RootOf (—f—z Wd7+x+04> —a
-Z 4

" 6(cr+b
y =
c c
br a
Yy=—7-—-
c ¢
b (/6 _
O e )
c c
Solving ode 5A
Taking derivative of (*) w.r.t. z gives
AP
dp
_ — / / et 2
p—f=@f+g) (2)
Comparing the form y = zf + g to (1A) shows that
b
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Hence (2) becomes

b i3 1 ,

The singular solution is found by setting g—ﬁ = 0 in the above which gives
b
p+-=0
c
Solving the above for p results in
b
p1r=—
c

Substituting these in (1A) and keeping singular solution that verifies the ode gives

~i(=4)"* V-2 - (-4)" - 20
y =
2c

The general solution is found when 2 # 0. From eq. (2A). This results in

pie) = — LD ®

_12z:p(av)5/6 - 12p(z)%/ 8¢

This ODE is now solved for p(z). No inversion is needed. Unable to integrate (or intergal
too complicated), and since no initial conditions are given, then the result can be written
as

/P(@ 144V/3
12

cr + b) T5/6

Singular solutions are found by solving

dT=.’L'+C5

12(pc + b) p*/
— =0
141v3
for p(x). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

p(z)=0
p(z) = —g

Substituing the above solution for p in (2A) gives

; 1/6 )
by —iRootOf (— f_Z—%dT +z+ c5> V3 — RootOf (— f_Z—%dT +z+c
v=Te + 2c
y =
I GO
YT 2c
Solving ode 6A
Taking derivative of (*) w.r.t. z gives
dp
dp
p—f=@&f+4d) (2)

dz
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Comparing the form y = zf + g to (1A) shows that

b
==
g_—@WW§+#“—%

2c

Hence (2) becomes

b V3 1 ,
p+ c <_ 12¢ pb/6 + 12p5/ﬁc> p(z) (2A)

The singular solution is found by setting g—ﬁ = 0 in the above which gives

b
p+-=0
c
Solving the above for p results in

b
Pr=—
c

Substituting these in (1A) and keeping singular solution that verifies the ode gives

—i(=2)"* V3 = 2bz + (-2)"° — 24
2c

y:

The general solution is found when 2 # 0. From eq. (2A). This results in

p(z) + ¢
o 12cp(:1:)5/6 + 12p(z)5/6(:

(3)

This ODE is now solved for p(z). No inversion is needed. Unable to integrate (or intergal
too complicated), and since no initial conditions are given, then the result can be written

p(z) iv3—1
/ —12( dr =z +cs

cr + b) T5/6

Singular solutions are found by solving

as

12(pc + b) p°/¢
— = =0
z\/§ -1
for p(x). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

p(z) =0
M@=—g

Substituing the above solution for p in (2A) gives

cT+b)T5/6

: 1/6 ) 1
b N —1 RootOf (— f—Z_m(zLdT ++ cs> v/3 + RootOf (— f_Z—%dT +z+ ca)

y= c 2c

The solution
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was found not to satisfy the ode or the IC. Hence it is removed.

Summary of solutions found

o= (4" ~a

y= c
~bo+ ()"~ a
y= c
_ ==Y VB 2 (4" - 20
y= 2c
_—i(=Y" V- 2o+ (<) - 2a
¥y= 2c
(=) VE- g (1) 20
y= 2c
(=) VB 2+ (-4 - 2
y= 2c
b[L‘ b 1/6 —a
y —_ + ( C)
c c
bx _B)Mo_
y —_ + ( C)
c c
z ) 1/6
br — RootOf <— f —Wd'r +x+ C4> —a
=TT c
z 1 1/6
br RootOf <— f WdT +x+ Cl) —a
y=-o c
I (G AR T et
c 2c
Jo o =V () -
c 2c
bx
y=-——
c
, 1/6 , 1/6
—1 RootOf <— f_Z _m(z;/fﬁdT + x4+ ce> v/3 4+ RootOf <— f—Z—uéﬁ’ﬁdT + x4+ 06) _
+ 2c
bx
y=——
c
. 1/6 _ 1/6
—iRootOf (— [~ — ;8 sdr + 3+ ¢5) V3~ RootOf (= [~F =8 dr 4wt es) | —
+ 2c
b =9V ()"~ 2
y= c 2c
b (=B (=Y~ 2
vy= c 2c
bx
y=-——
c
. 1/6 , 1/6
i RootOf (— J~ G mdr + o+ c2) v/3 + RootOf (— J~ i mdr + o+ 02) —2a
_|_

2c
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bx

Yy=—-—"
Cc

cT+b)T5/8 12(cT+b)75/6

+

‘ 1/6 ‘ 1/6
1 RootOf (— f—Z H(ZLdT + x4+ 03) V3 — RootOf (— f—Z Bl g4t 03> —2a

2c
Maple step by step solution

Let’s solve
Ly(@) = (a-+ bo + cy(z))’

° Highest derivative means the order of the ODE is 1
()

° Solve for the highest derivative

#y(2) = (a+ bz + cy(z))°

Maple trace

"Methods for first order ODEs:
-—- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
-> Calling odsolve with the ODE™, diff(y(x), x) = -b/c, y(x)°
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- 1st order, canonical coordinates successful

<- homogeneous successful”

kkk

Maple dsolve solution

Solving time : 0.045 (sec)
Leaf size : 94

‘ dsolve(diff (y(x),x) = (atb*x+cxy(x))~6,
L y(x) ,singsol=all)

Y

Sublevel 2 *xi

_Z 1
RootOf ((f & _0°+6_0ra 06+15_a4a265+2O_a3a3c4+15_a2a4c3+6_aa5cz+a6c+bd—a> c—z+ cl) c—bx

C
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Mathematica DSolve solution

Solving time : 1.783 (sec)
Leaf size : 274

'DSolve [{D[y[x],x]==(a+bxx+c*y[x]1)"6,{}},
‘ y[x],x,IncludeSingularSolutions->True] ‘

6 6 6
_4¢barctan (M) + 9¥parctan ( 3_ 2xfc<a+bz+cy<x>>) _ o¥/parctan (2\/E(a+bx+cb
Vb ve Vb Vb

Solve

cy(z)

b = Clay(x)
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2.1.66 problem 66

Solved as first order form Alode . . . . . . . ... ... ... ... 362
Solved as first order separableode . . . . .. .. ... ....... 364
Solved as first order Exactode . . . . .. .. ... ... ...... 364
Solved using Lie symmetry for first orderode . . . . ... ... .. 367
Solved as first order ode of type ID 1 . . . . . . ... ... ... .. B71
Solved as first order ode of type dAlembert . . .. ... ... ...
Maple step by step solution . . . . . . ... ... ... [374]
Maple trace . . . . . . . . . . . e 3741
Maple dsolve solution . . . . . ... ... ... ... ... .. ... 3741
Mathematica DSolve solution . . . . . ... .. ... ... ..... [374]

Internal problem ID [8726]

Book : First order enumerated odes

Section : section 1

Problem number : 66

Date solved : Tuesday, December 17, 2024 at 01:01:37 PM
CAS classification : [_separable]

Solve
Y = ety
Solved as first order form Al ode
Time used: 0.232 (sec)
The given ode has the general form
y' =B+ Cf(az + by +c) (1)

Comparing (1) to the ode given shows the parameters in the ODE have these values

B=0
Cc=1
a=1
b=1
c=0

This form of ode can be solved by change of variables u = ax 4+ by + ¢ which makes the
ode separable.

v (z) =a+ by

Or
,_u(z)—a
Y=
The ode becomes
I —
= B+0f)

v =bB+bCf(u)+a
du

bB+Cf (W) ta
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Integrating gives

/ du Cste
bB+bCf(u)+a !

/u ar =x+cC
bB+bCf(T)+a !

Replacing back u = ax + by + ¢ the above becomes

az+by+e dr
/ bBB+bCf(N+a ~ 1O @)
If initial conditions are given as y(xo) = yo, the above becomes
azo+byo+c dr
/0 bBB+bCf () +a 201G

az+byo+c dr
Cl_/o bB+bCf (1) +a O
Substituting this into (2) gives

azx+by+c dr az+byo+c dr
/ et / 2 3)
bB+bCf(T)+a 0 bB+bCf(T)+a

Since no initial conditions are given, then using (2) and replacing the values of the
parameters into (2) gives the solution as

T+yY 1
/ 1+erT=:I7+Cl

Which simplifies to
—1In (1 + e“’+y) +1In (e”y) =z+c

Solving for y gives

1
y=In({—— |+
—1 +ew+61

(1111
RERN
1 '
21 | 11 1
z REEY
] 111
1 [ |
7 1111
7 (O A
11111
0 o .
- 711111
— 77111
] 7111
7 7 011
7 7 7101
27 -7 7 7 1 1
- 77 7 11
- 7 7 ] 1
-3 — 7 7]
4 2 0 ‘ a

Figure 2.87: Slope field plot
y/ — ea:+y

Summary of solutions found

1
Y= In{ ———— + C1
_1 +e$+cl
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Solved as first order separable ode
Time used: 0.044 (sec)
The ode 3’ = e**¥ is separable as it can be written as
y/ — ez+y
= f(z)g(y)
Where

Integrating gives

/e_ydy=/ewdx

Solving for y gives

3] 11111111
117111111
11111111
-] 11111111
A T [ I
/S
1] /N A O I I |
/2 A T I I
A2RREERE
o S22 RRREE
77111
771
= SRR REE
SRR REN
-7
21 -7 77 7 11
—— 7 7 ] 11
R A
-3 - -7 ] ]
= > B 3 p
X
Figure 2.88: Slope field plot
y/ — ez—i—y
Summary of solutions found
y=—In(—e"—¢)
Solved as first order Exact ode
Time used: 0.164 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d

Hence 06 06 d
op 994y _
Oxr Oydx (B)
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Comparing (A,B) shows that

09
- M
ox
9 _ n
Oy
But since %{% = ;’; ;’x then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = ggx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
dy = (e”""y) dx
(—e™¥)dz+dy =0 (2A)
Comparing (1A) and (2A) shows that

M(z,y) = —e"1¥

N(:E,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0 oty
By 3y( e")
= —em+y
And
N _ 0,
0x Oz
=0

Since %iy/f # %—]z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

. <8M 8N>

- N Oy ox
=1((=e"") - (0))

Since A depends on y, it can not be used to obtain an integrating factor. We will now try
a second method to find an integrating factor. Let

o L(ON _oum
- M\ oz oy

= —e~Y((0) — (—e™*))
=1
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Since B does not depend on z, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

— ¢/ Bdy

— ef -1 dy

7

The result of integrating gives

p=e"?
= e_y

M and N are now multiplied by this integrating factor, giving new M and new N which
are called M and N so not to confuse them with the original M and N.

M = uM
_ e—y(_ex-l-y)

= —e

And

So now a modified ODE is obtained from the original ODE which will be exact and can
be solved using the standard method. The modified ODE is

M—I—N%zo
dzx

(—e®) + (e_y) j—z =0

The following equations are now set up to solve for the function ¢(z,y)

% _m (1)
06
o =N 2)

Integrating (1) w.r.t. z gives

—dx—/Mdm

6¢ -
9z dx—/—e dzx

¢ =—e"+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t y gives

9¢

S =0+ 1) @

But equation (2) says that a¢ = e Y. Therefore equation (4) becomes

e’ =0+ f'(y) (5)
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Solving equation (5) for f'(y) gives

Integrating the above w.r.t y gives
/ flly)dy = / (e7) dy
fly)=—eY+¢
Where ¢, is constant of integration. Substituting result found above for f(y) into equation
(3) gives ¢

p=—-€—e?+q

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy; constants into the constant c; gives the solution as

cp=—e"—e?
Solving for y gives
y=—In(—€"—¢)
o] - j N
: ] R
i 111
2] 11
/ 111
i ’ P
/ RER
- s ERE
G — =
B - AR
R 711111
N AV
— 771111
R 770111
B e ——— 2770
R — AR
77 7 71
=] 77
4

XO—“‘
|

Figure 2.89: Slope field plot
y/ — ez—i—y

Summary of solutions found

y=—In(—e"—¢)

Solved using Lie symmetry for first order ode
Time used: 0.805 (sec)

Writing the ode as
y/ — ew+y
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - €z) - w2€y - wz€ — Wyl = 0 (A)
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To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

£ =zaz +yas + a (1E)
n= wbg + yb3 + bl (QE)

Where the unknown coefficients are
{al, az, as, by, ba, b3}
Substituting equations (1E,2E) and w into (A) gives
by + e" V(b3 — ay) — e a3 — e"tY(zay + yaz + a1) — e”Y(xby +ybs +b;) =0 (5E)
Putting the above in normal form gives

_e2x+2ya3 _ ex+yiL‘a2 _ e.’L‘+y1.b2 _ em+yya3 _ ez+yyb3
—e"ay — e*Vay — Vb + e TVbs + by =0

Setting the numerator to zero gives

_62z+2ya3 _ ex+y$a2 i ex—i—yxbz N ex+yya3 o ez+yyb3 (GE)
— ewﬂ’al — e””+ya2 — e””“’bl + €w+yb3 + b2 =0

Simplifying the above gives

—e? gy — e®Myay — e®MVaby — e“TVyas — " Vybs (6E)
— ey — e*ay — Vb + e TVbs + by =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y,e""Y, e*> 2}

The following substitution is now made to be able to collect on all terms with {z,y} in
them

