A Solution Manual For

First order enumerated odes

Nasser M. Abbasi December 31, 2024 Compiled on December 31, 2024 at 7:19am

Contents

1	Lookup tables for all problems in current book	5
2	Book Solved Problems	11

CONTENTS 4

1		
CHAPTER I		

LOOKUP TABLES FOR ALL PROBLEMS IN CURRENT BOOK

1.1	section $1 \ldots \ldots \ldots \ldots \ldots$	6
1.2	section 2 (system of first order odes)	9
1.3	section 3 First order odes solved using Laplace method	g

1.1 section 1

Table 1.1: Lookup table for all problems in current section

ID	problem	ODE
8661	1	y' = 0
8662	2	y'=a
8663	3	y'=x
8664	4	y'=1
8665	5	y' = ax
8666	6	y' = axy
8667	7	y' = ax + y
8668	8	y' = ax + by
8669	9	y' = y
8670	10	y' = by
8671	11	$y' = ax + by^2$
8672	12	cy' = 0
8673	13	cy' = a
8674	14	cy' = ax
8675	15	cy' = ax + y
8676	16	cy' = ax + by
8677	17	cy' = y
8678	18	cy' = by
8679	19	$cy' = ax + by^2$
8680	20	$cy' = \frac{ax + by^2}{r}$
8681	21	$cy' = \frac{ax + by^2}{rx}$
8682	22	$cy' = \frac{ax + by^2}{r x^2}$
		Continued on next page

Table 1.1 Lookup table Continued from previous page

ID	problem	ODE
8683	23	$cy' = \frac{ax + by^2}{y}$
8684	24	$a\sin\left(x\right)yxy'=0$
8685	25	$f(x)\sin(x)yxy'\pi=0$
8686	26	$y' = \sin\left(x\right) + y$
8687	27	$y' = \sin\left(x\right) + y^2$
8688	28	$y' = \cos\left(x\right) + \frac{y}{x}$
8689	29	$y' = \cos\left(x\right) + \frac{y^2}{x}$
8690	30	$y' = x + y + by^2$
8691	31	xy'=0
8692	32	5y' = 0
8693	33	ey' = 0
8694	34	$\pi y' = 0$
8695	35	$\sin\left(x\right)y'=0$
8696	36	f(x) y' = 0
8697	37	xy'=1
8698	38	$xy' = \sin\left(x\right)$
8699	39	(x-1)y'=0
8700	40	yy'=0
8701	41	xyy'=0
8702	42	$xy\sin\left(x\right)y'=0$
8703	43	$\pi y \sin\left(x\right) y' = 0$
8704	44	$x\sin\left(x\right)y'=0$
8705	45	$x\sin\left(x\right)y'^2 = 0$
8706	46	$yy'^2 = 0$
		Continued on next page

Table 1.1 Lookup table Continued from previous page

ID	problem	ODE
8707	47	$y'^n = 0$
8708	48	$xy'^n = 0$
8709	49	$y'^2 = x$
8710	50	$y'^2 = x + y$
8711	51	$y'^2 = \frac{y}{x}$
8712	52	$y'^2 = \frac{y^2}{x}$
8713	53	$y'^2 = \frac{y^3}{x}$
8714	54	$y'^3 = \frac{y^2}{x}$
8715	55	$y'^2 = \frac{1}{yx}$
8716	56	$y'^2 = \frac{1}{xy^3}$
8717	57	$y'^2 = \frac{1}{x^2 y^3}$
8718	58	$y'^4 = \frac{1}{xy^3}$
8719	59	$y'^2 = \frac{1}{x^3 y^4}$
8720	60	$y' = \sqrt{1 + 6x + y}$
8721	61	$y' = (1 + 6x + y)^{1/3}$
8722	62	$y' = (1 + 6x + y)^{1/4}$
8723	63	$y' = (a + bx + y)^4$
8724	64	$y' = (\pi + x + 7y)^{7/2}$
8725	65	$y' = (a + bx + cy)^6$
8726	66	$y' = e^{x+y}$
8727	67	$y' = 10 + e^{x+y}$
8728	68	$y' = 10 e^{x+y} + x^2$
8729	69	$y' = x e^{x+y} + \sin(x)$
8730	70	$y' = 5 e^{x^2 + 20y} + \sin(x)$

1.2 section 2 (system of first order odes)

Table 1.2: Lookup table for all problems in current section

ID	problem	ODE
8731	1	$[x'(t) + y'(t) - x(t) = y(t) + t, x'(t) + y'(t) = 2x(t) + 3y(t) + e^{t}]$
8732	2	$[2x'(t) + y'(t) - x(t) = y(t) + t, x'(t) + y'(t) = 2x(t) + 3y(t) + e^{t}]$
8733	3	$[x'(t) + y'(t) - x(t) = y(t) + t + \sin(t) + \cos(t), x'(t) + y'(t) = 2x(t) + 3y(t) + e^{t}]$

1.3 section 3. First order odes solved using Laplace method

Table 1.3: Lookup table for all problems in current section

ID	problem	ODE
8734	1	y't + y = t
8735	2	y' - yt = 0
8736	3	y't + y = 0
8737	4	y't + y = 0
8738	5	y't + y = 0
8739	6	y't + y = 0
8740	7	y't + y = 0
8741	8	$y't + y = \sin(t)$
8742	9	y't + y = t
8743	10	y't + y = t
8744	11	$y' + t^2 y = 0$
8745	12	(at+1)y'+y=t
8746	13	y' + (at + bt)y = 0
		Continued on next page

Table 1.3 Lookup table Continued from previous page

ID	problem	ODE
8747	14	y' + (at + bt) y = 0

CHAPTER 2

BOOK SOLVED PROBLEMS

2.1	section 1	12
2.2	section 2 (system of first order odes)	552
2.3	section 3. First order odes solved using Laplace method	568

2.1	section	1
2.1.1	problem 1 .	
2.1.2	problem 2 .	
2.1.3	problem 3 .	
2.1.4	problem 4 .	
2.1.5	problem 5 .	
2.1.6	problem 6 .	
2.1.7	problem 7 .	
2.1.8	_	
2.1.9	problem 9 .	81
2.1.10	problem 10	
2.1.11	problem 11	
2.1.12	problem 12	
2.1.13	problem 13	
2.1.14	problem 14	
2.1.15	problem 15	
2.1.16	problem 16	
2.1.17	problem 17	
2.1.18	problem 18	
2.1.19	problem 19	
2.1.20	problem 20	
2.1.21	problem 21	
2.1.22	problem 22	
2.1.23	problem 23	
2.1.24	problem 24	
2.1.25	problem 25	
2.1.26	problem 26	
2.1.27	problem 27	227
2.1.28	problem 28	232
2.1.29	problem 29	247
2.1.30	problem 30	$\ldots \ldots $
2.1.31	problem 31	255
2.1.32	problem 32	261
2.1.33	problem 33	
2.1.34	problem 34	273
2.1.35	problem 35	279
2.1.36	problem 36	
2.1.37	problem 37	

2.1.38	problem 38												 				298
2.1.39	problem 39																305
2.1.40	problem 40																311
2.1.41	problem 41																317
2.1.42	problem 42																323
2.1.43	problem 43																329
2.1.44	problem 44																335
2.1.45	problem 45																341
2.1.46	problem 46																344
2.1.47	problem 47																347
2.1.48	problem 48																352
2.1.49	problem 49																357
2.1.50	problem 50																360
2.1.51	problem 51																364
2.1.52	problem 52																375
2.1.53	problem 53																380
2.1.54	problem 54																384
2.1.55	problem 55																390
2.1.56	problem 56																396
2.1.57	problem 57																401
2.1.58	problem 58																406
2.1.59	problem 59																413
2.1.60	problem 60																419
2.1.61	problem 61																430
2.1.62	problem 62																439
2.1.63	problem 63																448
2.1.64	problem 64																457
2.1.65	problem 65																483
2.1.66	problem 66																504
2.1.67	problem 67																523
2.1.68	problem 68																537
2.1.69	problem 69																542
2 1 70	problem 70																547

2.1.1 problem 1

Solved as first order quadrature ode	14
Solved as first order homogeneous class D2 ode	15
Solved as first order ode of type differential	17
Maple step by step solution	18
Maple trace	19
Maple dsolve solution	19
Mathematica DSolve solution	19

Internal problem ID [8661]

Book: First order enumerated odes

Section: section 1
Problem number: 1

Date solved: Tuesday, December 17, 2024 at 12:57:13 PM

CAS classification : [_quadrature]

Solve

$$y' = 0$$

Solved as first order quadrature ode

Time used: 0.025 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 \, dx + c_1$$
$$y = c_1$$

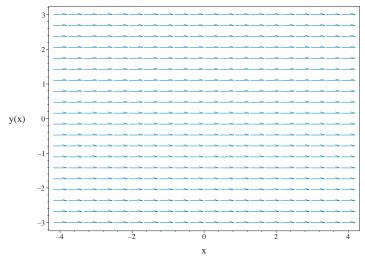


Figure 2.1: Slope field plot y' = 0

$$y = c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.155 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$u'(x) x + u(x) = 0$$

Which is now solved The ode $u'(x) = -\frac{u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int -\frac{1}{x} dx$$
$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$
$$u(x) = \frac{e^{c_1}}{x}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{c_1}}{x}$ back to y gives

$$y = e^{c_1}$$

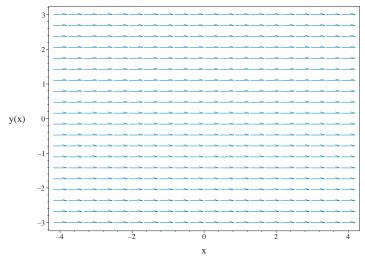


Figure 2.2: Slope field plot y' = 0

$$y = 0$$

$$y = e^{c_1}$$

Solved as first order ode of type differential

Time used: 0.010 (sec)

Writing the ode as

$$y' = 0 \tag{1}$$

Which becomes

$$(1) dy = (0) dx \tag{2}$$

But the RHS is complete differential because

$$(0) dx = d(0)$$

Hence (2) becomes

$$(1) dy = d(0)$$

Integrating gives

$$y = c_1$$

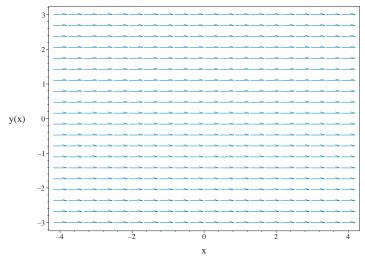


Figure 2.3: Slope field plot y' = 0

$$y = c_1$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = 0$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Integrate both sides with respect to x $\int \left(\frac{d}{dx}y(x)\right) dx = \int 0 dx + C1$
- ullet Evaluate integral

$$y(x) = C1$$

• Solve for y(x)

$$y(x) = C1$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.001 (sec)

Leaf size: 5

```
dsolve(diff(y(x),x) = 0,
    y(x),singsol=all)
```

$$y = c_1$$

Mathematica DSolve solution

Solving time: 0.002 (sec)

Leaf size : 7

```
DSolve[{D[y[x],x]==0,{}},
    y[x],x,IncludeSingularSolutions->True]
```

$$y(x) \rightarrow c_1$$

2.1.2 problem 2

Solved as first order quadrature ode	20
Solved as first order homogeneous class D2 ode	21
Solved as first order Exact ode	22
Maple step by step solution	25
Maple trace	25
Maple dsolve solution	25
Mathematica DSolve solution	26

Internal problem ID [8662]

Book: First order enumerated odes

Section: section 1
Problem number: 2

Date solved: Tuesday, December 17, 2024 at 12:57:14 PM

CAS classification : [_quadrature]

Solve

$$y' = a$$

Solved as first order quadrature ode

Time used: 0.036 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int a \, dx$$
$$y = ax + c_1$$

Summary of solutions found

$$y = ax + c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.186 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$u'(x) x + u(x) = a$$

Which is now solved The ode $u'(x) = -\frac{u(x)-a}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x) - a}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = \frac{1}{x}$$
$$g(u) = -u + a$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{-u+a} du = \int \frac{1}{x} dx$$
$$-\ln(-u(x) + a) = \ln(x) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or -u + a = 0 for u(x) gives

$$u(x) = a$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$-\ln(-u(x) + a) = \ln(x) + c_1$$
$$u(x) = a$$

Solving for u(x) gives

$$u(x) = a$$

 $u(x) = \frac{(x e^{c_1} a - 1) e^{-c_1}}{x}$

Converting u(x) = a back to y gives

$$y = ax$$

Converting $u(x) = \frac{(x e^{c_1} a - 1)e^{-c_1}}{x}$ back to y gives

$$y = (x e^{c_1} a - 1) e^{-c_1}$$

Summary of solutions found

$$y = ax$$

 $y = (x e^{c_1} a - 1) e^{-c_1}$

Solved as first order Exact ode

Time used: 0.060 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 (A)

We assume there exists a function $\phi(x,y) = c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$dy = (a) dx$$

$$(-a) dx + dy = 0$$
(2A)

Comparing (1A) and (2A) shows that

$$M(x, y) = -a$$
$$N(x, y) = 1$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(-a)$$
$$= 0$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(1)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = M \tag{1}$$

$$\frac{\partial \phi}{\partial x} = M \tag{1}$$

$$\frac{\partial \phi}{\partial y} = N \tag{2}$$

Integrating (1) w.r.t. x gives

$$\int \frac{\partial \phi}{\partial x} dx = \int M dx$$

$$\int \frac{\partial \phi}{\partial x} dx = \int -a dx$$

$$\phi = -ax + f(y)$$
(3)

Where f(y) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$\frac{\partial \phi}{\partial y} = 0 + f'(y) \tag{4}$$

But equation (2) says that $\frac{\partial \phi}{\partial y} = 1$. Therefore equation (4) becomes

$$1 = 0 + f'(y) \tag{5}$$

Solving equation (5) for f'(y) gives

$$f'(y) = 1$$

Integrating the above w.r.t y gives

$$\int f'(y) dy = \int (1) dy$$
$$f(y) = y + c_1$$

Where c_1 is constant of integration. Substituting result found above for f(y) into equation (3) gives ϕ

$$\phi = -ax + y + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = -ax + y$$

Solving for y gives

$$y = ax + c_1$$

Summary of solutions found

$$y = ax + c_1$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = a$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Integrate both sides with respect to x $\int \left(\frac{d}{dx}y(x)\right) dx = \int a dx + C1$
- Evaluate integral y(x) = xa + C1
- Solve for y(x)y(x) = xa + C1

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.002 (sec)

Leaf size: 9

```
dsolve(diff(y(x),x) = a,
    y(x),singsol=all)
```

$$y = ax + c_1$$

Mathematica DSolve solution

Solving time: 0.002 (sec)

 $Leaf\ size:11$

 $DSolve[{D[y[x],x]==a,{}},$

y[x],x,IncludeSingularSolutions->True]

$$y(x) \to ax + c_1$$

2.1.3 problem 3

Solved as first order quadrature ode	27
Solved as first order Exact ode	28
Maple step by step solution	31
Maple trace	32
Maple dsolve solution	32
Mathematica DSolve solution	32

Internal problem ID [8663]

Book: First order enumerated odes

Section: section 1
Problem number: 3

Date solved: Tuesday, December 17, 2024 at 12:57:15 PM

CAS classification : [_quadrature]

Solve

$$y' = x$$

Solved as first order quadrature ode

Time used: 0.038 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int x \, dx$$
$$y = \frac{x^2}{2} + c_1$$

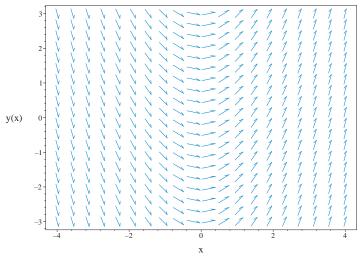


Figure 2.4: Slope field plot y' = x

$$y = \frac{x^2}{2} + c_1$$

Solved as first order Exact ode

Time used: 0.056 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 (A)

We assume there exists a function $\phi(x,y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$dy = (x) dx$$

$$(-x) dx + dy = 0$$
(2A)

Comparing (1A) and (2A) shows that

$$M(x,y) = -x$$
$$N(x,y) = 1$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(-x)$$
$$= 0$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(1)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = M \tag{1}$$

$$\frac{\partial \phi}{\partial x} = M \tag{1}$$

$$\frac{\partial \phi}{\partial y} = N \tag{2}$$

Integrating (1) w.r.t. x gives

$$\int \frac{\partial \phi}{\partial x} dx = \int M dx$$

$$\int \frac{\partial \phi}{\partial x} dx = \int -x dx$$

$$\phi = -\frac{x^2}{2} + f(y)$$
(3)

Where f(y) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$\frac{\partial \phi}{\partial y} = 0 + f'(y) \tag{4}$$

But equation (2) says that $\frac{\partial \phi}{\partial y} = 1$. Therefore equation (4) becomes

$$1 = 0 + f'(y) \tag{5}$$

Solving equation (5) for f'(y) gives

$$f'(y) = 1$$

Integrating the above w.r.t y gives

$$\int f'(y) \, dy = \int (1) \, dy$$
$$f(y) = y + c_1$$

Where c_1 is constant of integration. Substituting result found above for f(y) into equation (3) gives ϕ

$$\phi = -\frac{x^2}{2} + y + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = -\frac{x^2}{2} + y$$

Solving for y gives

$$y = \frac{x^2}{2} + c_1$$

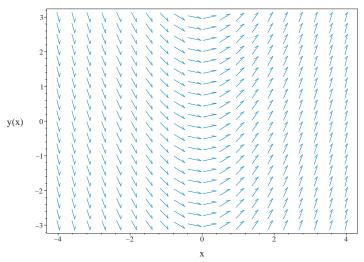


Figure 2.5: Slope field plot y' = x

Summary of solutions found

$$y = \frac{x^2}{2} + c_1$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = x$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Integrate both sides with respect to x $\int \left(\frac{d}{dx}y(x)\right) dx = \int x dx + C1$
- Evaluate integral

$$y(x) = \frac{x^2}{2} + C1$$

• Solve for y(x)

$$y(x) = \frac{x^2}{2} + C1$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`</pre>
```

Maple dsolve solution

Solving time: 0.002 (sec)

Leaf size: 11

```
dsolve(diff(y(x),x) = x,
     y(x),singsol=all)
```

$$y = \frac{x^2}{2} + c_1$$

Mathematica DSolve solution

Solving time: 0.002 (sec)

Leaf size: 15

DSolve[{D[y[x],x]==x,{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \to \frac{x^2}{2} + c_1$$

2.1.4 problem 4

Solved as first order quadrature ode	33
Solved as first order homogeneous class D2 ode	34
Solved as first order Exact ode	36
Maple step by step solution	39
Maple trace	39
Maple dsolve solution	39
Mathematica DSolve solution	40

Internal problem ID [8664]

Book: First order enumerated odes

Section: section 1
Problem number: 4

Date solved: Tuesday, December 17, 2024 at 12:57:15 PM

CAS classification : [_quadrature]

Solve

$$y'=1$$

Solved as first order quadrature ode

Time used: 0.032 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 1 \, dx$$
$$y = x + c_1$$

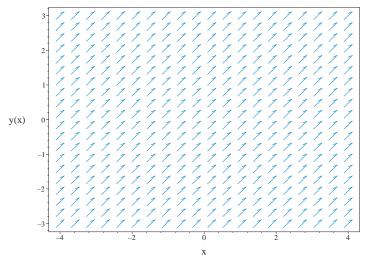


Figure 2.6: Slope field plot y' = 1

$$y = x + c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.173 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$u'(x) x + u(x) = 1$$

Which is now solved The ode $u'(x) = -\frac{u(x)-1}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x) - 1}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = \frac{1}{x}$$
$$g(u) = -u + 1$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{-u+1} du = \int \frac{1}{x} dx$$
$$-\ln(u(x) - 1) = \ln(x) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or -u + 1 = 0 for u(x) gives

$$u(x) = 1$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$-\ln(u(x) - 1) = \ln(x) + c_1$$
$$u(x) = 1$$

Solving for u(x) gives

$$u(x) = 1$$

$$u(x) = \frac{(x e^{c_1} + 1) e^{-c_1}}{x}$$

Converting u(x) = 1 back to y gives

$$y = x$$

Converting $u(x) = \frac{(x e^{c_1} + 1)e^{-c_1}}{x}$ back to y gives

$$y = (x e^{c_1} + 1) e^{-c_1}$$

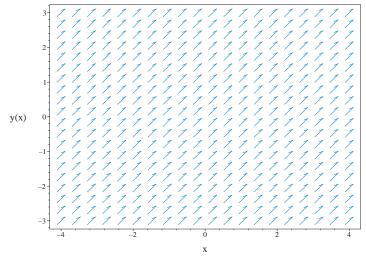


Figure 2.7: Slope field plot y' = 1

$$y = x$$

 $y = (x e^{c_1} + 1) e^{-c_1}$

Solved as first order Exact ode

Time used: 0.056 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 (A)

We assume there exists a function $\phi(x,y) = c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$(1) dy = dx$$
$$-dx + (1) dy = 0$$
 (2A)

Comparing (1A) and (2A) shows that

$$M(x, y) = -1$$
$$N(x, y) = 1$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(-1)$$
$$= 0$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(1)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = M \tag{1}$$

$$\frac{\partial \phi}{\partial x} = M \tag{1}$$

$$\frac{\partial \phi}{\partial y} = N \tag{2}$$

Integrating (1) w.r.t. x gives

$$\int \frac{\partial \phi}{\partial x} dx = \int M dx$$

$$\int \frac{\partial \phi}{\partial x} dx = \int -1 dx$$

$$\phi = -x + f(y)$$
(3)

Where f(y) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$\frac{\partial \phi}{\partial y} = 0 + f'(y) \tag{4}$$

But equation (2) says that $\frac{\partial \phi}{\partial y} = 1$. Therefore equation (4) becomes

$$1 = 0 + f'(y) \tag{5}$$

Solving equation (5) for f'(y) gives

$$f'(y) = 1$$

Integrating the above w.r.t y gives

$$\int f'(y) dy = \int (1) dy$$
$$f(y) = y + c_1$$

Where c_1 is constant of integration. Substituting result found above for f(y) into equation (3) gives ϕ

$$\phi = -x + y + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = -x + y$$

Solving for y gives

$$y = x + c_1$$

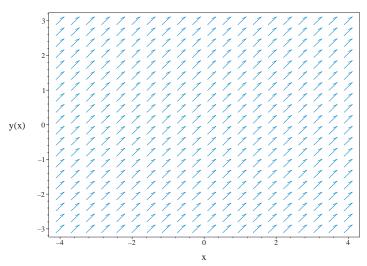


Figure 2.8: Slope field plot y' = 1

Summary of solutions found

$$y = x + c_1$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = 1$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Integrate both sides with respect to x $\int \left(\frac{d}{dx}y(x)\right) dx = \int 1 dx + C1$
- Evaluate integral

$$y(x) = x + C1$$

• Solve for y(x)

$$y(x) = x + C1$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.002 (sec)

Leaf size: 7

$$y = x + c_1$$

Mathematica DSolve solution

Solving time: 0.002 (sec)

Leaf size : 9

DSolve[{D[y[x],x]==1,{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \to x + c_1$$

2.1.5 problem 5

Solved as first order quadrature ode	41
Solved as first order Exact ode	42
Maple step by step solution	44
Maple trace	45
Maple dsolve solution	45
Mathematica DSolve solution	45

Internal problem ID [8665]

 ${f Book}$: First order enumerated odes

Section: section 1
Problem number: 5

Date solved: Tuesday, December 17, 2024 at 12:57:16 PM

CAS classification : [_quadrature]

Solve

$$y' = ax$$

Solved as first order quadrature ode

Time used: 0.040 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int ax \, dx$$
$$y = \frac{a x^2}{2} + c_1$$

Summary of solutions found

$$y = \frac{a x^2}{2} + c_1$$

Solved as first order Exact ode

Time used: 0.061 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 (A)

We assume there exists a function $\phi(x,y) = c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$dy = (ax) dx$$

$$(-ax) dx + dy = 0$$
(2A)

Comparing (1A) and (2A) shows that

$$M(x,y) = -ax$$
$$N(x,y) = 1$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(-ax)$$
$$= 0$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(1)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = M \tag{1}$$

$$\frac{\partial x}{\partial y} = N \tag{2}$$

Integrating (1) w.r.t. x gives

$$\int \frac{\partial \phi}{\partial x} dx = \int M dx$$

$$\int \frac{\partial \phi}{\partial x} dx = \int -ax dx$$

$$\phi = -\frac{ax^2}{2} + f(y)$$
(3)

Where f(y) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$\frac{\partial \phi}{\partial y} = 0 + f'(y) \tag{4}$$

But equation (2) says that $\frac{\partial \phi}{\partial y} = 1$. Therefore equation (4) becomes

$$1 = 0 + f'(y) \tag{5}$$

Solving equation (5) for f'(y) gives

$$f'(y) = 1$$

Integrating the above w.r.t y gives

$$\int f'(y) dy = \int (1) dy$$
$$f(y) = y + c_1$$

Where c_1 is constant of integration. Substituting result found above for f(y) into equation (3) gives ϕ

$$\phi = -\frac{a \, x^2}{2} + y + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = -\frac{a x^2}{2} + y$$

Solving for y gives

$$y = \frac{a x^2}{2} + c_1$$

Summary of solutions found

$$y = \frac{a x^2}{2} + c_1$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = xa$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- ullet Integrate both sides with respect to x

$$\int \left(\frac{d}{dx}y(x)\right)dx = \int xadx + C1$$

• Evaluate integral

$$y(x) = \frac{x^2a}{2} + C1$$

• Solve for y(x)

$$y(x) = \frac{x^2a}{2} + C1$$

Maple trace

`Methods for first order ODEs:
--- Trying classification methods --trying a quadrature
<- quadrature successful`</pre>

Maple dsolve solution

Solving time: 0.002 (sec)

Leaf size : 12

dsolve(diff(y(x),x) = a*x,
 y(x),singsol=all)

$$y = \frac{a x^2}{2} + c_1$$

Mathematica DSolve solution

Solving time : 0.002 (sec)

Leaf size: 16

DSolve[{D[y[x],x]==a*x,{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \to \frac{ax^2}{2} + c_1$$

2.1.6 problem 6

Solved as first order linear ode	46
Solved as first order separable ode	47
Solved as first order homogeneous class D2 ode	48
Solved as first order Exact ode	50
Solved using Lie symmetry for first order ode	53
Maple step by step solution	57
Maple trace	57
Maple dsolve solution	57
Mathematica DSolve solution	58

Internal problem ID [8666]

Book: First order enumerated odes

Section: section 1
Problem number: 6

Date solved: Tuesday, December 17, 2024 at 12:57:17 PM

CAS classification : [_separable]

Solve

$$y' = axy$$

Solved as first order linear ode

Time used: 0.086 (sec)

In canonical form a linear first order is

$$y' + q(x)y = p(x)$$

Comparing the above to the given ode shows that

$$q(x) = -ax$$
$$p(x) = 0$$

The integrating factor μ is

$$\mu = e^{\int q \, dx}$$
$$= e^{\int -ax dx}$$
$$= e^{-\frac{a \cdot x^2}{2}}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}x}\mu y = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(y\,\mathrm{e}^{-\frac{a\,x^2}{2}}\right) = 0$$

Integrating gives

$$y e^{-\frac{a \cdot x^2}{2}} = \int 0 \, dx + c_1$$

= c_1

Dividing throughout by the integrating factor $e^{-\frac{a x^2}{2}}$ gives the final solution

$$y = e^{\frac{a x^2}{2}} c_1$$

Summary of solutions found

$$y = e^{\frac{a x^2}{2}} c_1$$

Solved as first order separable ode

Time used: 0.109 (sec)

The ode y' = axy is separable as it can be written as

$$y' = axy$$
$$= f(x)g(y)$$

Where

$$f(x) = ax$$
$$g(y) = y$$

Integrating gives

$$\int \frac{1}{g(y)} dy = \int f(x) dx$$
$$\int \frac{1}{y} dy = \int ax dx$$
$$\ln(y) = \frac{ax^2}{2} + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(y) is zero, since we had to divide by this above. Solving g(y) = 0 or y = 0 for y gives

$$y = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(y) = \frac{a x^2}{2} + c_1$$
$$y = 0$$

Solving for y gives

$$y = 0$$
$$y = e^{\frac{a \cdot x^2}{2} + c_1}$$

Summary of solutions found

$$y = 0$$
$$y = e^{\frac{a \cdot x^2}{2} + c_1}$$

Solved as first order homogeneous class D2 ode

Time used: 0.126 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$u'(x) x + u(x) = a x^2 u(x)$$

Which is now solved The ode $u'(x) = \frac{u(x)(ax^2-1)}{x}$ is separable as it can be written as

$$u'(x) = \frac{u(x) (a x^2 - 1)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = \frac{a x^2 - 1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$

$$\int \frac{1}{u} du = \int \frac{a x^2 - 1}{x} dx$$

$$\ln(u(x)) = \frac{a x^2}{2} + \ln\left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln (u(x)) = \frac{a x^2}{2} + \ln \left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$
$$u(x) = \frac{e^{\frac{a x^2}{2} + c_1}}{r}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{\frac{ax^2}{2} + c_1}}{x}$ back to y gives

$$y = e^{\frac{a x^2}{2} + c_1}$$

Summary of solutions found

$$y = 0$$
$$y = e^{\frac{a x^2}{2} + c_1}$$

Solved as first order Exact ode

Time used: 0.173 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 (A)

We assume there exists a function $\phi(x,y) = c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$dy = (axy) dx$$

$$(-axy) dx + dy = 0$$
(2A)

Comparing (1A) and (2A) shows that

$$M(x,y) = -axy$$
$$N(x,y) = 1$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(-axy)$$
$$= -ax$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(1)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is <u>not exact</u>. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$A = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$
$$= 1((-ax) - (0))$$
$$= -ax$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$\mu = e^{\int A \, \mathrm{d}x}$$
$$= e^{\int -ax \, \mathrm{d}x}$$

The result of integrating gives

$$\mu = e^{-\frac{a x^2}{2}}$$
$$= e^{-\frac{a x^2}{2}}$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \overline{M} and \overline{N} for now so not to confuse them with the original M and N.

$$\overline{M} = \mu M$$

$$= e^{-\frac{a \cdot x^2}{2}} (-axy)$$

$$= -axy e^{-\frac{a \cdot x^2}{2}}$$

And

$$\overline{N} = \mu N$$

$$= e^{-\frac{a x^2}{2}} (1)$$

$$= e^{-\frac{a x^2}{2}}$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$\overline{M} + \overline{N} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
$$\left(-axy \,\mathrm{e}^{-\frac{a\,x^2}{2}}\right) + \left(\mathrm{e}^{-\frac{a\,x^2}{2}}\right) \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = \overline{M} \tag{1}$$

$$\frac{\partial \phi}{\partial y} = \overline{N} \tag{2}$$

Integrating (2) w.r.t. y gives

$$\int \frac{\partial \phi}{\partial y} \, dy = \int \overline{N} \, dy$$

$$\int \frac{\partial \phi}{\partial y} \, dy = \int e^{-\frac{a \cdot x^2}{2}} \, dy$$

$$\phi = y e^{-\frac{a \cdot x^2}{2}} + f(x)$$
(3)

Where f(x) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t x gives

$$\frac{\partial \phi}{\partial x} = -axy e^{-\frac{ax^2}{2}} + f'(x) \tag{4}$$

But equation (1) says that $\frac{\partial \phi}{\partial x} = -axy e^{-\frac{ax^2}{2}}$. Therefore equation (4) becomes

$$-axy e^{-\frac{ax^2}{2}} = -axy e^{-\frac{ax^2}{2}} + f'(x)$$
 (5)

Solving equation (5) for f'(x) gives

$$f'(x) = 0$$

Therefore

$$f(x) = c_1$$

Where c_1 is constant of integration. Substituting this result for f(x) into equation (3) gives ϕ

$$\phi = y e^{-\frac{a x^2}{2}} + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = y e^{-\frac{a x^2}{2}}$$

Solving for y gives

$$y = e^{\frac{a x^2}{2}} c_1$$

Summary of solutions found

$$y = e^{\frac{a x^2}{2}} c_1$$

Solved using Lie symmetry for first order ode

Time used: 0.212 (sec)

Writing the ode as

$$y' = axy$$
$$y' = \omega(x, y)$$

The condition of Lie symmetry is the linearized PDE given by

$$\eta_x + \omega(\eta_y - \xi_x) - \omega^2 \xi_y - \omega_x \xi - \omega_y \eta = 0 \tag{A}$$

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$\xi = xa_2 + ya_3 + a_1 \tag{1E}$$

$$\eta = xb_2 + yb_3 + b_1 \tag{2E}$$

Where the unknown coefficients are

$${a_1, a_2, a_3, b_1, b_2, b_3}$$

Substituting equations (1E,2E) and ω into (A) gives

$$b_2 + axy(b_3 - a_2) - a^2x^2y^2a_3 - ay(xa_2 + ya_3 + a_1) - ax(xb_2 + yb_3 + b_1) = 0$$
 (5E)

Putting the above in normal form gives

$$-a^2x^2y^2a_3 - ax^2b_2 - 2axya_2 - ay^2a_3 - axb_1 - aya_1 + b_2 = 0$$

Setting the numerator to zero gives

$$-a^{2}x^{2}y^{2}a_{3} - ax^{2}b_{2} - 2axya_{2} - ay^{2}a_{3} - axb_{1} - aya_{1} + b_{2} = 0$$
 (6E)

Looking at the above PDE shows the following are all the terms with $\{x,y\}$ in them.

$$\{x,y\}$$

The following substitution is now made to be able to collect on all terms with $\{x,y\}$ in them

$${x = v_1, y = v_2}$$

The above PDE (6E) now becomes

$$-a^{2}a_{3}v_{1}^{2}v_{2}^{2} - 2aa_{2}v_{1}v_{2} - aa_{3}v_{2}^{2} - ab_{2}v_{1}^{2} - aa_{1}v_{2} - ab_{1}v_{1} + b_{2} = 0$$
 (7E)

Collecting the above on the terms v_i introduced, and these are

$$\{v_1, v_2\}$$

Equation (7E) now becomes

$$-a^{2}a_{3}v_{1}^{2}v_{2}^{2} - 2aa_{2}v_{1}v_{2} - aa_{3}v_{2}^{2} - ab_{2}v_{1}^{2} - aa_{1}v_{2} - ab_{1}v_{1} + b_{2} = 0$$
 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

$$b_{2} = 0$$

$$-aa_{1} = 0$$

$$-2aa_{2} = 0$$

$$-aa_{3} = 0$$

$$-ab_{1} = 0$$

$$-ab_{2} = 0$$

$$-a^{2}a_{3} = 0$$

Solving the above equations for the unknowns gives

$$a_1 = 0$$
 $a_2 = 0$
 $a_3 = 0$
 $b_1 = 0$
 $b_2 = 0$
 $b_3 = b_3$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$\xi = 0$$
$$\eta = y$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \to (R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$\frac{dx}{\xi} = \frac{dy}{\eta} = dS \tag{1}$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}\right) S(x,y) = 1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Since $\xi = 0$ then in this special case

$$R = x$$

S is found from

$$S = \int \frac{1}{\eta} dy$$
$$= \int \frac{1}{y} dy$$

Which results in

$$S = \ln(y)$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$\frac{dS}{dR} = \frac{S_x + \omega(x, y)S_y}{R_x + \omega(x, y)R_y} \tag{2}$$

Where in the above R_x, R_y, S_x, S_y are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$\omega(x,y) = axy$$

Evaluating all the partial derivatives gives

$$R_x = 1$$

$$R_y = 0$$

$$S_x = 0$$

$$S_y = \frac{1}{y}$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$\frac{dS}{dR} = ax \tag{2A}$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$\frac{dS}{dR} = aR$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S.

Since the ode has the form $\frac{d}{dR}S(R) = f(R)$, then we only need to integrate f(R).

$$\int dS = \int aR \, dR$$
$$S(R) = \frac{a \, R^2}{2} + c_2$$

To complete the solution, we just need to transform the above back to x, y coordinates. This results in

$$\ln\left(y\right) = \frac{a\,x^2}{2} + c_2$$

Which gives

$$y = e^{\frac{a x^2}{2} + c_2}$$

Summary of solutions found

$$y = e^{\frac{a x^2}{2} + c_2}$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = xay(x)$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\frac{d}{dx}y(x) = xay(x)$
- Separate variables

$$\frac{\frac{d}{dx}y(x)}{y(x)} = xa$$

• Integrate both sides with respect to x

$$\int \frac{\frac{d}{dx}y(x)}{y(x)}dx = \int xadx + C1$$

• Evaluate integral

$$\ln\left(y(x)\right) = \frac{x^2a}{2} + C1$$

• Solve for y(x)

$$y(x) = e^{\frac{x^2a}{2} + C1}$$

Maple trace

`Methods for first order ODEs:
--- Trying classification methods --trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>

Maple dsolve solution

Solving time: 0.003 (sec)

Leaf size: 13

$$y = c_1 e^{\frac{a x^2}{2}}$$

Mathematica DSolve solution

Solving time: 0.027 (sec)

Leaf size : 23

DSolve[{D[y[x],x]==a*x*y[x],{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \to c_1 e^{\frac{ax^2}{2}}$$
$$y(x) \to 0$$

2.1.7 problem 7

Solved as first order linear ode	59
Solved as first order Exact ode	60
Solved using Lie symmetry for first order ode	64
Maple step by step solution	67
Maple trace	68
Maple dsolve solution	68
Mathematica DSolve solution	69

Internal problem ID [8667]

Book: First order enumerated odes

Section: section 1
Problem number: 7

Date solved: Tuesday, December 17, 2024 at 12:57:18 PM

CAS classification: [[_linear, 'class A']]

Solve

$$y' = ax + y$$

Solved as first order linear ode

Time used: 0.105 (sec)

In canonical form a linear first order is

$$y' + q(x)y = p(x)$$

Comparing the above to the given ode shows that

$$q(x) = -1$$

$$p(x) = ax$$

The integrating factor μ is

$$\mu = e^{\int q \, dx}$$
$$= e^{\int (-1)dx}$$
$$= e^{-x}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu y) = \mu p$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu y) = (\mu) (ax)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(y e^{-x}) = (e^{-x}) (ax)$$

$$\mathrm{d}(y e^{-x}) = (ax e^{-x}) dx$$

Integrating gives

$$y e^{-x} = \int ax e^{-x} dx$$

= $-(x+1) a e^{-x} + c_1$

Dividing throughout by the integrating factor e^{-x} gives the final solution

$$y = c_1 e^x - a(x+1)$$

Summary of solutions found

$$y = c_1 e^x - a(x+1)$$

Solved as first order Exact ode

Time used: 0.105 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 (A)

We assume there exists a function $\phi(x,y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$dy = (ax + y) dx$$

$$(-ax - y) dx + dy = 0$$
(2A)

Comparing (1A) and (2A) shows that

$$M(x,y) = -ax - y$$
$$N(x,y) = 1$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(-ax - y)$$
$$= -1$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(1)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$A = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$
$$= 1((-1) - (0))$$
$$= -1$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$\mu = e^{\int A \, \mathrm{d}x}$$
$$= e^{\int -1 \, \mathrm{d}x}$$

The result of integrating gives

$$\mu = e^{-x}$$
$$= e^{-x}$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \overline{M} and \overline{N} for now so not to confuse them with the original M and N.

$$\overline{M} = \mu M$$

$$= e^{-x}(-ax - y)$$

$$= -(ax + y) e^{-x}$$

And

$$\overline{N} = \mu N$$
$$= e^{-x}(1)$$
$$= e^{-x}$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$\overline{M} + \overline{N} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
$$(-(ax + y) e^{-x}) + (e^{-x}) \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = \overline{M} \tag{1}$$

$$\frac{\partial \phi}{\partial x} = \overline{M}$$

$$\frac{\partial \phi}{\partial y} = \overline{N}$$
(1)

Integrating (2) w.r.t. y gives

$$\int \frac{\partial \phi}{\partial y} \, dy = \int \overline{N} \, dy$$

$$\int \frac{\partial \phi}{\partial y} \, dy = \int e^{-x} \, dy$$

$$\phi = y e^{-x} + f(x)$$
(3)

Where f(x) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t x gives

$$\frac{\partial \phi}{\partial x} = -y e^{-x} + f'(x) \tag{4}$$

But equation (1) says that $\frac{\partial \phi}{\partial x} = -(ax + y) e^{-x}$. Therefore equation (4) becomes

$$-(ax + y) e^{-x} = -y e^{-x} + f'(x)$$
 (5)

Solving equation (5) for f'(x) gives

$$f'(x) = -ax e^{-x}$$

Integrating the above w.r.t x gives

$$\int f'(x) dx = \int (-ax e^{-x}) dx$$
$$f(x) = (x+1) a e^{-x} + c_1$$

Where c_1 is constant of integration. Substituting result found above for f(x) into equation (3) gives ϕ

$$\phi = y e^{-x} + (x+1) a e^{-x} + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = y e^{-x} + (x+1) a e^{-x}$$

Solving for y gives

$$y = -(ax e^{-x} + a e^{-x} - c_1) e^x$$

Summary of solutions found

$$y = -(ax e^{-x} + a e^{-x} - c_1) e^x$$

Solved using Lie symmetry for first order ode

Time used: 0.347 (sec)

Writing the ode as

$$y' = ax + y$$
$$y' = \omega(x, y)$$

The condition of Lie symmetry is the linearized PDE given by

$$\eta_x + \omega(\eta_y - \xi_x) - \omega^2 \xi_y - \omega_x \xi - \omega_y \eta = 0 \tag{A}$$

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$\xi = xa_2 + ya_3 + a_1 \tag{1E}$$

$$\eta = xb_2 + yb_3 + b_1 \tag{2E}$$

Where the unknown coefficients are

$$\{a_1, a_2, a_3, b_1, b_2, b_3\}$$

Substituting equations (1E,2E) and ω into (A) gives

$$b_2 + (ax + y)(b_3 - a_2) - (ax + y)^2 a_3 - a(xa_2 + ya_3 + a_1) - xb_2 - yb_3 - b_1 = 0$$
 (5E)

Putting the above in normal form gives

$$-a^2x^2a_3 - 2axya_3 - 2axa_2 + axb_3 - aya_3 - y^2a_3 - aa_1 - xb_2 - ya_2 - b_1 + b_2 = 0$$

Setting the numerator to zero gives

$$-a^{2}x^{2}a_{3} - 2axya_{3} - 2axa_{2} + axb_{3} - aya_{3} - y^{2}a_{3} - aa_{1} - xb_{2} - ya_{2} - b_{1} + b_{2} = 0$$
 (6E)

Looking at the above PDE shows the following are all the terms with $\{x,y\}$ in them.

$$\{x,y\}$$

The following substitution is now made to be able to collect on all terms with $\{x,y\}$ in them

$$\{x=v_1,y=v_2\}$$

The above PDE (6E) now becomes

$$-a^{2}a_{3}v_{1}^{2} - 2aa_{3}v_{1}v_{2} - 2aa_{2}v_{1} - aa_{3}v_{2} + ab_{3}v_{1} - a_{3}v_{2}^{2} - aa_{1} - a_{2}v_{2} - b_{2}v_{1} - b_{1} + b_{2} = 0$$
 (7E)

Collecting the above on the terms v_i introduced, and these are

$$\{v_1, v_2\}$$

Equation (7E) now becomes

$$-a^{2}a_{3}v_{1}^{2} - 2aa_{3}v_{1}v_{2} + (-2aa_{2} + ab_{3} - b_{2})v_{1} - a_{3}v_{2}^{2} + (-aa_{3} - a_{2})v_{2} - aa_{1} - b_{1} + b_{2} = 0$$
(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

$$-a_{3} = 0$$

$$-2aa_{3} = 0$$

$$-a^{2}a_{3} = 0$$

$$-aa_{3} - a_{2} = 0$$

$$-aa_{1} - b_{1} + b_{2} = 0$$

$$-2aa_{2} + ab_{3} - b_{2} = 0$$

Solving the above equations for the unknowns gives

$$a_1 = a_1$$
 $a_2 = 0$
 $a_3 = 0$
 $b_1 = -aa_1 + ab_3$
 $b_2 = ab_3$
 $b_3 = b_3$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$\xi = 0$$
$$\eta = ax + a + y$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \to (R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$\frac{dx}{\xi} = \frac{dy}{\eta} = dS \tag{1}$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}\right) S(x,y) = 1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Since $\xi = 0$ then in this special case

$$R = x$$

S is found from

$$S = \int \frac{1}{\eta} dy$$
$$= \int \frac{1}{ax + a + y} dy$$

Which results in

$$S = \ln\left(ax + a + y\right)$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$\frac{dS}{dR} = \frac{S_x + \omega(x, y)S_y}{R_x + \omega(x, y)R_y} \tag{2}$$

Where in the above R_x, R_y, S_x, S_y are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$\omega(x,y) = ax + y$$

Evaluating all the partial derivatives gives

$$R_x = 1$$

$$R_y = 0$$

$$S_x = \frac{a}{ax + a + y}$$

$$S_y = \frac{1}{ax + a + y}$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$\frac{dS}{dR} = 1\tag{2A}$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$\frac{dS}{dR} = 1$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S.

Since the ode has the form $\frac{d}{dR}S(R) = f(R)$, then we only need to integrate f(R).

$$\int dS = \int 1 dR$$
$$S(R) = R + c_2$$

To complete the solution, we just need to transform the above back to x, y coordinates. This results in

$$\ln\left(ax + a + y\right) = x + c_2$$

Which gives

$$y = e^{x+c_2} - ax - a$$

Summary of solutions found

$$y = e^{x+c_2} - ax - a$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = xa + y(x)$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = xa + y(x)$$

- Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE $\frac{d}{dx}y(x) y(x) = xa$
- The ODE is linear; multiply by an integrating factor $\mu(x)$

$$\mu(x) \left(\frac{d}{dx} y(x) - y(x) \right) = \mu(x) xa$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{dx}(y(x) \mu(x))$ $\mu(x) \left(\frac{d}{dx}y(x) - y(x)\right) = \left(\frac{d}{dx}y(x)\right)\mu(x) + y(x)\left(\frac{d}{dx}\mu(x)\right)$
- Isolate $\frac{d}{dx}\mu(x)$ $\frac{d}{dx}\mu(x) = -\mu(x)$
- Solve to find the integrating factor $\mu(x) = e^{-x}$
- Integrate both sides with respect to x $\int \left(\frac{d}{dx}(y(x)\mu(x))\right) dx = \int \mu(x) x a dx + C1$
- Evaluate the integral on the lhs $y(x)\,\mu(x) = \int \mu(x)\,xadx + C \mathbf{1}$
- Solve for y(x) $y(x) = \frac{\int \mu(x)x a dx + C1}{\mu(x)}$
- Substitute $\mu(x) = e^{-x}$ $y(x) = \frac{\int e^{-x} x a dx + C1}{e^{-x}}$
- Evaluate the integrals on the rhs $y(x) = \frac{-(x+1)\mathrm{e}^{-x}a + C1}{\mathrm{e}^{-x}}$
- Simplify $y(x) = C1 e^x a(x+1)$

Maple trace

`Methods for first order ODEs:
--- Trying classification methods --trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>

Maple dsolve solution

Solving time: 0.002 (sec)

Leaf size: 15

dsolve(diff(y(x),x) = a*x+y(x),
 y(x),singsol=all)

$$y = e^x c_1 - a(x+1)$$

Mathematica DSolve solution

Solving time: 0.027 (sec)

Leaf size : 18

DSolve[$\{D[y[x],x]==a*x+y[x],\{\}\}$,

y[x],x,IncludeSingularSolutions->True]

$$y(x) \rightarrow -a(x+1) + c_1 e^x$$

2.1.8 problem 8

Solved as first order linear ode	70
Solved as first order Exact ode	71
Solved using Lie symmetry for first order ode	75
Maple step by step solution	79
Maple trace	80
Maple dsolve solution	80
Mathematica DSolve solution	80

Internal problem ID [8668]

Book: First order enumerated odes

Section: section 1
Problem number: 8

Date solved: Tuesday, December 17, 2024 at 12:57:19 PM

CAS classification: [[_linear, 'class A']]

Solve

$$y' = ax + by$$

Solved as first order linear ode

Time used: 0.124 (sec)

In canonical form a linear first order is

$$y' + q(x)y = p(x)$$

Comparing the above to the given ode shows that

$$q(x) = -b$$

$$p(x) = ax$$

The integrating factor μ is

$$\mu = e^{\int q \, dx}$$
$$= e^{\int -b dx}$$
$$= e^{-bx}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu y) = \mu p$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu y) = (\mu) (ax)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(y e^{-bx}) = (e^{-bx}) (ax)$$

$$\mathrm{d}(y e^{-bx}) = (ax e^{-bx}) dx$$

Integrating gives

$$y e^{-bx} = \int ax e^{-bx} dx$$

= $-\frac{(bx+1) a e^{-bx}}{b^2} + c_1$

Dividing throughout by the integrating factor e^{-bx} gives the final solution

$$y = \frac{c_1 e^{bx} b^2 - abx - a}{b^2}$$

Summary of solutions found

$$y = \frac{c_1 e^{bx} b^2 - abx - a}{b^2}$$

Solved as first order Exact ode

Time used: 0.123 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 (A)

We assume there exists a function $\phi(x,y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$dy = (ax + by) dx$$

$$(-ax - by) dx + dy = 0$$
(2A)

Comparing (1A) and (2A) shows that

$$M(x,y) = -ax - by$$
$$N(x,y) = 1$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(-ax - by)$$
$$= -b$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(1)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is <u>not exact</u>. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$A = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$
$$= 1((-b) - (0))$$
$$= -b$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$\mu = e^{\int A \, \mathrm{d}x}$$
$$= e^{\int -b \, \mathrm{d}x}$$

The result of integrating gives

$$\mu = e^{-bx}$$
$$= e^{-bx}$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \overline{M} and \overline{N} for now so not to confuse them with the original M and N.

$$\overline{M} = \mu M$$

$$= e^{-bx}(-ax - by)$$

$$= -(ax + by) e^{-bx}$$

And

$$\overline{N} = \mu N$$
$$= e^{-bx}(1)$$
$$= e^{-bx}$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$\overline{M} + \overline{N} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
$$(-(ax + by) e^{-bx}) + (e^{-bx}) \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = \overline{M} \tag{1}$$

$$\frac{\partial \phi}{\partial y} = \overline{N} \tag{2}$$

Integrating (2) w.r.t. y gives

$$\int \frac{\partial \phi}{\partial y} \, dy = \int \overline{N} \, dy$$

$$\int \frac{\partial \phi}{\partial y} \, dy = \int e^{-bx} \, dy$$

$$\phi = y e^{-bx} + f(x)$$
(3)

Where f(x) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t x gives

$$\frac{\partial \phi}{\partial x} = -yb e^{-bx} + f'(x) \tag{4}$$

But equation (1) says that $\frac{\partial \phi}{\partial x} = -(ax + by) e^{-bx}$. Therefore equation (4) becomes

$$-(ax + by) e^{-bx} = -yb e^{-bx} + f'(x)$$
 (5)

Solving equation (5) for f'(x) gives

$$f'(x) = -ax e^{-bx}$$

Integrating the above w.r.t x gives

$$\int f'(x) dx = \int (-ax e^{-bx}) dx$$
$$f(x) = \frac{(bx+1) a e^{-bx}}{b^2} + c_1$$

Where c_1 is constant of integration. Substituting result found above for f(x) into equation (3) gives ϕ

$$\phi = y e^{-bx} + \frac{(bx+1) a e^{-bx}}{b^2} + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = y e^{-bx} + \frac{(bx+1) a e^{-bx}}{b^2}$$

Solving for y gives

$$y = -\frac{\left(axb\,{\rm e}^{-bx} - c_1\,b^2 + a\,{\rm e}^{-bx}\right){\rm e}^{bx}}{b^2}$$

Summary of solutions found

$$y = -\frac{(axb e^{-bx} - c_1 b^2 + a e^{-bx}) e^{bx}}{b^2}$$

Solved using Lie symmetry for first order ode

Time used: 0.415 (sec)

Writing the ode as

$$y' = ax + by$$
$$y' = \omega(x, y)$$

The condition of Lie symmetry is the linearized PDE given by

$$\eta_x + \omega(\eta_y - \xi_x) - \omega^2 \xi_y - \omega_x \xi - \omega_y \eta = 0 \tag{A}$$

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$\xi = xa_2 + ya_3 + a_1 \tag{1E}$$

$$\eta = xb_2 + yb_3 + b_1 \tag{2E}$$

Where the unknown coefficients are

$$\{a_1,a_2,a_3,b_1,b_2,b_3\}$$

Substituting equations (1E,2E) and ω into (A) gives

$$b_2 + (ax + by)(b_3 - a_2) - (ax + by)^2 a_3 - a(xa_2 + ya_3 + a_1) - b(xb_2 + yb_3 + b_1) = 0$$
 (5E)

Putting the above in normal form gives

$$-a^2x^2a_3 - 2abxya_3 - b^2y^2a_3 - 2axa_2 + axb_3 - aya_3 - bxb_2 - bya_2 - aa_1 - bb_1 + b_2 = 0$$

Setting the numerator to zero gives

$$-a^{2}x^{2}a_{3} - 2abxya_{3} - b^{2}y^{2}a_{3} - 2axa_{2} + axb_{3} - aya_{3} - bxb_{2} - bya_{2} - aa_{1} - bb_{1} + b_{2} = 0$$
(6E)

Looking at the above PDE shows the following are all the terms with $\{x,y\}$ in them.

$$\{x,y\}$$

The following substitution is now made to be able to collect on all terms with $\{x,y\}$ in them

$$\{x=v_1,y=v_2\}$$

The above PDE (6E) now becomes

$$-a^{2}a_{3}v_{1}^{2} - 2aba_{3}v_{1}v_{2} - b^{2}a_{3}v_{2}^{2} - 2aa_{2}v_{1} - aa_{3}v_{2} + ab_{3}v_{1} - ba_{2}v_{2} - bb_{2}v_{1} - aa_{1} - bb_{1} + b_{2} = 0$$

$$(7E)$$

Collecting the above on the terms v_i introduced, and these are

$$\{v_1,v_2\}$$

Equation (7E) now becomes

$$-a^{2}a_{3}v_{1}^{2} - 2aba_{3}v_{1}v_{2} + (-2aa_{2} + ab_{3} - bb_{2})v_{1} -b^{2}a_{3}v_{2}^{2} + (-aa_{3} - ba_{2})v_{2} - aa_{1} - bb_{1} + b_{2} = 0$$
(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

$$-a^{2}a_{3} = 0$$

$$-b^{2}a_{3} = 0$$

$$-2aba_{3} = 0$$

$$-aa_{3} - ba_{2} = 0$$

$$-aa_{1} - bb_{1} + b_{2} = 0$$

$$-2aa_{2} + ab_{3} - bb_{2} = 0$$

Solving the above equations for the unknowns gives

$$a_1 = a_1$$
 $a_2 = 0$
 $a_3 = 0$
 $b_1 = b_1$
 $b_2 = aa_1 + bb_1$
 $b_3 = \frac{b(aa_1 + bb_1)}{a}$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$\xi = 0$$

$$\eta = \frac{abx + b^2y + a}{a}$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \to (R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$\frac{dx}{\xi} = \frac{dy}{\eta} = dS \tag{1}$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}\right) S(x,y) = 1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Since $\xi = 0$ then in this special case

$$R = x$$

S is found from

$$S = \int \frac{1}{\eta} dy$$
$$= \int \frac{1}{\frac{abx + b^2y + a}{a}} dy$$

Which results in

$$S = \frac{a\ln\left(abx + b^2y + a\right)}{b^2}$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$\frac{dS}{dR} = \frac{S_x + \omega(x, y)S_y}{R_x + \omega(x, y)R_y} \tag{2}$$

Where in the above R_x, R_y, S_x, S_y are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$\omega(x,y) = ax + by$$

Evaluating all the partial derivatives gives

$$R_x = 1$$

$$R_y = 0$$

$$S_x = \frac{a^2}{b(abx + b^2y + a)}$$

$$S_y = \frac{a}{abx + b^2y + a}$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$\frac{dS}{dR} = \frac{a}{b} \tag{2A}$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$\frac{dS}{dR} = \frac{a}{b}$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S.

Since the ode has the form $\frac{d}{dR}S(R) = f(R)$, then we only need to integrate f(R).

$$\int dS = \int \frac{a}{b} dR$$
$$S(R) = \frac{aR}{b} + c_2$$

To complete the solution, we just need to transform the above back to x, y coordinates. This results in

$$\frac{a\ln\left(abx + b^2y + a\right)}{b^2} = \frac{ax}{b} + c_2$$

Which gives

$$y = \frac{\mathrm{e}^{\frac{b(c_2b + ax)}{a}} - abx - a}{b^2}$$

Summary of solutions found

$$y = \frac{e^{\frac{b(c_2b + ax)}{a}} - abx - a}{b^2}$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = xa + by(x)$$

• Highest derivative means the order of the ODE is 1

$$\frac{d}{dx}y(x)$$

• Solve for the highest derivative

$$\frac{d}{dx}y(x) = xa + by(x)$$

ullet Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE

$$\frac{d}{dx}y(x) - by(x) = xa$$

• The ODE is linear; multiply by an integrating factor $\mu(x)$

$$\mu(x) \left(\frac{d}{dx} y(x) - by(x) \right) = \mu(x) xa$$

• Assume the lhs of the ODE is the total derivative $\frac{d}{dx}(y(x) \mu(x))$

$$\mu(x)\left(\frac{d}{dx}y(x) - by(x)\right) = \left(\frac{d}{dx}y(x)\right)\mu(x) + y(x)\left(\frac{d}{dx}\mu(x)\right)$$

• Isolate $\frac{d}{dx}\mu(x)$

$$\frac{d}{dx}\mu(x) = -\mu(x) b$$

• Solve to find the integrating factor

$$\mu(x) = e^{-bx}$$

• Integrate both sides with respect to x

$$\int \left(\frac{d}{dx}(y(x)\,\mu(x))\right)dx = \int \mu(x)\,xadx + C1$$

• Evaluate the integral on the lhs

$$y(x) \mu(x) = \int \mu(x) x a dx + C1$$

• Solve for y(x)

$$y(x) = \frac{\int \mu(x)xadx + C1}{\mu(x)}$$

• Substitute $\mu(x) = e^{-bx}$

$$y(x) = rac{\int \mathrm{e}^{-bx} x a dx + C1}{\mathrm{e}^{-bx}}$$

• Evaluate the integrals on the rhs

$$y(x) = \frac{-\frac{(bx+1)e^{-bx}a}{b^2} + C1}{e^{-bx}}$$

Simplify

$$y(x) = \frac{C1 e^{bx} b^2 - bxa - a}{b^2}$$

Maple trace

`Methods for first order ODEs:
--- Trying classification methods --trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>

Maple dsolve solution

Solving time: 0.003 (sec)

Leaf size: 26

dsolve(diff(y(x),x) = a*x+b*y(x),
 y(x),singsol=all)

$$y = \frac{e^{bx}c_1b^2 - axb - a}{b^2}$$

Mathematica DSolve solution

Solving time: 0.056 (sec)

Leaf size: 25

DSolve[{D[y[x],x]==a*x+b*y[x],{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \rightarrow -\frac{abx + a}{b^2} + c_1 e^{bx}$$

2.1.9 problem 9

Solved as first order autonomous ode	81
Solved as first order homogeneous class D2 ode	83
Solved as first order Exact ode	84
Solved using Lie symmetry for first order ode	88
Maple step by step solution	93
Maple trace	93
Maple dsolve solution	93
Mathematica DSolve solution	94

Internal problem ID [8669]

Book: First order enumerated odes

Section: section 1
Problem number: 9

Date solved: Tuesday, December 17, 2024 at 12:57:20 PM

CAS classification : [_quadrature]

Solve

$$y' = y$$

Solved as first order autonomous ode

Time used: 0.083 (sec)

Integrating gives

$$\int \frac{1}{y} dy = 1$$

$$\ln(y) = x + c_1$$

$$e^{\ln(y)} = e^{x + c_1}$$

$$y = c_1 e^x$$

The following diagram is the phase line diagram. It classifies each of the above equilibrium points as stable or not stable or semi-stable.

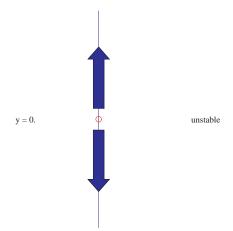


Figure 2.9: Phase line diagram

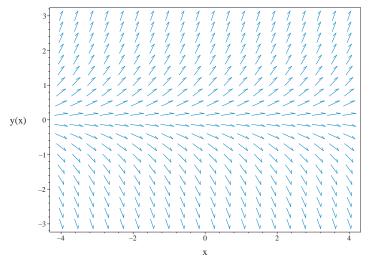


Figure 2.10: Slope field plot y' = y

Summary of solutions found

$$y = 0$$

$$y = c_1 e^x$$

Solved as first order homogeneous class D2 ode

Time used: 0.139 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$u'(x) x + u(x) = u(x) x$$

Which is now solved The ode $u'(x) = \frac{u(x)(x-1)}{x}$ is separable as it can be written as

$$u'(x) = \frac{u(x)(x-1)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = \frac{x-1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int \frac{x-1}{x} dx$$
$$\ln (u(x)) = x + \ln \left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = x + \ln\left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$

$$u(x) = \frac{e^{x+c_1}}{x}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{x+c_1}}{x}$ back to y gives

$$y = e^{x+c_1}$$

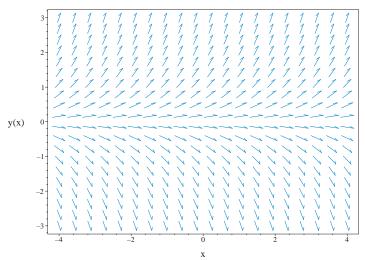


Figure 2.11: Slope field plot y' = y

Summary of solutions found

$$y = 0$$

$$y = e^{x + c_1}$$

Solved as first order Exact ode

Time used: 0.096 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 (A)

We assume there exists a function $\phi(x,y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$dy = (y) dx$$

$$(-y) dx + dy = 0$$
(2A)

Comparing (1A) and (2A) shows that

$$M(x,y) = -y$$
$$N(x,y) = 1$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(-y)$$
$$= -1$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(1)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is <u>not exact</u>. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$A = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$
$$= 1((-1) - (0))$$
$$= -1$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$\mu = e^{\int A \, \mathrm{d}x}$$
$$= e^{\int -1 \, \mathrm{d}x}$$

The result of integrating gives

$$\mu = e^{-x}$$
$$= e^{-x}$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \overline{M} and \overline{N} for now so not to confuse them with the original M and N.

$$\overline{M} = \mu M$$
$$= e^{-x}(-y)$$
$$= -y e^{-x}$$

And

$$\overline{N} = \mu N$$
$$= e^{-x}(1)$$
$$= e^{-x}$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$\overline{M} + \overline{N} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
$$(-y e^{-x}) + (e^{-x}) \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = \overline{M} \tag{1}$$

$$\frac{\partial \phi}{\partial y} = \overline{N} \tag{2}$$

Integrating (2) w.r.t. y gives

$$\int \frac{\partial \phi}{\partial y} \, dy = \int \overline{N} \, dy$$

$$\int \frac{\partial \phi}{\partial y} \, dy = \int e^{-x} \, dy$$

$$\phi = y e^{-x} + f(x)$$
(3)

Where f(x) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t x gives

$$\frac{\partial \phi}{\partial x} = -y e^{-x} + f'(x) \tag{4}$$

But equation (1) says that $\frac{\partial \phi}{\partial x} = -y e^{-x}$. Therefore equation (4) becomes

$$-y e^{-x} = -y e^{-x} + f'(x)$$
 (5)

Solving equation (5) for f'(x) gives

$$f'(x) = 0$$

Therefore

$$f(x) = c_1$$

Where c_1 is constant of integration. Substituting this result for f(x) into equation (3) gives ϕ

$$\phi = y e^{-x} + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = y e^{-x}$$

Solving for y gives

$$y = c_1 e^x$$

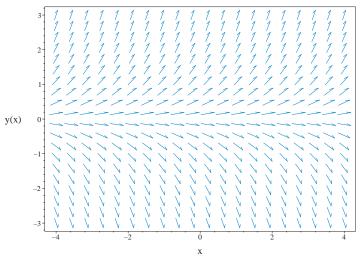


Figure 2.12: Slope field plot y' = y

Summary of solutions found

$$y = c_1 e^x$$

Solved using Lie symmetry for first order ode

Time used: 0.389 (sec)

Writing the ode as

$$y' = y$$
$$y' = \omega(x, y)$$

The condition of Lie symmetry is the linearized PDE given by

$$\eta_x + \omega(\eta_y - \xi_x) - \omega^2 \xi_y - \omega_x \xi - \omega_y \eta = 0$$
 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$\xi = xa_2 + ya_3 + a_1 \tag{1E}$$

$$\eta = xb_2 + yb_3 + b_1 \tag{2E}$$

Where the unknown coefficients are

$$\{a_1, a_2, a_3, b_1, b_2, b_3\}$$

Substituting equations (1E,2E) and ω into (A) gives

$$b_2 + y(b_3 - a_2) - y^2 a_3 - x b_2 - y b_3 - b_1 = 0$$
(5E)

Putting the above in normal form gives

$$-y^2a_3 - xb_2 - ya_2 - b_1 + b_2 = 0$$

Setting the numerator to zero gives

$$-y^2a_3 - xb_2 - ya_2 - b_1 + b_2 = 0 (6E)$$

Looking at the above PDE shows the following are all the terms with $\{x,y\}$ in them.

$$\{x,y\}$$

The following substitution is now made to be able to collect on all terms with $\{x,y\}$ in them

$${x = v_1, y = v_2}$$

The above PDE (6E) now becomes

$$-a_3v_2^2 - a_2v_2 - b_2v_1 - b_1 + b_2 = 0 (7E)$$

Collecting the above on the terms v_i introduced, and these are

$$\{v_1, v_2\}$$

Equation (7E) now becomes

$$-a_3v_2^2 - a_2v_2 - b_2v_1 - b_1 + b_2 = 0 (8E)$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$-a_2 = 0$$
$$-a_3 = 0$$
$$-b_2 = 0$$
$$-b_1 + b_2 = 0$$

Solving the above equations for the unknowns gives

$$a_1 = a_1$$
 $a_2 = 0$
 $a_3 = 0$
 $b_1 = 0$
 $b_2 = 0$
 $b_3 = b_3$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$\xi = 0$$
$$\eta = y$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \to (R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$\frac{dx}{\xi} = \frac{dy}{\eta} = dS \tag{1}$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}\right) S(x,y) = 1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Since $\xi = 0$ then in this special case

$$R = x$$

S is found from

$$S = \int \frac{1}{\eta} dy$$
$$= \int \frac{1}{y} dy$$

Which results in

$$S = \ln(y)$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$\frac{dS}{dR} = \frac{S_x + \omega(x, y)S_y}{R_x + \omega(x, y)R_y} \tag{2}$$

Where in the above R_x, R_y, S_x, S_y are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$\omega(x,y) = y$$

Evaluating all the partial derivatives gives

$$R_x = 1$$

$$R_y = 0$$

$$S_x = 0$$

$$S_y = \frac{1}{y}$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$\frac{dS}{dR} = 1\tag{2A}$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$\frac{dS}{dR} = 1$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S.

Since the ode has the form $\frac{d}{dR}S(R) = f(R)$, then we only need to integrate f(R).

$$\int dS = \int 1 dR$$
$$S(R) = R + c_2$$

To complete the solution, we just need to transform the above back to x,y coordinates. This results in

$$\ln\left(y\right) = x + c_2$$

Which gives

$$y = e^{x + c_2}$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$rac{dy}{dx}=y$	$R = x$ $S = \ln(y)$	$rac{dS}{dR}=1$

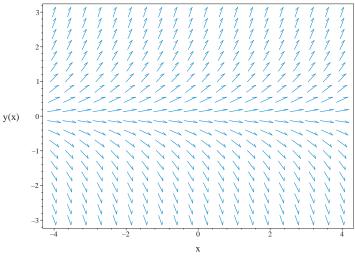


Figure 2.13: Slope field plot y' = y

Summary of solutions found

$$y = e^{x + c_2}$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = y(x)$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = y(x)$$

• Separate variables

$$\frac{\frac{d}{dx}y(x)}{y(x)} = 1$$

• Integrate both sides with respect to x

$$\int \frac{\frac{d}{dx}y(x)}{y(x)} dx = \int 1 dx + C1$$

• Evaluate integral

$$\ln\left(y(x)\right) = x + C1$$

• Solve for y(x)

$$y(x) = e^{x + C1}$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.003 (sec)

Leaf size: 8

$$y = e^x c_1$$

Mathematica DSolve solution

Solving time: 0.021 (sec)

Leaf size : 16

DSolve[{D[y[x],x]==y[x],{}},

y[x],x,IncludeSingularSolutions->True]

$$y(x) \to c_1 e^x$$
$$y(x) \to 0$$

2.1.10 problem 10

Solved as first order autonomous ode		95
Solved as first order homogeneous class D2 ode		97
Solved as first order Exact ode		98
Solved using Lie symmetry for first order ode		102
Maple step by step solution		105
Maple trace		106
Maple dsolve solution	•	106
Mathematica DSolve solution		106

Internal problem ID [8670]

 ${f Book}$: First order enumerated odes

Section: section 1
Problem number: 10

Date solved: Tuesday, December 17, 2024 at 12:57:21 PM

CAS classification : [_quadrature]

Solve

$$y' = by$$

Solved as first order autonomous ode

Time used: 0.155 (sec)

Integrating gives

$$\int \frac{1}{by} dy = dx$$
$$\frac{\ln(y)}{b} = x + c_1$$

Singular solutions are found by solving

$$by = 0$$

for y. This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$y = 0$$

The following diagram is the phase line diagram. It classifies each of the above equilibrium points as stable or not stable or semi-stable.

y = 0.

Figure 2.14: Phase line diagram

Solving for y gives

$$y = 0$$
$$y = e^{c_1 b + xb}$$

Summary of solutions found

$$y = 0$$
$$y = e^{c_1 b + xb}$$

Solved as first order homogeneous class D2 ode

Time used: 0.115 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$u'(x) x + u(x) = bu(x) x$$

Which is now solved The ode $u'(x) = \frac{u(x)(xb-1)}{x}$ is separable as it can be written as

$$u'(x) = \frac{u(x)(xb-1)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = \frac{xb - 1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int \frac{xb - 1}{x} dx$$
$$\ln(u(x)) = xb + \ln\left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln (u(x)) = xb + \ln \left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$

$$u(x) = \frac{\mathrm{e}^{xb + c_1}}{x}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{xb+c_1}}{x}$ back to y gives

$$y = e^{xb + c_1}$$

Summary of solutions found

$$y = 0$$

$$y = e^{xb + c_1}$$

Solved as first order Exact ode

Time used: 0.104 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 (A)

We assume there exists a function $\phi(x,y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$dy = (by) dx$$

$$(-by) dx + dy = 0$$
(2A)

Comparing (1A) and (2A) shows that

$$M(x,y) = -by$$
$$N(x,y) = 1$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(-by)$$
$$= -b$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(1)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$A = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$
$$= 1((-b) - (0))$$
$$= -b$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$\mu = e^{\int A \, \mathrm{d}x}$$
$$= e^{\int -b \, \mathrm{d}x}$$

The result of integrating gives

$$\mu = e^{-xb}$$
$$= e^{-xb}$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \overline{M} and \overline{N} for now so not to confuse them with the original M and N.

$$\overline{M} = \mu M$$

$$= e^{-xb}(-by)$$

$$= -by e^{-xb}$$

And

$$\overline{N} = \mu N$$
$$= e^{-xb}(1)$$
$$= e^{-xb}$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$\overline{M} + \overline{N} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
$$(-by e^{-xb}) + (e^{-xb}) \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = \overline{M} \tag{1}$$

$$\frac{\partial \phi}{\partial x} = \overline{M}$$

$$\frac{\partial \phi}{\partial y} = \overline{N}$$
(1)

Integrating (2) w.r.t. y gives

$$\int \frac{\partial \phi}{\partial y} \, dy = \int \overline{N} \, dy$$

$$\int \frac{\partial \phi}{\partial y} \, dy = \int e^{-xb} \, dy$$

$$\phi = e^{-xb} y + f(x)$$
(3)

Where f(x) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t x gives

$$\frac{\partial \phi}{\partial x} = -by e^{-xb} + f'(x) \tag{4}$$

But equation (1) says that $\frac{\partial \phi}{\partial x} = -by e^{-xb}$. Therefore equation (4) becomes

$$-by e^{-xb} = -by e^{-xb} + f'(x)$$
 (5)

Solving equation (5) for f'(x) gives

$$f'(x) = 0$$

Therefore

$$f(x) = c_1$$

Where c_1 is constant of integration. Substituting this result for f(x) into equation (3) gives ϕ

$$\phi = e^{-xb}y + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = e^{-xb}y$$

Solving for y gives

$$y = c_1 e^{xb}$$

Summary of solutions found

$$y = c_1 e^{xb}$$

Solved using Lie symmetry for first order ode

Time used: 0.244 (sec)

Writing the ode as

$$y' = by$$
$$y' = \omega(x, y)$$

The condition of Lie symmetry is the linearized PDE given by

$$\eta_x + \omega(\eta_y - \xi_x) - \omega^2 \xi_y - \omega_x \xi - \omega_y \eta = 0 \tag{A}$$

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$\xi = xa_2 + ya_3 + a_1 \tag{1E}$$

$$\eta = xb_2 + yb_3 + b_1 \tag{2E}$$

Where the unknown coefficients are

$${a_1, a_2, a_3, b_1, b_2, b_3}$$

Substituting equations (1E,2E) and ω into (A) gives

$$b_2 + by(b_3 - a_2) - b^2y^2a_3 - b(xb_2 + yb_3 + b_1) = 0$$
(5E)

Putting the above in normal form gives

$$-b^2y^2a_3 - bxb_2 - bya_2 - bb_1 + b_2 = 0$$

Setting the numerator to zero gives

$$-b^2y^2a_3 - bxb_2 - bya_2 - bb_1 + b_2 = 0 (6E)$$

Looking at the above PDE shows the following are all the terms with $\{x,y\}$ in them.

$$\{x,y\}$$

The following substitution is now made to be able to collect on all terms with $\{x,y\}$ in them

$$\{x=v_1,y=v_2\}$$

The above PDE (6E) now becomes

$$-b^2 a_3 v_2^2 - b a_2 v_2 - b b_2 v_1 - b b_1 + b_2 = 0 (7E)$$

Collecting the above on the terms v_i introduced, and these are

$$\{v_1,v_2\}$$

Equation (7E) now becomes

$$-b^2 a_3 v_2^2 - b a_2 v_2 - b b_2 v_1 - b b_1 + b_2 = 0 (8E)$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$-ba_2 = 0$$
$$-bb_2 = 0$$
$$-b^2a_3 = 0$$
$$-bb_1 + b_2 = 0$$

Solving the above equations for the unknowns gives

$$a_1 = a_1$$
 $a_2 = 0$
 $a_3 = 0$
 $b_1 = 0$
 $b_2 = 0$
 $b_3 = b_3$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$\xi = 0$$
$$\eta = y$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \to (R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$\frac{dx}{\xi} = \frac{dy}{\eta} = dS \tag{1}$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}\right) S(x,y) = 1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Since $\xi = 0$ then in this special case

$$R = x$$

S is found from

$$S = \int \frac{1}{\eta} dy$$
$$= \int \frac{1}{y} dy$$

Which results in

$$S = \ln(y)$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$\frac{dS}{dR} = \frac{S_x + \omega(x, y)S_y}{R_x + \omega(x, y)R_y} \tag{2}$$

Where in the above R_x, R_y, S_x, S_y are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$\omega(x,y) = by$$

Evaluating all the partial derivatives gives

$$R_x = 1$$

$$R_y = 0$$

$$S_x = 0$$

$$S_y = \frac{1}{y}$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$\frac{dS}{dR} = b \tag{2A}$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$\frac{dS}{dR} = b$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S.

Since the ode has the form $\frac{d}{dR}S(R) = f(R)$, then we only need to integrate f(R).

$$\int dS = \int b \, dR$$
$$S(R) = bR + c_2$$

To complete the solution, we just need to transform the above back to x, y coordinates. This results in

$$\ln\left(y\right) = xb + c_2$$

Which gives

$$y = e^{xb + c_2}$$

Summary of solutions found

$$y = e^{xb + c_2}$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = by(x)$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\frac{d}{dx}y(x) = by(x)$

$$\frac{1}{2} dx g(x) = 0 g(x)$$

• Separate variables

$$\frac{\frac{d}{dx}y(x)}{y(x)} = b$$

• Integrate both sides with respect to x

$$\int \frac{\frac{d}{dx}y(x)}{y(x)}dx = \int bdx + C1$$

• Evaluate integral

$$ln (y(x)) = bx + C1$$

• Solve for y(x)

$$y(x) = e^{bx + C1}$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time : 0.003 (sec)

Leaf size: 10