{z = v,y = vg,e" Y = 03, =y}
The above PDE (6E) now becomes
—U3V1a9 — V3U2G3 — V3V1bs — U3Uebs — U3a; — V3as — v4a3 — vsby + v3bs + by =0 (7E)
Collecting the above on the terms v; introduced, and these are
{v1,v2,v3,v4}
Equation (7E) now becomes
(—ag — by) v1v3 + (—ag — b3) vav3 + (—a1 —ag — by + b3) v3 —vsa3 + by =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

by =0
—a3 =0
—as — by =0
—az — b3 =0

—al—az—b1+b3=0
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Solving the above equations for the unknowns gives

a1 = —b
a; =10
a3 =0
by ="b
by =0
bs =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

£=-1
n=1
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation
n=mn-wy)¢
=1—(e") (-1)
=1+¢e%
§=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

F=, = 1)

The above comes from the requirements that (Ea% +n%> S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

1
Sz/—dy
n
1
_/1+e-’”eydy

S =In(e’) —In(1+ e"eY)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

as _ S tw(z,y)S, @)
dR R, +uw(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

w(z,y) = e
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Evaluating all the partial derivatives gives

R, =1

R,=0

o e
1+ ety
1

Sy: 1+ exty

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

=0 (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

as

ar = "°

The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).
S (R) = Co

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

Yy — In (1 +e"”+y) = Co

Which gives

1
y:ln —— | +Co
_1+ez+62

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . )
.. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ oty as _
de — € dB — 0
R R R
- BEERIID RS,
t 1 t111111
: SESREES
brtptgogos B
- SEEREE:
Pttt —
— SRR R=z - ;
— 1 S=y—In(1+e"1) R
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Figure 2.90: Slope field plot
ylzez—i-y
Summary of solutions found
y=m C—14evte T
Solved as first order ode of type ID 1
Time used: 0.106 (sec)
Writing the ode as
y =" (1)
And using the substitution © = e™¥ then
u =—y'e?
The above shows that
y = —u(z)e!
__u(z)
B U
Substituting this in (1) gives
u'(z)  e”
u U
The above simplifies to
u(z) = —e (2)

Now ode (2) is solved for u(zx).
Since the ode has the form u/(x) = f(x), then we only need to integrate f(x).
/ du = / —e” dz
u(z) = —€e" 4+ ¢
Substituting the solution found for u(z) in u = e gives
y = —1n(u(z))

=—In(—In(—€"+¢1))
=—In(—€"+¢)
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Figure 2.91: Slope field plot
y/ — ez—i—y
Summary of solutions found
y=—In(—e"+¢)
Solved as first order ode of type dAlembert
Time used: 0.109 (sec)
Let p = 3/ the ode becomes
p=e""
Solving for y from the above results in
y=—z+1n(p) (1)
This has the form
y =z f(p) +9(p) (*)

Where f, g are functions of p = y/(x). The above ode is dAlembert ode which is now
solved.

Taking derivative of (*) w.r.t. z gives

p=f+(af +9) P
p—f=@f+9) D e

Comparing the form y = zf + g to (1A) shows that

f=-1
9 =In(p)
Hence (2) becomes
p+1=20 (24)

The singular solution is found by setting g—z = 0 in the above which gives

p+1=0
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Solving the above for p results in
p=-1
Substituting these in (1A) and keeping singular solution that verifies the ode gives

Yy=1iT—x
The general solution is found when 2 # 0. From eq. (2A). This results in

p'(z) = (p(z) + 1) p(z) (3)

This ODE is now solved for p(z). No inversion is needed. Integrating gives

1
——dp=dx
/ p+1p"
—ln(p+1)+ln(p)=z+ac
Singular solutions are found by solving
(P+1)p=0

for p(x). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

p(z) = -1
p(z) =0
Solving for p(z) gives
p(z) = -1
p(z) =0
M@=—j§g%g

Substituing the above solution for p in (2A) gives

Yy=1imr—x

l e$+01
y=—-z+In (__1 +ew+01)

S AN/ A N S T O A O A O O
AN N A N S A O A O
AR
A 22 A R R R
S/ A A N A A I
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i SR A A A A A O I
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e R SRR R R
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—— AR
N 77T
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2 A aA R
————eee e T T
T
B S S D A
= 3 5 ; ;

X
Figure 2.92: Slope field plot
y/ — ez—i—y

Summary of solutions found

Yy=1imr—x

e$+01
y=—c+ (‘T>
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Maple step by step solution

Let’s solve

% y(z) = e"tv(@

° Highest derivative means the order of the ODE is 1

=Y(@)

° Solve for the highest derivative
() = et

° Separate variables

%y(m) = et
ey(w> -

° Integrate both sides with respect to x

=y(@) x
e oyde = [ e*dx + C1
° Evaluate integral

—5t =€"+ Cl1
o Solve for y(x)

y(@) = In (=G7g7)

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 13

e

dsolve(diff (y(x),x) = exp(x+y(x)),

L y(x) ,singsol=all)
1
=In(-
Y n( cl-l—e”’)

Mathematica DSolve solution

Solving time : 0.822 (sec)
Leaf size : 18

'DSolve [{D[y[x],x]==Exp[x+y[x]],{}},
L y[x],x,IncludeSingularSolutions->True]

y(xz) = —log (—€® —c1)
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2.1.67 problem 67
Solved as first order form Alode . . . . . . . ... ... ... ...
Solved using Lie symmetry for first orderode . . . . . ... .. .. 377
Solved as first order ode of type ID 1 . . . . . . . .. ... ... .. 380
Solved as first order ode of type dAlembert . . ... ... ..... 382
Maple step by step solution . . . . . . ... ... ...
Maple trace . . . . . . . . . .. e
Maple dsolve solution . . . . . ... ... ... .. .. ... ..
Mathematica DSolve solution . . . . . . ... ... ... ...... 3841

Internal problem ID [8727]

Book : First order enumerated odes

Section : section 1

Problem number : 67

Date solved : Tuesday, December 17, 2024 at 01:01:39 PM

CAS classification : [[_homogeneous, ‘class C‘], _dAlembert]

Solve

y =10+ "1

Solved as first order form A1l ode

Time used: 0.241 (sec)

The given ode has the general form

Yy =B+Cflaz+by+c) (1)

Comparing (1) to the ode given shows the parameters in the ODE have these values

B =10
Cc=1
a=1
b=1
c=0

This form of ode can be solved by change of variables u = ax + by + ¢ which makes the

ode separable.

v (z) = a+ by

) _ () —a

The ode becomes

Integrating gives

YT
= =B+0f)
v =bB+bCf(u)+a
du i
bB+bCf (u)+a
/ du Cste
bB+bCf(u)+a !
/u dr =x+cC
bB+bCf(T)+a !
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Replacing back u = ax + by + c the above becomes

ax+by+c dT
= 2
/ BB+ oCf () +a 14 @)

If initial conditions are given as y(xo) = yo, the above becomes

azo+byo+c dr
— 204
/0 bB+bCf (1) +a 074

azx+byo+c dr
Ccp = — X
! /0 bB+bCf(r)+a °

Substituting this into (2) gives

az+by+c dr az+byo+c dr
/ et / — 2 (3)
bB+bCf(T)+a 0 bB+bCf(T)+a

Since no initial conditions are given, then using (2) and replacing the values of the
parameters into (2) gives the solution as

Which simplifies to

T 1 T tte
Solving for y gives

11

41 4 4 4 4 4 4 4 14
< N N I
/N O O O A A A A
1 1 1 1 1 4 1 1 41 1 14 1 41 1 1
prrrrr ety
3 O A O A I
11 1 1 1 1 1 1 1 1 1 1 1 1 1
O O A O A
T 111 1111111111111
[ e e O O
11 1 1 1 1 1 9 1 1 1 1 1 1 1 1 1
T O S A O A A e I e R
1171711717111 11111111
A A A S A A A A |
11 17 1 1 17 11111111111
T [
/R R R T B I R R T T R B B N I
L A A A e S O
y(X) Ol 1 1 14 1 1 1 1 1 1 1 1 14111111
[ I e e [
[ I T R R T N R E B R R N R B I B
I e e
11 1 1 1 1 1 1 49 19 1 1 4 19 1 19 19 1 1
I O e e
i I A A A A A A A A A AN A A
L e e
11 19 1 1 17 90 1 9 40119111111 1 1
e e e
Y R R R A R R R R R B I
[ e e e
2 (s s (s (O (O (O O
/T I B T E A T E Y T H R R B B Y B B
[ e e e O
/I Y B I T R R E R R N R B T N R I R B
[ e e e e
11 1 1 1 1 1 1 9 9 1 1 4 49 1 1111 1
I N e e e e
4 2 0 2 4
X
y' =10+ e

Summary of solutions found

11
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Solved using Lie symmetry for first order ode
Time used: 0.963 (sec)

Writing the ode as
y =10+ et
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo+ w1y — &) — W€y — wef —wyn =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

g = zaz + yaz + a; (1E)
1 = xbs + ybs + by (2E)

Where the unknown coefficients are

{ala a2, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

by + (10 + &) (bs — az) — (10 + ") ag (5E)
— e”y(waz + yas + al) — e”y(xbz + yb3 + bl) =0

Putting the above in normal form gives

_e2x+2ya3 _ ew+yxa2 _ ew—i—yxbz _ ew+yya3 _ eac—i—yybg _ eaﬂ+ya1 _ em+ya2
—20 em+ya3 — e”+yb1 + e”“’bg — 10a2 — 100&3 + b2 + 10b3 =0

Setting the numerator to zero gives

—e2 W, — e®Vpay — e Vaby — e*Vyag — ¥ Vyby — ¥ Va; — ¥ Va, (6E)
—20e"tVas — e Vb + e*tVbs — 10ay — 100as + by + 10b3 = 0

Simplifying the above gives

_e2x+2ya3 _ eac—kywa2 _ eac—i-yxb2 _ ex+yya3 _ ex+yyb3 _ eoc+ya1 _ ex+ya2 (GE)

—20 exﬂ‘ag — ex+yb1 + e“ybg — 10(12 - 100(13 + b2 + 10b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y,e"", &2V}

The following substitution is now made to be able to collect on all terms with {z,y} in
them

{z = v,y = vg,e" Y = 03, =y}
The above PDE (6E) now becomes

(7E)

—U3V1Q9 — V3V203 — ’U3’Ulb2 - ’l)3’l)2b3 — VsQ1 — VsAg — 20’030,3
— VyqQ3 — ’U3b1 + ’U3b3 - 10&2 - 100&3 + b2 + 10b3 =0
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Collecting the above on the terms v; introduced, and these are
{Ul7 V2, Vs, 'U4}

Equation (7E) now becomes

(—CLQ — bz) V1V3 + (—(13 — b3) VaV3 + (—a1 — Q9 — 200,3 — b1 + bg) V3 (SE)
— V403 — 10&2 — 1000/3 + b2 + 10b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—a3=0
—ag—b2=0
—a3—b3=0

—10ay — 100as3 + by + 10bs = 0
—al—a2—20a3—b1+b3=0

Solving the above equations for the unknowns gives

a1 = —b;
a; =0
a3 =0
by =0,
by =0
bs =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

£=—1
n=1
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation
n=n-wy)
=1-(104¢"") (1)
=11+ e"e’
£=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _ dy _

F=y =48 1)

The above comes from the requirements that (&a% —HI%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x
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S is found from
5= [Lay
n

1
= [ ——d
/11+e~"’ey 4

_In(11 + e%eY) n In (e¥)
11 11

Which results in

S =

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

as _ S+ w(z,y)S,
dR R, +w(z,y)R,

(2)

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

w(z,y) =10+ "1

Evaluating all the partial derivatives gives

R,=1
ry=0
Sx:—L
121 + 11 e=tv
1
5= + e=ty

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
ds _ 10
drR 11
We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

ds _ 10
drR 11
The above is a quadrature ode. This is the whole point of Lie symmetry method. It

converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

(24)

Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).

10
/dS—/ﬁdR

10R
S(R) = =1

+ co
To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

In(114+e"*¥) gy 10z

11 1o 11 e

Which gives

11

y =10z +1In (_ 1 + ellztllc

> —|— 1162
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

ODE in canonical coordinates

coordinates

Original ode in z,y coordinates

(R,5)

transformation

eSS s~

—~—S S —S—S s —Ss—S S~

B St B Tt

B S It

B e

B e e

B e e

T TS ST T TS TS S S S —S—S S S —S—s—

B e i

B e B e

B S e

B S e T e A

.

—~—~—~—~—~—~— |

X
Figure 2.94: Slope field plot

y =10+ ™Y

Summary of solutions found

> —+ 1102

11
—1 + ellw—}-llcg

y =10z +In (—

Solved as first order ode of type ID 1

sec)

(

Time used: 0.121
Writing the ode as

1)

(

y =10+ e"V

And using the substitution © = e™¥ then

u/ — _yle—y

The above shows that

U

u'(x)

y = —u(z)e!

Substituting this in (1) gives
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The above simplifies to
—u'(z) = € + 10u(z)
u'(z) + 10u(z) = —€”
Now ode (2) is solved for u(x).