```
dsolve(diff(y(x),x) = b*y(x),
     y(x),singsol=all)
```

$$y = e^{bx}c_1$$

Mathematica DSolve solution

Solving time: 0.024 (sec)

Leaf size: 18

DSolve[{D[y[x],x]==b*y[x],{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \to c_1 e^{bx}$$
$$y(x) \to 0$$

2.1.11 problem 11

Solved as first order ode of type reduced Riccati	107
Maple step by step solution	108
Maple trace	109
Maple dsolve solution	109
Mathematica DSolve solution	110

Internal problem ID [8671]

Book: First order enumerated odes

Section: section 1

Problem number: 11

Date solved: Tuesday, December 17, 2024 at 12:57:23 PM

CAS classification : [[_Riccati, _special]]

Solve

$$y' = ax + by^2$$

Solved as first order ode of type reduced Riccati

Time used: 0.135 (sec)

This is reduced Riccati ode of the form

$$y' = a x^n + b y^2$$

Comparing the given ode to the above shows that

$$a = a$$

$$b = b$$

$$n = 1$$

Since $n \neq -2$ then the solution of the reduced Riccati ode is given by

$$w = \sqrt{x} \begin{cases} c_1 \operatorname{BesselJ}\left(\frac{1}{2k}, \frac{1}{k}\sqrt{ab}x^k\right) + c_2 \operatorname{BesselY}\left(\frac{1}{2k}, \frac{1}{k}\sqrt{ab}x^k\right) & ab > 0 \\ c_1 \operatorname{BesselI}\left(\frac{1}{2k}, \frac{1}{k}\sqrt{-ab}x^k\right) + c_2 \operatorname{BesselK}\left(\frac{1}{2k}, \frac{1}{k}\sqrt{-ab}x^k\right) & ab < 0 \end{cases}$$

$$y = -\frac{1}{b}\frac{w'}{w}$$

$$k = 1 + \frac{n}{2}$$

$$(1)$$

EQ(1) gives

$$k = \frac{3}{2}$$

$$w = \sqrt{x} \left(c_1 \operatorname{BesselJ} \left(\frac{1}{3}, \frac{2\sqrt{ab} x^{3/2}}{3} \right) + c_2 \operatorname{BesselY} \left(\frac{1}{3}, \frac{2\sqrt{ab} x^{3/2}}{3} \right) \right)$$

Therefore the solution becomes

$$y = -\frac{1}{b} \frac{w'}{w}$$

Substituting the value of b, w found above and simplyfing gives

$$y = \frac{\left(-\operatorname{BesselY}\left(-\frac{2}{3}, \frac{2\sqrt{ab} \, x^{3/2}}{3}\right) c_2 - \operatorname{BesselJ}\left(-\frac{2}{3}, \frac{2\sqrt{ab} \, x^{3/2}}{3}\right) c_1\right) \sqrt{ab} \, \sqrt{x}}{b\left(c_1 \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2\sqrt{ab} \, x^{3/2}}{3}\right) + c_2 \operatorname{BesselY}\left(\frac{1}{3}, \frac{2\sqrt{ab} \, x^{3/2}}{3}\right)\right)}$$

Letting $c_2 = 1$ the above becomes

$$y = \frac{\left(-\operatorname{BesselY}\left(-\frac{2}{3}, \frac{2\sqrt{ab}\,x^{3/2}}{3}\right) - \operatorname{BesselJ}\left(-\frac{2}{3}, \frac{2\sqrt{ab}\,x^{3/2}}{3}\right)c_1\right)\sqrt{ab}\,\sqrt{x}}{b\left(c_1\operatorname{BesselJ}\left(\frac{1}{3}, \frac{2\sqrt{ab}\,x^{3/2}}{3}\right) + \operatorname{BesselY}\left(\frac{1}{3}, \frac{2\sqrt{ab}\,x^{3/2}}{3}\right)\right)}$$

Summary of solutions found

$$y = \frac{\left(-\operatorname{BesselY}\left(-\frac{2}{3}, \frac{2\sqrt{ab} \, x^{3/2}}{3}\right) - \operatorname{BesselJ}\left(-\frac{2}{3}, \frac{2\sqrt{ab} \, x^{3/2}}{3}\right) c_1\right)\sqrt{ab} \, \sqrt{x}}{b\left(c_1 \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2\sqrt{ab} \, x^{3/2}}{3}\right) + \operatorname{BesselY}\left(\frac{1}{3}, \frac{2\sqrt{ab} \, x^{3/2}}{3}\right)\right)}$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = xa + by(x)^2$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = xa + by(x)^2$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`</pre>
```

Maple dsolve solution

Solving time: 0.003 (sec)

Leaf size: 59

```
dsolve(diff(y(x),x) = a*x+b*y(x)^2,
    y(x),singsol=all)
```

$$y = \frac{(ba)^{1/3} \left(\text{AiryAi} \left(1, -(ba)^{1/3} x \right) c_1 + \text{AiryBi} \left(1, -(ba)^{1/3} x \right) \right)}{b \left(c_1 \text{AiryAi} \left(-(ba)^{1/3} x \right) + \text{AiryBi} \left(-(ba)^{1/3} x \right) \right)}$$

Mathematica DSolve solution

Solving time: 0.156 (sec)

Leaf size: 331

DSolve[{D[y[x],x]==a*x+b*y[x]^2,{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \longrightarrow \frac{\sqrt{a}\sqrt{b}x^{3/2}\left(-2\operatorname{BesselJ}\left(-\frac{2}{3},\frac{2}{3}\sqrt{a}\sqrt{b}x^{3/2}\right) + c_1\left(\operatorname{BesselJ}\left(\frac{2}{3},\frac{2}{3}\sqrt{a}\sqrt{b}x^{3/2}\right) - \operatorname{BesselJ}\left(-\frac{4}{3},\frac{2}{3}\sqrt{a}\sqrt{b}x^{3/2}\right)\right)}{2bx\left(\operatorname{BesselJ}\left(\frac{1}{3},\frac{2}{3}\sqrt{a}\sqrt{b}x^{3/2}\right) + c_1\operatorname{BesselJ}\left(-\frac{1}{3},\frac{2}{3}\sqrt{a}\sqrt{b}x^{3/2}\right)\right)}$$

$$y(x) \to -\frac{\sqrt{a}\sqrt{b}x^{3/2}\operatorname{BesselJ}\left(-\frac{4}{3},\frac{2}{3}\sqrt{a}\sqrt{b}x^{3/2}\right) - \sqrt{a}\sqrt{b}x^{3/2}\operatorname{BesselJ}\left(\frac{2}{3},\frac{2}{3}\sqrt{a}\sqrt{b}x^{3/2}\right) + \operatorname{BesselJ}\left(-\frac{1}{3},\frac{2}{3}\sqrt{a}\sqrt{b}x^{3/2}\right)}{2bx\operatorname{BesselJ}\left(-\frac{1}{3},\frac{2}{3}\sqrt{a}\sqrt{b}x^{3/2}\right)}$$

2.1.12 problem 12

Solved as first order quadrature ode	111
Solved as first order homogeneous class D2 ode	112
Solved as first order ode of type differential	114
Maple step by step solution	115
Maple trace	116
Maple dsolve solution	116
Mathematica DSolve solution	116

Internal problem ID [8672]

Book: First order enumerated odes

Section: section 1

Problem number: 12

Date solved: Tuesday, December 17, 2024 at 12:57:24 PM

CAS classification : [_quadrature]

Solve

$$cy' = 0$$

Solved as first order quadrature ode

Time used: 0.024 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 \, dx + c_1$$
$$y = c_1$$

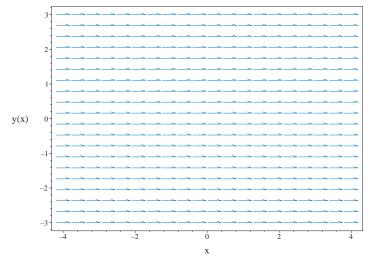


Figure 2.15: Slope field plot cy' = 0

Summary of solutions found

$$y = c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.129 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$c(u'(x) x + u(x)) = 0$$

Which is now solved The ode $u'(x) = -\frac{u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int -\frac{1}{x} dx$$
$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$
$$u(x) = \frac{e^{c_1}}{x}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{c_1}}{x}$ back to y gives

$$y = e^{c_1}$$

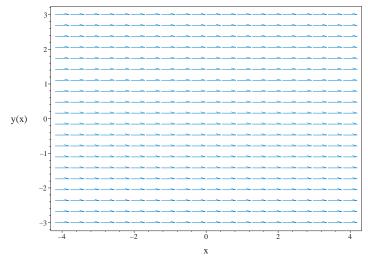


Figure 2.16: Slope field plot cy' = 0

Summary of solutions found

$$y = 0$$

$$y = e^{c_1}$$

Solved as first order ode of type differential

Time used: 0.011 (sec)

Writing the ode as

$$y' = 0 \tag{1}$$

Which becomes

$$(1) dy = (0) dx \tag{2}$$

But the RHS is complete differential because

$$(0) dx = d(0)$$

Hence (2) becomes

$$(1) dy = d(0)$$

Integrating gives

$$y = c_1$$

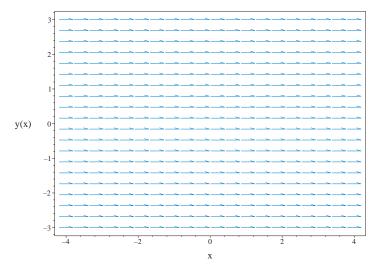


Figure 2.17: Slope field plot cy' = 0

Summary of solutions found

$$y = c_1$$

Maple step by step solution

Let's solve

$$c\big(\tfrac{d}{dx}y(x)\big) = 0$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Separate variables

$$\frac{d}{dx}y(x) = 0$$

ullet Integrate both sides with respect to x

$$\int \left(\frac{d}{dx}y(x)\right)dx = \int 0dx + C1$$

• Evaluate integral

$$y(x) = C1$$

• Solve for y(x)

$$y(x) = C1$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.003 (sec)

Leaf size: 5

```
dsolve(c*diff(y(x),x) = 0,
    y(x),singsol=all)
```

$$y = c_1$$

Mathematica DSolve solution

Solving time: 0.002 (sec)

Leaf size : 7

```
DSolve[{c*D[y[x],x]==0,{}},
    y[x],x,IncludeSingularSolutions->True]
```

$$y(x) \rightarrow c_1$$

2.1.13 problem 13

Solved as first order quadrature ode	117
Solved as first order homogeneous class D2 ode $\dots \dots$	118
Solved as first order Exact ode	119
Maple step by step solution \dots	122
Maple trace	122
Maple d solve solution $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	123
Mathematica DSolve solution	123

Internal problem ID [8673]

Book: First order enumerated odes

Section: section 1

Problem number: 13

Date solved: Tuesday, December 17, 2024 at 12:57:25 PM

CAS classification : [_quadrature]

Solve

$$cy' = a$$

Solved as first order quadrature ode

Time used: 0.038 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int \frac{a}{c} dx$$
$$y = \frac{ax}{c} + c_1$$

Summary of solutions found

$$y = \frac{ax}{c} + c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.174 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$c(u'(x) x + u(x)) = a$$

Which is now solved The ode $u'(x) = -\frac{cu(x)-a}{cx}$ is separable as it can be written as

$$u'(x) = -\frac{cu(x) - a}{cx}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{xc}$$
$$g(u) = cu - a$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{cu - a} du = \int -\frac{1}{xc} dx$$
$$\frac{\ln(-cu(x) + a)}{c} = \frac{\ln(\frac{1}{x})}{c} + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or cu - a = 0 for u(x) gives

$$u(x) = \frac{a}{c}$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\frac{\ln(-cu(x) + a)}{c} = \frac{\ln(\frac{1}{x})}{c} + c_1$$
$$u(x) = \frac{a}{c}$$

Solving for u(x) gives

$$u(x) = \frac{a}{c}$$
$$u(x) = \frac{\left(e^{-c_1 c} ax - 1\right) e^{c_1 c}}{cx}$$

Converting $u(x) = \frac{a}{c}$ back to y gives

$$y = \frac{ax}{c}$$

Converting $u(x) = \frac{(\mathrm{e}^{-c_1 c} a x - 1) \mathrm{e}^{c_1 c}}{c x}$ back to y gives

$$y = \frac{(e^{-c_1 c} ax - 1) e^{c_1 c}}{c}$$

Summary of solutions found

$$y = \frac{ax}{c}$$
$$y = \frac{(e^{-c_1c}ax - 1)e^{c_1c}}{c}$$

Solved as first order Exact ode

Time used: 0.066 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
(A)

We assume there exists a function $\phi(x,y) = c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$(c) dy = (a) dx$$
$$(-a) dx + (c) dy = 0$$
 (2A)

Comparing (1A) and (2A) shows that

$$M(x,y) = -a$$
$$N(x,y) = c$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(-a)$$
$$= 0$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(c)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = M \tag{1}$$

$$\frac{\partial \phi}{\partial x} = M \tag{1}$$

$$\frac{\partial \phi}{\partial y} = N \tag{2}$$

Integrating (1) w.r.t. x gives

$$\int \frac{\partial \phi}{\partial x} dx = \int M dx$$

$$\int \frac{\partial \phi}{\partial x} dx = \int -a dx$$

$$\phi = -ax + f(y)$$
(3)

Where f(y) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$\frac{\partial \phi}{\partial y} = 0 + f'(y) \tag{4}$$

But equation (2) says that $\frac{\partial \phi}{\partial y} = c$. Therefore equation (4) becomes

$$c = 0 + f'(y) \tag{5}$$

Solving equation (5) for f'(y) gives

$$f'(y) = c$$

Integrating the above w.r.t y gives

$$\int f'(y) dy = \int (c) dy$$
$$f(y) = cy + c_1$$

Where c_1 is constant of integration. Substituting result found above for f(y) into equation (3) gives ϕ

$$\phi = -ax + cy + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = -ax + cy$$

Solving for y gives

$$y = \frac{ax + c_1}{c}$$

Summary of solutions found

$$y = \frac{ax + c_1}{c}$$

Maple step by step solution

Let's solve $c(\frac{d}{dx}y(x)) = a$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Separate variables

$$\frac{d}{dx}y(x) = \frac{a}{c}$$

• Integrate both sides with respect to x

$$\int \left(\frac{d}{dx}y(x)\right)dx = \int \frac{a}{c}dx + C1$$

ullet Evaluate integral

$$y(x) = \frac{ax}{c} + C1$$

• Solve for y(x)

$$y(x) = \frac{C1c + xa}{c}$$

Maple trace

`Methods for first order ODEs:
--- Trying classification methods --trying a quadrature
trying 1st order linear

<- 1st order linear successful`

Maple dsolve solution

Solving time: 0.001 (sec)

Leaf size : 12

dsolve(c*diff(y(x),x) = a,
 y(x),singsol=all)

$$y = \frac{ax}{c} + c_1$$

Mathematica DSolve solution

Solving time: 0.002 (sec)

Leaf size: 14

DSolve[{c*D[y[x],x]==a,{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \to \frac{ax}{c} + c_1$$

2.1.14 problem 14

Solved as first order quadrature ode	124
Solved as first order Exact ode	125
Maple step by step solution $\dots \dots \dots \dots \dots$	127
Maple trace	128
Maple dsolve solution $\dots \dots \dots \dots \dots \dots$	128
Mathematica DSolve solution	128

Internal problem ID [8674]

Book: First order enumerated odes

Section: section 1
Problem number: 14

Date solved: Tuesday, December 17, 2024 at 12:57:25 PM

CAS classification : [_quadrature]

Solve

$$cy' = ax$$

Solved as first order quadrature ode

Time used: 0.042 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int \frac{ax}{c} dx$$
$$y = \frac{ax^2}{2c} + c_1$$

Summary of solutions found

$$y = \frac{a x^2}{2c} + c_1$$

Solved as first order Exact ode

Time used: 0.061 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 (A)

We assume there exists a function $\phi(x,y) = c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$(c) dy = (ax) dx$$
$$(-ax) dx + (c) dy = 0$$
 (2A)

Comparing (1A) and (2A) shows that

$$M(x,y) = -ax$$
$$N(x,y) = c$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(-ax)$$
$$= 0$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(c)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = M \tag{1}$$

$$\frac{\partial x}{\partial y} = N \tag{2}$$

Integrating (1) w.r.t. x gives

$$\int \frac{\partial \phi}{\partial x} dx = \int M dx$$

$$\int \frac{\partial \phi}{\partial x} dx = \int -ax dx$$

$$\phi = -\frac{ax^2}{2} + f(y)$$
(3)

Where f(y) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$\frac{\partial \phi}{\partial y} = 0 + f'(y) \tag{4}$$

But equation (2) says that $\frac{\partial \phi}{\partial y} = c$. Therefore equation (4) becomes

$$c = 0 + f'(y) \tag{5}$$

Solving equation (5) for f'(y) gives

$$f'(y) = c$$

Integrating the above w.r.t y gives

$$\int f'(y) dy = \int (c) dy$$
$$f(y) = cy + c_1$$

Where c_1 is constant of integration. Substituting result found above for f(y) into equation (3) gives ϕ

$$\phi = -\frac{ax^2}{2} + cy + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = -\frac{a x^2}{2} + cy$$

Solving for y gives

$$y = \frac{a x^2 + 2c_1}{2c}$$

Summary of solutions found

$$y = \frac{a x^2 + 2c_1}{2c}$$

Maple step by step solution

Let's solve

$$c(\frac{d}{dx}y(x)) = xa$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Separate variables

$$\frac{d}{dx}y(x) = \frac{ax}{c}$$

• Integrate both sides with respect to x

$$\int \left(\frac{d}{dx}y(x)\right)dx = \int \frac{ax}{c}dx + C1$$

• Evaluate integral

$$y(x) = \frac{a x^2}{2c} + C1$$

• Solve for y(x)

$$y(x) = \frac{x^2a + 2C1c}{2c}$$

Maple trace

`Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

<- quadrature successful`</pre>

Maple dsolve solution

Solving time: 0.002 (sec)

Leaf size: 15

$$y = \frac{a x^2}{2c} + c_1$$

Mathematica DSolve solution

Solving time: 0.002 (sec)

Leaf size: 19

DSolve[{c*D[y[x],x]==a*x,{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \to \frac{ax^2}{2c} + c_1$$

2.1.15 problem 15

Solved as first order linear ode	129
Solved as first order Exact ode	130
Solved using Lie symmetry for first order ode	134
Maple step by step solution	138
Maple trace	139
Maple dsolve solution	139
Mathematica DSolve solution	139

Internal problem ID [8675]

Book: First order enumerated odes

Section: section 1

Problem number: 15

Date solved: Tuesday, December 17, 2024 at 12:57:26 PM

CAS classification : [[_linear, 'class A']]

Solve

$$cy' = ax + y$$

Solved as first order linear ode

Time used: 0.125 (sec)

In canonical form a linear first order is

$$y' + q(x)y = p(x)$$

Comparing the above to the given ode shows that

$$q(x) = -\frac{1}{c}$$
$$p(x) = \frac{ax}{c}$$

The integrating factor μ is

$$\mu = e^{\int q \, dx}$$

$$= e^{\int -\frac{1}{c} dx}$$

$$= e^{-\frac{x}{c}}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu y) = \mu p$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu y) = (\mu) \left(\frac{ax}{c}\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(y e^{-\frac{x}{c}}) = \left(e^{-\frac{x}{c}}\right) \left(\frac{ax}{c}\right)$$

$$\mathrm{d}(y e^{-\frac{x}{c}}) = \left(\frac{ax e^{-\frac{x}{c}}}{c}\right) \mathrm{d}x$$

Integrating gives

$$y e^{-\frac{x}{c}} = \int \frac{ax e^{-\frac{x}{c}}}{c} dx$$

= $-(c+x) a e^{-\frac{x}{c}} + c_1$

Dividing throughout by the integrating factor $e^{-\frac{x}{c}}$ gives the final solution

$$y = c_1 e^{\frac{x}{c}} - a(c+x)$$

Summary of solutions found

$$y = c_1 e^{\frac{x}{c}} - a(c+x)$$

Solved as first order Exact ode

Time used: 0.128 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0 \tag{A}$$

We assume there exists a function $\phi(x,y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$(c) dy = (ax + y) dx$$
$$(-ax - y) dx + (c) dy = 0$$
 (2A)

Comparing (1A) and (2A) shows that

$$M(x,y) = -ax - y$$
$$N(x,y) = c$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(-ax - y)$$
$$= -1$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(c)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is <u>not exact</u>. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$A = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$
$$= \frac{1}{c} ((-1) - (0))$$
$$= -\frac{1}{c}$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$\mu = e^{\int A \, \mathrm{d}x}$$
$$= e^{\int -\frac{1}{c} \, \mathrm{d}x}$$

The result of integrating gives

$$\mu = e^{-\frac{x}{c}}$$
$$= e^{-\frac{x}{c}}$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \overline{M} and \overline{N} for now so not to confuse them with the original M and N.

$$\overline{M} = \mu M$$

$$= e^{-\frac{x}{c}}(-ax - y)$$

$$= -(ax + y) e^{-\frac{x}{c}}$$

And

$$\overline{N} = \mu N$$

$$= e^{-\frac{x}{c}}(c)$$

$$= c e^{-\frac{x}{c}}$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$\overline{M} + \overline{N} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
$$\left(-(ax + y) e^{-\frac{x}{c}} \right) + \left(c e^{-\frac{x}{c}} \right) \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = \overline{M} \tag{1}$$

$$\frac{\partial x}{\partial y} = \overline{N} \tag{2}$$

Integrating (2) w.r.t. y gives

$$\int \frac{\partial \phi}{\partial y} \, dy = \int \overline{N} \, dy$$

$$\int \frac{\partial \phi}{\partial y} \, dy = \int c e^{-\frac{x}{c}} \, dy$$

$$\phi = c e^{-\frac{x}{c}} y + f(x)$$
(3)

Where f(x) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t x gives

$$\frac{\partial \phi}{\partial x} = -y e^{-\frac{x}{c}} + f'(x) \tag{4}$$

But equation (1) says that $\frac{\partial \phi}{\partial x} = -(ax+y) e^{-\frac{x}{c}}$. Therefore equation (4) becomes

$$-(ax + y) e^{-\frac{x}{c}} = -y e^{-\frac{x}{c}} + f'(x)$$
 (5)

Solving equation (5) for f'(x) gives

$$f'(x) = -ax e^{-\frac{x}{c}}$$

Integrating the above w.r.t x gives

$$\int f'(x) dx = \int \left(-ax e^{-\frac{x}{c}}\right) dx$$
$$f(x) = c(c+x) a e^{-\frac{x}{c}} + c_1$$

Where c_1 is constant of integration. Substituting result found above for f(x) into equation (3) gives ϕ

$$\phi = c e^{-\frac{x}{c}} y + c(c+x) a e^{-\frac{x}{c}} + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = c e^{-\frac{x}{c}} y + c(c+x) a e^{-\frac{x}{c}}$$

Solving for y gives

$$y = -\frac{\left(a \, \mathrm{e}^{-\frac{x}{c}} c^2 + cax \, \mathrm{e}^{-\frac{x}{c}} - c_1\right) \mathrm{e}^{\frac{x}{c}}}{c}$$

Summary of solutions found

$$y = -\frac{\left(a \operatorname{e}^{-\frac{x}{c}} c^2 + cax \operatorname{e}^{-\frac{x}{c}} - c_1\right) \operatorname{e}^{\frac{x}{c}}}{c}$$

Solved using Lie symmetry for first order ode

Time used: 0.365 (sec)

Writing the ode as

$$y' = \frac{ax + y}{c}$$
$$y' = \omega(x, y)$$

The condition of Lie symmetry is the linearized PDE given by

$$\eta_x + \omega(\eta_y - \xi_x) - \omega^2 \xi_y - \omega_x \xi - \omega_y \eta = 0$$
 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$\xi = xa_2 + ya_3 + a_1 \tag{1E}$$

$$\eta = xb_2 + yb_3 + b_1 \tag{2E}$$

Where the unknown coefficients are

$${a_1, a_2, a_3, b_1, b_2, b_3}$$

Substituting equations (1E,2E) and ω into (A) gives

$$b_2 + \frac{(ax+y)(b_3 - a_2)}{c} - \frac{(ax+y)^2 a_3}{c^2} - \frac{a(xa_2 + ya_3 + a_1)}{c} - \frac{xb_2 + yb_3 + b_1}{c} = 0 \quad (5E)$$

Putting the above in normal form gives

$$-\frac{a^2x^2a_3 + 2acxa_2 - acxb_3 + acya_3 + 2axya_3 + aca_1 - b_2c^2 + cxb_2 + cya_2 + y^2a_3 + cb_1}{c^2}$$
= 0

Setting the numerator to zero gives

$$-a^{2}x^{2}a_{3} - 2acxa_{2} + acxb_{3} - acya_{3} - 2axya_{3} - aca_{1} + b_{2}c^{2} - cxb_{2} - cya_{2} - y^{2}a_{3} - cb_{1} = 0$$
(6E)

Looking at the above PDE shows the following are all the terms with $\{x,y\}$ in them.

$$\{x,y\}$$

The following substitution is now made to be able to collect on all terms with $\{x,y\}$ in them

$${x = v_1, y = v_2}$$

The above PDE (6E) now becomes

$$-a^{2}a_{3}v_{1}^{2} - 2aca_{2}v_{1} - aca_{3}v_{2} + acb_{3}v_{1} - 2aa_{3}v_{1}v_{2} - aca_{1} + b_{2}c^{2} - ca_{2}v_{2} - cb_{2}v_{1} - a_{3}v_{2}^{2} - cb_{1} = 0$$
(7E)

Collecting the above on the terms v_i introduced, and these are

$$\{v_1, v_2\}$$

Equation (7E) now becomes

$$-a^{2}a_{3}v_{1}^{2} - 2aa_{3}v_{1}v_{2} + (-2aca_{2} + acb_{3} - cb_{2})v_{1} -a_{3}v_{2}^{2} + (-aca_{3} - ca_{2})v_{2} - aca_{1} + b_{2}c^{2} - cb_{1} = 0$$
(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

$$-a_{3} = 0$$

$$-2aa_{3} = 0$$

$$-a^{2}a_{3} = 0$$

$$-aca_{3} - ca_{2} = 0$$

$$-aca_{1} + b_{2}c^{2} - cb_{1} = 0$$

$$-2aca_{2} + acb_{3} - cb_{2} = 0$$

Solving the above equations for the unknowns gives

$$a_1 = a_1$$
 $a_2 = 0$
 $a_3 = 0$
 $b_1 = acb_3 - aa_1$
 $b_2 = ab_3$
 $b_3 = b_3$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$\xi = 0$$
$$\eta = ac + ax + y$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \to (R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$\frac{dx}{\xi} = \frac{dy}{\eta} = dS \tag{1}$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}\right) S(x,y) = 1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Since $\xi = 0$ then in this special case

$$R = x$$

S is found from

$$S = \int \frac{1}{\eta} dy$$
$$= \int \frac{1}{ac + ax + y} dy$$

Which results in

$$S = \ln\left(ac + ax + y\right)$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$\frac{dS}{dR} = \frac{S_x + \omega(x, y)S_y}{R_x + \omega(x, y)R_y} \tag{2}$$

Where in the above R_x, R_y, S_x, S_y are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$\omega(x,y) = \frac{ax+y}{c}$$

Evaluating all the partial derivatives gives

$$R_x = 1$$

$$R_y = 0$$

$$S_x = \frac{a}{a(c+x) + y}$$

$$S_y = \frac{1}{a(c+x) + y}$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$\frac{dS}{dR} = \frac{1}{c} \tag{2A}$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$\frac{dS}{dR} = \frac{1}{c}$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S.

Since the ode has the form $\frac{d}{dR}S(R) = f(R)$, then we only need to integrate f(R).

$$\int dS = \int \frac{1}{c} dR$$
$$S(R) = \frac{R}{c} + c_2$$

To complete the solution, we just need to transform the above back to x, y coordinates. This results in

$$\ln\left(a(c+x)+y\right) = \frac{x}{c} + c_2$$

Which gives

$$y = -ac - ax + e^{\frac{c_2c + x}{c}}$$

Summary of solutions found

$$y = -ac - ax + e^{\frac{c_2c + x}{c}}$$

Maple step by step solution

Let's solve

$$c(\frac{d}{dx}y(x)) = xa + y(x)$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = \frac{xa+y(x)}{c}$$

• Collect w.r.t. y(x) and simplify

$$\frac{d}{dx}y(x) = \frac{y(x)}{c} + \frac{ax}{c}$$

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE

$$\frac{d}{dx}y(x) - \frac{y(x)}{c} = \frac{ax}{c}$$

• The ODE is linear; multiply by an integrating factor $\mu(x)$

$$\mu(x)\left(\frac{d}{dx}y(x) - \frac{y(x)}{c}\right) = \frac{\mu(x)ax}{c}$$

• Assume the lhs of the ODE is the total derivative $\frac{d}{dx}(y(x) \mu(x))$

$$\mu(x)\left(\frac{d}{dx}y(x) - \frac{y(x)}{c}\right) = \left(\frac{d}{dx}y(x)\right)\mu(x) + y(x)\left(\frac{d}{dx}\mu(x)\right)$$

• Isolate $\frac{d}{dx}\mu(x)$

$$\frac{d}{dx}\mu(x) = -\frac{\mu(x)}{c}$$

• Solve to find the integrating factor

$$\mu(x) = e^{-\frac{x}{c}}$$

• Integrate both sides with respect to x

$$\int \left(\frac{d}{dx}(y(x)\mu(x))\right) dx = \int \frac{\mu(x)ax}{c} dx + C1$$

• Evaluate the integral on the lhs

$$y(x) \mu(x) = \int \frac{\mu(x)ax}{c} dx + C1$$

• Solve for y(x)

$$y(x) = rac{\int rac{\mu(x)ax}{c} dx + C1}{\mu(x)}$$

• Substitute $\mu(x) = e^{-\frac{x}{c}}$

$$y(x) = rac{\int rac{\mathrm{e}^{-rac{x}{c}}ax}{c}dx + C1}{\mathrm{e}^{-rac{x}{c}}}$$

• Evaluate the integrals on the rhs

$$y(x) = \frac{-(x+c)e^{-\frac{x}{c}}a + C1}{e^{-\frac{x}{c}}}$$

Simplify

$$y(x) = C1 e^{\frac{x}{c}} - a(x+c)$$

Maple trace

`Methods for first order ODEs:
--- Trying classification methods --trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>

Maple dsolve solution

Solving time: 0.002 (sec)

Leaf size: 19

$$y = e^{\frac{x}{c}}c_1 - a(c+x)$$

Mathematica DSolve solution

Solving time: 0.052 (sec)

Leaf size: 22

$$y(x) \rightarrow -a(c+x) + c_1 e^{\frac{x}{c}}$$

2.1.16 problem 16

Solved as first order linear ode	140
Solved as first order Exact ode	141
Solved using Lie symmetry for first order ode	145
Maple step by step solution	149
Maple trace	150
Maple dsolve solution	151
Mathematica DSolve solution	151

Internal problem ID [8676]

Book: First order enumerated odes

Section: section 1

Problem number: 16

Date solved: Tuesday, December 17, 2024 at 12:57:27 PM

CAS classification : [[_linear, 'class A']]

Solve

$$cy' = ax + by$$

Solved as first order linear ode

Time used: 0.124 (sec)

In canonical form a linear first order is

$$y' + q(x)y = p(x)$$

Comparing the above to the given ode shows that

$$q(x) = -\frac{b}{c}$$
$$p(x) = \frac{ax}{c}$$

The integrating factor μ is

$$\mu = e^{\int q \, dx}$$

$$= e^{\int -\frac{b}{c} dx}$$

$$= e^{-\frac{bx}{c}}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu y) = \mu p$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu y) = (\mu) \left(\frac{ax}{c}\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(y e^{-\frac{bx}{c}}\right) = \left(e^{-\frac{bx}{c}}\right) \left(\frac{ax}{c}\right)$$

$$\mathrm{d}\left(y e^{-\frac{bx}{c}}\right) = \left(\frac{ax e^{-\frac{bx}{c}}}{c}\right) \mathrm{d}x$$

Integrating gives

$$y e^{-\frac{bx}{c}} = \int \frac{ax e^{-\frac{bx}{c}}}{c} dx$$
$$= -\frac{(bx + c) a e^{-\frac{bx}{c}}}{b^2} + c_1$$

Dividing throughout by the integrating factor $e^{-\frac{bx}{c}}$ gives the final solution

$$y = \frac{c_1 e^{\frac{bx}{c}} b^2 - a(bx + c)}{b^2}$$

Summary of solutions found

$$y = \frac{c_1 e^{\frac{bx}{c}} b^2 - a(bx + c)}{b^2}$$

Solved as first order Exact ode

Time used: 0.140 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 (A)

We assume there exists a function $\phi(x,y) = c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$(c) dy = (ax + by) dx$$
$$(-ax - by) dx + (c) dy = 0$$
 (2A)

Comparing (1A) and (2A) shows that

$$M(x,y) = -ax - by$$
$$N(x,y) = c$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(-ax - by)$$
$$= -b$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(c)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is <u>not exact</u>. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$A = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$
$$= \frac{1}{c} ((-b) - (0))$$
$$= -\frac{b}{c}$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$\mu = e^{\int A \, \mathrm{d}x}$$
$$= e^{\int -\frac{b}{c} \, \mathrm{d}x}$$

The result of integrating gives

$$\mu = e^{-\frac{bx}{c}}$$
$$= e^{-\frac{bx}{c}}$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \overline{M} and \overline{N} for now so not to confuse them with the original M and N.

$$\overline{M} = \mu M$$

$$= e^{-\frac{bx}{c}} (-ax - by)$$

$$= -(ax + by) e^{-\frac{bx}{c}}$$

And

$$\overline{N} = \mu N$$

$$= e^{-\frac{bx}{c}}(c)$$

$$= c e^{-\frac{bx}{c}}$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$\overline{M} + \overline{N} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
$$\left(-(ax + by) e^{-\frac{bx}{c}} \right) + \left(c e^{-\frac{bx}{c}} \right) \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = \overline{M} \tag{1}$$

$$\frac{\partial \phi}{\partial y} = \overline{N} \tag{2}$$

Integrating (2) w.r.t. y gives

$$\int \frac{\partial \phi}{\partial y} \, dy = \int \overline{N} \, dy$$

$$\int \frac{\partial \phi}{\partial y} \, dy = \int c e^{-\frac{bx}{c}} \, dy$$

$$\phi = c e^{-\frac{bx}{c}} y + f(x)$$
(3)

Where f(x) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t x gives

$$\frac{\partial \phi}{\partial x} = -b e^{-\frac{bx}{c}} y + f'(x) \tag{4}$$

But equation (1) says that $\frac{\partial \phi}{\partial x} = -(ax + by) e^{-\frac{bx}{c}}$. Therefore equation (4) becomes

$$-(ax + by) e^{-\frac{bx}{c}} = -b e^{-\frac{bx}{c}} y + f'(x)$$
 (5)

Solving equation (5) for f'(x) gives

$$f'(x) = -ax e^{-\frac{bx}{c}}$$

Integrating the above w.r.t x gives

$$\int f'(x) dx = \int \left(-ax e^{-\frac{bx}{c}}\right) dx$$
$$f(x) = \frac{c(bx+c) a e^{-\frac{bx}{c}}}{b^2} + c_1$$

Where c_1 is constant of integration. Substituting result found above for f(x) into equation (3) gives ϕ

$$\phi = c e^{-\frac{bx}{c}} y + \frac{c(bx+c) a e^{-\frac{bx}{c}}}{b^2} + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = c e^{-\frac{bx}{c}} y + \frac{c(bx+c) a e^{-\frac{bx}{c}}}{b^2}$$

Solving for y gives

$$y = -\frac{\left(e^{-\frac{bx}{c}}abcx + e^{-\frac{bx}{c}}ac^2 - c_1b^2\right)e^{\frac{bx}{c}}}{cb^2}$$

Summary of solutions found

$$y = -\frac{\left(e^{-\frac{bx}{c}}abcx + e^{-\frac{bx}{c}}ac^2 - c_1b^2\right)e^{\frac{bx}{c}}}{cb^2}$$

Solved using Lie symmetry for first order ode

Time used: 0.383 (sec)

Writing the ode as

$$y' = \frac{ax + by}{c}$$
$$y' = \omega(x, y)$$

The condition of Lie symmetry is the linearized PDE given by

$$\eta_x + \omega(\eta_y - \xi_x) - \omega^2 \xi_y - \omega_x \xi - \omega_y \eta = 0 \tag{A}$$

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$\xi = xa_2 + ya_3 + a_1 \tag{1E}$$

$$\eta = xb_2 + yb_3 + b_1 \tag{2E}$$

Where the unknown coefficients are

$$\{a_1, a_2, a_3, b_1, b_2, b_3\}$$

Substituting equations (1E,2E) and ω into (A) gives

$$b_{2} + \frac{(ax + by)(b_{3} - a_{2})}{c} - \frac{(ax + by)^{2} a_{3}}{c^{2}} - \frac{a(xa_{2} + ya_{3} + a_{1})}{c} - \frac{b(xb_{2} + yb_{3} + b_{1})}{c} = 0$$
(5E)

Putting the above in normal form gives

$$-\frac{a^2x^2a_3 + 2abxya_3 + b^2y^2a_3 + 2acxa_2 - acxb_3 + acya_3 + bcxb_2 + bcya_2 + aca_1 + bcb_1 - b_2c^2}{c^2} = 0$$

Setting the numerator to zero gives

$$-a^{2}x^{2}a_{3} - 2abxya_{3} - b^{2}y^{2}a_{3} - 2acxa_{2} + acxb_{3} - acya_{3} - bcxb_{2} - bcya_{2} - aca_{1} - bcb_{1} + b_{2}c^{2} = 0$$
(6E)

Looking at the above PDE shows the following are all the terms with $\{x,y\}$ in them.

$$\{x,y\}$$

The following substitution is now made to be able to collect on all terms with $\{x,y\}$ in them

$${x = v_1, y = v_2}$$

The above PDE (6E) now becomes

$$-a^{2}a_{3}v_{1}^{2} - 2aba_{3}v_{1}v_{2} - b^{2}a_{3}v_{2}^{2} - 2aca_{2}v_{1} - aca_{3}v_{2} + acb_{3}v_{1} - bca_{2}v_{2} - bcb_{2}v_{1} - aca_{1} - bcb_{1} + b_{2}c^{2} = 0$$
(7E)

Collecting the above on the terms v_i introduced, and these are

$$\{v_1, v_2\}$$

Equation (7E) now becomes

$$-a^{2}a_{3}v_{1}^{2} - 2aba_{3}v_{1}v_{2} + (-2aca_{2} + acb_{3} - bcb_{2})v_{1} -b^{2}a_{3}v_{2}^{2} + (-aca_{3} - bca_{2})v_{2} - aca_{1} - bcb_{1} + b_{2}c^{2} = 0$$
(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

$$-a^{2}a_{3} = 0$$

$$-b^{2}a_{3} = 0$$

$$-2aba_{3} = 0$$

$$-aca_{3} - bca_{2} = 0$$

$$-aca_{1} - bcb_{1} + b_{2}c^{2} = 0$$

$$-2aca_{2} + acb_{3} - bcb_{2} = 0$$

Solving the above equations for the unknowns gives

$$a_{1} = a_{1}$$

$$a_{2} = 0$$

$$a_{3} = 0$$

$$b_{1} = -\frac{a(ba_{1} - cb_{3})}{b^{2}}$$

$$b_{2} = \frac{ab_{3}}{b}$$

$$b_{3} = b_{3}$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$\xi = 0$$

$$\eta = \frac{abx + b^2y + ac}{b^2}$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \to (R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$\frac{dx}{\xi} = \frac{dy}{\eta} = dS \tag{1}$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}\right) S(x,y) = 1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Since $\xi = 0$ then in this special case

$$R = x$$

S is found from

$$S = \int \frac{1}{\eta} dy$$
$$= \int \frac{1}{\frac{abx + b^2y + ac}{b^2}} dy$$

Which results in

$$S = \ln\left(abx + b^2y + ac\right)$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$\frac{dS}{dR} = \frac{S_x + \omega(x, y)S_y}{R_x + \omega(x, y)R_y} \tag{2}$$

Where in the above R_x, R_y, S_x, S_y are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$\omega(x,y) = \frac{ax + by}{c}$$

Evaluating all the partial derivatives gives

$$R_x = 1$$

$$R_y = 0$$

$$S_x = \frac{ab}{a(bx+c) + b^2y}$$

$$S_y = \frac{b^2}{abx + b^2y + ac}$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$\frac{dS}{dR} = \frac{b}{c} \tag{2A}$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$\frac{dS}{dR} = \frac{b}{c}$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S.

Since the ode has the form $\frac{d}{dR}S(R) = f(R)$, then we only need to integrate f(R).

$$\int dS = \int \frac{b}{c} dR$$
$$S(R) = \frac{bR}{c} + c_2$$

To complete the solution, we just need to transform the above back to x, y coordinates. This results in

$$\ln\left(a(bx+c)+b^2y\right) = \frac{bx}{c}+c_2$$

Which gives

$$y = \frac{-abx - ac + e^{\frac{c_2c + bx}{c}}}{b^2}$$

Summary of solutions found

$$y = \frac{-abx - ac + e^{\frac{c_2c + bx}{c}}}{b^2}$$

Maple step by step solution

Let's solve

$$c(\frac{d}{dx}y(x)) = xa + by(x)$$

- Highest derivative means the order of the ODE is 1
 - $\frac{d}{dx}y(x)$

Solve for the highest derivative
$$\frac{d}{dx}y(x) = \frac{xa+by(x)}{c}$$

• Collect w.r.t. y(x) and simplify

$$\frac{d}{dx}y(x) = \frac{by(x)}{c} + \frac{ax}{c}$$

- Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE $\frac{d}{dx}y(x) \frac{by(x)}{c} = \frac{ax}{c}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$

$$\mu(x)\left(\frac{d}{dx}y(x) - \frac{by(x)}{c}\right) = \frac{\mu(x)ax}{c}$$

• Assume the lhs of the ODE is the total derivative $\frac{d}{dx}(y(x) \mu(x))$

$$\mu(x) \left(\frac{d}{dx} y(x) - \frac{by(x)}{c} \right) = \left(\frac{d}{dx} y(x) \right) \mu(x) + y(x) \left(\frac{d}{dx} \mu(x) \right)$$

• Isolate $\frac{d}{dx}\mu(x)$

$$\frac{d}{dx}\mu(x) = -\frac{\mu(x)b}{c}$$

• Solve to find the integrating factor

$$\mu(x) = e^{-\frac{xb}{c}}$$

• Integrate both sides with respect to x

$$\int \left(\frac{d}{dx}(y(x)\,\mu(x))\right)dx = \int \frac{\mu(x)ax}{c}dx + C1$$

• Evaluate the integral on the lhs

$$y(x) \mu(x) = \int \frac{\mu(x)ax}{c} dx + C1$$

• Solve for y(x)

$$y(x) = rac{\int rac{\mu(x)ax}{c} dx + C1}{\mu(x)}$$

• Substitute $\mu(x) = e^{-\frac{xb}{c}}$

$$y(x) = rac{\int rac{\mathrm{e}^{-rac{xb}{c}}ax}{c}dx + C1}{\mathrm{e}^{-rac{xb}{c}}}$$

• Evaluate the integrals on the rhs

$$y(x) = \frac{-\frac{(bx+c)e^{-\frac{xb}{c}}a}{b^2} + C1}{e^{-\frac{xb}{c}}}$$

• Simplify

$$y(x) = \frac{C1 e^{\frac{xb}{c}}b^2 - a(bx+c)}{b^2}$$

Maple trace

`Methods for first order ODEs:
--- Trying classification methods --trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>

Maple dsolve solution

Solving time: 0.002 (sec)

Leaf size: 29

dsolve(c*diff(y(x),x) = a*x+b*y(x),
 y(x),singsol=all)

$$y = \frac{e^{\frac{bx}{c}}c_1b^2 - a(bx+c)}{b^2}$$

Mathematica DSolve solution

Solving time: 0.061 (sec)

Leaf size: 28

DSolve[{c*D[y[x],x]==a*x+b*y[x],{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) o -rac{a(bx+c)}{b^2} + c_1 e^{rac{bx}{c}}$$

2.1.17 problem 17

Solved as first order autonomous ode	 152
Solved as first order homogeneous class D2 ode	 154
Solved as first order Exact ode	 155
Solved using Lie symmetry for first order ode	 159
Maple step by step solution	 162
Maple trace	 163
Maple dsolve solution	 163
Mathematica DSolve solution	 163

Internal problem ID [8677]

 ${f Book}$: First order enumerated odes

Section: section 1
Problem number: 17

Date solved: Tuesday, December 17, 2024 at 12:57:28 PM

CAS classification : [_quadrature]

Solve

$$cy' = y$$

Solved as first order autonomous ode

Time used: 0.161 (sec)

Integrating gives

$$\int \frac{c}{y} dy = dx$$
$$c \ln(y) = x + c_1$$

Singular solutions are found by solving

$$\frac{y}{c} = 0$$

for y. This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$y = 0$$

The following diagram is the phase line diagram. It classifies each of the above equilibrium points as stable or not stable or semi-stable.

y = 0.

Figure 2.18: Phase line diagram

Solving for y gives

$$y = 0$$
$$y = e^{\frac{x+c}{c}}$$

Summary of solutions found

$$y = 0$$
$$y = e^{\frac{x+c_1}{c}}$$

Solved as first order homogeneous class D2 ode

Time used: 0.184 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$c(u'(x) x + u(x)) = u(x) x$$

Which is now solved The ode $u'(x) = -\frac{u(x)(c-x)}{cx}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)(c-x)}{cx}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{c - x}{xc}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$

$$\int \frac{1}{u} du = \int -\frac{c - x}{xc} dx$$

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + \frac{x}{c} + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + \frac{x}{c} + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$

$$u(x) = e^{\frac{\ln(\frac{1}{x})c + c_1c + x}{c}}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = e^{\frac{\ln(\frac{1}{x})c + c_1c + x}{c}}$ back to y gives

$$y = e^{\frac{\ln\left(\frac{1}{x}\right)c + c_1c + x}{c}}x$$

Summary of solutions found

$$y = 0$$
$$y = e^{\frac{\ln(\frac{1}{x})c + c_1c + x}{c}}x$$

Solved as first order Exact ode

Time used: 0.170 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 (A)

We assume there exists a function $\phi(x,y) = c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition

 $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$(c) dy = (y) dx$$
$$(-y) dx + (c) dy = 0$$
 (2A)

Comparing (1A) and (2A) shows that

$$M(x, y) = -y$$
$$N(x, y) = c$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(-y)$$
$$= -1$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(c)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$A = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$
$$= \frac{1}{c} ((-1) - (0))$$
$$= -\frac{1}{c}$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$\mu = e^{\int A \, \mathrm{d}x}$$
$$= e^{\int -\frac{1}{c} \, \mathrm{d}x}$$

The result of integrating gives

$$\mu = e^{-\frac{x}{c}}$$
$$= e^{-\frac{x}{c}}$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \overline{M} and \overline{N} for now so not to confuse them with the original M and N.

$$\overline{M} = \mu M$$

$$= e^{-\frac{x}{c}}(-y)$$

$$= -y e^{-\frac{x}{c}}$$

And

$$\overline{N} = \mu N$$

$$= e^{-\frac{x}{c}}(c)$$

$$= c e^{-\frac{x}{c}}$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$\overline{M} + \overline{N} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
$$\left(-y e^{-\frac{x}{c}}\right) + \left(c e^{-\frac{x}{c}}\right) \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = \overline{M} \tag{1}$$

$$\frac{\partial \phi}{\partial x} = \overline{M}$$

$$\frac{\partial \phi}{\partial y} = \overline{N}$$
(1)

Integrating (2) w.r.t. y gives

$$\int \frac{\partial \phi}{\partial y} \, dy = \int \overline{N} \, dy$$

$$\int \frac{\partial \phi}{\partial y} \, dy = \int c e^{-\frac{x}{c}} \, dy$$

$$\phi = c e^{-\frac{x}{c}} y + f(x)$$
(3)

Where f(x) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t x gives

$$\frac{\partial \phi}{\partial x} = -y e^{-\frac{x}{c}} + f'(x) \tag{4}$$

But equation (1) says that $\frac{\partial \phi}{\partial x} = -y e^{-\frac{x}{c}}$. Therefore equation (4) becomes

$$-y e^{-\frac{x}{c}} = -y e^{-\frac{x}{c}} + f'(x)$$
 (5)

Solving equation (5) for f'(x) gives

$$f'(x) = 0$$

Therefore

$$f(x) = c_1$$

Where c_1 is constant of integration. Substituting this result for f(x) into equation (3) gives ϕ

$$\phi = c e^{-\frac{x}{c}} y + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = c e^{-\frac{x}{c}} y$$

Solving for y gives

$$y = \frac{c_1 e^{\frac{x}{c}}}{c}$$

Summary of solutions found

$$y = \frac{c_1 e^{\frac{x}{c}}}{c}$$

Solved using Lie symmetry for first order ode

Time used: 0.201 (sec)

Writing the ode as

$$y' = \frac{y}{c}$$
$$y' = \omega(x, y)$$

The condition of Lie symmetry is the linearized PDE given by

$$\eta_x + \omega(\eta_y - \xi_x) - \omega^2 \xi_y - \omega_x \xi - \omega_y \eta = 0$$
 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$\xi = xa_2 + ya_3 + a_1 \tag{1E}$$

$$\eta = xb_2 + yb_3 + b_1 \tag{2E}$$

Where the unknown coefficients are

$${a_1, a_2, a_3, b_1, b_2, b_3}$$

Substituting equations (1E,2E) and ω into (A) gives

$$b_2 + \frac{y(b_3 - a_2)}{c} - \frac{y^2 a_3}{c^2} - \frac{xb_2 + yb_3 + b_1}{c} = 0$$
 (5E)

Putting the above in normal form gives

$$\frac{b_2c^2 - cxb_2 - yca_2 - y^2a_3 - cb_1}{c^2} = 0$$

Setting the numerator to zero gives

$$b_2c^2 - cxb_2 - yca_2 - y^2a_3 - cb_1 = 0 (6E)$$

Looking at the above PDE shows the following are all the terms with $\{x,y\}$ in them.

$$\{x,y\}$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$${x = v_1, y = v_2}$$

The above PDE (6E) now becomes

$$b_2c^2 - ca_2v_2 - cb_2v_1 - a_3v_2^2 - cb_1 = 0 (7E)$$

Collecting the above on the terms v_i introduced, and these are

$$\{v_1, v_2\}$$

Equation (7E) now becomes

$$b_2c^2 - ca_2v_2 - cb_2v_1 - a_3v_2^2 - cb_1 = 0 (8E)$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$-a_3 = 0$$
$$-ca_2 = 0$$
$$-cb_2 = 0$$
$$b_2c^2 - cb_1 = 0$$

Solving the above equations for the unknowns gives

$$a_1 = a_1$$

 $a_2 = 0$
 $a_3 = 0$
 $b_1 = 0$
 $b_2 = 0$
 $b_3 = b_3$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$\xi = 0$$
$$\eta = y$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \to (R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$\frac{dx}{\xi} = \frac{dy}{\eta} = dS \tag{1}$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}\right) S(x,y) = 1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Since $\xi = 0$ then in this special case

$$R = x$$

S is found from

$$S = \int \frac{1}{\eta} dy$$
$$= \int \frac{1}{y} dy$$

Which results in

$$S = \ln(y)$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$\frac{dS}{dR} = \frac{S_x + \omega(x, y)S_y}{R_x + \omega(x, y)R_y} \tag{2}$$

Where in the above R_x, R_y, S_x, S_y are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$\omega(x,y) = \frac{y}{c}$$

Evaluating all the partial derivatives gives

$$R_x = 1$$

$$R_y = 0$$

$$S_x = 0$$

$$S_y = \frac{1}{y}$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$\frac{dS}{dR} = \frac{1}{c} \tag{2A}$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$\frac{dS}{dR} = \frac{1}{c}$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S.

Since the ode has the form $\frac{d}{dR}S(R) = f(R)$, then we only need to integrate f(R).

$$\int dS = \int \frac{1}{c} dR$$
$$S(R) = \frac{R}{c} + c_2$$

To complete the solution, we just need to transform the above back to x, y coordinates. This results in

$$\ln\left(y\right) = \frac{x}{c} + c_2$$

Which gives

$$y = e^{\frac{c_2c + x}{c}}$$

Summary of solutions found

$$y = e^{\frac{c_2c+x}{c}}$$

Maple step by step solution

Let's solve $c(\frac{d}{dx}y(x)) = y(x)$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = \frac{y(x)}{c}$$

• Separate variables

$$\frac{\frac{d}{dx}y(x)}{y(x)} = \frac{1}{c}$$

• Integrate both sides with respect to x

$$\int \frac{\frac{d}{dx}y(x)}{y(x)}dx = \int \frac{1}{c}dx + C1$$

• Evaluate integral

$$\ln\left(y(x)\right) = \frac{x}{c} + C1$$

• Solve for y(x)

$$y(x) = \mathrm{e}^{\frac{C1\,c+x}{c}}$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.001 (sec)

Leaf size: 12

$$y = e^{\frac{x}{c}}c_1$$

Mathematica DSolve solution

Solving time: 0.024 (sec)

Leaf size: 20

$$y(x) \to c_1 e^{\frac{x}{c}}$$
$$y(x) \to 0$$

2.1.18 problem 18

Solved as first order autonomous ode	164
Solved as first order homogeneous class D2 ode	166
Solved as first order Exact ode	167
Solved using Lie symmetry for first order ode	171
Maple step by step solution	174
Maple trace	175
Maple dsolve solution $\dots \dots \dots \dots \dots \dots \dots$	175
Mathematica DSolve solution	175

Internal problem ID [8678]

Book: First order enumerated odes

Section: section 1
Problem number: 18

Date solved: Tuesday, December 17, 2024 at 12:57:29 PM

CAS classification : [_quadrature]

Solve

$$cy' = by$$

Solved as first order autonomous ode

Time used: 0.173 (sec)

Integrating gives

$$\int \frac{c}{by} dy = dx$$
$$\frac{c \ln(y)}{b} = x + c_1$$

Singular solutions are found by solving

$$\frac{by}{c} = 0$$

for y. This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$y = 0$$

The following diagram is the phase line diagram. It classifies each of the above equilibrium points as stable or not stable or semi-stable.

y = 0.

Figure 2.19: Phase line diagram

Solving for y gives

$$y = 0$$
$$y = e^{\frac{b(x+c_1)}{c}}$$

Summary of solutions found

$$y = 0$$
$$y = e^{\frac{b(x+c_1)}{c}}$$

Solved as first order homogeneous class D2 ode

Time used: 0.202 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$c(u'(x) x + u(x)) = bu(x) x$$

Which is now solved The ode $u'(x) = \frac{u(x)(xb-c)}{cx}$ is separable as it can be written as

$$u'(x) = \frac{u(x)(xb-c)}{cx}$$
$$= f(x)g(u)$$

Where

$$f(x) = \frac{xb - c}{xc}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int \frac{xb - c}{xc} dx$$
$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + \frac{xb}{c} + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + \frac{xb}{c} + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$

$$u(x) = \mathrm{e}^{\frac{\ln\left(\frac{1}{x}\right)c + c_1c + xb}{c}}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = e^{\frac{\ln(\frac{1}{x})c + c_1c + xb}{c}}$ back to y gives

$$y = x e^{\frac{\ln\left(\frac{1}{x}\right)c + c_1c + xb}{c}}$$

Summary of solutions found

$$y = 0$$

$$y = x e^{\frac{\ln\left(\frac{1}{x}\right)c + c_1c + xb}{c}}$$

Solved as first order Exact ode

Time used: 0.170 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 (A)

We assume there exists a function $\phi(x,y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

$$\frac{\partial \phi}{\partial u} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$(c) dy = (by) dx$$
$$(-by) dx + (c) dy = 0$$
 (2A)

Comparing (1A) and (2A) shows that

$$M(x,y) = -by$$
$$N(x,y) = c$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(-by)$$
$$= -b$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(c)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is <u>not exact</u>. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$A = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$
$$= \frac{1}{c} ((-b) - (0))$$
$$= -\frac{b}{c}$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$\mu = e^{\int A \, \mathrm{d}x}$$
$$= e^{\int -\frac{b}{c} \, \mathrm{d}x}$$

The result of integrating gives

$$\mu = e^{-\frac{xb}{c}}$$
$$= e^{-\frac{xb}{c}}$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \overline{M} and \overline{N} for now so not to confuse them with the original M and N.

$$\overline{M} = \mu M$$

$$= e^{-\frac{xb}{c}}(-by)$$

$$= -by e^{-\frac{xb}{c}}$$

And

$$\overline{N} = \mu N$$

$$= e^{-\frac{xb}{c}}(c)$$

$$= c e^{-\frac{xb}{c}}$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$\overline{M} + \overline{N} rac{\mathrm{d}y}{\mathrm{d}x} = 0$$

$$\left(-by \, \mathrm{e}^{-rac{xb}{c}}\right) + \left(c \, \mathrm{e}^{-rac{xb}{c}}\right) rac{\mathrm{d}y}{\mathrm{d}x} = 0$$

The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = \overline{M} \tag{1}$$

$$\frac{\partial x}{\partial \phi} = \overline{N} \tag{2}$$

Integrating (2) w.r.t. y gives

$$\int \frac{\partial \phi}{\partial y} \, dy = \int \overline{N} \, dy$$

$$\int \frac{\partial \phi}{\partial y} \, dy = \int c e^{-\frac{xb}{c}} \, dy$$

$$\phi = c e^{-\frac{xb}{c}} y + f(x)$$
(3)

Where f(x) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t x gives

$$\frac{\partial \phi}{\partial x} = -by e^{-\frac{xb}{c}} + f'(x) \tag{4}$$

But equation (1) says that $\frac{\partial \phi}{\partial x} = -by e^{-\frac{xb}{c}}$. Therefore equation (4) becomes

$$-by e^{-\frac{xb}{c}} = -by e^{-\frac{xb}{c}} + f'(x)$$
 (5)

Solving equation (5) for f'(x) gives

$$f'(x) = 0$$

Therefore

$$f(x) = c_1$$

Where c_1 is constant of integration. Substituting this result for f(x) into equation (3) gives ϕ

$$\phi = c e^{-\frac{xb}{c}} y + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = c e^{-\frac{xb}{c}} y$$

Solving for y gives

$$y = \frac{c_1 e^{\frac{xb}{c}}}{c}$$

Summary of solutions found

$$y = \frac{c_1 e^{\frac{xb}{c}}}{c}$$

Solved using Lie symmetry for first order ode

Time used: 0.231 (sec)

Writing the ode as

$$y' = \frac{by}{c}$$
$$y' = \omega(x, y)$$

The condition of Lie symmetry is the linearized PDE given by

$$\eta_x + \omega(\eta_y - \xi_x) - \omega^2 \xi_y - \omega_x \xi - \omega_y \eta = 0 \tag{A}$$

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$\xi = xa_2 + ya_3 + a_1 \tag{1E}$$

$$\eta = xb_2 + yb_3 + b_1 \tag{2E}$$

Where the unknown coefficients are

$${a_1, a_2, a_3, b_1, b_2, b_3}$$

Substituting equations (1E,2E) and ω into (A) gives

$$b_2 + \frac{by(b_3 - a_2)}{c} - \frac{b^2y^2a_3}{c^2} - \frac{b(xb_2 + yb_3 + b_1)}{c} = 0$$
 (5E)

Putting the above in normal form gives

$$-\frac{b^2y^2a_3 + bcxb_2 + byca_2 + bcb_1 - b_2c^2}{c^2} = 0$$

Setting the numerator to zero gives

$$-b^2y^2a_3 - bcxb_2 - byca_2 - bcb_1 + b_2c^2 = 0 (6E)$$

Looking at the above PDE shows the following are all the terms with $\{x,y\}$ in them.

$$\{x,y\}$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$${x = v_1, y = v_2}$$

The above PDE (6E) now becomes

$$-b^2 a_3 v_2^2 - bc a_2 v_2 - bc b_2 v_1 - bc b_1 + b_2 c^2 = 0$$
 (7E)

Collecting the above on the terms v_i introduced, and these are

$$\{v_1, v_2\}$$

Equation (7E) now becomes

$$-b^2 a_3 v_2^2 - bc a_2 v_2 - bc b_2 v_1 - bc b_1 + b_2 c^2 = 0$$
(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

$$-b^{2}a_{3} = 0$$
$$-bca_{2} = 0$$
$$-bcb_{2} = 0$$
$$-bcb_{1} + b_{2}c^{2} = 0$$

Solving the above equations for the unknowns gives

$$a_1 = a_1$$

 $a_2 = 0$
 $a_3 = 0$
 $b_1 = 0$
 $b_2 = 0$
 $b_3 = b_3$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$\xi = 0$$

$$\eta = y$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \to (R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$\frac{dx}{\xi} = \frac{dy}{\eta} = dS \tag{1}$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}\right) S(x,y) = 1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Since $\xi = 0$ then in this special case

$$R = x$$

S is found from

$$S = \int \frac{1}{\eta} dy$$
$$= \int \frac{1}{y} dy$$

Which results in

$$S = \ln(y)$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$\frac{dS}{dR} = \frac{S_x + \omega(x, y)S_y}{R_x + \omega(x, y)R_y} \tag{2}$$

Where in the above R_x, R_y, S_x, S_y are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$\omega(x,y) = \frac{by}{c}$$

Evaluating all the partial derivatives gives

$$R_x = 1$$

$$R_y = 0$$

$$S_x = 0$$

$$S_y = \frac{1}{y}$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$\frac{dS}{dR} = \frac{b}{c} \tag{2A}$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$\frac{dS}{dR} = \frac{b}{c}$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S.

Since the ode has the form $\frac{d}{dR}S(R) = f(R)$, then we only need to integrate f(R).

$$\int dS = \int \frac{b}{c} dR$$
$$S(R) = \frac{bR}{c} + c_2$$

To complete the solution, we just need to transform the above back to x, y coordinates. This results in

$$\ln\left(y\right) = \frac{xb}{c} + c_2$$

Which gives

$$y = e^{\frac{c_2c + xb}{c}}$$

Summary of solutions found

$$y = e^{\frac{c_2c + xb}{c}}$$

Maple step by step solution

Let's solve

$$c(\frac{d}{dx}y(x)) = by(x)$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = \frac{by(x)}{c}$$

Separate variables

$$\frac{\frac{d}{dx}y(x)}{y(x)} = \frac{b}{c}$$

Integrate both sides with respect to x

$$\int \frac{\frac{d}{dx}y(x)}{y(x)}dx = \int \frac{b}{c}dx + C1$$

Evaluate integral

$$\ln\left(y(x)\right) = \frac{xb}{c} + C1$$

Solve for y(x)

$$y(x) = e^{\frac{C1c+bx}{c}}$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Maple dsolve solution

Solving time: 0.003 (sec)

Leaf size: 13

dsolve(c*diff(y(x),x) = b*y(x),y(x),singsol=all)

$$y = e^{\frac{bx}{c}} c_1$$

Mathematica DSolve solution

Solving time: 0.025 (sec)

Leaf size: 21

DSolve[$\{c*D[y[x],x]==b*y[x],\{\}\},$

$$y(x) \to c_1 e^{\frac{bx}{c}}$$
$$y(x) \to 0$$

2.1.19 problem 19

Solved as first order ode of type reduced Riccati	176
Maple step by step solution	177
Maple trace	178
Maple dsolve solution	178
Mathematica DSolve solution	179

Internal problem ID [8679]

Book: First order enumerated odes

Section: section 1

Problem number: 19

Date solved: Tuesday, December 17, 2024 at 12:57:31 PM

CAS classification : [[_Riccati, _special]]

Solve

$$cy' = ax + by^2$$

Solved as first order ode of type reduced Riccati

Time used: 0.151 (sec)

This is reduced Riccati ode of the form

$$y' = a x^n + b y^2$$

Comparing the given ode to the above shows that

$$a = \frac{a}{c}$$

$$b = \frac{b}{c}$$

$$n = 1$$

Since $n \neq -2$ then the solution of the reduced Riccati ode is given by

$$w = \sqrt{x} \begin{cases} c_1 \operatorname{BesselJ}\left(\frac{1}{2k}, \frac{1}{k}\sqrt{ab}x^k\right) + c_2 \operatorname{BesselY}\left(\frac{1}{2k}, \frac{1}{k}\sqrt{ab}x^k\right) & ab > 0 \\ c_1 \operatorname{BesselI}\left(\frac{1}{2k}, \frac{1}{k}\sqrt{-ab}x^k\right) + c_2 \operatorname{BesselK}\left(\frac{1}{2k}, \frac{1}{k}\sqrt{-ab}x^k\right) & ab < 0 \end{cases}$$

$$y = -\frac{1}{b}\frac{w'}{w}$$

$$k = 1 + \frac{n}{2}$$

$$(1)$$

EQ(1) gives

$$k = rac{3}{2}$$
 $w = \sqrt{x} \left(c_1 \operatorname{BesselJ} \left(rac{1}{3}, rac{2\sqrt{rac{ab}{c^2}} x^{3/2}}{3}
ight) + c_2 \operatorname{BesselY} \left(rac{1}{3}, rac{2\sqrt{rac{ab}{c^2}} x^{3/2}}{3}
ight)
ight)$

Therefore the solution becomes

$$y = -\frac{1}{b} \frac{w'}{w}$$

Substituting the value of b, w found above and simplyfing gives

$$y = \frac{\left(-\operatorname{BesselY}\left(-\frac{2}{3}, \frac{2\sqrt{\frac{ab}{c^2}}\,x^{3/2}}{3}\right)c_2 - \operatorname{BesselJ}\left(-\frac{2}{3}, \frac{2\sqrt{\frac{ab}{c^2}}\,x^{3/2}}{3}\right)c_1\right)c\sqrt{\frac{ab}{c^2}}\,\sqrt{x}}{b\left(c_1\operatorname{BesselJ}\left(\frac{1}{3}, \frac{2\sqrt{\frac{ab}{c^2}}\,x^{3/2}}{3}\right) + c_2\operatorname{BesselY}\left(\frac{1}{3}, \frac{2\sqrt{\frac{ab}{c^2}}\,x^{3/2}}{3}\right)\right)}$$

Letting $c_2 = 1$ the above becomes

$$y = \frac{\left(-\text{BesselY}\left(-\frac{2}{3}, \frac{2\sqrt{\frac{ab}{c^2}}x^{3/2}}{3}\right) - \text{BesselJ}\left(-\frac{2}{3}, \frac{2\sqrt{\frac{ab}{c^2}}x^{3/2}}{3}\right)c_1\right)c\sqrt{\frac{ab}{c^2}}\sqrt{x}}{b\left(c_1 \text{BesselJ}\left(\frac{1}{3}, \frac{2\sqrt{\frac{ab}{c^2}}x^{3/2}}{3}\right) + \text{BesselY}\left(\frac{1}{3}, \frac{2\sqrt{\frac{ab}{c^2}}x^{3/2}}{3}\right)\right)}$$

Summary of solutions found

$$y = \frac{\left(-\operatorname{BesselY}\left(-\frac{2}{3}, \frac{2\sqrt{\frac{ab}{c^2}}\,x^{3/2}}{3}\right) - \operatorname{BesselJ}\left(-\frac{2}{3}, \frac{2\sqrt{\frac{ab}{c^2}}\,x^{3/2}}{3}\right)c_1\right)c\sqrt{\frac{ab}{c^2}}\,\sqrt{x}}{b\left(c_1\operatorname{BesselJ}\left(\frac{1}{3}, \frac{2\sqrt{\frac{ab}{c^2}}\,x^{3/2}}{3}\right) + \operatorname{BesselY}\left(\frac{1}{3}, \frac{2\sqrt{\frac{ab}{c^2}}\,x^{3/2}}{3}\right)\right)}$$

Maple step by step solution

Let's solve
$$c(\frac{d}{dx}y(x)) = xa + by(x)^2$$

• Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$

• Solve for the highest derivative

$$\frac{d}{dx}y(x) = \frac{xa + by(x)^2}{c}$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`
```

Maple dsolve solution

Solving time: 0.004 (sec)

Leaf size: 75

```
dsolve(c*diff(y(x),x) = a*x+b*y(x)^2,
    y(x),singsol=all)
```

$$y = \frac{\left(\frac{ba}{c^2}\right)^{1/3} \left(\text{AiryAi}\left(1, -\left(\frac{ba}{c^2}\right)^{1/3} x\right) c_1 + \text{AiryBi}\left(1, -\left(\frac{ba}{c^2}\right)^{1/3} x\right)\right) c}{b\left(c_1 \text{AiryAi}\left(-\left(\frac{ba}{c^2}\right)^{1/3} x\right) + \text{AiryBi}\left(-\left(\frac{ba}{c^2}\right)^{1/3} x\right)\right)}$$

Mathematica DSolve solution

Solving time: 0.186 (sec)

Leaf size: 437

$$y(x) \rightarrow \frac{c\left(x^{3/2}\sqrt{\frac{a}{c}}\sqrt{\frac{b}{c}}\left(-2\operatorname{BesselJ}\left(-\frac{2}{3},\frac{2}{3}\sqrt{\frac{a}{c}}\sqrt{\frac{b}{c}}x^{3/2}\right) + c_1\left(\operatorname{BesselJ}\left(\frac{2}{3},\frac{2}{3}\sqrt{\frac{a}{c}}\sqrt{\frac{b}{c}}x^{3/2}\right) - \operatorname{BesselJ}\left(-\frac{4}{3},\frac{2}{3}\sqrt{\frac{a}{c}}\sqrt{\frac{a}{c}}\sqrt{\frac{b}{c}}x^{3/2}\right) + c_1\operatorname{BesselJ}\left(-\frac{1}{3},\frac{2}{3}\sqrt{\frac{a}{c}}\sqrt{\frac{b}{c}}x^{3/2}\right) + c_1\operatorname{BesselJ}\left(-\frac{1}{3}\sqrt{\frac{a}{c}}\sqrt{\frac{b}{c}}x^{3/2}\right) + c_1\operatorname{BesselJ}\left(-\frac{1}{3}\sqrt{\frac{a}}\sqrt{\frac{a}{c}}\sqrt{\frac{b}{c}}x$$

2.1.20 problem 20

Solved as first order ode of type reduced Riccati	180
Maple step by step solution	181
Maple trace	182
Maple dsolve solution	182
Mathematica DSolve solution	183

Internal problem ID [8680]

Book: First order enumerated odes

 ${\bf Section}: {\bf section}\ 1$

Problem number: 20

Date solved: Tuesday, December 17, 2024 at 12:57:32 PM

CAS classification : [[_Riccati, _special]]

Solve

$$cy' = \frac{ax + by^2}{r}$$

Solved as first order ode of type reduced Riccati

Time used: 0.155 (sec)

This is reduced Riccati ode of the form

$$y' = a x^n + b y^2$$

Comparing the given ode to the above shows that

$$a = \frac{a}{rc}$$

$$b = \frac{b}{cr}$$

$$n = 1$$

Since $n \neq -2$ then the solution of the reduced Riccati ode is given by

$$w = \sqrt{x} \begin{cases} c_1 \operatorname{BesselJ}\left(\frac{1}{2k}, \frac{1}{k}\sqrt{ab}x^k\right) + c_2 \operatorname{BesselY}\left(\frac{1}{2k}, \frac{1}{k}\sqrt{ab}x^k\right) & ab > 0 \\ c_1 \operatorname{BesselI}\left(\frac{1}{2k}, \frac{1}{k}\sqrt{-ab}x^k\right) + c_2 \operatorname{BesselK}\left(\frac{1}{2k}, \frac{1}{k}\sqrt{-ab}x^k\right) & ab < 0 \end{cases}$$

$$y = -\frac{1}{b}\frac{w'}{w}$$

$$k = 1 + \frac{n}{2}$$

$$(1)$$

EQ(1) gives

$$k = \frac{3}{2}$$

$$w = \sqrt{x} \left(c_1 \operatorname{BesselJ} \left(\frac{1}{3}, \frac{2\sqrt{\frac{ab}{r^2c^2}} x^{3/2}}{3} \right) + c_2 \operatorname{BesselY} \left(\frac{1}{3}, \frac{2\sqrt{\frac{ab}{r^2c^2}} x^{3/2}}{3} \right) \right)$$

Therefore the solution becomes

$$y = -\frac{1}{b} \frac{w'}{w}$$

Substituting the value of b, w found above and simplyfing gives

$$y = \frac{\left(-\operatorname{BesselY}\left(-\frac{2}{3}, \frac{2\sqrt{\frac{ab}{r^2c^2}}}{3}x^{3/2}\right)c_2 - \operatorname{BesselJ}\left(-\frac{2}{3}, \frac{2\sqrt{\frac{ab}{r^2c^2}}}{3}x^{3/2}\right)c_1\right)cr\sqrt{\frac{ab}{r^2c^2}}\sqrt{x}}{b\left(c_1\operatorname{BesselJ}\left(\frac{1}{3}, \frac{2\sqrt{\frac{ab}{r^2c^2}}}{3}x^{3/2}\right) + c_2\operatorname{BesselY}\left(\frac{1}{3}, \frac{2\sqrt{\frac{ab}{r^2c^2}}}{3}x^{3/2}\right)\right)\right)}$$

Letting $c_2 = 1$ the above becomes

$$y = \frac{\left(-\operatorname{BesselY}\left(-\frac{2}{3}, \frac{2\sqrt{\frac{ab}{r^{2}c^{2}}}x^{3/2}}{3}\right) - \operatorname{BesselJ}\left(-\frac{2}{3}, \frac{2\sqrt{\frac{ab}{r^{2}c^{2}}}x^{3/2}}{3}\right)c_{1}\right)cr\sqrt{\frac{ab}{r^{2}c^{2}}}\sqrt{x}}{b\left(c_{1}\operatorname{BesselJ}\left(\frac{1}{3}, \frac{2\sqrt{\frac{ab}{r^{2}c^{2}}}x^{3/2}}{3}\right) + \operatorname{BesselY}\left(\frac{1}{3}, \frac{2\sqrt{\frac{ab}{r^{2}c^{2}}}x^{3/2}}{3}\right)\right)$$

Summary of solutions found

$$y = \frac{\left(-\operatorname{BesselY}\left(-\frac{2}{3}, \frac{2\sqrt{\frac{ab}{r^{2}c^{2}}}}{3}x^{3/2}\right) - \operatorname{BesselJ}\left(-\frac{2}{3}, \frac{2\sqrt{\frac{ab}{r^{2}c^{2}}}}{3}x^{3/2}\right)c_{1}\right)c_{1}\sqrt{\frac{ab}{r^{2}c^{2}}}\sqrt{x}}{b\left(c_{1}\operatorname{BesselJ}\left(\frac{1}{3}, \frac{2\sqrt{\frac{ab}{r^{2}c^{2}}}}{3}x^{3/2}\right) + \operatorname{BesselY}\left(\frac{1}{3}, \frac{2\sqrt{\frac{ab}{r^{2}c^{2}}}}{3}\right)\right)\right)}$$

Maple step by step solution

Let's solve

$$c(\frac{d}{dx}y(x)) = \frac{xa+by(x)^2}{r}$$

• Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$

• Solve for the highest derivative

$$\frac{d}{dx}y(x) = \frac{xa + by(x)^2}{rc}$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`</pre>
```

Maple dsolve solution

Solving time: 0.004 (sec)

Leaf size : 91

```
\frac{dsolve(c*diff(y(x),x) = (a*x+b*y(x)^2)/r,}{y(x),singsol=all)}
```

$$y = \frac{\left(\frac{ba}{r^2c^2}\right)^{1/3} \left(\text{AiryAi}\left(1, -\left(\frac{ba}{r^2c^2}\right)^{1/3}x\right)c_1 + \text{AiryBi}\left(1, -\left(\frac{ba}{r^2c^2}\right)^{1/3}x\right)\right)rc}{b\left(c_1 \text{AiryAi}\left(-\left(\frac{ba}{r^2c^2}\right)^{1/3}x\right) + \text{AiryBi}\left(-\left(\frac{ba}{r^2c^2}\right)^{1/3}x\right)\right)}$$