In canonical form a linear first order is

u'(z) + q(z)u(z) = p(z)

Comparing the above to the given ode shows that

q(z) =10
p(z) = —€”
The integrating factor u is
p=e Jqdz
— ef 10dz
— e].OIE
The ode becomes
a(#u) = pp

Integrating gives

T11 +
Dividing throughout by the integrating factor e'** gives the final solution
(e — 11¢;) e10
11
Substituting the solution found for u(z) in u = e~ gives

y = —In (u(z)
=—In (hl (11) —In ((_elliﬂ + 1101) e—lO:p))
=In(11) —In ((_ellm + 1161) e—lOz)

10z

u(z) = —

Y/ Y I I I Y R R R I Y R R
o O O A (O (O A I
/“/“/“/“/‘/‘/‘/‘/‘444444
| A | | A
11 1 1 419 1914141911 1 1 1
| S S N R A L e |
T 1171779711111 1111111
-2 A Y A A A A A R
1T 17171717111 1111111
| L e e
1111111111 1111111
| A T e A e A |
/A I R R R R R N A T R R I R N I
8 e A e S e A I e e
1111111111171 11111
A A A A e e |
/T I I R B N I R I T N A B B I
I O A e e O
/I A I A B N R R R N R B N B I
I S A A e e
V(X)0’444444444444444444
I T e e L e e
11 1 17 1 17 11 191191191111 11
| |
11 1 1 1 11 1191111111111
[ | | |
71//////“///‘/‘/‘///4/)‘)‘)‘
“““ o
10 1 1 1 1 1 1 9 1 11111
| I
//////‘\///‘/‘///// /‘/‘/‘/‘
I [
72//////‘\///‘/‘///////‘/‘/“/“
o
11 1 19 1 17 1 11914191 19 141 11 111
I [
//////‘\///‘/‘/////////‘/‘
| | [
3/‘/////‘\////‘/////////‘/‘
3 1 1
-4 -2 0 2 4
X

Figure 2.95: Slope field plot
y' =10+ e*tY

(2)
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Summary of solutions found

y=1In(11) — In ((—€"™ + 11¢1) %)

Solved as first order ode of type dAlembert
Time used: 0.155 (sec)

Let p = v the ode becomes
p =10+ "t

Solving for y from the above results in

y=—z+In(p—10) (1)

This has the form

y = zf(p) + g(p) *)

Where f, g are functions of p = y/(x). The above ode is dAlembert ode which is now
solved.

Taking derivative of (*) w.r.t. z gives

dp
_ / /
dp
/ /
— f = 2
p—f=@f+g) (2)
Comparing the form y = zf + g to (1A) shows that
f=-1
g=In(p—10)
Hence (2) becomes
p'(z)
1= 2A
P+1=""70 (2A)

The singular solution is found by setting fl—i = 0 in the above which gives
p+1=0

Solving the above for p results in
p1=-—1

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y=—-c+In(11) +in

The general solution is found when 2 # 0. From eq. (2A). This results in
p'(z) = (p(z) + 1) (p(x) — 10) (3)
This ODE is now solved for p(z). No inversion is needed. Integrating gives
1
dp = dx
/ (p+1) (p—10)

In(p—10) In(p+1)
11 11

=+
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(p+1)(p—10)=0
for p(x). This is because we had to divide by this in the above step. This gives the following

singular solution(s), which also have to satisfy the given ODE.

Singular solutions are found by solving

p(x)

_1 + e11x+1101

10 + ellz+llcl
y=—z+1In(11) +in

p(z) =10

Substituing the above solution for p in (2A) gives

Solving for p(z) gives

/N
(@]
—
_
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1ee
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5
_
Il
>
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Figure 2.96: Slope field plot

y =10+ "tV

Summary of solutions found

N
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y=—z+1In(11) +ir
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Maple step by step solution

Let’s solve
4y(z) = 10 + €™t
° Highest derivative means the order of the ODE is 1
()
° Solve for the highest derivative
4y(z) =10 + e+

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful

<- homogeneous successful”

Maple dsolve solution

Solving time : 0.072 (sec)
Leaf size : 26

‘ dsolve(diff (y(x),x) = 10+exp(x+y(x)),
‘ y(x),singsol=all)

11z
y=—z+In(11) +1n (e—)

_ellw + c1

Mathematica DSolve solution

Solving time : 3.188 (sec)
Leaf size : 42

'DSolve [{D[y[x],x]==10+Exp[x+y[x]],{}},
‘ y[x],x,IncludeSingularSolutions->True]

1161037:4-1101
y(CU) — 10g (__1 + 611(90-1-01))

y(z) — log (—11e™®)
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2.1.68 problem 68
Solved as first order ode of type ID 1 . . . . . . .. ... ... ...
Maple step by step solution . . . . . ... ... .. ... ......
Maple trace . . . . . . . . . . e
Maple dsolve solution . . . . . . ... ... ... ... ... ..., 38T
Mathematica DSolve solution . . . . . ... ... ... .......
Internal problem ID [8728]
Book : First order enumerated odes
Section : section 1
Problem number : 68
Date solved : Tuesday, December 17, 2024 at 01:01:42 PM
CAS classification : [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]
Solve
y =10 4 22
Solved as first order ode of type ID 1
Time used: 0.491 (sec)
Writing the ode as
y = 10"V + 22 (1)

And using the substitution © = e™¥ then

UI — _y/e—y
The above shows that
y = —u(z)e!
_u(=)
B u
Substituting this in (1) gives
! 10 X
_w(z) _ 10"
u u

The above simplifies to

—u'(z) = 10e” + z’u(x)

v/ (z) + 2%u(z) = —10€”
Now ode (2) is solved for u(x).

In canonical form a linear first order is

u'(z) + q(z)u(z) = p(z)

Comparing the above to the given ode shows that
q(z) =2
p(z) = —10€°

The integrating factor u is

(2)
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The ode becomes

pp

(nu) = (u) (—10€")

Integrating gives

$3
—10€%e’s dz

zS
—10€e"e3dr + ¢4
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Dividing throughout by the integrating factor e

Substituting the solution found for u(z) in u = e gives

y = —In (u(c)
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Figure 2.97: Slope field plot

Yy =10e"Y + 2

Summary of solutions found
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Maple step by step solution

Let’s solve
4y(z) = 10e™H®) + g2
° Highest derivative means the order of the ODE is 1
()
° Solve for the highest derivative
4y(z) = 10e"T@) 4 g2

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

Looking for potential symmetries

trying inverse_Riccati

trying an equivalence to an Abel ODE

differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation

-—— Trying Lie symmetry methods, 1st order ——-

*, ~—> Computing symmetries using: way = 3

4

, —> Computing symmetries using: way = 5

trying symmetry patterns for 1st order ODEs

-> trying a symmetry pattern of the form [F(x)*G(y), O]

-> trying a symmetry pattern of the form [0, F(x)*G(y)]

<- symmetry pattern of the form [0, F(x)*G(y)] successful’

~

, —> Computing symmetries using: way

~

Maple dsolve solution

Solving time : 0.019 (sec)
Leaf size : 30

‘ dsolve(diff (y(x),x) = 10*exp(x+y(x))+x~2,
‘ y(x),singsol=all)

Y= %3 —1In (—cl — 10(/630(i+3)dx))
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Mathematica DSolve solution

Solving time : 0.413 (sec)
Leaf size : 115

p
' DSolve [{D[y[x],x]==10%Exp [x+y[x]11+x~2,{}},
‘ y[x],x,IncludeSingularSolutions->True] ‘

CON | | 3 23
Solve [ / — e <1OeK[2] / —l—oe“s” ~KPR[1)dK 1] +es) dK[2]
1 1

T /1 113 1]3
+ / (l_oe’“sl—y<w>K[1]2+e’“£+K[”> dE(1] =c1,y(w>]
1
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2.1.69 problem 69
Solved as first order ode of type ID 1 . . . . . . .. ... ... ...
Maple step by step solution . . . . . ... ... .. ... ......
Maple trace . . . . . . . . . . e
Maple dsolve solution . . . . . . ... ... ... ... ... ..., 3911
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [8729]

Book : First order enumerated odes

Section : section 1
Problem number : 69

Date solved : Tuesday, December 17, 2024 at 01:01:44 PM
CAS classification : [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

Solve

y =z e +sin (x)

Solved as first order ode of type ID 1

Time used: 0.654 (sec)

Writing the ode as

Y = re”tY + sin (z)

And using the substitution u = e™¥ then

The above shows that

Substituting this in (1) gives

The above simplifies to

u = —y'e?
Y = (@)
_ u(z)
o
/ T
_ul@) _ + sin (z)
u u

—u/(z) = z€” + sin (z) u(x)

v (z) + sin (z) u(z) = —z €”

Now ode (2) is solved for u(zx).

In canonical form a linear first order is

u'(z) + q(z)u(z) = p(z)

Comparing the above to the given ode shows that

The integrating factor u is

q(z) = sin (z)

p(z) = —ze”
p= efqu
_ efsin(x)dx

— e cos(z)

(1)

2)
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The ode becomes

L () = (o) (2 e?)

i (u e cos(z)) — (e— cos(a:)) (—IL' ez)
dx

d(u e cos(a:)) — (—I e cos(:z:)) dz
Integrating gives

ue cos(z) _ / —xe®e” cos(z) dr
= / —ze%e” @ dg + ¢

Dividing throughout by the integrating factor e~ > gives the final solution

u(z) = e°03(@) ( / —ze®e” @ dy + c1>

Substituting the solution found for u(z) in u = e™¥ gives

y = —In (u(z))

=—In (— In ((— /xex_“’s(’”)dx + cl) ews(x)))
——1In ((_ /xem—cos(m)dx + Cl) ecos(:c))
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Figure 2.98: Slope field plot
Yy = ze"tY +sin ()

Summary of solutions found

y=— In <(_ /xex—cos(x)dx + Cl) ecos(x))
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Maple step by step solution

Let’s solve
4y(z) = 26"V + sin (z)

° Highest derivative means the order of the ODE is 1
=y(@)

° Solve for the highest derivative

4y(z) = 2" + sin (z)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

Looking for potential symmetries

trying inverse_Riccati

trying an equivalence to an Abel ODE

differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation

-—— Trying Lie symmetry methods, 1st order ——-

*, ~—> Computing symmetries using: way = 3

4

, —> Computing symmetries using: way = 5

trying symmetry patterns for 1st order ODEs

-> trying a symmetry pattern of the form [F(x)*G(y), O]

-> trying a symmetry pattern of the form [0, F(x)*G(y)]

<- symmetry pattern of the form [0, F(x)*G(y)] successful’

~

, —> Computing symmetries using: way

~

Maple dsolve solution

Solving time : 0.020 (sec)
Leaf size : 29

‘dsolve (diff(y(x),x) = x*exp(x+y(x))+sin(x),
‘ y(x),singsol=all)

y = —cos(z) —In (—cl — (/xeaU—cos(z)dz))
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Mathematica DSolve solution

Solving time : 3.151 (sec)
Leaf size : 100

p
' DSolve [{D[y[x],x]==x*Exp[x+y[x]1+Sin[x],{}},
‘ y[x],x,IncludeSingularSolutions->True] ‘

T y(z)
Solve [ / (— K Tl—eos(KI) g (1] — = oK) =u(=) i (KT1])) dK 1] + /
1 1

_e—cos(w)—K[2] (ecos(z)+K[2] / e cos(K[1])—K]|[2] Sll’l(K[l])dK[l] _ 1) dK[2] =ci, y(.fl?)]
1
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2.1.70 problem 70
Solved as first order ode of typeID 1 . . . . . . . ... ... ....
Maple step by step solution . . . . . ... ... .. ... ......
Maple trace . . . . . . . . . . e
Maple dsolve solution . . . . . . ... ... ... ... ... ..., 395
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [8730]

Book : First order enumerated odes
Section : section 1

Problem number : 70

Date solved : Tuesday, December 17, 2024 at 01:01:46 PM
CAS classification : [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

Solve

y =512 4 gin (z)

Solved as first order ode of type ID 1
Time used: 0.685 (sec)
Writing the ode as
y' =56 t2% 4 sin (z)

And using the substitution u = e2% then

u = —20y'e 20
The above shows that
- _u’(m) e20y
4 20
u'(z)
20u

Substituting this in (1) gives
_u'(z) _ 5e
20u w
The above simplifies to
_w(=)
20
W' (z) + 20sin (z) u(z) = —100 e
Now ode (2) is solved for u(x).