Mathematica DSolve solution

Solving time: 0.21 (sec)

Leaf size: 517

DSolve[$\{c*D[y[x],x]==(a*x+b*y[x]^2)/r,\{\}\}$, y[x],x,IncludeSingularSolutions->True]

$$y(x) \rightarrow \frac{cr\left(x^{3/2}\sqrt{\frac{a}{cr}}\sqrt{\frac{b}{cr}}\left(-2\operatorname{BesselJ}\left(-\frac{2}{3},\frac{2}{3}\sqrt{\frac{a}{cr}}\sqrt{\frac{b}{cr}}x^{3/2}\right) + c_1\left(\operatorname{BesselJ}\left(\frac{2}{3},\frac{2}{3}\sqrt{\frac{a}{cr}}\sqrt{\frac{b}{cr}}x^{3/2}\right) - \operatorname{BesselJ}\left(-\frac{4}{3},\frac{2}{3}\sqrt{\frac{a}{cr}}\sqrt{\frac{b}{cr}}x^{3/2}\right) + c_1\operatorname{BesselJ}\left(-\frac{1}{3},\frac{2}{3}\sqrt{\frac{a}{cr}}\sqrt{\frac{b}{cr}}x^{3/2}\right) + c_1\operatorname{BesselJ}\left(-\frac{1}{3}\sqrt{\frac{a}{cr}}\sqrt{\frac{b}{cr}}x^{3/2}\right) + c_1\operatorname{BesselJ}\left(-\frac{1}{3}\sqrt{\frac{a}{cr}}\sqrt{\frac{b}{cr}}x^{3/2}\right) + c_1\operatorname{BesselJ}\left(-\frac{1}{3}\sqrt{\frac{a}{cr}}\sqrt{\frac{b}{cr}}x^{3/2}\right) + c_1\operatorname{BesselJ$$

2.1.21 problem 21

Solved as first order ode of type Riccati	184
Maple step by step solution	188
Maple trace	189
Maple dsolve solution	189
Mathematica DSolve solution	190

Internal problem ID [8681]

Book: First order enumerated odes

Section: section 1

Problem number: 21

Date solved: Tuesday, December 17, 2024 at 12:57:34 PM

CAS classification: [_rational, _Riccati]

Solve

$$cy' = \frac{ax + by^2}{rx}$$

Solved as first order ode of type Riccati

Time used: 2.946 (sec)

In canonical form the ODE is

$$y' = F(x, y)$$
$$= \frac{by^2 + ax}{rxc}$$

This is a Riccati ODE. Comparing the ODE to solve

$$y' = \frac{a}{rc} + \frac{by^2}{crx}$$

With Riccati ODE standard form

$$y' = f_0(x) + f_1(x)y + f_2(x)y^2$$

Shows that $f_0(x) = \frac{a}{rc}$, $f_1(x) = 0$ and $f_2(x) = \frac{b}{crx}$. Let

$$y = \frac{-u'}{f_2 u}$$

$$= \frac{-u'}{\frac{ub}{crx}}$$
(1)

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for u(x) which is

$$f_2 u''(x) - (f_2' + f_1 f_2) u'(x) + f_2^2 f_0 u(x) = 0$$
(2)

But

$$f_2' = -\frac{b}{cr x^2}$$

$$f_1 f_2 = 0$$

$$f_2^2 f_0 = \frac{b^2 a}{c^3 r^3 x^2}$$

Substituting the above terms back in equation (2) gives

$$\frac{bu''(x)}{crx} + \frac{bu'(x)}{crx^2} + \frac{b^2au(x)}{c^3r^3x^2} = 0$$

In normal form the ode

$$\frac{b\left(\frac{d^2u}{dx^2}\right)}{crx} + \frac{b\left(\frac{du}{dx}\right)}{crx^2} + \frac{b^2au}{c^3r^3x^2} = 0 \tag{1}$$

Becomes

$$\frac{d^2u}{dx^2} + p(x)\left(\frac{du}{dx}\right) + q(x)u = r(x)$$
(2)

Where

$$p(x) = \frac{1}{x}$$
$$q(x) = \frac{ab}{r^2c^2x}$$
$$r(x) = 0$$

The Lagrange adjoint ode is given by

$$\xi'' - (\xi p)' + \xi q = 0$$

$$\xi'' - \left(\frac{\xi(x)}{x}\right)' + \left(\frac{ab\xi(x)}{r^2c^2x}\right) = 0$$

$$\frac{d^2}{dx^2}\xi(x) - \frac{\frac{d}{dx}\xi(x)}{x} + \frac{(c^2r^2 + abx)\xi(x)}{r^2x^2c^2} = 0$$

Which is solved for $\xi(x)$. Writing the ode as

$$x^{2}\xi'' - x\xi' + \left(1 + \frac{abx}{r^{2}c^{2}}\right)\xi = 0 \tag{1}$$

Bessel ode has the form

$$x^{2}\xi'' + x\xi' + (-n^{2} + x^{2})\xi = 0$$
(2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$x^{2}\xi'' + (1 - 2\alpha)x\xi' + (\beta^{2}\gamma^{2}x^{2\gamma} - n^{2}\gamma^{2} + \alpha^{2})\xi = 0$$
(3)

With the standard solution

$$\xi = x^{\alpha}(c_5 \operatorname{BesselJ}(n, \beta x^{\gamma}) + c_6 \operatorname{BesselY}(n, \beta x^{\gamma})) \tag{4}$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$\alpha = 1$$

$$\beta = \frac{2\sqrt{ab}}{rc}$$

$$n = 0$$

$$\gamma = \frac{1}{2}$$

Substituting all the above into (4) gives the solution as

$$\xi = c_5 x \text{ BesselJ}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) + c_6 x \text{ BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)$$

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

$$\xi(x) u' - u\xi'(x) + \xi(x) p(x) u = \int \xi(x) r(x) dx$$
$$u' + u \left(p(x) - \frac{\xi'(x)}{\xi(x)} \right) = \frac{\int \xi(x) r(x) dx}{\xi(x)}$$

Or

$$u' + u \left(\frac{1}{x} - \frac{c_5 \operatorname{BesselJ}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) - \frac{c_5\sqrt{x} \operatorname{BesselJ}\left(1, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)\sqrt{ab}}{rc} + c_6 \operatorname{BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) - \frac{c_6\sqrt{x} \operatorname{BesselY}\left(1, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)}{rc} + c_6 x \operatorname{BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) - \frac{c_6\sqrt{x} \operatorname{BesselY}\left(1, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)}{rc} + c_6 x \operatorname{BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) - \frac{c_6\sqrt{x} \operatorname{BesselY}\left(1, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)}{rc} + c_6 x \operatorname{BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) - \frac{c_6\sqrt{x} \operatorname{BesselY}\left(1, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)}{rc} + c_6 x \operatorname{BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) - \frac{c_6\sqrt{x} \operatorname{BesselY}\left(1, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)}{rc} + c_6 x \operatorname{BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) - \frac{c_6\sqrt{x} \operatorname{BesselY}\left(1, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)}{rc} + c_6 x \operatorname{BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) - \frac{c_6\sqrt{x} \operatorname{BesselY}\left(1, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)}{rc} + c_6 x \operatorname{BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) + c_6 x \operatorname{BesselY$$

Which is now a first order ode. This is now solved for u. In canonical form a linear first order is

$$u' + q(x)u = p(x)$$

Comparing the above to the given ode shows that

$$q(x) = \frac{\sqrt{ab} \left(\text{BesselJ} \left(1, \frac{2\sqrt{ab}\sqrt{x}}{rc} \right) c_5 + \text{BesselY} \left(1, \frac{2\sqrt{ab}\sqrt{x}}{rc} \right) c_6 \right)}{\sqrt{x} \, rc \left(c_5 \, \text{BesselJ} \left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc} \right) + c_6 \, \text{BesselY} \left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc} \right) \right)}$$

$$p(x) = 0$$

The integrating factor μ is

$$\begin{split} \mu &= e^{\int q \, dx} \\ &= e^{\int \frac{\sqrt{ab} \left(\operatorname{BesselJ}\left(1, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) c_5 + \operatorname{BesselY}\left(1, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) c_6 \right)}{\sqrt{x} \, rc \left(c_5 \operatorname{BesselJ}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) + c_6 \operatorname{BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) \right)}} dx \\ &= \frac{1}{c_5 \operatorname{BesselJ}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) + c_6 \operatorname{BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)} \end{split}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}x}\mu u = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{u}{c_5 \operatorname{BesselJ}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) + c_6 \operatorname{BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)} \right) = 0$$

Integrating gives

$$\frac{u}{c_5 \operatorname{BesselJ}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) + c_6 \operatorname{BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)} = \int 0 \, dx + c_7$$
$$= c_7$$

Dividing throughout by the integrating factor $\frac{1}{c_5 \operatorname{BesselJ}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) + c_6 \operatorname{BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)}$ gives the final solution

$$u = \left(c_5 \operatorname{BesselJ}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) + c_6 \operatorname{BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)\right) c_7$$

Hence, the solution found using Lagrange adjoint equation method is

$$u = \left(c_5 \operatorname{BesselJ}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) + c_6 \operatorname{BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)\right) c_7$$

The constants can be merged to give

$$u = c_5 \operatorname{BesselJ}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) + c_6 \operatorname{BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)$$

Will add steps showing solving for IC soon.

Taking derivative gives

$$u'(x) = -\frac{c_5 \operatorname{BesselJ}\left(1, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)\sqrt{ab}}{rc\sqrt{x}} - \frac{c_6 \operatorname{BesselY}\left(1, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)\sqrt{ab}}{rc\sqrt{x}}$$

Doing change of constants, the solution becomes

$$y = -\frac{\left(-\frac{c_8 \operatorname{BesselJ}\left(1, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)\sqrt{ab}}{rc\sqrt{x}} - \frac{\operatorname{BesselY}\left(1, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)\sqrt{ab}}{rc\sqrt{x}}\right)crx}{b\left(c_8 \operatorname{BesselJ}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) + \operatorname{BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)\right)}$$

Summary of solutions found

$$y = -\frac{\left(-\frac{c_8 \operatorname{BesselJ}\left(1, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)\sqrt{ab}}{rc\sqrt{x}} - \frac{\operatorname{BesselY}\left(1, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)\sqrt{ab}}{rc\sqrt{x}}\right)crx}{b\left(c_8 \operatorname{BesselJ}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right) + \operatorname{BesselY}\left(0, \frac{2\sqrt{ab}\sqrt{x}}{rc}\right)\right)}$$

Maple step by step solution

Let's solve

$$c(\frac{d}{dx}y(x)) = \frac{xa + by(x)^2}{rx}$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = \frac{xa + by(x)^2}{rxc}$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
      -> Trying a Liouvillian solution using Kovacics algorithm
      <- No Liouvillian solutions exists
   <- Abel AIR successful: ODE belongs to the OF1 1-parameter (Bessel type) class`
```

Maple dsolve solution

Solving time: 0.016 (sec)

Leaf size: 98

```
\frac{dsolve(c*diff(y(x),x) = (a*x+b*y(x)^2)/r/x,}{y(x),singsol=all)}
```

$$y = \frac{\sqrt{\frac{xba}{r^2c^2}} \, cr \left(\text{BesselY} \left(1, 2\sqrt{\frac{xba}{r^2c^2}} \right) c_1 cr + \text{BesselJ} \left(1, 2\sqrt{\frac{xba}{r^2c^2}} \right) \right)}{b \left(c_1 cr \, \text{BesselY} \left(0, 2\sqrt{\frac{xba}{r^2c^2}} \right) + \text{BesselJ} \left(0, 2\sqrt{\frac{xba}{r^2c^2}} \right) \right)}$$

Mathematica DSolve solution

Solving time: 0.288 (sec)

Leaf size: 207

DSolve[{c*D[y[x],x]==(a*x+b*y[x]^2)/(r*x),{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \to \frac{\sqrt{a}\sqrt{x}\left(2\operatorname{BesselY}\left(1, \frac{2\sqrt{a}\sqrt{b}\sqrt{x}}{cr}\right) + c_1\operatorname{BesselJ}\left(1, \frac{2\sqrt{a}\sqrt{b}\sqrt{x}}{cr}\right)\right)}{\sqrt{b}\left(2\operatorname{BesselY}\left(0, \frac{2\sqrt{a}\sqrt{b}\sqrt{x}}{cr}\right) + c_1\operatorname{BesselJ}\left(0, \frac{2\sqrt{a}\sqrt{b}\sqrt{x}}{cr}\right)\right)}$$
$$y(x) \to \frac{\sqrt{a}\sqrt{x}\operatorname{BesselJ}\left(1, \frac{2\sqrt{a}\sqrt{b}\sqrt{x}}{cr}\right)}{\sqrt{b}\operatorname{BesselJ}\left(0, \frac{2\sqrt{a}\sqrt{b}\sqrt{x}}{cr}\right)}$$

2.1.22 problem 22

Solved as first order ode of type Riccati	191
Maple step by step solution	196
Maple trace	196
Maple dsolve solution	197
Mathematica DSolve solution	197

Internal problem ID [8682]

Book: First order enumerated odes

 ${\bf Section}: {\bf section}\ 1$

Problem number: 22

Date solved: Tuesday, December 17, 2024 at 12:57:38 PM

CAS classification: [_rational, _Riccati]

Solve

$$cy' = \frac{ax + by^2}{r \, x^2}$$

Solved as first order ode of type Riccati

Time used: 4.780 (sec)

In canonical form the ODE is

$$y' = F(x, y)$$
$$= \frac{by^2 + ax}{rx^2c}$$

This is a Riccati ODE. Comparing the ODE to solve

$$y' = \frac{a}{xcr} + \frac{by^2}{rx^2c}$$

With Riccati ODE standard form

$$y' = f_0(x) + f_1(x)y + f_2(x)y^2$$

Shows that $f_0(x) = \frac{a}{xcr}$, $f_1(x) = 0$ and $f_2(x) = \frac{b}{cr x^2}$. Let

$$y = \frac{-u'}{f_2 u}$$

$$= \frac{-u'}{\frac{ub}{cr x^2}}$$
(1)

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for u(x) which is

$$f_2 u''(x) - (f_2' + f_1 f_2) u'(x) + f_2^2 f_0 u(x) = 0$$
(2)

But

$$f_2' = -\frac{2b}{cr x^3}$$

$$f_1 f_2 = 0$$

$$f_2^2 f_0 = \frac{b^2 a}{c^3 r^3 x^5}$$

Substituting the above terms back in equation (2) gives

$$\frac{bu''(x)}{cr x^2} + \frac{2bu'(x)}{cr x^3} + \frac{b^2 au(x)}{c^3 r^3 x^5} = 0$$

In normal form the ode

$$\frac{b\left(\frac{d^2u}{dx^2}\right)}{cr\,x^2} + \frac{2b\left(\frac{du}{dx}\right)}{cr\,x^3} + \frac{b^2au}{c^3r^3x^5} = 0\tag{1}$$

Becomes

$$\frac{d^2u}{dx^2} + p(x)\left(\frac{du}{dx}\right) + q(x)u = r(x)$$
(2)

Where

$$p(x) = \frac{2}{x}$$
$$q(x) = \frac{ba}{x^3c^2r^2}$$
$$r(x) = 0$$

The Lagrange adjoint ode is given by

$$\xi'' - (\xi p)' + \xi q = 0$$

$$\xi'' - \left(\frac{2\xi(x)}{x}\right)' + \left(\frac{ba\xi(x)}{x^3c^2r^2}\right) = 0$$

$$\frac{d^2}{dx^2}\xi(x) - \frac{2\left(\frac{d}{dx}\xi(x)\right)}{x} + \frac{(2c^2r^2x + ba)\xi(x)}{x^3c^2r^2} = 0$$

Which is solved for $\xi(x)$. Writing the ode as

$$x^{2}\xi'' - 2x\xi' + \left(2 + \frac{ba}{xc^{2}r^{2}}\right)\xi = 0 \tag{1}$$

Bessel ode has the form

$$x^{2}\xi'' + x\xi' + (-n^{2} + x^{2})\xi = 0$$
(2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$x^{2}\xi'' + (1 - 2\alpha)x\xi' + (\beta^{2}\gamma^{2}x^{2\gamma} - n^{2}\gamma^{2} + \alpha^{2})\xi = 0$$
(3)

With the standard solution

$$\xi = x^{\alpha}(c_5 \operatorname{BesselJ}(n, \beta x^{\gamma}) + c_6 \operatorname{BesselY}(n, \beta x^{\gamma})) \tag{4}$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$\alpha = \frac{3}{2}$$

$$\beta = \frac{2\sqrt{ba}}{rc}$$

$$n = -1$$

$$\gamma = -\frac{1}{2}$$

Substituting all the above into (4) gives the solution as

$$\xi = -c_5 x^{3/2} \operatorname{BesselJ}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) - c_6 x^{3/2} \operatorname{BesselY}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right)$$

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

$$\xi(x) u' - u\xi'(x) + \xi(x) p(x) u = \int \xi(x) r(x) dx$$
$$u' + u \left(p(x) - \frac{\xi'(x)}{\xi(x)} \right) = \frac{\int \xi(x) r(x) dx}{\xi(x)}$$

Or

$$u' + u \left(\frac{2}{x} - \frac{-\frac{3c_5\sqrt{x} \text{ BesselJ}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right)}{2} + \frac{c_5\left(\text{BesselJ}\left(0, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) - \frac{rc\sqrt{x} \text{ BesselJ}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right)}{2\sqrt{ba}}\right)\sqrt{ba}}{rc} - \frac{3c_6\sqrt{x} \text{ BesselY}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right)}{2} + \frac{c_6\left(\text{BesselJ}\left(0, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) - \frac{rc\sqrt{x} \text{ BesselJ}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right)}{2}\right)}{-c_5 x^{3/2} \text{ BesselJ}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) - c_6 x^{3/2} \text{ BesselY}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right)}\right)}$$

Which is now a first order ode. This is now solved for u. In canonical form a linear first order is

$$u' + q(x)u = p(x)$$

Comparing the above to the given ode shows that

$$q(x) = \frac{\sqrt{ba} \left(\text{BesselJ}\left(0, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) c_5 + \text{BesselY}\left(0, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) c_6 \right)}{x^{3/2}rc \left(\text{BesselJ}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) c_5 + \text{BesselY}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) c_6 \right)}$$

$$p(x) = 0$$

The integrating factor μ is

$$\begin{split} \mu &= e^{\int q \, dx} \\ &= e^{\int \frac{\sqrt{ba} \left(\operatorname{BesselJ} \left(0, \frac{2\sqrt{ba}}{rc\sqrt{x}} \right) c_5 + \operatorname{BesselY} \left(0, \frac{2\sqrt{ba}}{rc\sqrt{x}} \right) c_6 \right)}}{x^{3/2} rc \left(\operatorname{BesselJ} \left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}} \right) c_5 + \operatorname{BesselY} \left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}} \right) c_6 \right)} dx \\ &= \frac{rc\sqrt{x}}{\sqrt{ba} \left(2 \operatorname{BesselJ} \left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}} \right) c_5 + 2 \operatorname{BesselY} \left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}} \right) c_6 \right)} \end{split}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}x}\mu u = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{urc\sqrt{x}}{\sqrt{ba} \left(2\operatorname{BesselJ}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right)c_5 + 2\operatorname{BesselY}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right)c_6 \right)} \right) = 0$$

Integrating gives

$$\frac{urc\sqrt{x}}{\sqrt{ba}\left(2\operatorname{BesselJ}\left(1,\frac{2\sqrt{ba}}{rc\sqrt{x}}\right)c_5 + 2\operatorname{BesselY}\left(1,\frac{2\sqrt{ba}}{rc\sqrt{x}}\right)c_6\right)} = \int 0 dx + c_7$$

$$= c_7$$

Dividing throughout by the integrating factor $\frac{rc\sqrt{x}}{\sqrt{ba}\left(2\operatorname{BesselJ}\left(1,\frac{2\sqrt{ba}}{rc\sqrt{x}}\right)c_5+2\operatorname{BesselY}\left(1,\frac{2\sqrt{ba}}{rc\sqrt{x}}\right)c_6\right)}$ gives the final solution

$$u = \frac{2\sqrt{ba} \left(\text{BesselJ}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) c_5 + \text{BesselY}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) c_6 \right) c_7}{rc\sqrt{x}}$$

Hence, the solution found using Lagrange adjoint equation method is

$$u = \frac{2\sqrt{ba} \left(\text{BesselJ}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) c_5 + \text{BesselY}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) c_6 \right) c_7}{rc\sqrt{x}}$$

The constants can be merged to give

$$u = \frac{2\sqrt{ba}\left(\text{BesselJ}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right)c_5 + \text{BesselY}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right)c_6\right)}{rc\sqrt{x}}$$

Will add steps showing solving for IC soon.

Taking derivative gives

$$\frac{u'(x)}{2\sqrt{ba}} \left(-\frac{\left(\frac{\operatorname{BesselJ}\left(0, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) - \frac{rc\sqrt{x} \operatorname{BesselJ}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right)}{2\sqrt{ba}} \right)\sqrt{ba} c_{5}}{rcx^{3/2}} - \frac{\left(\frac{\operatorname{BesselY}\left(0, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) - \frac{rc\sqrt{x} \operatorname{BesselY}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right)}{2\sqrt{ba}} \right)\sqrt{ba} c_{6}}{rcx^{3/2}} \right)}{rcx^{3/2}} \right)$$

$$- \frac{\sqrt{ba} \left(\operatorname{BesselJ}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) c_{5} + \operatorname{BesselY}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) c_{6} \right)}{rcx^{3/2}}$$

Doing change of constants, the solution becomes

$$y = \frac{\left(2\sqrt{ba}\left(-\frac{\left(\frac{2\sqrt{ba}}{rc\sqrt{x}}\right) - \frac{rc\sqrt{x} \text{ BesselJ}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right)}{2\sqrt{ba}}\right)\sqrt{ba} c_{8}}{rcx^{3/2}} - \frac{\left(\frac{\text{BesselY}\left(0, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) - \frac{rc\sqrt{x} \text{ BesselY}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right)}{2\sqrt{ba}}\right)\sqrt{ba}}{rcx^{3/2}}\right)}{rcx^{3/2}} - \frac{\sqrt{ba}\left(\text{BesselJ}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) - \frac{\sqrt{ba}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) - \frac{\sqrt{ba}}{rc\sqrt{x}}\right) - \frac{\sqrt{ba}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) - \frac{\sqrt{ba}\left(1, \frac{2\sqrt{ba}}{rc\sqrt{x}}\right) - \frac{\sqrt{ba}}{rc\sqrt{x}}\right) - \frac{\sqrt{ba}}{rc\sqrt{x}}}\right)}{2\sqrt{ba}}}\right)}$$

Summary of solutions found

$$y = \frac{\left(2\sqrt{ba}\left(-\frac{\left(\text{BesselJ}\left(0,\frac{2\sqrt{ba}}{rc\sqrt{x}}\right) - \frac{rc\sqrt{x} \text{ BesselJ}\left(1,\frac{2\sqrt{ba}}{rc\sqrt{x}}\right)}{2\sqrt{ba}}\right)\sqrt{ba} c_8}{rc\,x^{3/2}} - \frac{\left(\text{BesselY}\left(0,\frac{2\sqrt{ba}}{rc\sqrt{x}}\right) - \frac{rc\sqrt{x} \text{ BesselY}\left(1,\frac{2\sqrt{ba}}{rc\sqrt{x}}\right)}{2\sqrt{ba}}\right)\sqrt{ba}}{rc\,x^{3/2}}\right)}{rc\,x^{3/2}} - \frac{\sqrt{ba}\left(\text{BesselJ}\left(1,\frac{2\sqrt{ba}}{rc\sqrt{x}}\right) - \frac{\sqrt{ba}\left(1,\frac{2\sqrt{ba}}{rc\sqrt{x}}\right) - \frac{\sqrt{ba}}{rc\sqrt{x}}\right) - \frac{\sqrt{ba}}{rc\sqrt{x}}\right) - \frac{\sqrt{ba}}{rc\sqrt{x}}} - \frac{\sqrt{ba}\left(1,\frac{2\sqrt{ba}}{rc\sqrt{x}$$

Maple step by step solution

Let's solve

$$c(\frac{d}{dx}y(x)) = \frac{xa + by(x)^2}{r x^2}$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = \frac{xa + by(x)^2}{r \, x^2 c}$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
```

- -> Trying a Liouvillian solution using Kovacics algorithm
- <- No Liouvillian solutions exists
- <- Abel AIR successful: ODE belongs to the OF1 1-parameter (Bessel type) class`</p>

Maple dsolve solution

Solving time: 0.020 (sec)

Leaf size: 110

$$\frac{dsolve(c*diff(y(x),x) = (a*x+b*y(x)^2)/r/x^2}{y(x),singsol=all)}$$

$$y = \frac{a\left(\text{BesselY}\left(0, 2\sqrt{\frac{ba}{c^2r^2x}}\right)c_1cr + \text{BesselJ}\left(0, 2\sqrt{\frac{ba}{c^2r^2x}}\right)\right)}{cr\sqrt{\frac{ba}{c^2r^2x}}\left(c_1cr \text{ BesselY}\left(1, 2\sqrt{\frac{ba}{c^2r^2x}}\right) + \text{BesselJ}\left(1, 2\sqrt{\frac{ba}{c^2r^2x}}\right)\right)}$$

Mathematica DSolve solution

Solving time: 0.341 (sec)

Leaf size: 492

$$y(x) \rightarrow \frac{2\sqrt{a}\sqrt{b}\operatorname{BesselY}\left(0,\frac{2\sqrt{a}\sqrt{b}\sqrt{\frac{1}{x}}}{cr}\right) + \frac{2cr\operatorname{BesselY}\left(1,\frac{2\sqrt{a}\sqrt{b}\sqrt{\frac{1}{x}}}{cr}\right)}{\sqrt{\frac{1}{x}}} - 2\sqrt{a}\sqrt{b}\operatorname{BesselY}\left(2,\frac{2\sqrt{a}\sqrt{b}\sqrt{\frac{1}{x}}}{cr}\right) - i\sqrt{a}\sqrt{b}c_1\operatorname{BesselY}\left(1,\frac{2\sqrt{a}\sqrt{b}\sqrt{\frac{1}{x}}}{cr}\right) - ic_1\operatorname{BesselY}\left(1,\frac{2\sqrt{a}\sqrt{b}\sqrt{\frac{1}{x}}}{cr}\right) - ic_1\operatorname{BesselY}\left(1,\frac{2\sqrt{a}\sqrt{b}\sqrt{b}\sqrt{\frac{1}{x}}}{cr}\right) - ic_1\operatorname{BesselY}\left$$

2.1.23 problem 23

Solved as first order Bernoulli ode	198
Solved as first order Exact ode	201
Maple step by step solution	205
Maple trace	205
Maple dsolve solution	206
Mathematica DSolve solution	206

Internal problem ID [8683]

Book: First order enumerated odes

Section: section 1
Problem number: 23

Date solved: Tuesday, December 17, 2024 at 12:57:44 PM

CAS classification: [_rational, _Bernoulli]

Solve

$$cy' = \frac{ax + by^2}{y}$$

Solved as first order Bernoulli ode

Time used: 0.301 (sec)

In canonical form, the ODE is

$$y' = F(x, y)$$
$$= \frac{by^2 + ax}{yc}$$

This is a Bernoulli ODE.

$$y' = \left(\frac{b}{c}\right)y + \left(\frac{ax}{c}\right)\frac{1}{y} \tag{1}$$

The standard Bernoulli ODE has the form

$$y' = f_0(x)y + f_1(x)y^n (2)$$

Comparing this to (1) shows that

$$f_0 = \frac{b}{c}$$

$$f_1 = \frac{ax}{c}$$

The first step is to divide the above equation by y^n which gives

$$\frac{y'}{y^n} = f_0(x)y^{1-n} + f_1(x) \tag{3}$$

The next step is use the substitution $v = y^{1-n}$ in equation (3) which generates a new ODE in v(x) which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$f_0(x) = \frac{b}{c}$$

$$f_1(x) = \frac{ax}{c}$$

$$n = -1$$

Dividing both sides of ODE (1) by $y^n = \frac{1}{y}$ gives

$$y'y = \frac{by^2}{c} + \frac{ax}{c} \tag{4}$$

Let

$$v = y^{1-n}$$

$$= y^2 \tag{5}$$

Taking derivative of equation (5) w.r.t x gives

$$v' = 2yy' \tag{6}$$

Substituting equations (5) and (6) into equation (4) gives

$$\frac{v'(x)}{2} = \frac{bv(x)}{c} + \frac{ax}{c}$$

$$v' = \frac{2bv}{c} + \frac{2ax}{c}$$
(7)

The above now is a linear ODE in v(x) which is now solved.

In canonical form a linear first order is

$$v'(x) + q(x)v(x) = p(x)$$

Comparing the above to the given ode shows that

$$q(x) = -\frac{2b}{c}$$
$$p(x) = \frac{2ax}{c}$$

The integrating factor μ is

$$\mu = e^{\int q \, dx}$$
$$= e^{\int -\frac{2b}{c} dx}$$
$$= e^{-\frac{2bx}{c}}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu v) = \mu p$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu v) = (\mu) \left(\frac{2ax}{c}\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(v e^{-\frac{2bx}{c}}\right) = \left(e^{-\frac{2bx}{c}}\right) \left(\frac{2ax}{c}\right)$$

$$\mathrm{d}\left(v e^{-\frac{2bx}{c}}\right) = \left(\frac{2ax e^{-\frac{2bx}{c}}}{c}\right) \mathrm{d}x$$

Integrating gives

$$v e^{-\frac{2bx}{c}} = \int \frac{2ax e^{-\frac{2bx}{c}}}{c} dx$$
$$= -\frac{(2bx + c) a e^{-\frac{2bx}{c}}}{2b^2} + c_1$$

Dividing throughout by the integrating factor $e^{-\frac{2bx}{c}}$ gives the final solution

$$v(x) = \frac{c_1 e^{\frac{2bx}{c}} b^2 - (bx + \frac{c}{2}) a}{b^2}$$

The substitution $v=y^{1-n}$ is now used to convert the above solution back to y which results in

$$y^2 = rac{c_1 \, \mathrm{e}^{rac{2bx}{c}} b^2 - \left(bx + rac{c}{2}
ight) a}{b^2}$$

Solving for y gives

$$y = -\frac{\sqrt{4c_1 e^{\frac{2bx}{c}}b^2 - 4axb - 2ac}}{2b}$$
$$y = \frac{\sqrt{4c_1 e^{\frac{2bx}{c}}b^2 - 4axb - 2ac}}{2b}$$

Summary of solutions found

$$y = -rac{\sqrt{4c_1\,\mathrm{e}^{rac{2bx}{c}}b^2 - 4axb - 2ac}}{2b}$$
 $y = rac{\sqrt{4c_1\,\mathrm{e}^{rac{2bx}{c}}b^2 - 4axb - 2ac}}{2b}$

Solved as first order Exact ode

Time used: 0.322 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0 \tag{A}$$

We assume there exists a function $\phi(x,y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$(yc) dy = (b y^2 + ax) dx$$
$$(-b y^2 - ax) dx + (yc) dy = 0$$
 (2A)

Comparing (1A) and (2A) shows that

$$M(x,y) = -by^2 - ax$$
$$N(x,y) = yc$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left(-b y^2 - ax \right)$$
$$= -2by$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(yc)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is <u>not exact</u>. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$A = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$
$$= \frac{1}{yc} ((-2by) - (0))$$
$$= -\frac{2b}{c}$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$\mu = e^{\int A \, \mathrm{d}x}$$
$$= e^{\int -\frac{2b}{c} \, \mathrm{d}x}$$

The result of integrating gives

$$\mu = e^{-\frac{2bx}{c}}$$
$$= e^{-\frac{2bx}{c}}$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \overline{M} and \overline{N} for now so not to confuse them with the original M and N.

$$\begin{split} \overline{M} &= \mu M \\ &= \mathrm{e}^{-\frac{2bx}{c}} \left(-b \, y^2 - ax \right) \\ &= - \left(b \, y^2 + ax \right) \mathrm{e}^{-\frac{2bx}{c}} \end{split}$$

And

$$\overline{N} = \mu N$$

$$= e^{-\frac{2bx}{c}} (yc)$$

$$= yc e^{-\frac{2bx}{c}}$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$\overline{M} + \overline{N} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
$$\left(-\left(by^2 + ax\right) e^{-\frac{2bx}{c}}\right) + \left(yc e^{-\frac{2bx}{c}}\right) \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = \overline{M} \tag{1}$$

$$\frac{\partial \phi}{\partial y} = \overline{N} \tag{2}$$

Integrating (1) w.r.t. x gives

$$\int \frac{\partial \phi}{\partial x} dx = \int \overline{M} dx$$

$$\int \frac{\partial \phi}{\partial x} dx = \int -(by^2 + ax) e^{-\frac{2bx}{c}} dx$$

$$\phi = \frac{c(2b^2y^2 + 2axb + ac) e^{-\frac{2bx}{c}}}{4b^2} + f(y)$$
(3)

Where f(y) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$\frac{\partial \phi}{\partial y} = yc e^{-\frac{2bx}{c}} + f'(y) \tag{4}$$

But equation (2) says that $\frac{\partial \phi}{\partial y} = yc e^{-\frac{2bx}{c}}$. Therefore equation (4) becomes

$$yce^{-\frac{2bx}{c}} = yce^{-\frac{2bx}{c}} + f'(y)$$
 (5)

Solving equation (5) for f'(y) gives

$$f'(y) = 0$$

Therefore

$$f(y) = c_1$$

Where c_1 is constant of integration. Substituting this result for f(y) into equation (3) gives ϕ

$$\phi = \frac{c(2b^2y^2 + 2axb + ac)e^{-\frac{2bx}{c}}}{4b^2} + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = \frac{c(2b^2y^2 + 2axb + ac)e^{-\frac{2bx}{c}}}{4b^2}$$

Solving for y gives

$$y = -\frac{e^{\frac{2bx}{c}}\sqrt{-2e^{-\frac{2bx}{c}}c\left(2e^{-\frac{2bx}{c}}abcx + e^{-\frac{2bx}{c}}ac^2 - 4c_1b^2\right)}}{2cb}$$
$$y = \frac{e^{\frac{2bx}{c}}\sqrt{-2e^{-\frac{2bx}{c}}c\left(2e^{-\frac{2bx}{c}}abcx + e^{-\frac{2bx}{c}}ac^2 - 4c_1b^2\right)}}{2cb}$$

Summary of solutions found

$$y = -\frac{e^{\frac{2bx}{c}}\sqrt{-2e^{-\frac{2bx}{c}}c\left(2e^{-\frac{2bx}{c}}abcx + e^{-\frac{2bx}{c}}ac^2 - 4c_1b^2\right)}}{2cb}$$
$$y = \frac{e^{\frac{2bx}{c}}\sqrt{-2e^{-\frac{2bx}{c}}c\left(2e^{-\frac{2bx}{c}}abcx + e^{-\frac{2bx}{c}}ac^2 - 4c_1b^2\right)}}{2cb}$$

Maple step by step solution

Let's solve

$$c(\frac{d}{dx}y(x)) = \frac{xa + by(x)^2}{y(x)}$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = \frac{xa + by(x)^2}{y(x)c}$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`</pre>
```

Maple dsolve solution

Solving time: 0.017 (sec)

Leaf size: 69

 $\frac{dsolve(c*diff(y(x),x) = (a*x+b*y(x)^2)/y(x),}{y(x),singsol=all)}$

$$y = -rac{\sqrt{4\,\mathrm{e}^{rac{2bx}{c}}c_1b^2 - 4axb - 2ac}}{2b} \ y = rac{\sqrt{4\,\mathrm{e}^{rac{2bx}{c}}c_1b^2 - 4axb - 2ac}}{2b}$$

Mathematica DSolve solution

Solving time: 5.76 (sec)

Leaf size: 85

DSolve[$\{c*D[y[x],x]==(a*x+b*y[x]^2)/y[x],\{\}\}$, y[x],x,IncludeSingularSolutions->True]

$$y(x)
ightarrow -rac{i\sqrt{abx+rac{ac}{2}+b^2c_1\left(-e^{rac{2bx}{c}}
ight)}}{b} \ y(x)
ightarrow rac{i\sqrt{abx+rac{ac}{2}+b^2c_1\left(-e^{rac{2bx}{c}}
ight)}}{b}$$

2.1.24 problem 24

Solved as first order quadrature ode	208
Solved as first order homogeneous class D2 ode	208
Solved as first order ode of type differential	210
Maple step by step solution	211
Maple trace	212
Maple dsolve solution	212
Mathematica DSolve solution	212

Internal problem ID [8684]

Book: First order enumerated odes

Section: section 1

Problem number: 24

 $\mathbf{Date}\ \mathbf{solved}: \mathtt{Tuesday}\text{, December 17, 2024 at 12:57:46 PM}$

CAS classification : [_quadrature]

Solve

$$a\sin(x)\,yxy'=0$$

Factoring the ode gives these factors

$$y = 0 \tag{1}$$

$$y' = 0 (2)$$

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

$$y = 0$$

Solving gives y = 0

Solving equation (2)

Solved as first order quadrature ode

Time used: 0.013 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 dx + c_1$$
$$y = c_1$$

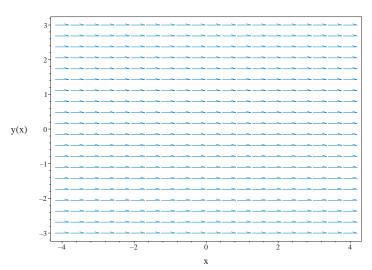


Figure 2.20: Slope field plot y' = 0

Summary of solutions found

$$y = c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.152 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$u'(x) x + u(x) = 0$$

Which is now solved The ode $u'(x) = -\frac{u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int -\frac{1}{x} dx$$
$$\ln (u(x)) = \ln \left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$
$$u(x) = \frac{e^{c_1}}{r}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{c_1}}{x}$ back to y gives

$$y = e^{c_1}$$

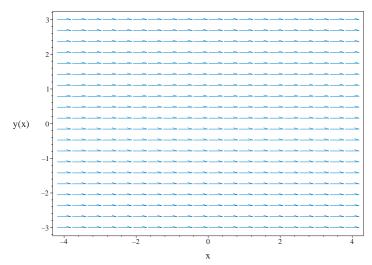


Figure 2.21: Slope field plot y' = 0

Summary of solutions found

$$y = 0$$

$$y = e^{c_1}$$

Solved as first order ode of type differential

Time used: 0.012 (sec)

Writing the ode as

$$y' = 0 \tag{1}$$

Which becomes

$$(1) dy = (0) dx (2)$$

But the RHS is complete differential because

$$(0) dx = d(0)$$

Hence (2) becomes

$$(1) dy = d(0)$$

Integrating gives

$$y = c_1$$

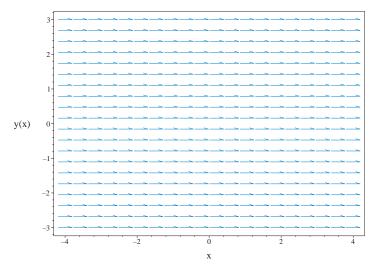


Figure 2.22: Slope field plot y' = 0

Summary of solutions found

$$y = c_1$$

Maple step by step solution

Let's solve $a \sin(x) y(x) x(\frac{d}{dx}y(x)) = 0$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\frac{d}{dx}y(x) = 0$
- Integrate both sides with respect to x $\int \left(\frac{d}{dx}y(x)\right) dx = \int 0 dx + C1$
- Evaluate integral y(x) = C1
- Solve for y(x)y(x) = C1

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.002 (sec)

Leaf size: 9