In canonical form a linear first order is
v'(z) + q(z)u(z) = p(z)
Comparing the above to the given ode shows that
¢(z) = 20sin (z)
p(z) = —100*
The integrating factor u is

p= efqdz
_ ef 20 sin(z)dz

— e—20 cos(x)

+ sin (z)

= 56" + sin (z) u(x)

(1)

(2)
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The ode becomes
—(pu) = pp
d _ 22
150w = () (~100¢7")
% (U e—QOcos(a:)) — (6—20005(2)) (_100 ew2>
d(u e—QOcos(a:)) — (_100 ew2e—2Ocos(z)> dz

Integrating gives
ue—2000s(:1:) — /_100 ezze—ZOCos(z) dx
= / —100e® e 20c0s(@) gy, 4 c1
Dividing throughout by the integrating factor e=20%(*) gives the final solution

u(z) = g20c0s() </ —100 " e~200s(@) gy + 01)

Substituting the solution found for u(z) in u = e™2% gives

Y= 790
2
In —100 fez _20C05(z)d$ +ec1 e20:::05(:1;)
NECUEEEE D
B 20
In ((_100 (f em2—20cos(x)dx) + Cl> e20cos(:z:))
B 20
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Figure 2.99: Slope field plot
y = 5e” 2% 4 gin ()

Summary of solutions found

In <<_100 ( Ii ex2—20008($)dz> n Cl> eQOcos(x))
T 20
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Maple step by step solution

Let’s solve

4y(z) = 5 +20%() 4 gin (z)

° Highest derivative means the order of the ODE is 1
y(2)

° Solve for the highest derivative

%y(z) = 5e®’ +20¥(2) 4 gin (z)

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

Looking for potential symmetries

trying inverse_Riccati

trying an equivalence to an Abel ODE

differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---

*, ~—> Computing symmetries using: way = 3

, —> Computing symmetries using: way = 4

5

trying symmetry patterns for 1st order ODEs

~

~

, —> Computing symmetries using: way

-> trying a symmetry pattern of the form [F(x)*G(y), O]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
<- symmetry pattern of the form [0, F(x)*G(y)] successful’

Maple dsolve solution

Solving time : 0.023 (sec)
Leaf size : 33

‘ dsolve(diff (y(x),x) = B*exp(x~2+20*y(x))+sin(x),
y(x) ,singsol=all)

N

In (20) In <—Cl -9 (f e%’—20 cos(w)d;,;))
20 20

y = —cos ()
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Mathematica DSolve solution

Solving time : 7.542 (sec)
Leaf size : 140

p
 DSolve [{D[y[x],x]==5+Exp[x~2+20%y [x]1+Sin[x],{}},
‘ y[x],x,IncludeSingularSolutions->True] ‘

z 1 y(z)
Solve [ / — ¢ 20cos(K[1)-20y(=) (sin(K[l])+5eK[1]2+2°y(””)> dK[1] + /
1100 1

_rioe—20 cos(z)—20K2] (100620 cos(z)+20K (2] /.’E (ée—20 cos(K[1])—20K([2] (sin(K[l])+56K[1]2+20K[2]> _eK[1]2_20 cos(K
1

- 1) dK[2] = cl,y(a:)]
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2.2 section 2 (system of first order odes)

2.2.1 problem 1 . . . . . . . .. e e e 398
2.2.2 problem 2 . . . . ... e e e e e 400

223 problem 3 . . . ... 407
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2.2.1 problem 1

Maple step by step solution . . . . . . ... ... ... ... ...
Maple dsolve solution . . . .. ... ... ... .. .........
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [8731]

Book : First order enumerated odes

Section : section 2 (system of first order odes)

Problem number : 1

Date solved : Thursday, December 12, 2024 at 09:42:36 AM
CAS classification : system_of_0DEs

4y —z=y+t
+y =22+3y+e

In canonical form a linear first order is

o' +q(t)z = p(t)

Comparing the above to the given ode shows that

The integrating factor u is

The ode becomes

Integrating gives

q(t) = -1
p(t) =3t—1

;L:efth

— ef(—l)dt

< (ur) = () (3t — 1)

d —t\ _ (.-t
d@e) = () (- 1)
d(zet) = (3t — 1)) dt

Te ' = / (3t —1)e*dt
=—Bt+2)et+_C

Dividing throughout by the integrating factor e™* gives the final solution

The system is

x=_Ce —3t—2

Oy =c+y+t
+y =2r+3y+e€

(2)
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Since the left side is the same, this implies

r+y+t=22+3y+e

x e t

V=37 3" ®)
Taking derivative of the above w.r.t. ¢ gives
e 1
/
=————4- 4
y 55 T3 (4)

Substituting (3,4) in (1) to eliminate y,y’ gives

x et_'_l_x et 3t
2 2 2 2 2 2
=z+3t-1 (5)

Which is now solved for z. Given now that we have the solution
r=_Ce —3t—2 (6)

Then substituting (6) into (3) gives

Maple step by step solution
Maple dsolve solution

Solving time : 0.044 (sec)
Leaf size : 30

e B

dsolve ([diff (x(t),t)+diff (y(t),t)-x(t) = y(t)+t, diff(x(t),t)+diff(y(t),t)| = 2%x(t)+3:
L ,{op([x(t), y(t)D}H J
z(t) = -3t — 2+ i€
B cet et

Mathematica DSolve solution

Solving time : 0.026 (sec)
Leaf size : 37

‘ DSolve [{{D[x[t],t]+D[y[t],t]l-x[t]l==y[t]+t,D[x[t],t]1+D[y[t],t]==2*x[t]+3*y[t] +Exﬁ [t1},{}},
L {x[t],y[t]},t,IncludeSingularSolutions->True]

z(t) = =3t + (1 + 2c1)e’ — 2
y(t) = 2t — (1+c)et +1
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2.2.2 problem 2

Solution using Matrix exponential method . . . . . . .. ... ... 4001
Solution using explicit Eigenvalue and Eigenvector method . . . . . 402
Maple step by step solution . . . . . . ... ... ... ... 406
Maple dsolve solution . . . . . . ... ... ... ... ... ..., 406
Mathematica DSolve solution . . . . . ... .. ... ... ..... 406

Internal problem ID [8732]

Book : First order enumerated odes

Section : section 2 (system of first order odes)

Problem number : 2

Date solved : Thursday, December 12, 2024 at 09:42:36 AM
CAS classification : system_of 0DEs

2r +y —z=y+t
T’ +y =2r+3y+e

Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential e? allready. There
are different methods to determine this but will not be shown here. This is a system of
linear ODE’s given as

Or

t—et
—t+2¢t

HEFEIHE

Since the system is nonhomogeneous, then the solution is given by

Z(t) = Zn(t) + 75(2)

—

Where #(t) is the homogeneous solution to '(t) = AZ(t) and Z,(t) is a particular
solution to #(t) = AZ(t) + G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

(1+v3)e” (zva)e  (2+va)e (v3-1) (—e(2+‘/§)t+e_ (_”‘/g)t) V3

At __ 2 2 3

(_e(2+ﬁ)t+e—(—2+«/§)t>\/3 (—\/§+1)e_(_2+\/§)t e(2+\/§)t<1+\/§)
_ 5 3 + )
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Therefore the homogeneous solution is

.’fh (t) = eAtE'

(1+\/§)e*(*2+\/§)t e(”‘/g)t(\/?’,—l) (—e(2+‘/§)t+e*(72+ﬁ)t)x/§ ]

_ 2 - 2 3 1 }
(_e(2+\/§)t+e—(—2+\/§)t)\/§ (_\/§+1)e—(—2+\/§)t e(2+\/§)t<1+\/§> | Co
| - 2 2 + 2
(@wg)e—ezm» e<z+«§>t(¢g_1)> (o2
2 - 2 ¢+ 3

= _(2+vA)t —(—2+v3)t Vet _ o (-2HVE)t (243t

(e s +<< e (0 2<1+«§>>02

((3C1+262)\/§+301)e_(_2+\/§)t e(2+\/§)t<< +2C2> 3—Cl>
6 o 2

((—01 _02)\/3—"_02) e (_2+\/§)t ((01 +c2)\/§+cz) e(2+ﬁ)t
2 + 5

The particular solution given by

But

e—At — (eAt)—l

o—dt ((_ﬁ+1>e—(—2+ﬁ)t+e(2+\/§)t(H\/g)) V34t (_e(2+\/§)t+e—(—2+\/§)t)
_ 2 - 3
N V34t (_e(2+\/§)t+e—(—2+~/§)t) o4t <\/§6_(_2+\/§)t—\/§e(2+\/§)t+e_ (—2+¢§)t+e(2+¢§)t>
2 2
Hence
| <1+\/§>e_(_2+‘/§)t e(2+ﬁ)t(\/§—1) (—e(2+ﬁ)t+e_(_2+\/§)t)\/§ ] e*4t<(—\/§+1)e‘(‘2
fp(t) = 2 ) 2 ° /
(_e(2+\/§)t+e—(—2+\/§)t>\/§ (_\/§+1)e—(—2+\/§>t e(2+\/§)t(1+\/§) V3e—4t (_e(2+
L B 2 2 + 2 ] -
<1+\/§)e—(—2+\/§)t e(2+\/§)t(\/§_1) (_e(2+\/§)t+e—(—2+\/§)t)\/§ ((5t+19)\/§—9t—33)e_
. 2 - 2 3 6
<_e(2+\/§)t+e7(72+‘/§)t>\/§ (—\/§+1)e7(72+\/§)t e(2+\/§)t(1+\/§) (7+(—4—t)\/§+2t>e7 (2+
A 2 2 + 2 ] 2
[ -3t-—11
| 2t+T-¢

Hence the complete solution is

f(t) fh + le

301+282)f+3cl) —(~2+v3)t N ((—301—202)\/36+301)e(2+\/§)t a1l
—c1—c2)V3+ca )e (_2+‘/§)t c1+c2)V3+c e(2+\/§)t t
( 1—c2) +2) +<(1+2) -;2) +2t+7—%
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Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

—

Z(t) = AZ(t) + G(t)

HEFEIHE

Since the system is nonhomogeneous, then the solution is given by

t—et
—t+2¢t

2(t) = Zn(t) + Zp(2)

Where Z,(t) is the homogeneous solution to Z'(t) = A Z(t) and Z,(t) is a particular solution
to Z'(t) = AZ(t)+G(t). The particular solution will be found using variation of parameters
method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A.
This is done by solving the following equation for the eigenvalues A

det (A— M) =0
(32038
([ )

Which gives the characteristic equation

Expanding gives

Therefore

M—4r+1=0
The roots of the above are the eigenvalues.

M =2+3
Ao =2-13
This table summarises the above result
eigenvalue algebraic multiplicity type of eigenvalue

2-4/3 1 real eigenvalue
2443 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \; = 2 — /3
We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

-1 -2 {0
3 5 Lo
-3+v3 -2 {vl]_{o]
3 3+V3 | L 0
Now forward elimination is applied to solve for the eigenvector ¢. The augmented matrix

-34+v3 -2 |0
3 3+v31(0

is
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3]

3R,
—3++/3

Therefore the system in Echelon form is

RN EH

0 0 U2 0
The free variables are {v,} and the leading variables are {v;}. Let vy = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free

—3++/3

By =Fy = 0 0

variables gives equation {vl = _33: 73

]- 7

Since there is one free Variable, we have found one eigenvector associated with this

Hence the solution is

eigenvalue. The above can be written as

B

Let t = 1 the eigenvector becomes

- B 2 T
V| _ | 363
Lt 1
Which is normalized to ) )
S 2
V| _ | 3343
Lt 1

Considering the eigenvalue Ay = 2 + /3
We need to solve A7 = A or (A — AI)¥ = 0 which becomes

(1 l-erdlo ) [n]= 0]

l‘t“i:%HZ:HS]

Now forward elimination is applied to solve for the eigenvector ¥. The augmented matrix

[—3— V3 =2 0]
0

3 3—-43
R2=R2—3—Rl=> [_3_\/5

is

-3-43 0 0

Therefore the system in Echelon form is

RS It
0 0 U2 0
The free variables are {v,} and the leading variables are {v;}. Let vy = t. Now we start

back substitution. Solving the above equation for the leading variables in terms of free

variables gives equation {vl =—3 ff/g

8]

Hence the solution is

1
~ 8
| I
|
1
|
w
N_{_M
&~
S
| I
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

NE

Let t = 1 the eigenvector becomes

Ui | _ | "33
[t 1
Which is normalized to ) )
S 2
V| _ | T3+v3
[ ¢ 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity & and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity
eigenvalue algebraic m geometric £ defective? eigenvectors

T

2++/3 1 1 No 3+v3
- 1 -
T

2—-/3 1 1 No 3-V3

1

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Since eigenvalue 2 + /3 is real and distinct then the
corresponding eigenvector solution is

.’fl (t) = 1716(2+\/§)t

2
_ [ T35 ] e(2+\/§)t
1

Since eigenvalue 2 — /3 is real and distinct then the corresponding eigenvector solution is

.fz (t) = 1_)’2€<2_\/§)t
_ [ = ] (2-8):
1

Therefore the homogeneous solution is
fh(t) = Clil_fl (t) + Cz.’fg(t)

Which is written as

. _2e(2+\/§)t _29(2_\/§)t
[ ] S e +c 3-V3
Y e<2+\/§>t e(2—x/§)t
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Now that we found homogeneous solution above, we need to find a particular solution
Zp(t). We will use Variation of parameters. The fundamental matrix is

d = [51 iz ]

Where Z; are the solution basis found above. Therefore the fundamental matrix is

2e(2+\/§)t 2e - \/g)
o(t) = T3V 3-v3
e(2+\/§)t e(z V3)t

The particular solution is then given by

But
Vae-(+v)e V3 (3+vE)e (V)
q)—l — 2 6
el o)A (—a4vs)
2 6
Hence
29(2-4—\/5)7& 26(2—\/5)7& i [ Ve (2+v3) \/§(3+\/§)e_(2+\/§)t _ .
#H)=| VB T B / P 5 t—e
e(2+\/§)t e(2—\/§)t el -24V8) (-2HV3)t 3 (-3+v3) | | —t+2 e
- . 2 6
2e(2+\/§)t 2e(2—\/§)t I V3e~ (1+\/§) + e—t(l-f-\/g) _ e_(2+\/§)tt |
_ | TTavE T B / e T |
i e<2+\/§)t (2—x/§)t _ _ _ V3e t(‘/g‘ ) te (xf 1) (—Qzﬁ)tt _
i [ 5((( +1)y/34% 42 ) (2+v3)¢ (1+\/§) (‘%ﬁ—g))\/ﬁ -
26(2+\/§)t Ze(z—ﬁ)t 5
_| T 33 T 33 6(1+v3) (2+‘/§)
e(2+\/§)t e(z—ﬁ)t (((t+%)\f %_%)e(—z+¢§)t+et(¢§_1) (_%H))ﬁ
- T 6(v3-1) (—2+\/§)2
—3t—11
2+

Now that we found particular solution, the final solution is

Z(t) = Zn(t) + Zp(t)

2 2+f

C1 e
T3+v/3
2+xf

Which becomes

_ 2c e(z_ﬁ)t

3—/3

Co 6(2_\/§)t

* 2 +7—%

—&—11]

—-3t—-11

co (3+\/§)e_(_2+\/§)t c1 (—3+\/§)e(2+\/§)t
Y Cci e<2+\/§>t +cye < 2+‘[>

+A+T—S
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Maple step by step solution
Maple dsolve solution

Solving time : 0.070 (sec)
Leaf size : 94

‘dsolve([2+diff (x(t),t)+diff (y(t),t)-x(t) = y(t)+t, diff (x(t),t)+diff(y(t),t) = 2*x(t)+34
| Aop([x(£), y(©)DI) |

(2+v3)t —(-2+v3)t

z(t) =e c2+e c—3t—11
e<2+‘/§)t02\/§ e (_2+‘/§>tclx/§ 3 e(2+‘/§>tcz 3e” <_2+\/§>tcl et
y(t) = ——— + 5 - 5 -G 2T

Mathematica DSolve solution

Solving time : 6.59 (sec)
Leaf size : 174

} DSolve [{{2*#D[x[t],t]1+D[y[t],t]1-x[t]==y[t]1+t,D[x[t],t]1+D[y[t],t]1==2*x[t]+3*y[t] +€}xp [t1},{}},
L {x[t],y[t]},t,IncludeSingularSolutions->Truel

z(t) — 1{((\/3—2)75) (_66(\/5—2)15(37: F11) (_3(\/5 _ 1) o — 2\/§Cz> £2V3t
+3(1+v3) o + 2x/§cz)
y(t) — % <4t—et+ (—\/gcl —\/3024-02) e_<<‘/§_2)t) + <\/§C1+ (1+\/§> 02> e(2+\/§)t+14)
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2.2.3 problem 3

Maple step by step solution . . . . . . ... ... ... ... ... 408
Maple dsolve solution . . . ... ... ... ... ... ..., 408
Mathematica DSolve solution . . . . . ... ... ... ....... 408

Internal problem ID [8733]

Book : First order enumerated odes

Section : section 2 (system of first order odes)

Problem number : 3

Date solved : Thursday, December 12, 2024 at 09:42:37 AM
CAS classification : system_of_0DEs

' +y —x=y+t+sin(t) + cos (i)
+y =22+3y+e

In canonical form a linear first order is
'+ q(t)z = p(t)

Comparing the above to the given ode shows that

q(t) =-1
p(t) = 3t +4sin (t) + 2cos (t) — 1

The integrating factor u is

;L:efth

— ef(—l)dt

The ode becomes

37 (1) = (1) (3¢t + 4sin (£) + 2cos (1) 1)

d —t\ _ (—t :
E(;,;e ) = (e7%) (3t + 4sin (¢) + 2 cos (t) — 1)

d(ze™) = ((3t +4sin (¢) + 2cos (t) — 1) e™") d¢
Integrating gives
Te ' = / (3t +4sin () + 2cos (t) — 1) e *dt
=-3e"t—2e"—3ecos(t) —esin(t)+_C
Dividing throughout by the integrating factor e™* gives the final solution
z=_Ce" —sin(t) —3cos(t) — 3t — 2
The system is

' +y =z +y+t+sin(t) + cos (t) (1)
' +y =2r+3y+é (2)
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Since the left side is the same, this implies

T+y+t+sin () + cos(t) =2z + 3y + €

_x e t sin(t) cos(t)
y=—3 -3ttt 3)

Taking derivative of the above w.r.t. t gives

e 1 cos(t) sin(t)

/
r_e,z _ 4
2 2 + 2 + 2 2 4)

Substituting (3,4) in (1) to eliminate y,y’ gives

zl__t+1+cos(t) _Sin(t) _E_e_t 3t 3Sin(t)+3cos(t)
2 2 2 2 2 2 2 2 2 2
' =1z + 3t +4sin (t) + 2cos (t) — 1 (5)

Which is now solved for z. Given now that we have the solution
z=_Ce" —sin(t) — 3cos (t) — 3t — 2 (6)
Then substituting (6) into (3) gives

t t
=0e +sin(t)+2cos(t)+2t+1—% (7)

y=-

Maple step by step solution
Maple dsolve solution

Solving time : 0.198 (sec)
Leaf size : 44

e B

dsolve([diff (x(t),t)+diff (y(t),t)-x(t) = y(t)+t+sin(t)+cos(t), diff(x(t),t)+diff(y(t),t)
L Aop([x (1), YD J

z(t) = —sin (t) — 3cos (t) + cie’ — 3t — 2
. clet et
y(t) = sin (t) + 2cos (t) — - +2%4+1— 3

Mathematica DSolve solution

Solving time : 0.038 (sec)
Leaf size : 54

‘ DSolve [{{D[x[t],t]1+D[y[t],t]-x[t]==y[t]+t+Sin[t]+Cos[t],D[x[t],t]1+D[y[t],t] ==2*14 [t]1+3*xy [t]+Exp
L {x[t],y[t]},t,IncludeSingularSolutions->True]

z(t) — —3t + e’ —sin(t) — 3cos(t) + 2c e — 2
y(t) — 2t — €' +sin(t) + 2cos(t) — cie’ + 1
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2.3 section 3. First order odes solved using Laplace

method
23.1 problem 1 . . . . . .. 410
2.3.2 problem 2 . . ... 413
233 problem 3 . . . ... 4716l
2.3.4 problem 4 . . . ... e e 419
235 problem 5 . . ... e 422
23.6 problem 6 . . . . ... e 426
237 problem 7 . . . ... e 429
2.3.8 problem 8 . . . ... e e 433l
2.3.9 problem 9 . . . . .. e e 437
2.3.10 problem 10 . . . . . . .. e e 441]
2.3.11 problem 11 . . . . . . . . 445
2.3.12 problem 12 . . . . . L. 448
2.3.13 problem 13 . . . . . . . . e e e 452

2.3.14 problem 14 . . . . . . . e e e 455
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2.3.1 problem 1

Maple step by step solution . . . . . . ... ... ... ... ... 411
Maple trace . . . . . . . . . 412
Maple dsolve solution . . . . . ... .. ... ... ... .. ..., 412
Mathematica DSolve solution . . . . . ... ... ... ....... 412

Internal problem ID [8734]

Book : First order enumerated odes

Section : section 3. First order odes solved using Laplace method
Problem number : 1

Date solved : Tuesday, December 17, 2024 at 01:01:49 PM
CAS classification : [_linear]

Solve
ty +y=t
With initial conditions
y(0) =5

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

1) % (-1 p(s)

Where in the above F(s) is the laplace transform of f(t). Applying the above property to
each term of the ode gives

y 5 Y (s)
) & d
2 _y(s)—s 2y
ty (s) S(ds (8))
7z 1
t-);

Collecting all the terms above, the ode in Laplace domain becomes

1
Y’
—¢ ?

The above ode in Y(s) is now solved.

Since the ode has the form Y’ = f(s), then we only need to integrate f(s).

1
1

Y=2—82+Cl

Applying inverse Laplace transform on the above gives.

y= 3+ i) 1

Substituting initial conditions y(0) = 5 and 3'(0) = 5 into the above solution Gives

5= 615(0)

Solving for the constant c¢; from the above equation gives

5
Cl = —F—=

4 (0)
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Substituting the above back into the solution (1) gives

_ 5
727500

N | o+

0.57

y(®) 01

Figure 2.100: Soh%t)ion plot
55(t
y=3+%0

Maple step by step solution

Let’s solve

[ty +y =1t,9(0) = 5]
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative
y=1-1

. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y+i=1

° The ODE is linear; multiply by an integrating factor u(t)
pt) (v + %) = u(t)

o Assume the lhs of the ODE is the total derivative 4 (ypu(t))
pt) (v + %) =y'ut) +yu't)

o Isolate p/'(t)

W) =12
° Solve to find the integrating factor

u(t) =t
° Integrate both sides with respect to ¢

J (&(yn(t) dt = [ u(t)dt+ C1
] Evaluate the integral on the lhs

yu(t) = [ p(t) dt + C1

° Solve for y
_ Ju)dt+c1
Y= "u0
o Substitute u(t) =t
dt+C1
y = Jt tt+
° Evaluate the integrals on the rhs
2401

Yy=""=%
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° Simplify
_ t2420C1
by="
° Solution does not satisfy initial condition

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.033 (sec)
Leaf size : 16

~

‘{dsolve([t*diff(y(t),t)+y(t) = t,
| op([y(0) = 51)1,
L y(t) ,method=laplace)
_t %)
¥=2%%50)

Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0

'DSolve[{t+D[y[t],t]+y[t1==t,{y[01==5}},
y[t],t,IncludeSingularSolutions->True]

Not solved
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2.3.2 problem 2

Maple step by step solution . . . . . . ... ... ... ... ... 414
Maple trace . . . . . . . . . L 415
Maple dsolve solution . . . . .. ... ... ... ... .. ..., 415
Mathematica DSolve solution . . . . . ... ... ... ....... 415

Internal problem ID [8735]

Book : First order enumerated odes

Section : section 3. First order odes solved using Laplace method
Problem number : 2

Date solved : Tuesday, December 17, 2024 at 01:01:49 PM
CAS classification : [_separable]

Solve
Yy —ty=0
With initial conditions

y(0)=0

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

A0 D (1) ()

Where in the above F(s) is the laplace transform of f(t). Applying the above property to
each term of the ode gives

v d
—t —Y
y = Y(s)
) &
y — sY(s) —y(0)
Collecting all the terms above, the ode in Laplace domain becomes

sY —y(0)+Y' =0
Replacing y(0) = 0 in the above results in
sY+Y' =0

The above ode in Y(s) is now solved.
In canonical form a linear first order is
Y'+q(s)Y = p(s)

Comparing the above to the given ode shows that

q(s) = s

p(s) =0
The integrating factor u is

b= ef sds

Therefore the solution is
Y =ce” [ sds
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Expanding and simplifying Y (s) found above gives

Applying inverse Laplace transform on the above gives.
y=c L1 (e_é, s,t> (1)
Substituting initial conditions y(0) = 0 and y'(0) = 0 into the above solution Gives
0=cL™! <e‘§, s,t)
Solving for the constant c¢; from the above equation gives
=0
Substituting the above back into the solution (1) gives

y=20

0.5

yo o y()

-0.5-

t t
(a) Solution plot (b) Slope field plot
y=0 Yy —ty=0

Maple step by step solution

Let’s solve

[y’ —yt =0,y5(0) = 0]
° Highest derivative means the order of the ODE is 1

/

Y

° Solve for the highest derivative
y =yt

° Separate variables
/A—

Y
° Integrate both sides with respect to ¢

JLdt = [ tdt+ C1

. Evaluate integral
In(y) =¥ + C1
° Solve for y
y = o7+

o Use initial condition y(0) =0

0=e
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) Solve for _ C1
C1 =)

° Solution does not satisfy initial condition

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.032 (sec)
Leaf size : 5

dsolve([diff (y(t),t)-y(t)*t = O,
op([y(0) = 01)],
y(t) ,method=laplace)

‘{

——————

Mathematica DSolve solution

Solving time : 0.001 (sec)
Leaf size : 6

p
‘ DSolve [{D[y[t],t]-t*y[t]==0,y[0]==0},
‘ y[t],t,IncludeSingularSolutions->True]

y(t) =0
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2.3.3 problem 3

Maple step by step solution . . . . . . ... ... ... ... ... 417
Maple trace . . . . . . . . . 417
Maple dsolve solution . . . . . . ... ... .. .. .. ... ..., 417
Mathematica DSolve solution . . . . . ... ... ... ....... 418

Internal problem ID [8736]

Book : First order enumerated odes

Section : section 3. First order odes solved using Laplace method
Problem number : 3

Date solved : Tuesday, December 17, 2024 at 01:01:50 PM
CAS classification : [_separable]

Solve
ty +y=0
With initial conditions
y(0)=0

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

1) L (-1 p(s)

Where in the above F(s) is the laplace transform of f(t). Applying the above property to
each term of the ode gives

_y(s) — s(diiY(s))

Collecting all the terms above, the ode in Laplace domain becomes
—sY' =0

The above ode in Y(s) is now solved.