```
dsolve(a*sin(x)*y(x)*x*diff(y(x),x) = 0,
    y(x),singsol=all)
```

$$y = 0$$
$$y = c_1$$

Mathematica DSolve solution

Solving time: 0.003 (sec)

Leaf size: 12

```
DSolve[{a*Sin[x]*y[x]*x*D[y[x],x]==0,{}},
    y[x],x,IncludeSingularSolutions->True]
```

$$y(x) \to 0$$
$$y(x) \to c_1$$

2.1.25 problem 25

Solved as first order quadrature ode	214
Solved as first order homogeneous class D2 ode	214
Solved as first order ode of type differential	216
Maple step by step solution	217
Maple trace	218
Maple dsolve solution	218
Mathematica DSolve solution	218

Internal problem ID [8685]

Book: First order enumerated odes

Section: section 1

Problem number: 25

Date solved: Tuesday, December 17, 2024 at 12:57:47 PM

CAS classification : [_quadrature]

Solve

$$f(x)\sin(x)\,yxy'\pi=0$$

Factoring the ode gives these factors

$$y = 0 \tag{1}$$

$$y' = 0 (2)$$

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

$$y = 0$$

Solving gives y = 0

Solving equation (2)

Solved as first order quadrature ode

Time used: 0.013 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 dx + c_1$$
$$y = c_1$$

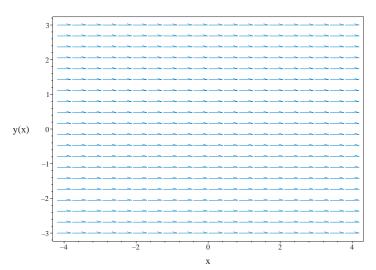


Figure 2.23: Slope field plot y' = 0

Summary of solutions found

$$y = c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.158 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$u'(x) x + u(x) = 0$$

Which is now solved The ode $u'(x) = -\frac{u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int -\frac{1}{x} dx$$
$$\ln (u(x)) = \ln \left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$
$$u(x) = \frac{e^{c_1}}{r}$$

...

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{c_1}}{x}$ back to y gives

$$y = e^{c_1}$$

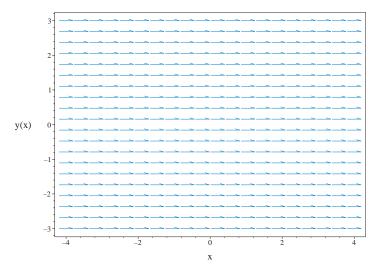


Figure 2.24: Slope field plot y' = 0

Summary of solutions found

$$y = 0$$

$$y = e^{c_1}$$

Solved as first order ode of type differential

Time used: 0.012 (sec)

Writing the ode as

$$y' = 0 \tag{1}$$

Which becomes

$$(1) dy = (0) dx (2)$$

But the RHS is complete differential because

$$(0) dx = d(0)$$

Hence (2) becomes

$$(1) dy = d(0)$$

Integrating gives

$$y = c_1$$

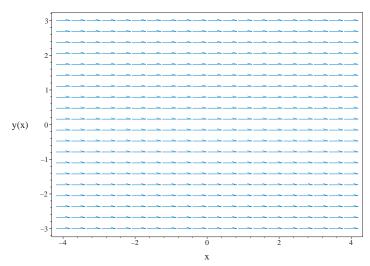


Figure 2.25: Slope field plot y' = 0

Summary of solutions found

$$y = c_1$$

Maple step by step solution

Let's solve

$$f(x)\sin(x)y(x)x(\frac{d}{dx}y(x))\pi=0$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\frac{d}{dx}y(x) = 0$
- Integrate both sides with respect to x $\int \left(\frac{d}{dx}y(x)\right) dx = \int 0 dx + C1$
- Evaluate integral

$$y(x) = C1$$

• Solve for y(x)

$$y(x) = C1$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.001 (sec)

Leaf size: 9

```
dsolve(f(x)*sin(x)*y(x)*x*diff(y(x),x)*Pi = 0,
    y(x),singsol=all)
```

$$y = 0$$
$$y = c_1$$

Mathematica DSolve solution

Solving time: 0.003 (sec)

Leaf size: 12

```
DSolve[{f(x)*Sin[x]*y[x]*x*D[y[x],x]*Pi==0,{}},
    y[x],x,IncludeSingularSolutions->True]
```

$$y(x) \to 0$$

 $y(x) \to c_1$

2.1.26 problem 26

Solved as first order linear ode								•	•	219
Solved as first order Exact ode										221
Maple step by step solution										225
Maple trace										226
Maple dsolve solution										226
Mathematica DSolve solution .										226

Internal problem ID [8686]

Book: First order enumerated odes

Section: section 1
Problem number: 26

Date solved: Tuesday, December 17, 2024 at 12:57:48 PM

CAS classification : [[_linear, 'class A']]

Solve

$$y' = \sin(x) + y$$

Solved as first order linear ode

Time used: 0.148 (sec)

In canonical form a linear first order is

$$y' + q(x)y = p(x)$$

Comparing the above to the given ode shows that

$$q(x) = -1$$
$$p(x) = \sin(x)$$

The integrating factor μ is

$$\mu = e^{\int q \, dx}$$
$$= e^{\int (-1)dx}$$
$$= e^{-x}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu y) = \mu p$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu y) = (\mu) \left(\sin(x)\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(y e^{-x}) = \left(e^{-x}\right) \left(\sin(x)\right)$$

$$\mathrm{d}(y e^{-x}) = \left(\sin(x) e^{-x}\right) \mathrm{d}x$$

Integrating gives

$$y e^{-x} = \int \sin(x) e^{-x} dx$$
$$= -\frac{\cos(x) e^{-x}}{2} - \frac{\sin(x) e^{-x}}{2} + c_1$$

Dividing throughout by the integrating factor e^{-x} gives the final solution

$$y = c_1 e^x - \frac{\cos(x)}{2} - \frac{\sin(x)}{2}$$

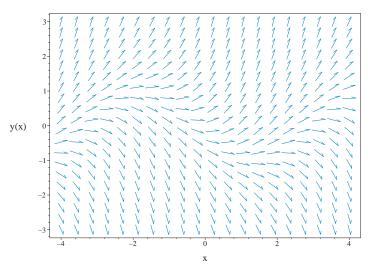


Figure 2.26: Slope field plot $y' = \sin(x) + y$

Summary of solutions found

$$y = c_1 e^x - \frac{\cos(x)}{2} - \frac{\sin(x)}{2}$$

Solved as first order Exact ode

Time used: 0.120 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 (A)

We assume there exists a function $\phi(x,y) = c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$dy = (\sin(x) + y) dx$$
$$(-\sin(x) - y) dx + dy = 0$$
 (2A)

Comparing (1A) and (2A) shows that

$$M(x,y) = -\sin(x) - y$$
$$N(x,y) = 1$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} (-\sin(x) - y)$$
$$= -1$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(1)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is <u>not exact</u>. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$A = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$
$$= 1((-1) - (0))$$
$$= -1$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$\mu = e^{\int A \, \mathrm{d}x}$$
$$= e^{\int -1 \, \mathrm{d}x}$$

The result of integrating gives

$$\mu = e^{-x}$$
$$= e^{-x}$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \overline{M} and \overline{N} for now so not to confuse them with the original M and N.

$$\overline{M} = \mu M$$

$$= e^{-x}(-\sin(x) - y)$$

$$= -(\sin(x) + y) e^{-x}$$

And

$$\overline{N} = \mu N$$
$$= e^{-x}(1)$$
$$= e^{-x}$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$\overline{M} + \overline{N} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
$$\left(-(\sin(x) + y) e^{-x} \right) + \left(e^{-x} \right) \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = \overline{M} \tag{1}$$

$$\frac{\partial \phi}{\partial y} = \overline{N} \tag{2}$$

Integrating (2) w.r.t. y gives

$$\int \frac{\partial \phi}{\partial y} \, dy = \int \overline{N} \, dy$$

$$\int \frac{\partial \phi}{\partial y} \, dy = \int e^{-x} \, dy$$

$$\phi = y e^{-x} + f(x)$$
(3)

Where f(x) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t x gives

$$\frac{\partial \phi}{\partial x} = -y e^{-x} + f'(x) \tag{4}$$

But equation (1) says that $\frac{\partial \phi}{\partial x} = -(\sin(x) + y) e^{-x}$. Therefore equation (4) becomes

$$-(\sin(x) + y) e^{-x} = -y e^{-x} + f'(x)$$
 (5)

Solving equation (5) for f'(x) gives

$$f'(x) = -\sin(x) e^{-x}$$

Integrating the above w.r.t x gives

$$\int f'(x) dx = \int (-\sin(x) e^{-x}) dx$$
$$f(x) = \frac{\cos(x) e^{-x}}{2} + \frac{\sin(x) e^{-x}}{2} + c_1$$

Where c_1 is constant of integration. Substituting result found above for f(x) into equation (3) gives ϕ

$$\phi = y e^{-x} + \frac{\cos(x) e^{-x}}{2} + \frac{\sin(x) e^{-x}}{2} + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = y e^{-x} + \frac{\cos(x) e^{-x}}{2} + \frac{\sin(x) e^{-x}}{2}$$

Solving for y gives

$$y = -\frac{(\sin(x)e^{-x} + \cos(x)e^{-x} - 2c_1)e^x}{2}$$

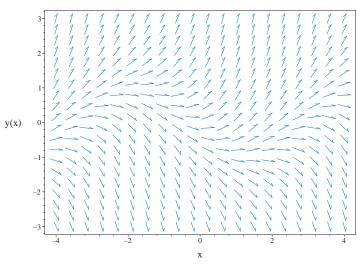


Figure 2.27: Slope field plot $y' = \sin(x) + y$

Summary of solutions found

$$y = -\frac{(\sin(x) e^{-x} + \cos(x) e^{-x} - 2c_1) e^{x}}{2}$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = y(x) + \sin(x)$$

• Highest derivative means the order of the ODE is 1

$$\frac{d}{dx}y(x)$$

• Solve for the highest derivative

$$\frac{d}{dx}y(x) = y(x) + \sin(x)$$

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE

$$\frac{d}{dx}y(x) - y(x) = \sin(x)$$

• The ODE is linear; multiply by an integrating factor $\mu(x)$

$$\mu(x) \left(\frac{d}{dx} y(x) - y(x) \right) = \mu(x) \sin(x)$$

• Assume the lhs of the ODE is the total derivative $\frac{d}{dx}(y(x)\mu(x))$

$$\mu(x)\left(\frac{d}{dx}y(x) - y(x)\right) = \left(\frac{d}{dx}y(x)\right)\mu(x) + y(x)\left(\frac{d}{dx}\mu(x)\right)$$

• Isolate $\frac{d}{dx}\mu(x)$

$$\frac{d}{dx}\mu(x) = -\mu(x)$$

• Solve to find the integrating factor

$$\mu(x) = e^{-x}$$

• Integrate both sides with respect to x

$$\int \left(\frac{d}{dx}(y(x)\,\mu(x))\right)dx = \int \mu(x)\sin\left(x\right)dx + C1$$

• Evaluate the integral on the lhs

$$y(x) \mu(x) = \int \mu(x) \sin(x) dx + C1$$

• Solve for y(x)

$$y(x) = \frac{\int \mu(x)\sin(x)dx + C1}{\mu(x)}$$

• Substitute $\mu(x) = e^{-x}$

$$y(x) = \frac{\int e^{-x} \sin(x) dx + C1}{e^{-x}}$$

• Evaluate the integrals on the rhs

$$y(x) = \frac{-\frac{e^{-x}\cos(x)}{2} - \frac{e^{-x}\sin(x)}{2} + C1}{e^{-x}}$$

• Simplify

$$y(x) = C1 e^x - \frac{\cos(x)}{2} - \frac{\sin(x)}{2}$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.003 (sec)

Leaf size: 17

$$y = -\frac{\cos(x)}{2} - \frac{\sin(x)}{2} + e^x c_1$$

Mathematica DSolve solution

Solving time: 0.037 (sec)

Leaf size: 24

DSolve[{D[y[x],x]==Sin[x]+y[x],{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \to -\frac{\sin(x)}{2} - \frac{\cos(x)}{2} + c_1 e^x$$

2.1.27 problem 27

Solved as first order ode of type Riccati	227
Maple step by step solution	229
Maple trace	229
Maple dsolve solution $\dots \dots \dots \dots \dots \dots \dots \dots \dots$	231
Mathematica DSolve solution	231

Internal problem ID [8687]

Book: First order enumerated odes

 ${f Section}:$ section 1

Problem number: 27

Date solved: Tuesday, December 17, 2024 at 12:57:49 PM

CAS classification : [_Riccati]

Solve

$$y' = \sin(x) + y^2$$

Solved as first order ode of type Riccati

Time used: 0.641 (sec)

In canonical form the ODE is

$$y' = F(x, y)$$
$$= \sin(x) + y^2$$

This is a Riccati ODE. Comparing the ODE to solve

$$y' = \sin(x) + y^2$$

With Riccati ODE standard form

$$y' = f_0(x) + f_1(x)y + f_2(x)y^2$$

Shows that $f_0(x) = \sin(x)$, $f_1(x) = 0$ and $f_2(x) = 1$. Let

$$y = \frac{-u'}{f_2 u}$$

$$= \frac{-u'}{u} \tag{1}$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for u(x) which is

$$f_2 u''(x) - (f_2' + f_1 f_2) u'(x) + f_2^2 f_0 u(x) = 0$$
(2)

But

$$f_2' = 0$$

$$f_1 f_2 = 0$$

$$f_2^2 f_0 = \sin(x)$$

Substituting the above terms back in equation (2) gives

$$u''(x) + \sin(x) u(x) = 0$$

Unable to solve. Will ask Maple to solve this ode now.

Solution obtained is

$$u(x) = c_1 \text{ MathieuC}\left(0, -2, -\frac{\pi}{4} + \frac{x}{2}\right) + c_2 \text{ MathieuS}\left(0, -2, -\frac{\pi}{4} + \frac{x}{2}\right)$$

Taking derivative gives

$$u'(x) = \frac{c_1 \operatorname{MathieuCPrime}\left(0, -2, -\frac{\pi}{4} + \frac{x}{2}\right)}{2} + \frac{c_2 \operatorname{MathieuSPrime}\left(0, -2, -\frac{\pi}{4} + \frac{x}{2}\right)}{2}$$

Doing change of constants, the solution becomes

$$y = -\frac{\frac{c_1 \operatorname{MathieuCPrime}(0, -2, -\frac{\pi}{4} + \frac{x}{2})}{2} + \frac{\operatorname{MathieuSPrime}(0, -2, -\frac{\pi}{4} + \frac{x}{2})}{2}}{c_1 \operatorname{MathieuC}\left(0, -2, -\frac{\pi}{4} + \frac{x}{2}\right) + \operatorname{MathieuS}\left(0, -2, -\frac{\pi}{4} + \frac{x}{2}\right)}$$

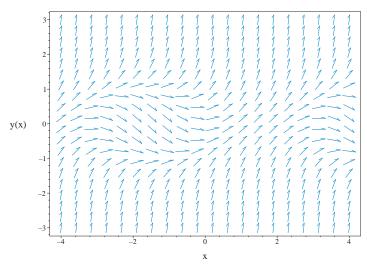


Figure 2.28: Slope field plot $y' = \sin(x) + y^2$

Summary of solutions found

$$y = -\frac{\frac{c_1 \operatorname{MathieuCPrime}(0, -2, -\frac{\pi}{4} + \frac{x}{2})}{2} + \frac{\operatorname{MathieuSPrime}(0, -2, -\frac{\pi}{4} + \frac{x}{2})}{2}}{c_1 \operatorname{MathieuC}\left(0, -2, -\frac{\pi}{4} + \frac{x}{2}\right) + \operatorname{MathieuS}\left(0, -2, -\frac{\pi}{4} + \frac{x}{2}\right)}$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = \sin(x) + y(x)^2$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\frac{d}{dx}y(x) = \sin(x) + y(x)^2$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
  trying Riccati_symmetries
  trying Riccati to 2nd Order
   -> Calling odsolve with the ODE, diff(diff(y(x), x), x) = -y(x)*sin(x), y(x)
     Methods for second order ODEs:
      --- Trying classification methods ---
      trying a symmetry of the form [xi=0, eta=F(x)]
      checking if the LODE is missing y
```

<- Riccati to 2nd Order successful`

```
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), c))
-> Trying changes of variables to rationalize or make the ODE simpler
   trying a symmetry of the form [xi=0, eta=F(x)]
   checking if the LODE is missing y
   -> Trying an equivalence, under non-integer power transformations,
      to LODEs admitting Liouvillian solutions.
      -> Trying a Liouvillian solution using Kovacics algorithm
      <- No Liouvillian solutions exists</p>
   -> Trying a solution in terms of special functions:
      -> Bessel
      -> elliptic
      -> Legendre
      -> Whittaker
         -> hyper3: Equivalence to 1F1 under a power @ Moebius
      -> hypergeometric
         -> heuristic approach
         -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
      -> Mathieu
         -> Equivalence to the rational form of Mathieu ODE under a power @ Moel
         Equivalence transformation and function parameters: \{t = 1/2*t+1/2\}, \{l\}
         <- Equivalence to the rational form of Mathieu ODE successful</p>
      <- Mathieu successful
   <- special function solution successful</pre>
   Change of variables used:
      [x = arccos(t)]
   Linear ODE actually solved:
      (-t^2+1)^(1/2)*u(t)-t*diff(u(t),t)+(-t^2+1)*diff(diff(u(t),t),t) = 0
<- change of variables successful</pre>
```

Maple dsolve solution

Solving time: 0.005 (sec)

Leaf size: 59

```
dsolve(diff(y(x),x) = sin(x)+y(x)^2,
    y(x),singsol=all)
```

$$y = \frac{-c_1 \operatorname{MathieuSPrime}\left(0, -2, -\frac{\pi}{4} + \frac{x}{2}\right) - \operatorname{MathieuCPrime}\left(0, -2, -\frac{\pi}{4} + \frac{x}{2}\right)}{2c_1 \operatorname{MathieuS}\left(0, -2, -\frac{\pi}{4} + \frac{x}{2}\right) + 2 \operatorname{MathieuC}\left(0, -2, -\frac{\pi}{4} + \frac{x}{2}\right)}$$

Mathematica DSolve solution

Solving time: 0.174 (sec)

Leaf size: 105

$$\begin{split} y(x) & \to \frac{-\text{MathieuSPrime}\left[0, -2, \frac{1}{4}(\pi - 2x)\right] + c_1 \text{MathieuCPrime}\left[0, -2, \frac{1}{4}(\pi - 2x)\right]}{2\left(\text{MathieuS}\left[0, -2, \frac{1}{4}(2x - \pi)\right] + c_1 \text{MathieuC}\left[0, -2, \frac{1}{4}(\pi - 2x)\right]\right)} \\ y(x) & \to \frac{\text{MathieuCPrime}\left[0, -2, \frac{1}{4}(\pi - 2x)\right]}{2 \text{MathieuC}\left[0, -2, \frac{1}{4}(\pi - 2x)\right]} \end{split}$$

2.1.28 problem 28

Solved as first order linear ode	232
Solved as first order homogeneous class D2 ode	234
Solved as first order Exact ode	235
Solved using Lie symmetry for first order ode	239
Maple step by step solution	244
Maple trace	245
Maple dsolve solution	245
Mathematica DSolve solution	246

Internal problem ID [8688]

Book: First order enumerated odes

Section: section 1
Problem number: 28

Date solved: Tuesday, December 17, 2024 at 12:57:52 PM

CAS classification: [linear]

Solve

$$y' = \cos\left(x\right) + \frac{y}{x}$$

Solved as first order linear ode

Time used: 0.105 (sec)

In canonical form a linear first order is

$$y' + q(x)y = p(x)$$

Comparing the above to the given ode shows that

$$q(x) = -\frac{1}{x}$$
$$p(x) = \cos(x)$$

The integrating factor μ is

$$\mu = e^{\int q \, dx}$$

$$= e^{\int -\frac{1}{x} dx}$$

$$= \frac{1}{x}$$

The ode becomes

$$\frac{d}{dx}(\mu y) = \mu p$$

$$\frac{d}{dx}(\mu y) = (\mu)(\cos(x))$$

$$\frac{d}{dx}(\frac{y}{x}) = (\frac{1}{x})(\cos(x))$$

$$d(\frac{y}{x}) = (\frac{\cos(x)}{x}) dx$$

Integrating gives

$$\frac{y}{x} = \int \frac{\cos(x)}{x} dx$$
$$= \operatorname{Ci}(x) + c_1$$

Dividing throughout by the integrating factor $\frac{1}{x}$ gives the final solution

$$y = x(\operatorname{Ci}(x) + c_1)$$

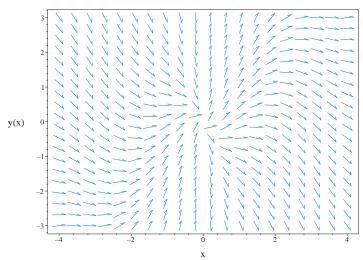


Figure 2.29: Slope field plot $y' = \cos(x) + \frac{y}{x}$

Summary of solutions found

$$y = x(\operatorname{Ci}(x) + c_1)$$

Solved as first order homogeneous class D2 ode

Time used: 0.030 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$u'(x) x + u(x) = \cos(x) + u(x)$$

Which is now solved Since the ode has the form u'(x) = f(x), then we only need to integrate f(x).

$$\int du = \int \frac{\cos(x)}{x} dx$$
$$u(x) = \operatorname{Ci}(x) + c_1$$

Converting $u(x) = \operatorname{Ci}(x) + c_1$ back to y gives

$$y = x(\mathrm{Ci}\,(x) + c_1)$$

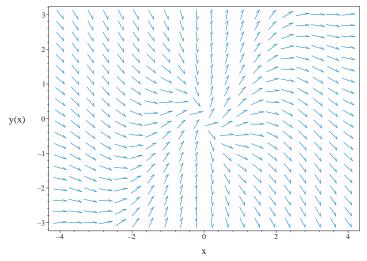


Figure 2.30: Slope field plot $y' = \cos(x) + \frac{y}{x}$

Summary of solutions found

$$y = x(\operatorname{Ci}(x) + c_1)$$

Solved as first order Exact ode

Time used: 0.109 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 (A)

We assume there exists a function $\phi(x,y) = c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$dy = \left(\frac{y}{x} + \cos(x)\right) dx$$
$$\left(-\cos(x) - \frac{y}{x}\right) dx + dy = 0$$
 (2A)

Comparing (1A) and (2A) shows that

$$M(x,y) = -\cos(x) - \frac{y}{x}$$
$$N(x,y) = 1$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\begin{split} \frac{\partial M}{\partial y} &= \frac{\partial}{\partial y} \Big(-\cos\left(x\right) - \frac{y}{x} \Big) \\ &= -\frac{1}{x} \end{split}$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(1)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is <u>not exact</u>. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$A = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$
$$= 1 \left(\left(-\frac{1}{x} \right) - (0) \right)$$
$$= -\frac{1}{x}$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$\mu = e^{\int A \, \mathrm{d}x}$$
$$= e^{\int -\frac{1}{x} \, \mathrm{d}x}$$

The result of integrating gives

$$\mu = e^{-\ln(x)}$$
$$= \frac{1}{x}$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \overline{M} and \overline{N} for now so not to confuse them with the original M and N.

$$\begin{split} \overline{M} &= \mu M \\ &= \frac{1}{x} \left(-\cos(x) - \frac{y}{x} \right) \\ &= \frac{-\cos(x) x - y}{x^2} \end{split}$$

And

$$\overline{N} = \mu N$$

$$= \frac{1}{x}(1)$$

$$= \frac{1}{x}$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$\overline{M} + \overline{N} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
$$\left(\frac{-\cos(x)x - y}{x^2}\right) + \left(\frac{1}{x}\right) \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = \overline{M} \tag{1}$$

$$\frac{\partial \phi}{\partial x} = \overline{M}$$

$$\frac{\partial \phi}{\partial y} = \overline{N}$$
(1)

Integrating (2) w.r.t. y gives

$$\int \frac{\partial \phi}{\partial y} \, dy = \int \overline{N} \, dy$$

$$\int \frac{\partial \phi}{\partial y} \, dy = \int \frac{1}{x} \, dy$$

$$\phi = \frac{y}{x} + f(x)$$
(3)

Where f(x) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t x gives

$$\frac{\partial \phi}{\partial x} = -\frac{y}{x^2} + f'(x) \tag{4}$$

But equation (1) says that $\frac{\partial \phi}{\partial x} = \frac{-\cos(x)x - y}{x^2}$. Therefore equation (4) becomes

$$\frac{-\cos(x)x - y}{x^2} = -\frac{y}{x^2} + f'(x) \tag{5}$$

Solving equation (5) for f'(x) gives

$$f'(x) = -\frac{\cos(x)}{x}$$

Integrating the above w.r.t x gives

$$\int f'(x) dx = \int \left(-\frac{\cos(x)}{x}\right) dx$$
$$f(x) = -\operatorname{Ci}(x) + c_1$$

Where c_1 is constant of integration. Substituting result found above for f(x) into equation (3) gives ϕ

$$\phi = \frac{y}{x} - \operatorname{Ci}(x) + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = \frac{y}{x} - \operatorname{Ci}(x)$$

Solving for y gives

$$y = x(\operatorname{Ci}(x) + c_1)$$

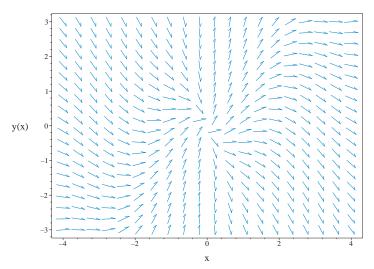


Figure 2.31: Slope field plot $y' = \cos(x) + \frac{y}{x}$

Summary of solutions found

$$y = x(\mathrm{Ci}\,(x) + c_1)$$

Solved using Lie symmetry for first order ode

Time used: 0.398 (sec)

Writing the ode as

$$y' = \frac{\cos(x) x + y}{x}$$
$$y' = \omega(x, y)$$

The condition of Lie symmetry is the linearized PDE given by

$$\eta_x + \omega(\eta_y - \xi_x) - \omega^2 \xi_y - \omega_x \xi - \omega_y \eta = 0 \tag{A}$$

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$\xi = xa_2 + ya_3 + a_1 \tag{1E}$$

$$\eta = xb_2 + yb_3 + b_1 \tag{2E}$$

Where the unknown coefficients are

$${a_1, a_2, a_3, b_1, b_2, b_3}$$

Substituting equations (1E,2E) and ω into (A) gives

$$b_{2} + \frac{(\cos(x)x + y)(b_{3} - a_{2})}{x} - \frac{(\cos(x)x + y)^{2}a_{3}}{x^{2}}$$

$$- \left(\frac{-\sin(x)x + \cos(x)}{x} - \frac{\cos(x)x + y}{x^{2}}\right)(xa_{2} + ya_{3} + a_{1})$$

$$- \frac{xb_{2} + yb_{3} + b_{1}}{x} = 0$$
(5E)

Putting the above in normal form gives

$$-\frac{\cos(x)^{2} x^{2} a_{3} - \sin(x) x^{3} a_{2} - \sin(x) x^{2} y a_{3} + \cos(x) x^{2} a_{2} - \cos(x) x^{2} b_{3} + 2\cos(x) x y a_{3} - \sin(x) x^{2} a_{1} + \cos(x) x^{2} a_{2} - \cos(x) x^{2} a_{3} - \sin(x) x^{2} a_{3} - \sin(x) x^{2} a_{4} + \cos(x) x^{2} a_{5} + \cos(x$$

Setting the numerator to zero gives

$$-\cos(x)^{2} x^{2} a_{3} + \sin(x) x^{3} a_{2} + \sin(x) x^{2} y a_{3} - \cos(x) x^{2} a_{2}$$

$$+\cos(x) x^{2} b_{3} - 2\cos(x) x y a_{3} + \sin(x) x^{2} a_{1} - x b_{1} + y a_{1} = 0$$
(6E)

Simplifying the above gives

$$-xb_1 + ya_1 - \frac{x^2a_3}{2} - \frac{x^2a_3\cos(2x)}{2} + \sin(x)x^3a_2 + \sin(x)x^2ya_3$$

$$-\cos(x)x^2a_2 + \cos(x)x^2b_3 - 2\cos(x)xya_3 + \sin(x)x^2a_1 = 0$$
(6E)

Looking at the above PDE shows the following are all the terms with $\{x,y\}$ in them.

$$\{x, y, \cos(x), \cos(2x), \sin(x)\}$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$\{x = v_1, y = v_2, \cos(x) = v_3, \cos(2x) = v_4, \sin(x) = v_5\}$$

The above PDE (6E) now becomes

$$-v_1b_1 + v_2a_1 - \frac{1}{2}v_1^2a_3 - \frac{1}{2}v_1^2a_3v_4 + v_5v_1^3a_2 + v_5v_1^2v_2a_3$$

$$-v_3v_1^2a_2 + v_3v_1^2b_3 - 2v_3v_1v_2a_3 + v_5v_1^2a_1 = 0$$
(7E)

Collecting the above on the terms v_i introduced, and these are

$$\{v_1, v_2, v_3, v_4, v_5\}$$

Equation (7E) now becomes

$$-\frac{v_1^2 a_3 v_4}{2} + v_5 v_1^3 a_2 + (b_3 - a_2) v_1^2 v_3 + v_5 v_1^2 a_1 - \frac{v_1^2 a_3}{2} - v_1 b_1 + v_2 a_1 + v_5 v_1^2 v_2 a_3 - 2 v_3 v_1 v_2 a_3 = 0$$
(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

$$a_{1} = 0$$

$$a_{2} = 0$$

$$a_{3} = 0$$

$$-2a_{3} = 0$$

$$-\frac{a_{3}}{2} = 0$$

$$-b_{1} = 0$$

$$b_{3} - a_{2} = 0$$

Solving the above equations for the unknowns gives

$$a_1 = 0$$
 $a_2 = 0$
 $a_3 = 0$
 $b_1 = 0$
 $b_2 = b_2$
 $b_3 = 0$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$\xi = 0$$
$$\eta = x$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \to (R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$\frac{dx}{\xi} = \frac{dy}{\eta} = dS \tag{1}$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}\right) S(x,y) = 1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Since $\xi = 0$ then in this special case

$$R = x$$

S is found from

$$S = \int \frac{1}{\eta} dy$$
$$= \int \frac{1}{x} dy$$

Which results in

$$S = \frac{y}{x}$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$\frac{dS}{dR} = \frac{S_x + \omega(x, y)S_y}{R_x + \omega(x, y)R_y} \tag{2}$$

Where in the above R_x, R_y, S_x, S_y are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$\omega(x,y) = \frac{\cos(x) \, x + y}{x}$$

Evaluating all the partial derivatives gives

$$R_x = 1$$

$$R_y = 0$$

$$S_x = -\frac{y}{x^2}$$

$$S_y = \frac{1}{x}$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$\frac{dS}{dR} = \frac{\cos(x)}{x} \tag{2A}$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$\frac{dS}{dR} = \frac{\cos\left(R\right)}{R}$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S.

Since the ode has the form $\frac{d}{dR}S(R) = f(R)$, then we only need to integrate f(R).

$$\int dS = \int \frac{\cos(R)}{R} dR$$
$$S(R) = \text{Ci}(R) + c_2$$

To complete the solution, we just need to transform the above back to x,y coordinates. This results in

$$\frac{y}{x} = \mathrm{Ci}(x) + c_2$$

Which gives

$$y = (\operatorname{Ci}(x) + c_2) x$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{dy}{dx} = \frac{\cos(x)x + y}{x}$	$R = x$ $S = \frac{y}{x}$	$\frac{dS}{dR} = \frac{\cos(R)}{R}$

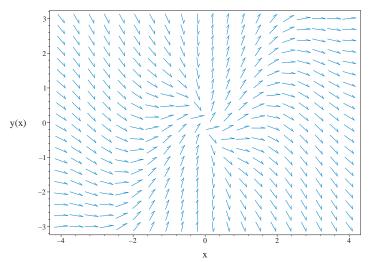


Figure 2.32: Slope field plot $y' = \cos(x) + \frac{y}{x}$

Summary of solutions found

$$y = (\operatorname{Ci}(x) + c_2) x$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = \frac{y(x)}{x} + \cos(x)$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = \frac{y(x)}{x} + \cos(x)$$

- Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE $\frac{d}{dx}y(x) \frac{y(x)}{x} = \cos(x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$

$$\mu(x)\left(\frac{d}{dx}y(x) - \frac{y(x)}{x}\right) = \mu(x)\cos(x)$$

• Assume the lhs of the ODE is the total derivative $\frac{d}{dx}(y(x) \mu(x))$

$$\mu(x)\left(\frac{d}{dx}y(x) - \frac{y(x)}{x}\right) = \left(\frac{d}{dx}y(x)\right)\mu(x) + y(x)\left(\frac{d}{dx}\mu(x)\right)$$

• Isolate $\frac{d}{dx}\mu(x)$

$$\frac{d}{dx}\mu(x) = -\frac{\mu(x)}{x}$$

- Solve to find the integrating factor $\mu(x) = \frac{1}{x}$
- Integrate both sides with respect to x $\int \left(\frac{d}{dx}(y(x)\,\mu(x))\right)dx = \int \mu(x)\cos\left(x\right)dx + C1$
- Evaluate the integral on the lhs $y(x) \mu(x) = \int \mu(x) \cos(x) dx + C1$
- Solve for y(x) $y(x) = \frac{\int \mu(x) \cos(x) dx + C1}{\mu(x)}$
- Substitute $\mu(x) = \frac{1}{x}$ $y(x) = x \left(\int \frac{\cos(x)}{x} dx + C1 \right)$
- Evaluate the integrals on the rhs y(x) = x(Ci(x) + C1)

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.003 (sec)

Leaf size: 10

$$\frac{dsolve(diff(y(x),x) = cos(x)+y(x)/x,}{y(x),singsol=all)}$$

$$y = (\operatorname{Ci}(x) + c_1) x$$

Mathematica DSolve solution

Solving time: 0.034 (sec)

Leaf size : 12

DSolve[{D[y[x],x]==Cos[x]+y[x]/x,{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \to x(\text{CosIntegral}(x) + c_1)$$

2.1.29 problem 29

Maple step by step solution .						•				247
$\text{Maple trace } \dots \dots \dots \dots$										247
Maple dsolve solution \dots .										250
Mathematica DSolve solution										250

Internal problem ID [8689]

Book: First order enumerated odes

Section: section 1
Problem number: 29

Date solved: Tuesday, December 17, 2024 at 12:57:54 PM

CAS classification: [Riccati]

Solve

$$y' = \cos\left(x\right) + \frac{y^2}{x}$$

Unknown ode type.