Since the ode has the form Y’ = f(s), then we only need to integrate f(s).
/ dY = / 0ds+ c;
Y=¢
Applying inverse Laplace transform on the above gives.
y=ad(t) (1)

Substituting initial conditions y(0) = 0 and y'(0) = 0 into the above solution Gives
0= 015 (0)
Solving for the constant c; from the above equation gives
C1 = 0
Substituting the above back into the solution (1) gives

y=0
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054

yo o y()

(a) Solution plot (b) Slope field plot
y=0 ty +y=0

Maple step by step solution

Let’s solve
[ty' +y = 0,y(0) = 0]
° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables
y _ _1
Yy t

° Integrate both sides with respect to ¢
[Ydt= [ —¢dt+ C1

° Evaluate integral
In(y)=—1n(¢) + C1
° Solve for y
eCI
=t
° Solution does not satisfy initial condition

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

Maple dsolve solution

Solving time : 0.020 (sec)
Leaf size : 5

‘dsolve([t*diff (y(t),t)+y(t) = 0,
| op([y(0) = 011,
‘ y(t) ,method=laplace)
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Mathematica DSolve solution

Solving time : 0.001 (sec)
Leaf size : 6

p
‘ DSolve [{t*D[y[t],t]+y[t]==0,y[0]==0},
‘ y[t],t,IncludeSingularSolutions->True]

y(t) =0
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2.3.4 problem 4

Maple step by step solution . . . . . . ... ... ... ... ... 420
Maple trace . . . . . . . . . L 421
Maple dsolve solution . . . . . . ... ... ... ... .. ... .. 421
Mathematica DSolve solution . . . . . ... ... ... ....... 421

Internal problem ID [8737]

Book : First order enumerated odes

Section : section 3. First order odes solved using Laplace method
Problem number : 4

Date solved : Tuesday, December 17, 2024 at 01:01:51 PM
CAS classification : [_separable]

Solve

ty +y=0
With initial conditions

y(0) =yo

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

A0 D (1) ()

Where in the above F(s) is the laplace transform of f(t). Applying the above property to
each term of the ode gives

¥()-s( 76

Collecting all the terms above, the ode in Laplace domain becomes
—-sY'=0

The above ode in Y(s) is now solved.

Since the ode has the form Y’ = f(s), then we only need to integrate f(s).
/ day = / 0ds+c;
Y=¢
Applying inverse Laplace transform on the above gives.
y = c16(t) 1)

Substituting initial conditions y(0) = yo and 3'(0) = yo into the above solution Gives
Yo = c16(0)

Solving for the constant c¢; from the above equation gives

Yo
5 (0)

C =



CHAPTER 2. BOOK SOLVED PROBLEMS

420

Substituting the above back into the solution (1) gives

y = y05(t)
4 (0)

s 7 77 7 7 117 LV NN NN N N N
o7 7 7 7 7 7 TV N NN N N N N
o777 7 7 7 0T VN N N NN N NN

A= 777 7 T N N N N N N N
A A A A R N N N
s 77 7 7 7 N NN N N N N
=777 7 T VN NN N SN S
e B TN N
-l J VN

yo o e

NN\ [/ S~
——e NNV T S s

Y~~~ \\N VNS S
SSCSOSNNNNNN VS S s
NNSNNNNNN\NN\NN VTV S s s

2INNNNNNN\N NNV S S s
NNNNNNNNN VTV 7SS
~NNNNNNNN NNV LTSS S

73’\\\\\\\\&& “w?j////////
4 -2 0 2 4

t
Figure 2.103: Slope field plot
ty +y=0

Maple step by step solution

Let’s solve

[ty +y = 0,y(0) = yo]
° Highest derivative means the order of the ODE is 1

/

Yy

° Separate variables
y _ _1
Y t

° Integrate both sides with respect to ¢
' 1
JYdt = [—idt+ C1

° Evaluate integral
In(y) =—1In(t) + C1
° Solve for y
eC1
-t

° Solution does not satisfy initial condition



CHAPTER 2. BOOK SOLVED PROBLEMS
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.020 (sec)
Leaf size : 12

-

dsolve([t*diff (y(t),t)+y(t) = O,
| op([y(0) = y__oD1,
‘ y(t) ,method=laplace)

Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0

' DSolve [{t*D [y [t],t]l+y[t]==0,y[0]==yO0},
‘ y[t],t,IncludeSingularSolutions->True]

Not solved
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2.3.5 problem 5

Maple step by step solution . . . . . . ... ... ... ... ... 424
Maple trace . . . . . . . . . 425
Maple dsolve solution . . . . . ... .. ... ... ... .. ..., 425
Mathematica DSolve solution . . . . . ... ... ... ....... 425

Internal problem ID [8738]

Book : First order enumerated odes

Section : section 3. First order odes solved using Laplace method
Problem number : 5

Date solved : Tuesday, December 17, 2024 at 01:01:52 PM
CAS classification : [_separable]

Solve

ty +y=0
With initial conditions

y(o) = vo

Since initial condition is not at zero, then change of variable is used to transform the ode
so that initial condition is at zero.

T=1—129
Solve
(T+2z0)y +y=0
With initial conditions
y(0) = yo

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

" fr) L (-1 p(s)

Where in the above F'(s) is the laplace transform of f(7). Applying the above property
to each term of the ode gives

&
y(r) = Y (s)
d @ d
(T4 z0) | ——y(7) | = =Y (s) —s{ =Y (s) | + zo(sY (s) — y(0))

dr ds

Collecting all the terms above, the ode in Laplace domain becomes
—sY' + zo(sY —y(0)) =0

Replacing y(0) = y, in the above results in

—sY' + zo(sY —y0) =0

The above ode in Y(s) is now solved.

In canonical form a linear first order is

Y’ +q(s)Y = p(s)
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Comparing the above to the given ode shows that

(Z(S) = —%o
ZoYo
p(s) = ——
The integrating factor u is
p= efqu
— ef —xods
— e—xos
The ode becomes
d
L) =
45 WY) = mp
ZoYo
Z(uY) = () (-222)
“ —x0s\ _ (,—%0S _zoyo
Z(Ye) = () (-22)
d(Y e—xos) _ <_$0y0:_ > ds

Integrating gives

_ Zoyoe™ *0°
Y e %05 = /——ds
s

= zoyo Eiy (z08) + ¢1
Dividing throughout by the integrating factor e*°° gives the final solution
Y = e™*(zoyo Ei; (205) + c1)
Applying inverse Laplace transform on the above gives.
ZLoYo

— E_l oS 1
Yy 7_+$0 +Cl (e 787T) ( )

Substituting initial conditions y(0) = yy and y'(0) = y, into the above solution Gives
Yo = c1L7H(e™,5,7) + Yo

Solving for the constant c¢; from the above equation gives
C = 0
Substituting the above back into the solution (1) gives

_ ZoYo
T+ Zo

Changing back the solution from 7 to ¢ using
T=1— Zo

the solution becomes



CHAPTER 2.

BOOK SOLVED PROBLEMS

424

T

[ | )/ /s

s
J
/
14
/
)

/ ///////c////
| )/ /s s

[
/

\ﬁ/////////

==

24

e — — / \ . GG

N O \\ / e ———
e e e OO N \\ \\‘ / / S e ——
|

oo\
\\\\\\\\\
ol SNONNNNNN
SONNN

0
t

Figure 2.104: Slope field plot
E(2y(t) +y(t) = 0

Maple step by step solution

Let’s solve

ty' +y = 0,y(z0) = o]
Highest derivative means the order of the ODE is 1

/

Yy
Separate variables

v _ _1
y ot

Integrate both sides with respect to ¢
JLdt = [—1dt+ C1

Evaluate integral

In(y)=—1In(¢) + C1

Solve for y

_ eC1

-t
Use initial condition y(zo) = yo

C1
S
Yo = "4,

Solve for _C1
C1 = In (zoyo)
Substitute __C1 = In (zoyo) into general solution and simplify

y = oo
t

Solution to the IVP
Toyo

Y=
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.028 (sec)
Leaf size : 10

-

dsolve([t*diff (y(t),t)+y(t) = O,
| op([y(x__0) = y__0D1,
‘ y(t) ,method=laplace)

Mathematica DSolve solution

Solving time : 1.702 (sec)
Leaf size : 11

'DSolve [{t*D[y[t],t]+y[t]==0,y[x0]==y0},

‘ y[t],t,IncludeSingularSolutions->True]

y(t) —

x0y0
t
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2.3.6 problem 6

Maple step by step solution . . . . . . ... ... ... ... ... 427
Maple trace . . . . . . . . . 427
Maple dsolve solution . . . . . ... .. ... ... ... .. ..., 427
Mathematica DSolve solution . . . . . ... ... ... ....... 428

Internal problem ID [8739]

Book : First order enumerated odes

Section : section 3. First order odes solved using Laplace method
Problem number : 6

Date solved : Tuesday, December 17, 2024 at 01:01:52 PM
CAS classification : [_separable]

Solve
ty +y=0
Since no initial condition is explicitly given, then let
y(0) = cx

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

e f(0) S (1) ()

Where in the above F(s) is the laplace transform of f(t). Applying the above property to
each term of the ode gives

¥()-s( 176

Collecting all the terms above, the ode in Laplace domain becomes
—-sY'=0

The above ode in Y(s) is now solved.

Since the ode has the form Y’ = f(s), then we only need to integrate f(s).
/ day = / 0ds +cy
Y =¢
Applying inverse Laplace transform on the above gives.
y = c26(t) 1)

Substituting initial conditions y(0) = ¢; and 3(0) = ¢; into the above solution Gives
C1 = 025 (0)

Solving for the constant c; from the above equation gives

&

5 (0)

Cy =
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Substituting the above back into the solution (1) gives

615(t)
750
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Figure 2.105: Slope field plot

ty +y=0

Maple step by step solution

Let’s solve
ty +y=0

° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables

v — _1

Yy t

° Integrate both sides with respect to ¢

JYdt= [ —¢dt+ C1

° Evaluate integral
In(y) =—1In(t) + C1
° Solve for y
eCI

t

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.027 (sec)
Leaf size : 8

‘dsolve (t*diff (y(t),t)+y(t) = 0,
‘ y(t) ,method=laplace)

y = c10(?)
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Mathematica DSolve solution

Solving time : 0.02 (sec)
Leaf size : 16

p
' DSolve [{t*D[y[t],t]+y[t]==0,{}},
‘ y[t],t,IncludeSingularSolutions->True]
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2.3.7 problem 7

Maple step by step solution . . . . . . ... ... ... ... ... 437
Maple trace . . . . . . . . . L 431
Maple dsolve solution . . . . .. ... ... ... ... .. ..., 432
Mathematica DSolve solution . . . . . ... ... ... ....... 432

Internal problem ID [8740]

Book : First order enumerated odes

Section : section 3. First order odes solved using Laplace method
Problem number : 7

Date solved : Tuesday, December 17, 2024 at 01:01:53 PM
CAS classification : [_separable]

Solve
ty +y=0
With initial conditions
y(1) =5

Since initial condition is not at zero, then change of variable is used to transform the ode
so that initial condition is at zero.

T=t-1
Solve
(T+1)y +y=0
With initial conditions
y(0) =5

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

" fr) L (1) p(s)

Where in the above F'(s) is the laplace transform of f(7). Applying the above property
to each term of the ode gives

2y Y (s)

y(r) =
(r+1) <%y(7)) 2 _y(s) - s(%Y(s)) +5Y(s) — 4(0)

Collecting all the terms above, the ode in Laplace domain becomes
—sY' +sY —y(0)=0
Replacing y(0) = 5 in the above results in
—sY'+sY —-5=0

The above ode in Y(s) is now solved.

In canonical form a linear first order is

Y’ +q(s)Y = p(s)
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Comparing the above to the given ode shows that

q(s) =-1
5
p(s)=—1
The integrating factor u is
p= efqu
— ef(_l)ds
—e 5
The ode becomes
d
Ly =
4 WY) = mp
d 5
Ly = _°
)= (-2)

Integrating gives

Ye* = / _5e ds
s
=5 E11 (S) +c
Dividing throughout by the integrating factor e™* gives the final solution
Y =¢€°(5 Eiy (s) +¢c1)

Applying inverse Laplace transform on the above gives.

Substituting initial conditions y(0) = 5 and y'(0) = 5 into the above solution Gives
5=c L7 s,7)+5
Solving for the constant c¢; from the above equation gives

01:0

Substituting the above back into the solution (1) gives

Changing back the solution from 7 to ¢ using
T=1t—1
the solution becomes

y(t) = %
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yo of v

(b) Slope field plot
y(t) =} t(&y(®) +y(t) =0

(a) Solution plot

Maple step by step solution

Let’s solve
[ty +y =0,y(1) = 5]
° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables
y 1
Yy t

° Integrate both sides with respect to ¢
/ 1
JYdt = [—tdt+ C1

° Evaluate integral
In(y) =—1In(t) + C1
° Solve for y
eC1

t

o Use initial condition y(1) =5
5=e"
° Solve for _ C1
C1 =In(5)
. Substitute __C1 = In (5) into general solution and simplify
_5
by=+
. Solution to the IVP

y=>2

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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Maple dsolve solution

Solving time : 0.046 (sec)
Leaf size : 9

‘dsolve([t*diff(y(t),t)+y(t) =0,
| op([y(1) = 511,
‘ y(t) ,method=laplace)

| Ot

Mathematica DSolve solution

Solving time : 0.019 (sec)
Leaf size : 10

‘ DSolve [{t*D[y[t],t]+y[t]==0,y[1]==5},
‘ y[t],t,IncludeSingularSolutions->True]

| Ot

y(t) —
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2.3.8 problem 8

Maple step by step solution . . . . . . ... ... ... ... ... 435
Maple trace . . . . . . . . . L 436
Maple dsolve solution . . . . .. ... ... ... ... .. ..., 436
Mathematica DSolve solution . . . . . ... ... ... ....... 436

Internal problem ID [8741]

Book : First order enumerated odes

Section : section 3. First order odes solved using Laplace method
Problem number : 8

Date solved : Tuesday, December 17, 2024 at 01:01:54 PM
CAS classification : [_linear]

Solve
ty' +y =sin (¢)
With initial conditions
y(1) =0

Since initial condition is not at zero, then change of variable is used to transform the ode
so that initial condition is at zero.

T=t-—1
Solve
(1+ 1)y +y=sin(r+1)
With initial conditions

y(0) =0

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

7 fr) L (-1 F(s)

Where in the above F'(s) is the laplace transform of f(7). Applying the above property

to each term of the ode gives

y(r) 5 Y (s)

(r+1) (%y(ﬂ) 2 _y(s) - s(%Y(s)) +5Y(s) — 4(0)

. 2 sin(1) s+ cos (1)
1) —
sin (7 + 1) 211

Collecting all the terms above, the ode in Laplace domain becomes

sin (1) s + cos (1)
—sY '+ Y — =
sY'+s y(0) o
Replacing y(0) = 0 in the above results in
in (1 1
sV 4 sY = sin ( );s—i-cos( )
s44+1

The above ode in Y(s) is now solved.
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In canonical form a linear first order is
Y' +q(s)Y = p(s)
Comparing the above to the given ode shows that
q(s) = -1

—sin (1) s — cos (1)
(s2+41)s

p(s) =

The integrating factor y is
p=e Jqds

—S8

The ode becomes

_ —sin (1) s —cos (1)
L) = (EEE )

ey - o) (TR )

ds (s24+1)s
_oy_ [(=sin(1)s—cos(1))e*
d(Ye™) = < (s2+1)s > ds

Integrating gives
Vet — / (—sin(1) s —cos (1)) e™ ds
(s24+1)s
= —cos (1) (ei Bl ;S +i) e’ Eilz(s —1i) Ei, (S)) +sin (1) (ze Ei; 2(3 +i)  de Ei12 (s — i))

Dividing throughout by the integrating factor e™* gives the final solution
(—2cos (1) Ei; (s) + Eiy (s +14) + Eiy (s —4) — 2¢1) €°

Y =
2
Applying inverse Laplace transform on the above gives.
cos (1) . cos (7 +1)
= L7(ef - 1
Yy 7_+1 +c (8,8,7') 7'+2 ()

Substituting initial conditions y(0) = 0 and 3'(0) = 0 into the above solution Gives

cos (1)

0=c L7 (e’ s,7) + 5

Solving for the constant c¢; from the above equation gives
cos (1)
2L71 (e%,s,7)

Substituting the above back into the solution (1) gives

C1 =

_cos(l) cos(l) cos(r+1)
CoT+1 2 T+2

Changing back the solution from 7 to ¢ using
T=1t—1

the solution becomes
_cos(l) cos(l) cos(t)

t 2 t+1
The solution was found not to satisfy the ode or the IC. Hence it is removed.
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Maple step by step solution

Let’s solve
[ty' +y =sin(¢),y(1) = 0]
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
_ in(t)
y=—t+5

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

__ sin(#)
y+i==5

° The ODE is linear; multiply by an integrating factor u(t)
ult) (v +4) = 4050
o Assume the Ihs of the ODE is the total derivative 4 (ypu(t))

pt) (¥ +4) = y'ut) +yu'¢)
o Isolate u'(t)

W) =12

° Solve to find the integrating factor
u(t) =t

° Integrate both sides with respect to ¢
J (Gilyn(2))) dt = [ #0520t + C1

° Evaluate the integral on the lhs
yu(t) = [ 2520 gt 4 o1

° Solve for y

. I ”(t)ii“(t)dt+01
Yy="w0

o Substitute u(t) =t
y = fsin(t)tdt+01

° Evaluate the integrals on the rhs

— cos C1
y = elo)t

o Use initial condition y(1) =0
0=—cos(1)+ C1
) Solve for _ C1

C1 = cos (1)
° Substitute _C1 = cos (1) into general solution and simplify
y= —cos(t)t+cos(1)
° Solution to the IVP
— cos(t)+cos(1)

y= t
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.237 (sec)
Leaf size : maple_leaf size

-

dsolve([t*diff (y(t),t)+y(t) = sin(t),
| op([y(1) = o],
‘ y(t) ,method=laplace)

No solution found

Mathematica DSolve solution

Solving time : 0.09 (sec)
Leaf size : 16

‘ DSolve [{t*D[y[t],t]+y[t]1==Sin[t],y[1]==0},
‘ y[t],t,IncludeSingularSolutions->True]

cos(1) — cos(t)

y(t) —

t




CHAPTER 2. BOOK SOLVED PROBLEMS 437
2.3.9 problem 9
Maple step by step solution . . . ... ... ... ..... 439

Maple trace . . . . . . . . ... oL
Maple dsolve solution . . . ... ... ... ........
Mathematica DSolve solution . . . . . ... .. ......

Internal problem ID [8742]

Book : First order enumerated odes

Section : section 3. First order odes solved using Laplace method
Problem number : 9

Date solved : Tuesday, December 17, 2024 at 01:01:54 PM
CAS classification : [_linear]

Solve
ty +y=t
With initial conditions

y(1) =0

Since initial condition is not at zero, then change of variable is used to transform the ode

so that initial condition is at zero.
T=t—1
Solve
(r+1)y+y=7+1
With initial conditions

y(0) =0

We will now apply Laplace transform to each term in the ode. Since this is time varying,

the following Laplace transform property will be used

7 fr) L (-1 F(s)

Where in the above F'(s) is the laplace transform of f(7). Applying the above property

to each term of the ode gives

Collecting all the terms above, the ode in Laplace domain becomes

1
—sY' +sY —y(0) = _'; s
s
Replacing y(0) = 0 in the above results in
—sY'+sY = ! —z s
s

The above ode in Y(s) is now solved.
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In canonical form a linear first order is
Y +q(s)Y = p(s)

Comparing the above to the given ode shows that

q(s) = -1
—s—1
p(s) = —3
The integrating factor u is
L= efqu
= e_s
The ode becomes
Loy =
15 (WY) = pp
d s—1
—(pY
L= (=)
d s _ [—s—1
Lre) =) (75
-5 (_S — 1) e’
d(Ye) = ( Do) as

Integrating gives

83
e e Eil(s)
2219 2

Dividing throughout by the integrating factor e™® gives the final solution

2c; e°s? — Eij (s)e’s’ +s+1
Y =
2s?

Applying inverse Laplace transform on the above gives.

18 1 1
y=acl l(e,S,T)—m+§+2

9

Substituting initial conditions y(0) = 0 and 3'(0) = 0 into the above solution Gives
0=c L(efs,7)

Solving for the constant c¢; from the above equation gives
C1 = 0
Substituting the above back into the solution (1) gives

_L_o 1 T
YT T 2r+) T2

Changing back the solution from 7 to ¢ using

T=t—-1

1)
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the solution becomes

y(t)

2

1 ¢t
)= —— 4 —
y(t) =—5, +5
/ ]
//
e ) y(t) 0
] (: 1 l
(a) Solution plot (b) Slope field plot
y(t) = -5 +3 t(&y®) +yt) =t

Maple step by step solution

Let’s solve
[ty +y=1¢,y(1) =0
Highest derivative means the order of the ODE is 1

/

Yy
Isolate the derivative

y=1-1%
Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y+i=1
The ODE is linear; multiply by an integrating factor u(t)
pt) (v' + %) = u(t)
Assume the Ihs of the ODE is the total derivative < (ypu(t))
pt) (v + %) = y'ut) +yu'(t)
Isolate p/'(t)
t
W) =12
Solve to find the integrating factor
u(t) =t
Integrate both sides with respect to ¢
J (& (yn(®)) dt = [ u(t)dt + C1
Evaluate the integral on the lhs

yult) = [ u(t) dt + C1

Solve for y

_ Jp@dt+cCt
V="

Substitute u(t) =t

__ [tdt+C1
- t

Evaluate the integrals on the rhs

21
-t
Simplify
__ t?42C1
y= 2t

Use initial condition y(1) =0
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0=C1+1
° Solve for _ C1
C1=-1
° Substitute _ C1 = —% into general solution and simplify
y= "5
° Solution to the IVP
t2-1

2t

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.058 (sec)
Leaf size : 13

‘dsolve([t*diff (y(t),t)+y(t) = t,
| op(ly(1) = 011,
‘ y(t) ,method=laplace)

Mathematica DSolve solution

Solving time : 0.022 (sec)
Leaf size : 17

‘ DSolve [{t*D[y[t],t]+y[t]==t,y[1]==0},
‘ y[t],t,IncludeSingularSolutions->True]

-1
2t

y(t) —




CHAPTER 2. BOOK SOLVED PROBLEMS 441

2.3.10 problem 10

Maple step by step solution . . . . . . ... ... ... ... ... 443
Maple trace . . . . . . . . . L 444
Maple dsolve solution . . . . . . ... ... ... ... .. ... .. 444
Mathematica DSolve solution . . . . . ... ... ... ....... 1444

Internal problem ID [8743]

Book : First order enumerated odes

Section : section 3. First order odes solved using Laplace method
Problem number : 10

Date solved : Tuesday, December 17, 2024 at 01:01:55 PM
CAS classification : [_linear]

Solve
ty +y=t
With initial conditions
y(1) =1

Since initial condition is not at zero, then change of variable is used to transform the ode
so that initial condition is at zero.

T=t—1
Solve
(T+D)y+y=7+1
With initial conditions
y(0)=1

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

7 fr) L (-1 F(s)

Where in the above F'(s) is the laplace transform of f(7). Applying the above property
to each term of the ode gives

Collecting all the terms above, the ode in Laplace domain becomes

1
—sY' +sY —y(0) = _'; s
s
Replacing y(0) = 1 in the above results in
—sY'+sY —1= 1—28
s

The above ode in Y(s) is now solved.
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In canonical form a linear first order is
Y +q(s)Y = p(s)

Comparing the above to the given ode shows that

q(s) = -1
—s?2—s—1
p(s) = =
The integrating factor u is
p=e Jqds
— ef(_l)ds
= e_S
The ode becomes
d
Ly =
45 WY) = pp

Integrating gives

Q2 o —s
Ye_sz/( s=s—le ds

83
e e ® Ei(s)
T2t s T Ta

Dividing throughout by the integrating factor e™* gives the final solution

_ 2c1€°s* + Eij (s)e’s® + 5+ 1

Y
252

Applying inverse Laplace transform on the above gives.

T
or+2 2" 2

y=cL7(e’,s,7) +
Substituting initial conditions y(0) = 1 and 3'(0) = 1 into the above solution Gives

1=ci L7 (e, s,7)+1

Solving for the constant c¢; from the above equation gives
Cci = 0
Substituting the above back into the solution (1) gives

1 1 T

V=5t 51273

Changing back the solution from 7 to ¢ using

T=t—-1

(1)
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the solution becomes

y(t)

24

(a) Solution plot (b) Slope field plot
y(t) =5 +3 t(&y®) +yt) =t

Maple step by step solution

Let’s solve
[ty +y=1¢y(1) =1]
Highest derivative means the order of the ODE is 1

/

Yy
Isolate the derivative

y=1-1%
Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y+i=1
The ODE is linear; multiply by an integrating factor u(t)
pt) (v' + %) = u(t)
Assume the Ihs of the ODE is the total derivative < (ypu(t))
pt) (v + %) = y'ut) +yu'(t)
Isolate p/'(t)
t
W) =12
Solve to find the integrating factor
u(t) =t
Integrate both sides with respect to ¢
J (& (yn(®)) dt = [ u(t)dt + C1
Evaluate the integral on the lhs

yult) = [ u(t) dt + C1

Solve for y

_ Jp@dt+cCt
V="

Substitute u(t) =t

__ [tdt+C1
- t

Evaluate the integrals on the rhs

21
-t
Simplify
__ t?42C1
y= 2t

Use initial condition y(1) =1
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1=01+1
° Solve for _ C1
C1=1
° Substitute _ C1 = % into general solution and simplify
— 241

2t
° Solution to the IVP

_ t241
- 2

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.053 (sec)
Leaf size : 13

‘dsolve([t*diff (y(t),t)+y(t) = t,
| op(ly(1) = 111,
‘ y(t) ,method=laplace)

Mathematica DSolve solution

Solving time : 0.022 (sec)
Leaf size : 17

‘ DSolve [{t*D[y[t],t]+y[tl==t,y[1]==1},
‘ y[t],t,IncludeSingularSolutions->True]

t?+1

y(t) = —;
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2.3.11 problem 11

Maple step by step solution . . . . . . ... ... ... ... ... 446
Maple trace . . . . . . . . . L 447
Maple dsolve solution . . . . . . ... ... ... ... .. ... .. 44T
Mathematica DSolve solution . . . . . ... ... ... ....... 447

Internal problem ID [8744]

Book : First order enumerated odes

Section : section 3. First order odes solved using Laplace method
Problem number : 11

Date solved : Tuesday, December 17, 2024 at 01:01:56 PM
CAS classification : [_separable]

Solve
Y +t*y =0
With initial conditions
y(0)=0

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

1) L (-1 F(s)

Where in the above F(s) is the laplace transform of f(¢). Applying the above property to
each term of the ode gives

2, £ &’
&
y = sY(s) —y(0)
Collecting all the terms above, the ode in Laplace domain becomes

sY —y(0)+Y"=0
Replacing y(0) = 0 in the above results in

sY+Y"=0

The above ode in Y(s) is now solved.
This is Airy ODE. It has the general form
aY" +bY' + csY = F(s)

Where in this case

Therefore the solution to the homogeneous Airy ODE becomes

Y = ¢; AiryAi(—s) + c2 AiryBi (—s)
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Will add steps showing solving for IC soon.
Applying inverse Laplace transform on the above gives.