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = \cos(x) + \frac{y(x)^2}{x}$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = \cos(x) + \frac{y(x)^2}{x}$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
```

```
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
   trying Riccati_symmetries
  trying Riccati to 2nd Order
   -> Calling odsolve with the ODE, diff(diff(y(x), x), x) = -(diff(y(x), x))/x-cos(x)
      Methods for second order ODEs:
      --- Trying classification methods ---
      trying a symmetry of the form [xi=0, eta=F(x)]
      checking if the LODE is missing y
      -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @
      -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), c))
      -> Trying changes of variables to rationalize or make the ODE simpler
         trying a symmetry of the form [xi=0, eta=F(x)]
         checking if the LODE is missing y
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power
         -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x)))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
            -> trying with_periodic_functions in the coefficients
         trying a symmetry of the form [xi=0, eta=F(x)]
         checking if the LODE is missing y
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power
         -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x)))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
      <- unable to find a useful change of variables</p>
         trying a symmetry of the form [xi=0, eta=F(x)]
         trying 2nd order exact linear
         trying symmetries linear in x and y(x)
         trying to convert to a linear ODE with constant coefficients
         trying 2nd order, integrating factor of the form mu(x,y)
```

```
trying a symmetry of the form [xi=0, eta=F(x)]
      checking if the LODE is missing y
      -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power
      -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x)))
      -> Trying changes of variables to rationalize or make the ODE simpler
         trying a symmetry of the form [xi=0, eta=F(x)]
         checking if the LODE is missing y
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a po
         -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(x))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
            -> trying with periodic functions in the coefficients
         trying a symmetry of the form [xi=0, eta=F(x)]
         checking if the LODE is missing y
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a po
         -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(x))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
      <- unable to find a useful change of variables
         trying a symmetry of the form [xi=0, eta=F(x)]
      trying to convert to an ODE of Bessel type
      -> trying with_periodic_functions in the coefficients
-> Trying a change of variables to reduce to Bernoulli
-> Calling odsolve with the ODE, diff(y(x), x)-(y(x)^2/x+y(x)+x^2*cos(x))/x, y(x)
  Methods for first order ODEs:
   --- Trying classification methods ---
  trying a quadrature
  trying 1st order linear
  trying Bernoulli
  trying separable
  trying inverse linear
  trying homogeneous types:
  trying Chini
  differential order: 1; looking for linear symmetries
  trying exact
```

```
Looking for potential symmetries

trying Riccati sub-methods:

trying Riccati_symmetries

trying inverse_Riccati

trying 1st order ODE linearizable_by_differentiation

-> trying a symmetry pattern of the form [F(x)*G(y), 0]

-> trying a symmetry pattern of the form [0, F(x)*G(y)]

-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

trying inverse_Riccati

trying 1st order ODE linearizable_by_differentiation

--- Trying Lie symmetry methods, 1st order ---

`, `-> Computing symmetries using: way = 4

`, `-> Computing symmetries using: way = 2

`, `-> Computing symmetries using: way = 6`
```

Maple dsolve solution

```
Solving time: 0.543 (sec)
Leaf size: maple_leaf_size
```

```
dsolve(diff(y(x),x) = cos(x)+y(x)^2/x,
     y(x),singsol=all)
```

No solution found

Mathematica DSolve solution

Solving time: 0.0 (sec)

Leaf size: 0

```
DSolve[{D[y[x],x]==Cos[x]+y[x]^2/x,{}},
    y[x],x,IncludeSingularSolutions->True]
```

Not solved

2.1.30 problem 30

Solved as first order ode of type Riccati				•			251
Maple step by step solution							253
Maple trace							253
Maple dsolve solution							254
Mathematica DSolve solution							254

Internal problem ID [8690]

Book: First order enumerated odes

Section: section 1

Problem number: 30

Date solved: Tuesday, December 17, 2024 at 12:57:58 PM

CAS classification : [_Riccati]

Solve

$$y' = x + y + by^2$$

Solved as first order ode of type Riccati

Time used: 0.185 (sec)

In canonical form the ODE is

$$y' = F(x, y)$$
$$= b y^2 + x + y$$

This is a Riccati ODE. Comparing the ODE to solve

$$y' = b y^2 + x + y$$

With Riccati ODE standard form

$$y' = f_0(x) + f_1(x)y + f_2(x)y^2$$

Shows that $f_0(x) = x$, $f_1(x) = 1$ and $f_2(x) = b$. Let

$$y = \frac{-u'}{f_2 u}$$

$$= \frac{-u'}{ub} \tag{1}$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for u(x) which is

$$f_2 u''(x) - (f_2' + f_1 f_2) u'(x) + f_2^2 f_0 u(x) = 0$$
(2)

But

$$f_2' = 0$$

$$f_1 f_2 = b$$

$$f_2^2 f_0 = b^2 x$$

Substituting the above terms back in equation (2) gives

$$bu''(x) - bu'(x) + b^2 x u(x) = 0$$

This is Airy ODE. It has the general form

$$a\frac{d^2u}{dx^2} + b\frac{du}{dx} + cux = F(x)$$

Where in this case

$$a = b$$

$$b = -b$$

$$c = b^{2}$$

$$F = 0$$

Therefore the solution to the homogeneous Airy ODE becomes

$$u = c_1 e^{\frac{x}{2}} \operatorname{AiryAi} \left(-\frac{b^3 x - \frac{1}{4}b^2}{b^{8/3}} \right) + c_2 e^{\frac{x}{2}} \operatorname{AiryBi} \left(-\frac{b^3 x - \frac{1}{4}b^2}{b^{8/3}} \right)$$

Will add steps showing solving for IC soon.

Taking derivative gives

$$\begin{split} u'(x) &= \frac{c_1 \operatorname{e}^{\frac{x}{2}} \operatorname{AiryAi} \left(-\frac{b^3 x - \frac{1}{4}b^2}{b^{8/3}} \right)}{2} \\ &- c_1 \operatorname{e}^{\frac{x}{2}} b^{1/3} \operatorname{AiryAi} \left(1, -\frac{b^3 x - \frac{1}{4}b^2}{b^{8/3}} \right) + \frac{c_2 \operatorname{e}^{\frac{x}{2}} \operatorname{AiryBi} \left(-\frac{b^3 x - \frac{1}{4}b^2}{b^{8/3}} \right)}{2} - c_2 \operatorname{e}^{\frac{x}{2}} b^{1/3} \operatorname{AiryBi} \left(1, -\frac{b^3 x - \frac{1}{4}b^2}{b^{8/3}} \right) \end{split}$$

Doing change of constants, the solution becomes

$$y = \frac{-\frac{c_3 e^{\frac{x}{2} \operatorname{AiryAi}\left(-\frac{b^3 x - \frac{1}{4}b^2}{b^{8/3}}\right)}{2} - c_3 e^{\frac{x}{2}}b^{1/3} \operatorname{AiryAi}\left(1, -\frac{b^3 x - \frac{1}{4}b^2}{b^{8/3}}\right) + \frac{e^{\frac{x}{2} \operatorname{AiryBi}\left(-\frac{b^3 x - \frac{1}{4}b^2}{b^{8/3}}\right)}{2} - e^{\frac{x}{2}}b^{1/3} \operatorname{AiryBi}\left(1, -\frac{b^3 x - \frac{1}{4}b^2}{b^{8/3}}\right)}{b \left(c_3 e^{\frac{x}{2}} \operatorname{AiryAi}\left(-\frac{b^3 x - \frac{1}{4}b^2}{b^{8/3}}\right) + e^{\frac{x}{2}} \operatorname{AiryBi}\left(-\frac{b^3 x - \frac{1}{4}b^2}{b^{8/3}}\right)\right)}$$

Summary of solutions found

$$y = \frac{-\frac{c_3 e^{\frac{x}{2} \operatorname{AiryAi}\left(-\frac{b^3 x - \frac{1}{4}b^2}{b^{8/3}}\right)}{2} - c_3 e^{\frac{x}{2}}b^{1/3} \operatorname{AiryAi}\left(1, -\frac{b^3 x - \frac{1}{4}b^2}{b^{8/3}}\right) + \frac{e^{\frac{x}{2} \operatorname{AiryBi}\left(-\frac{b^3 x - \frac{1}{4}b^2}{b^{8/3}}\right)}{2} - e^{\frac{x}{2}}b^{1/3} \operatorname{AiryBi}\left(1, -\frac{b^3 x - \frac{1}{4}b^2}{b^{8/3}}\right)}{b \left(c_3 e^{\frac{x}{2}} \operatorname{AiryAi}\left(-\frac{b^3 x - \frac{1}{4}b^2}{b^{8/3}}\right) + e^{\frac{x}{2}} \operatorname{AiryBi}\left(-\frac{b^3 x - \frac{1}{4}b^2}{b^{8/3}}\right)\right)}$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = x + y(x) + by(x)^2$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\frac{d}{dx}y(x) = x + y(x) + by(x)^2$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
```

trying Riccati sub-methods:
<- Abel AIR successful: ODE belongs to the OF1 O-parameter (Airy type) class`</pre>

Maple dsolve solution

Solving time: 0.022 (sec)

Leaf size: 105

$$\frac{dsolve(diff(y(x),x) = x+y(x)+b*y(x)^2}{y(x),singsol=all)}$$

$$= \frac{2\operatorname{AiryAi}\left(1, -\frac{4bx - 1}{4b^{2/3}}\right)b^{1/3}c_{1} - \operatorname{AiryAi}\left(-\frac{4bx - 1}{4b^{2/3}}\right)c_{1} + 2\operatorname{AiryBi}\left(1, -\frac{4bx - 1}{4b^{2/3}}\right)b^{1/3} - \operatorname{AiryBi}\left(-\frac{4bx - 1}{4b^{2/3}}\right)}{2b\left(\operatorname{AiryAi}\left(-\frac{4bx - 1}{4b^{2/3}}\right)c_{1} + \operatorname{AiryBi}\left(-\frac{4bx - 1}{4b^{2/3}}\right)\right)}$$

Mathematica DSolve solution

Solving time: 0.201 (sec)

Leaf size: 211

$$y(x) \rightarrow \frac{-(-b)^{2/3} \operatorname{AiryBi}\left(\frac{\frac{1}{4}-bx}{(-b)^{2/3}}\right) + 2b \operatorname{AiryBiPrime}\left(\frac{\frac{1}{4}-bx}{(-b)^{2/3}}\right) + c_1\left(2b \operatorname{AiryAiPrime}\left(\frac{\frac{1}{4}-bx}{(-b)^{2/3}}\right) - (-b)^{2/3} \operatorname{AiryBiPrime}\left(\frac{\frac{1}{4}-bx}{(-b)^{2/3}}\right) - (-b)^{2/3} \operatorname{AiryBiPrime}\left(\frac{\frac{1}{4}-bx}{(-b)^{2/3}}\right)}{2(-b)^{5/3}\left(\operatorname{AiryBi}\left(\frac{\frac{1}{4}-bx}{(-b)^{2/3}}\right) + c_1 \operatorname{AiryAi}\left(\frac{\frac{1}{4}-bx}{(-b)^{2/3}}\right)\right)} + \frac{2\sqrt[3]{-b} \operatorname{AiryAiPrime}\left(\frac{\frac{1}{4}-bx}{(-b)^{2/3}}\right)}{\operatorname{AiryAi}\left(\frac{\frac{1}{4}-bx}{(-b)^{2/3}}\right)} + 1$$

2.1.31 problem 31

Solved as first order quadrature ode	255
Solved as first order homogeneous class D2 ode	256
Solved as first order ode of type differential	258
Maple step by step solution	259
Maple trace	26 0
Maple dsolve solution	26 0
Mathematica DSolve solution	260

Internal problem ID [8691]

Book: First order enumerated odes

Section: section 1

Problem number: 31

Date solved: Tuesday, December 17, 2024 at 12:58:00 PM

CAS classification : [_quadrature]

Solve

$$xy' = 0$$

Solved as first order quadrature ode

Time used: 0.026 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 \, dx + c_1$$
$$y = c_1$$

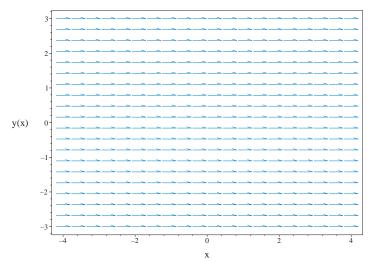


Figure 2.33: Slope field plot xy' = 0

$$y = c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.132 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$x(u'(x) x + u(x)) = 0$$

Which is now solved The ode $u'(x) = -\frac{u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int -\frac{1}{x} dx$$
$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$
$$u(x) = \frac{e^{c_1}}{x}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{c_1}}{x}$ back to y gives

$$y = e^{c_1}$$

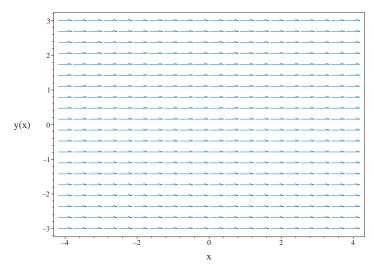


Figure 2.34: Slope field plot xy' = 0

$$y = 0$$

$$y = e^{c_1}$$

Solved as first order ode of type differential

Time used: 0.010 (sec)

Writing the ode as

$$y' = 0 \tag{1}$$

Which becomes

$$(1) dy = (0) dx (2)$$

But the RHS is complete differential because

$$(0) dx = d(0)$$

Hence (2) becomes

$$(1) dy = d(0)$$

Integrating gives

$$y = c_1$$

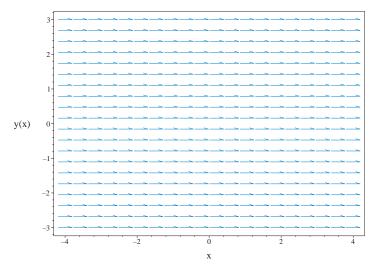


Figure 2.35: Slope field plot xy' = 0

$$y = c_1$$

Maple step by step solution

Let's solve

$$x\big(\tfrac{d}{dx}y(x)\big) = 0$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = 0$$

• Integrate both sides with respect to x

$$\int \left(\frac{d}{dx}y(x)\right)dx = \int 0dx + C1$$

• Evaluate integral

$$y(x) = C1$$

• Solve for y(x)

$$y(x) = C1$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.003 (sec)

Leaf size: 5

```
dsolve(diff(y(x),x)*x = 0,
    y(x),singsol=all)
```

$$y = c_1$$

Mathematica DSolve solution

Solving time: 0.002 (sec)

Leaf size : 7

```
DSolve[{x*D[y[x],x]==0,{}},
    y[x],x,IncludeSingularSolutions->True]
```

$$y(x) \rightarrow c_1$$

2.1.32 problem 32

Solved as first order quadrature ode	261
Solved as first order homogeneous class D2 ode	262
Solved as first order ode of type differential	264
Maple step by step solution	265
Maple trace	266
Maple dsolve solution	266
Mathematica DSolve solution	266

Internal problem ID [8692]

Book: First order enumerated odes

Section: section 1

Problem number: 32

Date solved: Tuesday, December 17, 2024 at 12:58:01 PM

CAS classification : [_quadrature]

Solve

$$5y' = 0$$

Solved as first order quadrature ode

Time used: 0.025 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 \, dx + c_1$$
$$y = c_1$$

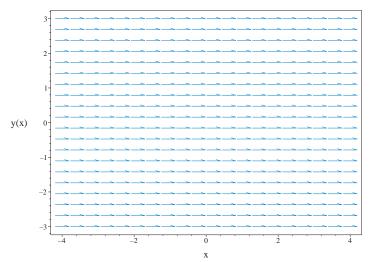


Figure 2.36: Slope field plot 5y' = 0

$$y = c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.130 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$5u'(x) x + 5u(x) = 0$$

Which is now solved The ode $u'(x) = -\frac{u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int -\frac{1}{x} dx$$
$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$
$$u(x) = \frac{e^{c_1}}{x}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{c_1}}{x}$ back to y gives

$$y = e^{c_1}$$

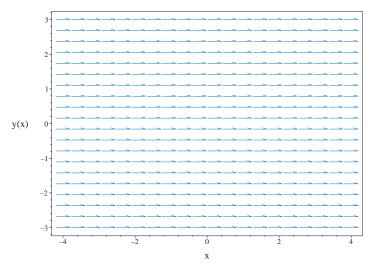


Figure 2.37: Slope field plot 5y' = 0

$$y = 0$$

$$y = e^{c_1}$$

Solved as first order ode of type differential

Time used: 0.010 (sec)

Writing the ode as

$$y' = 0 \tag{1}$$

Which becomes

$$(1) dy = (0) dx (2)$$

But the RHS is complete differential because

$$(0) dx = d(0)$$

Hence (2) becomes

$$(1) dy = d(0)$$

Integrating gives

$$y = c_1$$

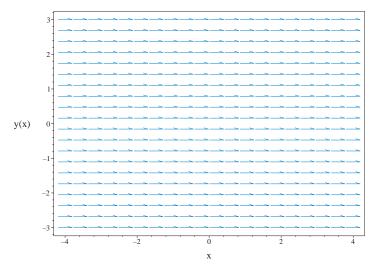


Figure 2.38: Slope field plot 5y' = 0

$$y = c_1$$

Maple step by step solution

Let's solve $\;$

$$5\frac{d}{dx}y(x) = 0$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Separate variables

$$\frac{d}{dx}y(x) = 0$$

ullet Integrate both sides with respect to x

$$\int \left(\frac{d}{dx}y(x)\right)dx = \int 0dx + C1$$

• Evaluate integral

$$y(x) = C1$$

• Solve for y(x)

$$y(x) = C1$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.002 (sec)

Leaf size: 5

```
dsolve(5*diff(y(x),x) = 0,
    y(x),singsol=all)
```

$$y = c_1$$

Mathematica DSolve solution

Solving time: 0.002 (sec)

Leaf size : 7

```
DSolve[{5*D[y[x],x]==0,{}},
    y[x],x,IncludeSingularSolutions->True]
```

$$y(x) \rightarrow c_1$$

2.1.33 problem 33

Solved as first order quadrature ode	. 267
Solved as first order homogeneous class D2 ode	. 268
Solved as first order ode of type differential	. 270
Maple step by step solution	. 271
Maple trace	. 272
Maple dsolve solution	. 272
Mathematica DSolve solution	. 272

Internal problem ID [8693]

Book: First order enumerated odes

Section: section 1

Problem number: 33

Date solved: Tuesday, December 17, 2024 at 12:58:02 PM

CAS classification : [_quadrature]

Solve

$$ey' = 0$$

Solved as first order quadrature ode

Time used: 0.023 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 \, dx + c_1$$
$$y = c_1$$

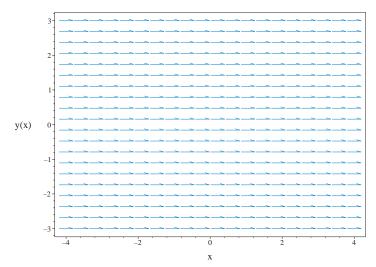


Figure 2.39: Slope field plot ey' = 0

$$y = c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.132 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$e(u'(x) x + u(x)) = 0$$

Which is now solved The ode $u'(x) = -\frac{u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int -\frac{1}{x} dx$$
$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$
$$u(x) = \frac{e^{c_1}}{x}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{c_1}}{x}$ back to y gives

$$y = e^{c_1}$$

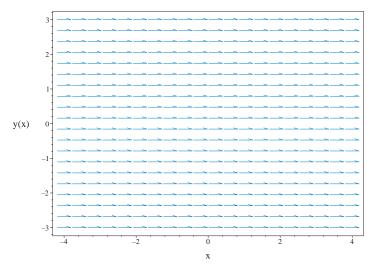


Figure 2.40: Slope field plot ey' = 0

$$y = 0$$

$$y = e^{c_1}$$

Solved as first order ode of type differential

Time used: 0.010 (sec)

Writing the ode as

$$y' = 0 \tag{1}$$

Which becomes

$$(1) dy = (0) dx (2)$$

But the RHS is complete differential because

$$(0) dx = d(0)$$

Hence (2) becomes

$$(1) dy = d(0)$$

Integrating gives

$$y = c_1$$

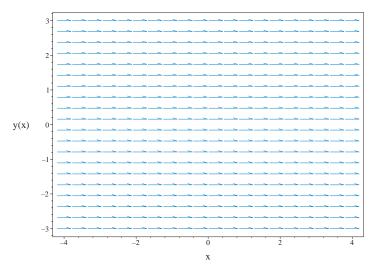


Figure 2.41: Slope field plot ey' = 0

$$y = c_1$$

Maple step by step solution

Let's solve $e\left(\frac{d}{dx}y(x)\right) = 0$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Separate variables

$$\frac{d}{dx}y(x) = 0$$

• Integrate both sides with respect to x $\int \left(\frac{d}{dx}y(x)\right)dx = \int 0dx + C1$

• Evaluate integral

$$y(x) = C1$$

• Solve for y(x)

$$y(x) = C1$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.002 (sec)

Leaf size: 5

```
dsolve(exp(1)*diff(y(x),x) = 0,
    y(x),singsol=all)
```

$$y = c_1$$

Mathematica DSolve solution

Solving time: 0.002 (sec)

Leaf size : 7

```
DSolve[{Exp[1]*D[y[x],x]==0,{}},
    y[x],x,IncludeSingularSolutions->True]
```

$$y(x) \rightarrow c_1$$

2.1.34 problem 34

Solved as first order quadrature ode	. 273
Solved as first order homogeneous class D2 ode	. 274
Solved as first order ode of type differential	. 276
Maple step by step solution	. 277
Maple trace	. 278
Maple dsolve solution	. 278
Mathematica DSolve solution	. 278

Internal problem ID [8694]

Book: First order enumerated odes

Section: section 1

Problem number: 34

Date solved: Tuesday, December 17, 2024 at 12:58:02 PM

CAS classification : [_quadrature]

Solve

$$\pi y' = 0$$

Solved as first order quadrature ode

Time used: 0.023 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 \, dx + c_1$$
$$y = c_1$$

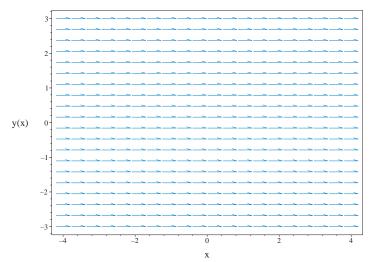


Figure 2.42: Slope field plot $\pi y' = 0$

$$y = c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.132 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$\pi(u'(x) x + u(x)) = 0$$

Which is now solved The ode $u'(x) = -\frac{u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int -\frac{1}{x} dx$$
$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$
$$u(x) = \frac{e^{c_1}}{x}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{c_1}}{x}$ back to y gives

$$y = e^{c_1}$$

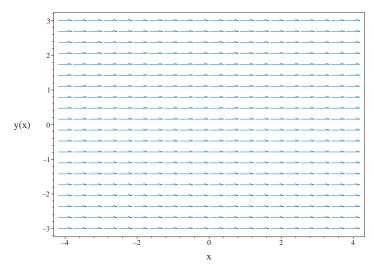


Figure 2.43: Slope field plot $\pi y' = 0$

$$y = 0$$

$$y = e^{c_1}$$

Solved as first order ode of type differential

Time used: 0.010 (sec)

Writing the ode as

$$y' = 0 \tag{1}$$

Which becomes

$$(1) dy = (0) dx \tag{2}$$

But the RHS is complete differential because

$$(0) dx = d(0)$$

Hence (2) becomes

$$(1) dy = d(0)$$

Integrating gives

$$y = c_1$$

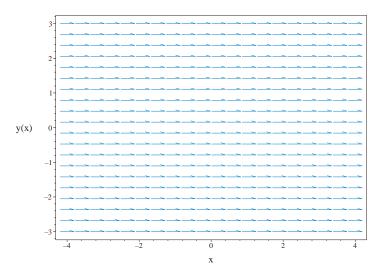


Figure 2.44: Slope field plot $\pi y' = 0$

$$y = c_1$$

Maple step by step solution

Let's solve

$$\pi\big(\tfrac{d}{dx}y(x)\big) = 0$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Separate variables

$$\frac{d}{dx}y(x) = 0$$

ullet Integrate both sides with respect to x

$$\int \left(\frac{d}{dx}y(x)\right)dx = \int 0dx + C1$$

• Evaluate integral

$$y(x) = C1$$

• Solve for y(x)

$$y(x) = C1$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.002 (sec)

Leaf size: 5

```
dsolve(Pi*diff(y(x),x) = 0,
    y(x),singsol=all)
```

$$y = c_1$$

Mathematica DSolve solution

Solving time: 0.002 (sec)

Leaf size : 7

```
DSolve[{Pi*D[y[x],x]==0,{}},
    y[x],x,IncludeSingularSolutions->True]
```

$$y(x) \rightarrow c_1$$

2.1.35 problem 35

Solved as first order quadrature ode	. 279
Solved as first order homogeneous class D2 ode	. 280
Solved as first order ode of type differential	. 282
Maple step by step solution	. 283
Maple trace	. 284
Maple dsolve solution	. 284
Mathematica DSolve solution	. 284

Internal problem ID [8695]

Book: First order enumerated odes

 $\mathbf{Section}: \mathbf{section}\ 1$

Problem number: 35

Date solved: Tuesday, December 17, 2024 at 12:58:03 PM

CAS classification : [_quadrature]

Solve

$$\sin(x) y' = 0$$

Solved as first order quadrature ode

Time used: 0.026 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 \, dx + c_1$$
$$y = c_1$$

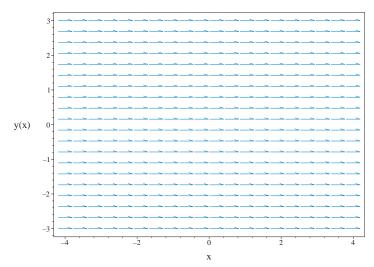


Figure 2.45: Slope field plot $\sin(x) y' = 0$

$$y = c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.156 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$\sin(x) \left(u'(x) x + u(x) \right) = 0$$

Which is now solved The ode $u'(x) = -\frac{u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int -\frac{1}{x} dx$$
$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$
$$u(x) = \frac{e^{c_1}}{x}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{c_1}}{x}$ back to y gives

$$y = e^{c_1}$$

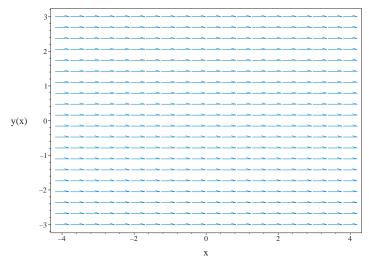


Figure 2.46: Slope field plot $\sin(x) y' = 0$

$$y = 0$$

$$y = e^{c_1}$$

Solved as first order ode of type differential

Time used: 0.012 (sec)

Writing the ode as

$$y' = 0 \tag{1}$$

Which becomes

$$(1) dy = (0) dx (2)$$

But the RHS is complete differential because

$$(0) dx = d(0)$$

Hence (2) becomes

$$(1) dy = d(0)$$

Integrating gives

$$y = c_1$$

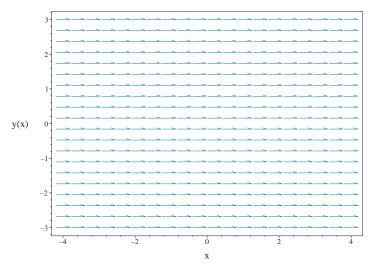


Figure 2.47: Slope field plot $\sin(x) y' = 0$

$$y = c_1$$

Maple step by step solution

Let's solve $\sin(x) \left(\frac{d}{dx}y(x)\right) = 0$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\frac{d}{dx}y(x) = 0$
- Integrate both sides with respect to x $\int \left(\frac{d}{dx}y(x)\right) dx = \int 0 dx + C1$
- Evaluate integral y(x) = C1
- Solve for y(x)y(x) = C1

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.002 (sec)

Leaf size: 5

```
dsolve(sin(x)*diff(y(x),x) = 0,
    y(x),singsol=all)
```

$$y = c_1$$

Mathematica DSolve solution

Solving time: 0.002 (sec)

Leaf size : 7

```
DSolve[{Sin[x]*D[y[x],x]==0,{}},
    y[x],x,IncludeSingularSolutions->True]
```

$$y(x) \rightarrow c_1$$

2.1.36 problem 36

Solved as first order quadrature ode	. 28
Solved as first order homogeneous class D2 ode	. 286
Solved as first order ode of type differential	. 288
Maple step by step solution	. 289
Maple trace	. 290
Maple dsolve solution	. 290
Mathematica DSolve solution	. 290

Internal problem ID [8696]

Book: First order enumerated odes

Section: section 1

Problem number: 36

Date solved: Tuesday, December 17, 2024 at 12:58:04 PM

CAS classification : [_quadrature]

Solve

$$f(x) y' = 0$$

Solved as first order quadrature ode

Time used: 0.026 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 \, dx + c_1$$
$$y = c_1$$

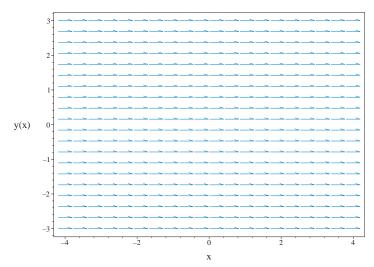


Figure 2.48: Slope field plot f(x) y' = 0

$$y = c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.145 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$f(x)\left(u'(x)\,x+u(x)\right)=0$$

Which is now solved The ode $u'(x) = -\frac{u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int -\frac{1}{x} dx$$
$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$
$$u(x) = \frac{e^{c_1}}{x}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{c_1}}{x}$ back to y gives

$$y = e^{c_1}$$

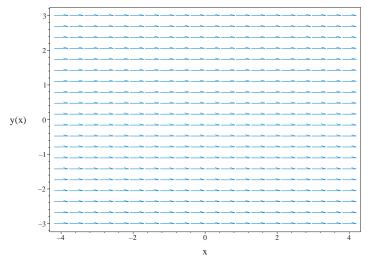


Figure 2.49: Slope field plot f(x) y' = 0

$$y = 0$$

$$y = e^{c_1}$$

Solved as first order ode of type differential

Time used: 0.012 (sec)

Writing the ode as

$$y' = 0 \tag{1}$$

Which becomes

$$(1) dy = (0) dx (2)$$

But the RHS is complete differential because

$$(0) dx = d(0)$$

Hence (2) becomes

$$(1) dy = d(0)$$

Integrating gives

$$y = c_1$$

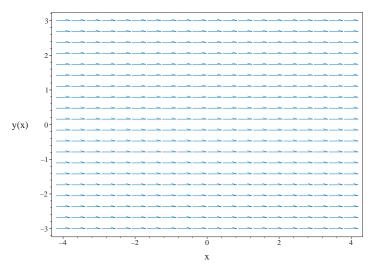


Figure 2.50: Slope field plot f(x) y' = 0

$$y = c_1$$

Maple step by step solution

Let's solve

$$f(x)\left(\frac{d}{dx}y(x)\right) = 0$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = 0$$

• Integrate both sides with respect to x

$$\int \left(\frac{d}{dx}y(x)\right)dx = \int 0dx + C1$$

• Evaluate integral

$$y(x) = C1$$

• Solve for y(x)

$$y(x) = C1$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.001 (sec)

Leaf size: 5

```
dsolve(f(x)*diff(y(x),x) = 0,
    y(x),singsol=all)
```

$$y = c_1$$

Mathematica DSolve solution

Solving time: 0.002 (sec)

Leaf size : 7

```
DSolve[{f[x]*D[y[x],x]==0,{}},
    y[x],x,IncludeSingularSolutions->True]
```

$$y(x) \rightarrow c_1$$

2.1.37 problem 37

Solved as first order quadrature ode	291
Solved as first order Exact ode	292
Maple step by step solution	296
Maple trace	297
Maple dsolve solution	297
Mathematica DSolve solution	297

Internal problem ID [8697]

Book: First order enumerated odes

Section: section 1
Problem number: 37

Date solved: Tuesday, December 17, 2024 at 12:58:05 PM

CAS classification : [_quadrature]

Solve

$$xy' = 1$$

Solved as first order quadrature ode

Time used: 0.036 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int \frac{1}{x} dx$$
$$y = \ln(x) + c_1$$

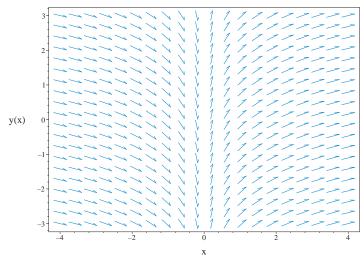


Figure 2.51: Slope field plot xy' = 1

$$y = \ln(x) + c_1$$

Solved as first order Exact ode

Time used: 0.075 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 (A)

We assume there exists a function $\phi(x,y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$(x) dy = dx$$

$$-dx + (x) dy = 0$$
(2A)

Comparing (1A) and (2A) shows that

$$M(x, y) = -1$$
$$N(x, y) = x$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(-1)$$
$$= 0$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(x)$$
$$= 1$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$A = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$
$$= \frac{1}{x} ((0) - (1))$$
$$= -\frac{1}{x}$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$\mu = e^{\int A \, \mathrm{d}x}$$
$$= e^{\int -\frac{1}{x} \, \mathrm{d}x}$$

The result of integrating gives

$$\mu = e^{-\ln(x)}$$
$$= \frac{1}{r}$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \overline{M} and \overline{N} for now so not to confuse them with the original M and N.

$$\overline{M} = \mu M$$

$$= \frac{1}{x}(-1)$$

$$= -\frac{1}{x}$$

And

$$\overline{N} = \mu N$$

$$= \frac{1}{x}(x)$$

$$= 1$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$\overline{M} + \overline{N} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
$$\left(-\frac{1}{x}\right) + (1)\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = \overline{M} \tag{1}$$

$$\frac{\partial \phi}{\partial x} = \overline{M}$$

$$\frac{\partial \phi}{\partial y} = \overline{N}$$
(1)

Integrating (1) w.r.t. x gives

$$\int \frac{\partial \phi}{\partial x} \, \mathrm{d}x = \int \overline{M} \, \mathrm{d}x$$

$$\int \frac{\partial \phi}{\partial x} \, \mathrm{d}x = \int -\frac{1}{x} \, \mathrm{d}x$$

$$\phi = -\ln(x) + f(y)$$
(3)

Where f(y) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$\frac{\partial \phi}{\partial y} = 0 + f'(y) \tag{4}$$

But equation (2) says that $\frac{\partial \phi}{\partial y} = 1$. Therefore equation (4) becomes

$$1 = 0 + f'(y) \tag{5}$$

Solving equation (5) for f'(y) gives

$$f'(y) = 1$$

Integrating the above w.r.t y gives

$$\int f'(y) dy = \int (1) dy$$
$$f(y) = y + c_1$$

Where c_1 is constant of integration. Substituting result found above for f(y) into equation (3) gives ϕ

$$\phi = -\ln\left(x\right) + y + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = -\ln(x) + y$$

Solving for y gives

$$y = \ln\left(x\right) + c_1$$

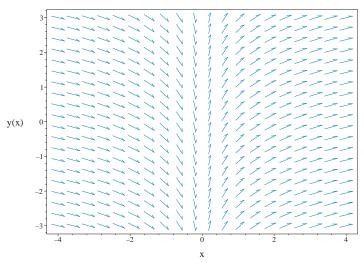


Figure 2.52: Slope field plot xy' = 1

Summary of solutions found

$$y = \ln(x) + c_1$$

Maple step by step solution

Let's solve $r(\frac{d}{d}u(x)) =$

$$x\big(\tfrac{d}{dx}y(x)\big)=1$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = \frac{1}{x}$$

• Integrate both sides with respect to x $\int \left(\frac{d}{dx}y(x)\right)dx = \int \frac{1}{x}dx + C1$

• Evaluate integral

$$y(x) = \ln(x) + C1$$

• Solve for y(x)

$$y(x) = \ln(x) + C1$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`</pre>
```

Maple dsolve solution

Solving time: 0.000 (sec)

Leaf size: 8

```
dsolve(diff(y(x),x)*x = 1,
    y(x),singsol=all)
```

$$y = \ln\left(x\right) + c_1$$

Mathematica DSolve solution

Solving time: 0.003 (sec)

Leaf size: 10

```
DSolve[{x*D[y[x],x]==1,{}},
    y[x],x,IncludeSingularSolutions->True]
```

$$y(x) \to \log(x) + c_1$$

2.1.38 problem 38

Solved as first order quadrature ode	98
Solved as first order Exact ode	99
Maple step by step solution	03
Maple trace	04
Maple dsolve solution	04
Mathematica DSolve solution	04

Internal problem ID [8698]

Book: First order enumerated odes

Section: section 1

Problem number: 38

Date solved: Tuesday, December 17, 2024 at 12:58:05 PM

CAS classification : [_quadrature]

Solve

$$xy' = \sin(x)$$

Solved as first order quadrature ode

Time used: 0.086 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int \frac{\sin(x)}{x} dx$$
$$y = \operatorname{Si}(x) + c_1$$

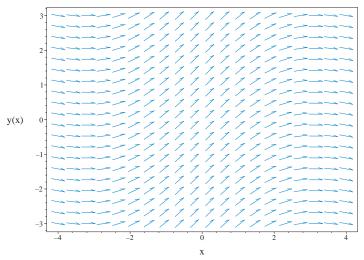


Figure 2.53: Slope field plot $xy' = \sin(x)$

$$y = \mathrm{Si}\left(x\right) + c_1$$

Solved as first order Exact ode

Time used: 0.085 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 (A)

We assume there exists a function $\phi(x,y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$(x) dy = (\sin(x)) dx$$
$$(-\sin(x)) dx + (x) dy = 0$$
 (2A)

Comparing (1A) and (2A) shows that

$$M(x,y) = -\sin(x)$$
$$N(x,y) = x$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} (-\sin(x))$$
$$= 0$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(x)$$
$$= 1$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$A = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$
$$= \frac{1}{x} ((0) - (1))$$
$$= -\frac{1}{x}$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$\mu = e^{\int A \, \mathrm{d}x}$$
$$= e^{\int -\frac{1}{x} \, \mathrm{d}x}$$

The result of integrating gives

$$\mu = e^{-\ln(x)}$$
$$= \frac{1}{x}$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \overline{M} and \overline{N} for now so not to confuse them with the original M and N.

$$\overline{M} = \mu M$$

$$= \frac{1}{x}(-\sin(x))$$

$$= -\frac{\sin(x)}{x}$$

And

$$\overline{N} = \mu N$$

$$= \frac{1}{x}(x)$$

$$= 1$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$\overline{M} + \overline{N} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
$$\left(-\frac{\sin(x)}{x}\right) + (1)\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = \overline{M} \tag{1}$$

$$\frac{\partial x}{\partial \phi} = \overline{N} \tag{2}$$

Integrating (1) w.r.t. x gives

$$\int \frac{\partial \phi}{\partial x} dx = \int \overline{M} dx$$

$$\int \frac{\partial \phi}{\partial x} dx = \int -\frac{\sin(x)}{x} dx$$

$$\phi = -\operatorname{Si}(x) + f(y)$$
(3)

Where f(y) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$\frac{\partial \phi}{\partial y} = 0 + f'(y) \tag{4}$$

But equation (2) says that $\frac{\partial \phi}{\partial y} = 1$. Therefore equation (4) becomes

$$1 = 0 + f'(y) \tag{5}$$

Solving equation (5) for f'(y) gives

$$f'(y) = 1$$

Integrating the above w.r.t y gives

$$\int f'(y) \, dy = \int (1) \, dy$$
$$f(y) = y + c_1$$

Where c_1 is constant of integration. Substituting result found above for f(y) into equation (3) gives ϕ

$$\phi = -\operatorname{Si}(x) + y + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = -\operatorname{Si}(x) + y$$

Solving for y gives

$$y = \mathrm{Si}\left(x\right) + c_1$$

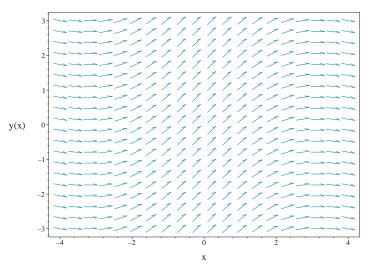


Figure 2.54: Slope field plot $xy' = \sin(x)$

Summary of solutions found

$$y = \mathrm{Si}\left(x\right) + c_1$$

Maple step by step solution

Let's solve $x(\frac{d}{dx}y(x)) = \sin(x)$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\frac{d}{dx}y(x) = \frac{\sin(x)}{x}$
- Integrate both sides with respect to x $\int \left(\frac{d}{dx}y(x)\right)dx = \int \frac{\sin(x)}{x}dx + C1$
- Evaluate integral y(x) = Si(x) + C1
- Solve for y(x)y(x) = Si(x) + C1

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`</pre>
```

Maple dsolve solution

Solving time: 0.002 (sec)

Leaf size: 8

```
dsolve(diff(y(x),x)*x = sin(x),
    y(x),singsol=all)
```

$$y = \mathrm{Si}\left(x\right) + c_1$$

Mathematica DSolve solution

Solving time: 0.006 (sec)