y = ci L7 (AiryAi (—s), s,t) + oL (AiryBi (—s), s, 1) (1)

Substituting initial conditions y(0) = 0 and 3'(0) = 0 into the above solution Gives

0 = c; L7 (AiryAi (—s), 5,t) + oL (AiryBi (—s), s, 1)

Solving for the constant c¢; from the above equation gives

_ L '(AiryBi(-s),s,t)

VT T (AiryAi (—s), s, 0)

Substituting the above back into the solution (1) gives

y=0

057

y o

y()

054

04

—0.5

77

(a) Solution plot
y=0

Maple step by step solution

Let’s solve
[y +yt*> = 0,y(0) = 0]

(b) Slope field plot

° Highest derivative means the order of the ODE is 1

/

Y
° Solve for the highest derivative
y = —yt’
° Separate variables
v — g2
Yy

° Integrate both sides with respect to ¢

JLdt = [ —t*dt+ C1

° Evaluate integral
3
In(y) = -5+ C1
° Solve for y
y = e T H01
o Use initial condition y(0) =0
0=e"
° Solve for _C1
C1 =)

° Solution does not satisfy initial condition

10
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.071 (sec)
Leaf size : 40

-

dsolve([diff (y(t),t)+y(t)*t~2 = 0,
| op([y(0) = 011,
‘ y(t) ,method=laplace)

_ L7V (AiryBi (—_s1),_s1,0) L7 (AiryAi (—_s1),_s1,t)

L1 (AiryAi(—_s1),_s1,0)
+ e L7 (AiryBi (—_s1),_sl1,t)
Mathematica DSolve solution

Solving time : 0.001 (sec)
Leaf size : 6

e

DSolve [{D[y[t],t]+t~2*y[t]==0,y[0]==0},
‘ y[t],t,IncludeSingularSolutions->True]

y(t) =0
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2.3.12 problem 12

Maple step by step solution . . . . . . ... ... ... ... ... 4500
Maple trace . . . . . . . . . 4511
Maple dsolve solution . . . . . . ... ... .. .. .. ... ..., 451
Mathematica DSolve solution . . . . . ... ... ... ....... 451

Internal problem ID [8745]

Book : First order enumerated odes

Section : section 3. First order odes solved using Laplace method
Problem number : 12

Date solved : Tuesday, December 17, 2024 at 01:01:57 PM
CAS classification : [_linear]

Solve
(at+1)y +y=t
With initial conditions
y(1) =0

Since initial condition is not at zero, then change of variable is used to transform the ode
so that initial condition is at zero.

T=t—1
Solve
(a(r+ )+ )y +y=7+1
With initial conditions
y(0)=0

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

" fr) L (-1 F(s)

Where in the above F'(s) is the laplace transform of f(7). Applying the above property
to each term of the ode gives

y(r) 5 Y(s)

(@r+a+1) (430) £ -a(YE)+5( £Y6) ) + alsY(9) - 90) + 5Y(5) - (O

1
r+15 —28
s

Collecting all the terms above, the ode in Laplace domain becomes

_1—|—s

—a(Y +sY') +a(sY —y(0)) + sY —y(0)+ Y 2

Replacing y(0) = 0 in the above results in

1+s

—a(Y +sY')+asy +sY +Y = —
s

The above ode in Y(s) is now solved.
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In canonical form a linear first order is
Y +q(s)Y =p(s)
Comparing the above to the given ode shows that

(s—1Da+1+s

q(s) = — -
—s—1
p(S) - s3a
The integrating factor y is
b= efqu
_ of ity
a—1 _ s(a+1)
= S a @€ a
The ode becomes
d
2 (uy) =
45 WY) = pp
d
ds

) =) (5.
)

d a=1 _ s(a+1) a=1 _ s(a+1)
—<Y3 a @ a > = (s a @ a

afy s e ) = ((—s - 1) s%:le—s<“:1>> .

Integrating gives

(a+1) (—s—1) s e

a—1 _ s(a+ —S — a a

Ysae o = 3 ds
s3a

s(a+1)
—ner)

_9ya—=1
s2+ae

- a+1 ta

(a+1)

Dividing throughout by the integrating factor s e e gives the final solution

a+1 s(a+1)

_1+csae(a+1)e o
B 2 (a+1)

Applying inverse Laplace transform on the above gives.

y=_— +c L7t <es+§s_1+%, s, 7') (1)

Y

Substituting initial conditions y(0) = 0 and 3'(0) = 0 into the above solution Gives
0=c L™ (e”gs_”%, s, 7')

Solving for the constant c¢; from the above equation gives
Cc1 = 0

Substituting the above back into the solution (1) gives

Changing back the solution from 7 to ¢ using
T=1t—-1

the solution becomes
_t—1
T a+1

y(t)
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Maple step by step solution

Let’s solve
[(at +1)y' +y=ty(1) =0]
° Highest derivative means the order of the ODE is 1

/

Yy
° Solve for the highest derivative
_ —ytt
yl - afiy-l—l
° Collect w.r.t. y and simplify
— t
V=—antan

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

’ y _ t
Yy + at+1 =~ at+1

. The ODE is linear; multiply by an integrating factor u(t)
p(t) (v + at:l—ll—l) = Zt(i)f

o Assume the Ihs of the ODE is the total derivative 4 (ypu(t))
p() (v + ) = Y(t) + yu'(t)

o Isolate p/'(t)

_ @)
pt) =4

° Solve to find the integrating factor
u(t) = (at +1)s

° Integrate both sides with respect to ¢
S (L(ype)) dt = [ “9%qt 4 C1

° Evaluate the integral on the lhs
yu(t) = [ 2Dgt 4 1

at+1

° Solve for y
_ [ e

Y= 7w

Q=

e  Substitute u(t) = (at + 1)

1
JHett e g4 oy

y= (at+1)a
° Evaluate the integrals on the rhs
1
y— (t—1);itfu1)a+01
(at+1)a
° Simplify
-1+ (at+1)" 3 C1(atl)
y= a+1

o Use initial condition y(1) =0

0=(a+1)" C1
) Solve for _ C1

C1=0

° Substitute _ C1 = 0 into general solution and simplify
y =1

° Solution to the IVP

_ t-1
Y= a+1
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.079 (sec)
Leaf size : 13

-

| op(ly(1) = o1,
‘ y(t) ,method=laplace)

dsolve([(a*t+1)*diff (y(t),t)+y(t) = t,

t—1

Mathematica DSolve solution

Solving time : 0.897 (sec)
Leaf size : 14

a+1

'DSolve[{(1+a*t)*D[y[t],t]+y[t]==t,y[1]==0},
‘ y[t],t,IncludeSingularSolutions->True]

y(t) —

a+1
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2.3.13 problem 13

Maple step by step solution . . . . . . ... ... ... ... ... 453
Maple trace . . . . . . . . . 4541
Maple dsolve solution . . . . . ... .. ... ... ... .. ..., 454
Mathematica DSolve solution . . . . . ... ... ... ....... 454

Internal problem ID [8746]

Book : First order enumerated odes

Section : section 3. First order odes solved using Laplace method
Problem number : 13

Date solved : Tuesday, December 17, 2024 at 01:01:57 PM
CAS classification : [_separable]

Solve
Y+ (at+bt)y=0
With initial conditions
y(0)=0

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

£10) D (<1 ()

Where in the above F(s) is the laplace transform of f(t). Applying the above property to
each term of the ode gives

d d
)y S —a| —Y(s) | —b( Y
(at +bt)y = a(ds (s)> (ds (s))
&z

y = Y(s)s—y(0)
Collecting all the terms above, the ode in Laplace domain becomes

Ys—y(0)—aY' —bY'=0
Replacing y(0) = 0 in the above results in

Ys—aY' —bY' =0

The above ode in Y(s) is now solved.

In canonical form a linear first order is
Y'+q(s)Y = p(s)
Comparing the above to the given ode shows that

q(s) = —
p(s)=0

S
a+b

The integrating factor u is
p=e Jqds
—e J —aypds

— e 2a+2b
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The ode becomes

%MY:O
%(Ye_mzf%) —0

Integrating gives
s2
Y e 2at28 = /Ods +c
= Cl
S2
Dividing throughout by the integrating factor e 2++26 gives the final solution
32
Y =c e
Applying inverse Laplace transform on the above gives.
2
y=c L <e2Tr2b, s, t) (1)

Substituting initial conditions y(0) = 0 and 3'(0) = 0 into the above solution Gives
2
0=c¢L™? (em, s, t)

Solving for the constant c¢; from the above equation gives
C1 = 0
Substituting the above back into the solution (1) gives

y=0

0.5

y(®) 0

Figure 2.110: Solution plot
y=0

Maple step by step solution

Let’s solve
[y’ + (at +bt)y = 0,(0) = 0]
° Highest derivative means the order of the ODE is 1

/

Yy
° Solve for the highest derivative
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y = —(at +bt)y
° Separate variables

Y — _qat — bt
Yy

° Integrate both sides with respect to ¢
JLdt = [ (—at —bt)dt + CI

° Evaluate integral
In(y) = —tz(aTJ’b) + C1
° Solve for y
y = e 3t’a—5t°b+C1
e  Use initial condition y(0) =0
0 =e"
) Solve for _C1
C1 =)
° Solution does not satisfy initial condition

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.032 (sec)
Leaf size : 5

‘dsolve([diff (y(t),t)+(a*t+bxt)*y(t) = 0,
| op([y(0) = 011,
‘ y(t) ,method=laplace)

Mathematica DSolve solution

Solving time : 0.001 (sec)
Leaf size : 6

‘ DSolve [{D[y[t],t]+(axt+b*t)*y[t]==0,y[0]==0},
L y[t],t,IncludeSingularSolutions->True]

y(t) =0
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2.3.14 problem 14

Maple step by step solution . . . . . . ... ... ... ... ... 457
Maple trace . . . . . . . . . L 457
Maple dsolve solution . . . . .. ... ... ... ... .. ..., 457
Mathematica DSolve solution . . . . . ... ... ... ....... 457

Internal problem ID [8747]

Book : First order enumerated odes

Section : section 3. First order odes solved using Laplace method
Problem number : 14

Date solved : Tuesday, December 17, 2024 at 01:01:58 PM
CAS classification : [_separable]

Solve
Y+ (at+bt)y=0
With initial conditions
y(=3) =0

Since initial condition is not at zero, then change of variable is used to transform the ode
so that initial condition is at zero.

T=t+3
Solve
Yy +(a(r=3)+b(r—3)y=0
With initial conditions
y(0)=0

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

7 1r) S (<1 ()

Where in the above F'(s) is the laplace transform of f(7). Applying the above property
to each term of the ode gives

(a7 + br — 30— 3b) y(r) 5 —a(diiY(s)) _ b(%Y(s)) _ 3aY(s) — 3bY(s)
2Ly(r) 5 ¥ ()5 - y(0)

Collecting all the terms above, the ode in Laplace domain becomes
Ys—y(0) —aY' —bY' —3aY —3bY =0
Replacing y(0) = 0 in the above results in
Ys—aY' —bY' —3aY —3bY =0

The above ode in Y(s) is now solved.

In canonical form a linear first order is

Y’ +q(s)Y = p(s)
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Comparing the above to the given ode shows that

(s) = _—3a—3b+s
08 = a+b
p(s)=0
The integrating factor u is
o= efqu
= ef__3ljz:—?;zb+s ds
s(6a+6b—s)
— e 2at2b
The ode becomes
d
—uY =0
ds“
di (y o ot ”) -0
s

Integrating gives

s(6a+6b—s)

Y e 2at20 :/0d3+c1

= Cl
Dividing throughout by the integrating factor e 2¢+26 gives the final solution

_ 8(Ba+6b—s)
Y =cC1e 2a+2b

Applying inverse Laplace transform on the above gives.
s(6a+6b—s)
y=al (T s ) 1)

Substituting initial conditions y(0) = 0 and 3'(0) = 0 into the above solution Gives

0=cL! (e_sw;:fg;” y S, 7')
Solving for the constant ¢; from the above equation gives
C1 = 0
Substituting the above back into the solution (1) gives
y=0
Changing back the solution from 7 to ¢ using
T=1t+3

the solution becomes

y(t) =0

0.5

y(®) 0

Figure 2.111: Solution plot
y(t) =0
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Maple step by step solution

Let’s solve
[y + (at + bt) y = 0,y(—3) = (]
° Highest derivative means the order of the ODE is 1

/

Y

° Solve for the highest derivative
y =—(at+0bt)y

° Separate variables
Y — _at —bt

Y
° Integrate both sides with respect to ¢

JLdt = [ (—at —bt)dt + CI

° Evaluate integral
In(y) = —tz(aT'H’) + C1
° Solve for y
y = e~ 3t’a—5t°b+C1
) Use initial condition y(—3) =0
0=e 35— %2+C1
) Solve for _C1
C1 =)
° Solution does not satisfy initial condition

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.032 (sec)
Leaf size : 5

‘dsolve([diff (y(t),t)+(a*t+bxt)*y(t) = 0,
| op([y(-3) = o1,
‘ y(t) ,method=laplace)

Mathematica DSolve solution

Solving time : 0.001 (sec)
Leaf size : 6

'DSolve[{D[y[t],t]+(a*t+bst)*y[t]==0,y[-3]1==0},
‘ y[t],t,IncludeSingularSolutions->True]

y(t) =0
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