Leaf size: 10

```
DSolve[{x*D[y[x],x]==Sin[x],{}},
    y[x],x,IncludeSingularSolutions->True]
```

$$y(x) \to \mathrm{Si}(x) + c_1$$

2.1.39 problem 39

Solved as first order quadrature ode	305
Solved as first order homogeneous class D2 ode	306
Solved as first order ode of type differential	308
Maple step by step solution	309
Maple trace	310
Maple dsolve solution	310
Mathematica DSolve solution	310

Internal problem ID [8699]

Book: First order enumerated odes

Section: section 1

Problem number: 39

Date solved: Tuesday, December 17, 2024 at 12:58:06 PM

CAS classification : [_quadrature]

Solve

$$(x-1)y'=0$$

Solved as first order quadrature ode

Time used: 0.024 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 \, dx + c_1$$
$$y = c_1$$

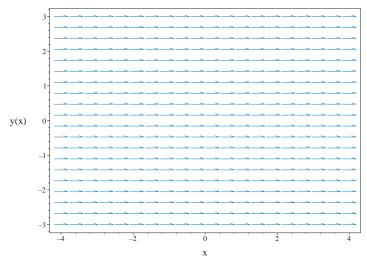


Figure 2.55: Slope field plot (x-1)y'=0

$$y = c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.130 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$(x-1)(u'(x)x + u(x)) = 0$$

Which is now solved The ode $u'(x) = -\frac{u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int -\frac{1}{x} dx$$
$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$
$$u(x) = \frac{e^{c_1}}{x}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{c_1}}{x}$ back to y gives

$$y = e^{c_1}$$

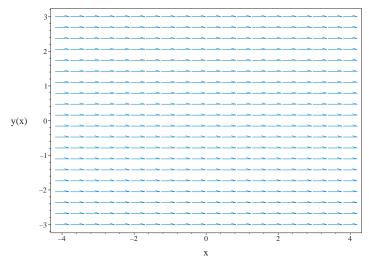


Figure 2.56: Slope field plot (x-1)y'=0

$$y = 0$$

$$y = e^{c_1}$$

Solved as first order ode of type differential

Time used: 0.010 (sec)

Writing the ode as

$$y' = 0 \tag{1}$$

Which becomes

$$(1) dy = (0) dx \tag{2}$$

But the RHS is complete differential because

$$(0) dx = d(0)$$

Hence (2) becomes

$$(1) dy = d(0)$$

Integrating gives

$$y = c_1$$

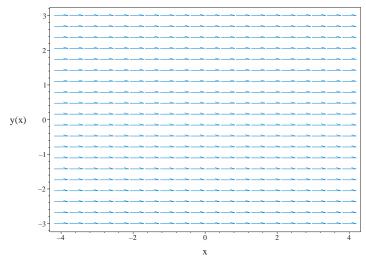


Figure 2.57: Slope field plot (x-1)y'=0

$$y = c_1$$

Maple step by step solution

Let's solve

$$(x-1)\left(\frac{d}{dx}y(x)\right)=0$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = 0$$

• Integrate both sides with respect to x

$$\int \left(\frac{d}{dx}y(x)\right)dx = \int 0dx + C1$$

• Evaluate integral

$$y(x) = C1$$

• Solve for y(x)

$$y(x) = C1$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.001 (sec)

Leaf size: 5

```
dsolve((x-1)*diff(y(x),x) = 0,
     y(x),singsol=all)
```

$$y = c_1$$

Mathematica DSolve solution

Solving time: 0.002 (sec)

Leaf size : 7

```
DSolve[{(x-1)*D[y[x],x]==0,{}},
    y[x],x,IncludeSingularSolutions->True]
```

$$y(x) \rightarrow c_1$$

2.1.40 problem 40

Solved as first order quadrature ode	312
Solved as first order homogeneous class D2 ode	312
Solved as first order ode of type differential	314
Maple step by step solution	315
Maple trace	316
Maple dsolve solution	316
Mathematica DSolve solution	316

Internal problem ID [8700]

Book: First order enumerated odes

Section: section 1

Problem number: 40

Date solved: Tuesday, December 17, 2024 at 12:58:07 PM

CAS classification : [_quadrature]

Solve

$$yy' = 0$$

Factoring the ode gives these factors

$$y = 0 \tag{1}$$

$$y' = 0 (2)$$

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

$$y = 0$$

Solving gives y = 0

Solving equation (2)

Solved as first order quadrature ode

Time used: 0.013 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 dx + c_1$$
$$y = c_1$$

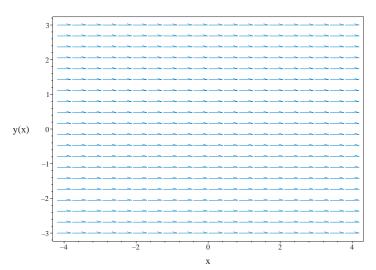


Figure 2.58: Slope field plot y' = 0

Summary of solutions found

$$y = c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.154 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$u'(x) x + u(x) = 0$$

Which is now solved The ode $u'(x) = -\frac{u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int -\frac{1}{x} dx$$
$$\ln (u(x)) = \ln \left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$

$$u(x) = \frac{\mathrm{e}^{c_1}}{x}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{c_1}}{x}$ back to y gives

$$y = e^{c_1}$$

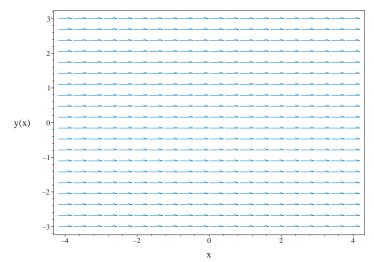


Figure 2.59: Slope field plot y' = 0

$$y = 0$$

$$y = e^{c_1}$$

Solved as first order ode of type differential

Time used: 0.009 (sec)

Writing the ode as

$$y' = 0 \tag{1}$$

Which becomes

$$(1) dy = (0) dx \tag{2}$$

But the RHS is complete differential because

$$(0) dx = d(0)$$

Hence (2) becomes

$$(1) dy = d(0)$$

Integrating gives

$$y = c_1$$

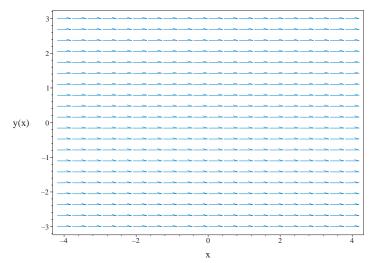


Figure 2.60: Slope field plot y' = 0

$$y = c_1$$

Maple step by step solution

Let's solve

$$y(x)\left(\frac{d}{dx}y(x)\right) = 0$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Separate variables

$$\frac{d}{dx}y(x) = 0$$

ullet Integrate both sides with respect to x

$$\int \left(\frac{d}{dx}y(x)\right)dx = \int 0dx + C1$$

• Evaluate integral

$$y(x) = C1$$

• Solve for y(x)

$$y(x) = C1$$

Maple trace

```
`Classification methods on request

Methods to be used are: [exact]
------
* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact
<- exact successful`
```

Maple dsolve solution

Solving time: 0.003 (sec)

Leaf size: 11

$$y = 0$$
$$y = -c_1$$

Mathematica DSolve solution

Solving time: 0.002 (sec)

Leaf size : 12

$$y(x) \to 0$$

 $y(x) \to c_1$

2.1.41 problem 41

Solved as first order quadrature ode	318
Solved as first order homogeneous class D2 ode	318
Solved as first order ode of type differential	320
Maple step by step solution	321
Maple trace	322
Maple dsolve solution	322
Mathematica DSolve solution	322

Internal problem ID [8701]

Book: First order enumerated odes

Section: section 1

Problem number: 41

Date solved: Tuesday, December 17, 2024 at 12:58:07 PM

CAS classification : [_quadrature]

Solve

$$xyy' = 0$$

Factoring the ode gives these factors

$$y = 0 \tag{1}$$

$$y' = 0 (2)$$

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

$$y = 0$$

Solving gives y = 0

Solving equation (2)

Solved as first order quadrature ode

Time used: 0.013 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 dx + c_1$$
$$y = c_1$$

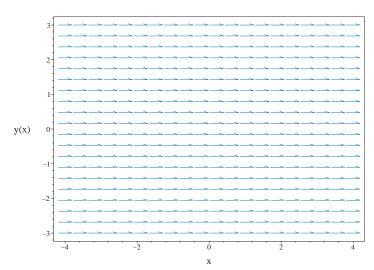


Figure 2.61: Slope field plot y' = 0

Summary of solutions found

$$y = c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.152 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$u'(x) x + u(x) = 0$$

Which is now solved The ode $u'(x) = -\frac{u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int -\frac{1}{x} dx$$
$$\ln (u(x)) = \ln \left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$

$$u(x) = \frac{\mathrm{e}^{c_1}}{x}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{c_1}}{x}$ back to y gives

$$y = e^{c_1}$$

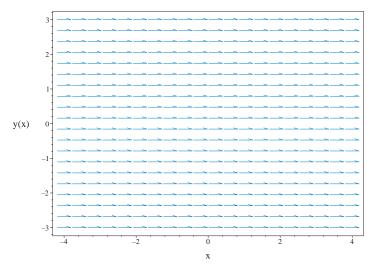


Figure 2.62: Slope field plot y' = 0

$$y = 0$$

$$y = e^{c_1}$$

Solved as first order ode of type differential

Time used: 0.009 (sec)

Writing the ode as

$$y' = 0 \tag{1}$$

Which becomes

$$(1) dy = (0) dx (2)$$

But the RHS is complete differential because

$$(0) dx = d(0)$$

Hence (2) becomes

$$(1) dy = d(0)$$

Integrating gives

$$y = c_1$$

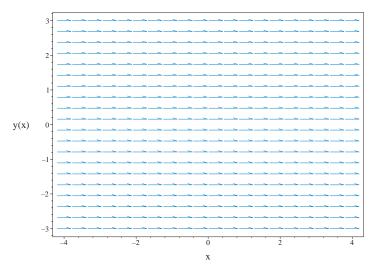


Figure 2.63: Slope field plot y' = 0

$$y = c_1$$

Maple step by step solution

Let's solve $xy(x)\left(\frac{d}{dx}y(x)\right) = 0$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\frac{d}{dx}y(x) = 0$
- Integrate both sides with respect to x $\int \left(\frac{d}{dx}y(x)\right) dx = \int 0 dx + C1$
- Evaluate integral y(x) = C1
- Solve for y(x)y(x) = C1

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.002 (sec)

Leaf size: 9

```
dsolve(x*y(x)*diff(y(x),x) = 0,
    y(x),singsol=all)
```

$$y = 0$$
$$y = c_1$$

Mathematica DSolve solution

Solving time: 0.002 (sec)

Leaf size: 12

```
DSolve[{x*y[x]*D[y[x],x]==0,{}},
    y[x],x,IncludeSingularSolutions->True]
```

$$y(x) \to 0$$

$$y(x) \to c_1$$

2.1.42 problem 42

Solved as first order quadrature ode	324
Solved as first order homogeneous class D2 ode	324
Solved as first order ode of type differential	326
Maple step by step solution	327
Maple trace	328
Maple dsolve solution	328
Mathematica DSolve solution	328

Internal problem ID [8702]

Book: First order enumerated odes

Section: section 1

Problem number: 42

Date solved: Tuesday, December 17, 2024 at 12:58:08 PM

CAS classification : [_quadrature]

Solve

$$xy\sin\left(x\right)y'=0$$

Factoring the ode gives these factors

$$y = 0 \tag{1}$$

$$y' = 0 (2)$$

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

$$y = 0$$

Solving gives y = 0

Solving equation (2)

Solved as first order quadrature ode

Time used: 0.013 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 dx + c_1$$
$$y = c_1$$

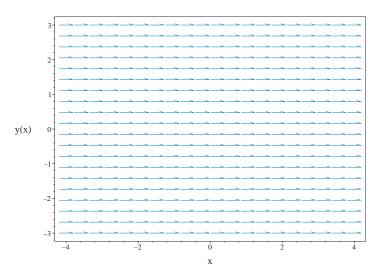


Figure 2.64: Slope field plot y' = 0

Summary of solutions found

$$y = c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.153 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$u'(x) x + u(x) = 0$$

Which is now solved The ode $u'(x) = -\frac{u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int -\frac{1}{x} dx$$
$$\ln (u(x)) = \ln \left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$

$$u(x) = \frac{\mathrm{e}^{c_1}}{x}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{c_1}}{x}$ back to y gives

$$y = e^{c_1}$$

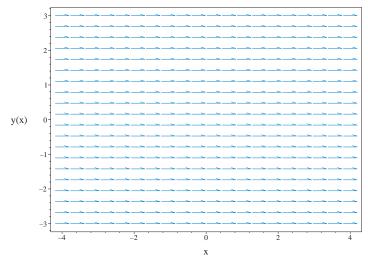


Figure 2.65: Slope field plot y' = 0

$$y = 0$$

$$y = e^{c_1}$$

Solved as first order ode of type differential

Time used: 0.009 (sec)

Writing the ode as

$$y' = 0 \tag{1}$$

Which becomes

$$(1) dy = (0) dx \tag{2}$$

But the RHS is complete differential because

$$(0) dx = d(0)$$

Hence (2) becomes

$$(1) dy = d(0)$$

Integrating gives

$$y = c_1$$

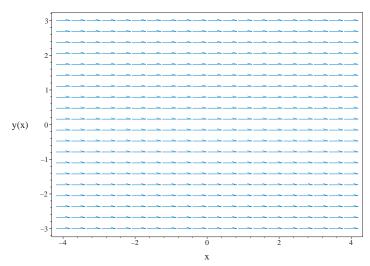


Figure 2.66: Slope field plot y' = 0

$$y = c_1$$

Maple step by step solution

Let's solve $xy(x)\sin(x)\left(\frac{d}{dx}y(x)\right) = 0$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\frac{d}{dx}y(x) = 0$
- Integrate both sides with respect to x $\int \left(\frac{d}{dx}y(x)\right) dx = \int 0 dx + C1$
- Evaluate integral y(x) = C1
- Solve for y(x)y(x) = C1

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.003 (sec)

Leaf size: 9

```
dsolve(x*y(x)*sin(x)*diff(y(x),x) = 0,
    y(x),singsol=all)
```

$$y = 0$$
$$y = c_1$$

Mathematica DSolve solution

Solving time: 0.003 (sec)

Leaf size: 12

```
DSolve[{x*y[x]*Sin[x]*D[y[x],x]==0,{}},
    y[x],x,IncludeSingularSolutions->True]
```

$$y(x) \to 0$$
$$y(x) \to c_1$$

2.1.43 problem 43

Solved as first order quadrature ode	330
Solved as first order homogeneous class D2 ode	330
Solved as first order ode of type differential	332
Maple step by step solution	333
Maple trace	334
Maple dsolve solution	334
Mathematica DSolve solution	334

Internal problem ID [8703]

Book: First order enumerated odes

Section: section 1

Problem number: 43

Date solved: Tuesday, December 17, 2024 at 12:58:09 PM

CAS classification : [_quadrature]

Solve

$$\pi y \sin(x) y' = 0$$

Factoring the ode gives these factors

$$y = 0 \tag{1}$$

$$y' = 0 (2)$$

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

$$y = 0$$

Solving gives y = 0

Solving equation (2)

Solved as first order quadrature ode

Time used: 0.014 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 dx + c_1$$
$$y = c_1$$

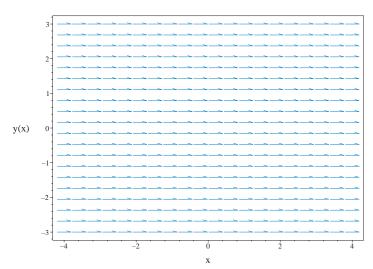


Figure 2.67: Slope field plot y' = 0

Summary of solutions found

$$y = c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.153 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$u'(x) x + u(x) = 0$$

Which is now solved The ode $u'(x) = -\frac{u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int -\frac{1}{x} dx$$
$$\ln (u(x)) = \ln \left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$

$$u(x) = \frac{\mathrm{e}^{c_1}}{x}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{c_1}}{x}$ back to y gives

$$y = e^{c_1}$$

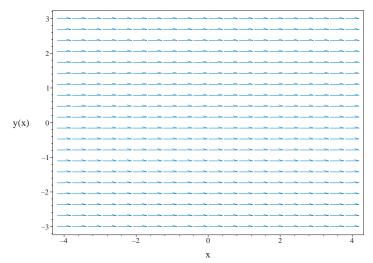


Figure 2.68: Slope field plot y' = 0

$$y = 0$$

$$y = e^{c_1}$$

Solved as first order ode of type differential

Time used: 0.010 (sec)

Writing the ode as

$$y' = 0 \tag{1}$$

Which becomes

$$(1) dy = (0) dx \tag{2}$$

But the RHS is complete differential because

$$(0) dx = d(0)$$

Hence (2) becomes

$$(1) dy = d(0)$$

Integrating gives

$$y = c_1$$

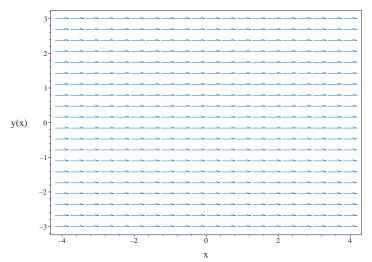


Figure 2.69: Slope field plot y' = 0

$$y = c_1$$

Maple step by step solution

Let's solve

$$\pi y(x)\sin\left(x\right)\left(\frac{d}{dx}y(x)\right)=0$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\frac{d}{dx}y(x) = 0$
- Integrate both sides with respect to x $\int \left(\frac{d}{dx}y(x)\right) dx = \int 0 dx + C1$
- Evaluate integral

$$y(x) = C1$$

• Solve for y(x)

$$y(x) = C1$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.002 (sec)

Leaf size: 9

```
dsolve(Pi*y(x)*sin(x)*diff(y(x),x) = 0,
    y(x),singsol=all)
```

$$y = 0$$
$$y = c_1$$

Mathematica DSolve solution

Solving time: 0.003 (sec)

Leaf size: 12

```
DSolve[{Pi*y[x]*Sin[x]*D[y[x],x]==0,{}},
    y[x],x,IncludeSingularSolutions->True]
```

$$y(x) \to 0$$
$$y(x) \to c_1$$

2.1.44 problem 44

Solved as first order quadrature ode	335
Solved as first order homogeneous class D2 ode	336
Solved as first order ode of type differential	338
Maple step by step solution	339
Maple trace	340
Maple dsolve solution	340
Mathematica DSolve solution	340

Internal problem ID [8704]

Book: First order enumerated odes

Section: section 1

Problem number: 44

Date solved: Tuesday, December 17, 2024 at 12:58:10 PM

CAS classification : [_quadrature]

Solve

$$x\sin\left(x\right)y'=0$$

Solved as first order quadrature ode

Time used: 0.026 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 \, dx + c_1$$
$$y = c_1$$

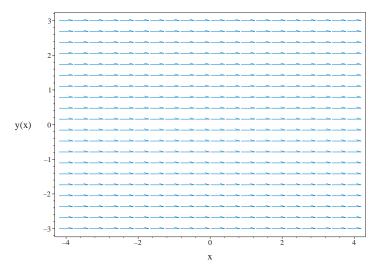


Figure 2.70: Slope field plot $x \sin(x) y' = 0$

$$y = c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.158 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$x\sin(x)\left(u'(x)\,x+u(x)\right)=0$$

Which is now solved The ode $u'(x) = -\frac{u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int -\frac{1}{x} dx$$
$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$
$$u(x) = \frac{e^{c_1}}{x}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{c_1}}{x}$ back to y gives

$$y = e^{c_1}$$

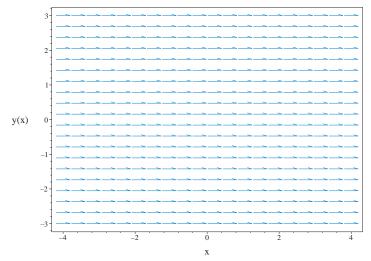


Figure 2.71: Slope field plot $x \sin(x) y' = 0$

$$y = 0$$

$$y = e^{c_1}$$

Solved as first order ode of type differential

Time used: 0.012 (sec)

Writing the ode as

$$y' = 0 \tag{1}$$

Which becomes

$$(1) dy = (0) dx \tag{2}$$

But the RHS is complete differential because

$$(0) dx = d(0)$$

Hence (2) becomes

$$(1) dy = d(0)$$

Integrating gives

$$y = c_1$$

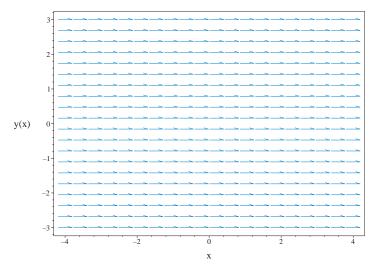


Figure 2.72: Slope field plot $x \sin(x) y' = 0$

$$y = c_1$$

Maple step by step solution

Let's solve $x \sin(x) \left(\frac{d}{dx}y(x)\right) = 0$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\frac{d}{dx}y(x) = 0$
- Integrate both sides with respect to x $\int \left(\frac{d}{dx}y(x)\right)dx = \int 0dx + C1$
- Evaluate integral y(x) = C1
- Solve for y(x)y(x) = C1

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.001 (sec)

Leaf size: 5

```
dsolve(x*sin(x)*diff(y(x),x) = 0,
     y(x),singsol=all)
```

$$y = c_1$$

Mathematica DSolve solution

Solving time: 0.002 (sec)

Leaf size : 7

```
DSolve[{x*Sin[x]*D[y[x],x]==0,{}},
    y[x],x,IncludeSingularSolutions->True]
```

$$y(x) \rightarrow c_1$$

2.1.45 problem 45

Maple step by step solution	342
Maple trace	342
Maple dsolve solution	342
Mathematica DSolve solution	343

Internal problem ID [8705]

Book: First order enumerated odes

Section: section 1
Problem number: 45

Date solved: Tuesday, December 17, 2024 at 12:58:10 PM

CAS classification : [_quadrature]

Solve

$$x\sin\left(x\right){y'}^2 = 0$$

Solving for the derivative gives these ODE's to solve

$$y' = 0 (1)$$

$$y' = 0 (2)$$

Now each of the above is solved separately.

Solving Eq. (1)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 \, dx + c_1$$
$$y = c_1$$

Solving Eq. (2)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 dx + c_2$$
$$y = c_2$$

Maple step by step solution

Let's solve

$$x\sin\left(x\right)\left(\frac{d}{dx}y(x)\right)^2 = 0$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = 0$$

ullet Integrate both sides with respect to x

$$\int \left(\frac{d}{dx}y(x)\right)dx = \int 0dx + C1$$

• Evaluate integral

$$y(x) = C1$$

• Solve for y(x)

$$y(x) = C1$$

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`</pre>
```

Maple dsolve solution

Solving time: 0.029 (sec)

Leaf size : 5

```
dsolve(x*sin(x)*diff(y(x),x)^2 = 0,
    y(x),singsol=all)
```

Mathematica DSolve solution

Solving time: 0.003 (sec)

Leaf size : 7

DSolve[{x*Sin[x]*D[y[x],x]^2==0,{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \rightarrow c_1$$

2.1.46 problem 46

Maple step by step solution	•	345
Maple trace	•	345
Maple dsolve solution		346
Mathematica DSolve solution		346

Internal problem ID [8706]

Book: First order enumerated odes

Section: section 1
Problem number: 46

Date solved: Tuesday, December 17, 2024 at 12:58:11 PM

CAS classification : [_quadrature]

Solve

$$yy'^2 = 0$$

Factoring the ode gives these factors

$$y = 0 \tag{1}$$

$$y'^2 = 0 (2)$$

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

$$y = 0$$

Solving gives y = 0

Solving equation (2)

Solving for the derivative gives these ODE's to solve

$$y' = 0 (1)$$

$$y' = 0 (2)$$

Now each of the above is solved separately.

Solving Eq. (1)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 dx + c_1$$
$$y = c_1$$

Solving Eq. (2)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 \, dx + c_2$$
$$y = c_2$$

Maple step by step solution

Let's solve

$$y(x) \left(\frac{d}{dx}y(x)\right)^2 = 0$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\frac{d}{d} u(x) = 0$

$$\frac{d}{dx}y(x) = 0$$

- Integrate both sides with respect to x $\int \left(\frac{d}{dx}y(x)\right) dx = \int 0 dx + C1$
- Evaluate integral

$$y(x) = C1$$

• Solve for y(x)

$$y(x) = C1$$

Maple trace

`Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

<- 1st order linear successful`

Maple dsolve solution

Solving time: 0.002 (sec)

Leaf size : 9

```
\frac{\text{dsolve}(y(x)*\text{diff}(y(x),x)^2 = 0,}{y(x),\text{singsol=all})}
```

$$y = 0 \\ y = c_1$$

Mathematica DSolve solution

Solving time: 0.002 (sec)

Leaf size: 12

$$y(x) \to 0$$

$$y(x) \to c_1$$

2.1.47 problem 47

Solved as first order quadrature ode	347
Solved as first order homogeneous class D2 ode	348
Maple step by step solution	350
Maple trace	350
Maple dsolve solution	350
Mathematica DSolve solution	351

Internal problem ID [8707]

 $\mathbf{Book}: \mathbf{First}$ order enumerated odes

Section: section 1
Problem number: 47

Date solved: Tuesday, December 17, 2024 at 12:58:11 PM

CAS classification : [_quadrature]

Solve

$$y'^n = 0$$

Solved as first order quadrature ode

Time used: 0.043 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 dx + c_1$$
$$y = c_1$$

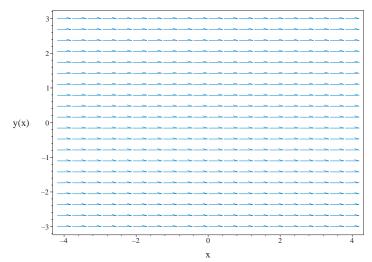


Figure 2.73: Slope field plot $y'^n = 0$

$$y = c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.228 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$\left(u'(x) x + u(x)\right)^n = 0$$

Which is now solved The ode $u'(x) = -\frac{u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int -\frac{1}{x} dx$$
$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Solving for u(x) gives

$$u(x) = \frac{\mathrm{e}^{c_1}}{x}$$

Converting $u(x) = \frac{e^{c_1}}{x}$ back to y gives

$$y = e^{c_1}$$

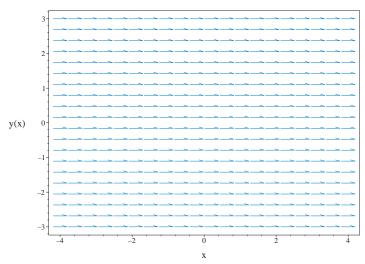


Figure 2.74: Slope field plot $y'^n = 0$

Summary of solutions found

$$y = e^{c_1}$$

Maple step by step solution

Let's solve $\left(\frac{d}{dx}y(x)\right)^n = 0$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\frac{d}{dx}y(x) = 0$
- Integrate both sides with respect to x $\int \left(\frac{d}{dx}y(x)\right) dx = \int 0 dx + C1$
- Evaluate integral y(x) = C1
- Solve for y(x)y(x) = C1

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`</pre>
```

Maple dsolve solution

Solving time: 0.006 (sec)

Leaf size: 5

```
dsolve(diff(y(x),x)^n = 0,
    y(x),singsol=all)
```

Mathematica DSolve solution

Solving time: 0.003 (sec)

 $Leaf\ size:15$

DSolve[{(D[y[x],x])^n==0,{}},

y[x],x,IncludeSingularSolutions->True]

$$y(x) \to 0^{\frac{1}{n}}x + c_1$$

2.1.48 problem 48

Solved as first order quadrature ode	352
Solved as first order homogeneous class D2 ode	353
Maple step by step solution	355
Maple trace	356
Maple dsolve solution	356
Mathematica DSolve solution	356

Internal problem ID [8708]

 \mathbf{Book} : First order enumerated odes

Section: section 1
Problem number: 48

Date solved: Tuesday, December 17, 2024 at 12:58:12 PM

CAS classification : [_quadrature]

Solve

$$xy'^n = 0$$

Solved as first order quadrature ode

Time used: 0.026 (sec)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int 0 dx + c_1$$
$$y = c_1$$

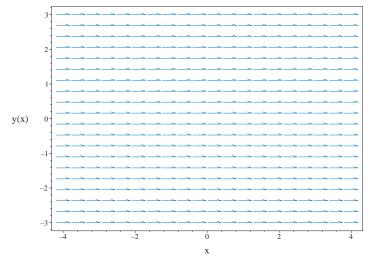


Figure 2.75: Slope field plot $xy'^n = 0$

$$y = c_1$$

Solved as first order homogeneous class D2 ode

Time used: 0.155 (sec)

Applying change of variables y = u(x) x, then the ode becomes

$$x(u'(x) x + u(x))^n = 0$$

Which is now solved The ode $u'(x) = -\frac{u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = -\frac{1}{x}$$
$$g(u) = u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$
$$\int \frac{1}{u} du = \int -\frac{1}{x} dx$$
$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln(u(x)) = \ln\left(\frac{1}{x}\right) + c_1$$
$$u(x) = 0$$

Solving for u(x) gives

$$u(x) = 0$$
$$u(x) = \frac{e^{c_1}}{x}$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting $u(x) = \frac{e^{c_1}}{x}$ back to y gives

$$y = e^{c_1}$$

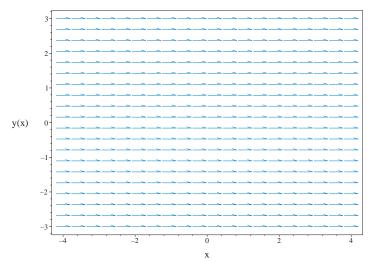


Figure 2.76: Slope field plot $xy'^n = 0$

$$y = 0$$

$$y = e^{c_1}$$

Maple step by step solution

Let's solve

$$x\big(\tfrac{d}{dx}y(x)\big)^n = 0$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = 0$$

ullet Integrate both sides with respect to x

$$\int \left(\frac{d}{dx}y(x)\right)dx = \int 0dx + C1$$

• Evaluate integral

$$y(x) = C1$$

• Solve for y(x)

$$y(x) = C1$$

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`</pre>
```

Maple dsolve solution

Solving time: 0.005 (sec)

Leaf size: 5

```
dsolve(x*diff(y(x),x)^n = 0,
    y(x),singsol=all)
```

$$y = c_1$$

Mathematica DSolve solution

Solving time: 0.003 (sec)

Leaf size: 15

```
DSolve[{x*(D[y[x],x])^n==0,{}},
    y[x],x,IncludeSingularSolutions->True]
```

$$y(x) \to 0^{\frac{1}{n}}x + c_1$$

2.1.49 problem 49

Maple step by step solution	358
Maple trace	358
Maple dsolve solution	359
Mathematica DSolve solution	359

Internal problem ID [8709]

Book: First order enumerated odes

Section: section 1
Problem number: 49

Date solved: Tuesday, December 17, 2024 at 12:58:13 PM

CAS classification : [_quadrature]

Solve

$$y'^2 = x$$

Solving for the derivative gives these ODE's to solve

$$y' = \sqrt{x} \tag{1}$$

$$y' = -\sqrt{x} \tag{2}$$

Now each of the above is solved separately.

Solving Eq. (1)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int \sqrt{x} \, dx$$
$$y = \frac{2x^{3/2}}{3} + c_1$$

Solving Eq. (2)

Since the ode has the form y' = f(x), then we only need to integrate f(x).

$$\int dy = \int -\sqrt{x} \, dx$$
$$y = -\frac{2x^{3/2}}{3} + c_2$$

Maple step by step solution

Let's solve $\left(\frac{d}{dx}y(x)\right)^2 = x$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\left[\frac{d}{dx}y(x) = \sqrt{x}, \frac{d}{dx}y(x) = -\sqrt{x}\right]$
- Solve the equation $\frac{d}{dx}y(x) = \sqrt{x}$
 - \circ Integrate both sides with respect to x $\int \left(\frac{d}{dx}y(x)\right)dx = \int \sqrt{x}dx + C1$
 - o Evaluate integral

$$y(x) = \frac{2x^{3/2}}{3} + _C1$$

- \circ Solve for y(x) $y(x) = \frac{2x^{3/2}}{3} + C1$
- Solve the equation $\frac{d}{dx}y(x) = -\sqrt{x}$
 - \circ Integrate both sides with respect to x $\int \left(\frac{d}{dx}y(x)\right)dx = \int -\sqrt{x}dx + C1$
 - o Evaluate integral

$$y(x) = -\frac{2x^{3/2}}{3} + C1$$

 \circ Solve for y(x)

$$y(x) = -\frac{2x^{3/2}}{3} + _C1$$

Set of solutions

$$\left\{ y(x) = -\frac{2x^{3/2}}{3} + C1, y(x) = \frac{2x^{3/2}}{3} + C1 \right\}$$

Maple trace

`Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE trying 1st order WeierstrassPPrime solution for high degree ODE

trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable by differentiation

trying differential order: 1; missing variables

<- differential order: 1; missing y(x) successful`</pre>

Maple dsolve solution

Solving time: 0.040 (sec)

Leaf size: 21

$$y = \frac{2x^{3/2}}{3} + c_1$$
$$y = -\frac{2x^{3/2}}{3} + c_1$$

Mathematica DSolve solution

Solving time: 0.004 (sec)

Leaf size: 33

DSolve[{(D[y[x],x])^2==x,{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) o -rac{2x^{3/2}}{3} + c_1 \ y(x) o rac{2x^{3/2}}{3} + c_1$$

2.1.50 problem 50

Solved as first order ode of type dAlembert	360
Maple step by step solution	362
Maple trace	362
Maple dsolve solution	363
Mathematica DSolve solution	363

Internal problem ID [8710]

Book: First order enumerated odes

Section: section 1

Problem number: 50

Date solved: Tuesday, December 17, 2024 at 12:58:14 PM CAS classification: [[_homogeneous, 'class C'], _dAlembert]

Solve

$${y'}^2 = x + y$$

Solved as first order ode of type dAlembert

Time used: 0.226 (sec)

Let p = y' the ode becomes

$$p^2 = x + y$$

Solving for y from the above results in

$$y = p^2 - x \tag{1}$$

This has the form

$$y = xf(p) + g(p) \tag{*}$$

Where f, g are functions of p = y'(x). The above ode is dAlembert ode which is now solved.

Taking derivative of (*) w.r.t. x gives

$$p = f + (xf' + g')\frac{dp}{dx}$$

$$p - f = (xf' + g')\frac{dp}{dx}$$
(2)

Comparing the form y = xf + g to (1A) shows that

$$f = -1$$
$$g = p^2$$

Hence (2) becomes

$$p + 1 = 2pp'(x) \tag{2A}$$

The singular solution is found by setting $\frac{dp}{dx} = 0$ in the above which gives

$$p + 1 = 0$$

Solving the above for p results in

$$p_1 = -1$$

Substituting these in (1A) and keeping singular solution that verifies the ode gives

$$y = 1 - x$$

The general solution is found when $\frac{dp}{dx} \neq 0$. From eq. (2A). This results in

$$p'(x) = \frac{p(x) + 1}{2p(x)} \tag{3}$$

This ODE is now solved for p(x). No inversion is needed. Integrating gives

$$\int \frac{2p}{p+1} dp = dx$$
$$2p - 2\ln(p+1) = x + c_1$$

Singular solutions are found by solving

$$\frac{p+1}{2p} = 0$$

for p(x). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$p(x) = -1$$

Solving for p(x) gives

$$p(x) = -1$$

$$p(x) = -\text{LambertW}\left(-e^{-1-\frac{x}{2}-\frac{c_1}{2}}\right) - 1$$

Substituing the above solution for p in (2A) gives

$$y = 1 - x$$
$$y = \left(-\text{LambertW}\left(-e^{-1 - \frac{x}{2} - \frac{c_1}{2}}\right) - 1\right)^2 - x$$

Summary of solutions found

$$y = 1 - x$$

$$y = \left(-\text{LambertW}\left(-e^{-1-\frac{x}{2}-\frac{c_1}{2}}\right) - 1\right)^2 - x$$

Maple step by step solution

Let's solve $\left(\frac{d}{dx}y(x)\right)^2 = x + y(x)$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\left[\frac{d}{dx}y(x) = \sqrt{x+y\left(x\right)}, \frac{d}{dx}y(x) = -\sqrt{x+y\left(x\right)}\right]$
- Solve the equation $\frac{d}{dx}y(x) = \sqrt{x + y(x)}$
- Solve the equation $\frac{d}{dx}y(x) = -\sqrt{x + y(x)}$
- Set of solutions { workingODE, workingODE}

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`</pre>
```

Maple dsolve solution

Solving time: 0.048 (sec)

Leaf size : 33

dsolve(diff(y(x),x)^2 = x+y(x),
 y(x),singsol=all)

$$y = \text{LambertW} \left(-c_1 e^{-\frac{x}{2} - 1} \right)^2 + 2 \text{LambertW} \left(-c_1 e^{-\frac{x}{2} - 1} \right) - x + 1$$

Mathematica DSolve solution

Solving time: 14.92 (sec)

Leaf size: 100

DSolve[{(D[y[x],x])^2==x+y[x],{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \to W\left(-e^{-\frac{x}{2}-1-\frac{c_1}{2}}\right)^2 + 2W\left(-e^{-\frac{x}{2}-1-\frac{c_1}{2}}\right) - x + 1$$

$$y(x) \to W\left(e^{\frac{1}{2}(-x-2+c_1)}\right)^2 + 2W\left(e^{\frac{1}{2}(-x-2+c_1)}\right) - x + 1$$

$$y(x) \to 1 - x$$

2.1.51problem 51

Solved as first order homogeneous class A ode	364
Solved as first order ode of type nonlinear p but separable	369
Solved as first order ode of type dAlembert	370
Maple step by step solution	373
Maple trace	373
Maple dsolve solution	374
Mathematica DSolve solution	374

Internal problem ID [8711]

Book: First order enumerated odes

Section: section 1

Problem number: 51

Date solved: Tuesday, December 17, 2024 at 12:58:14 PM

CAS classification: [[_homogeneous, 'class A'], _rational, _dAlembert]

Solve

$$y'^2 = \frac{y}{x}$$

Solved as first order homogeneous class A ode

Time used: 0.832 (sec)

Solving for y' gives

$$y' = \frac{\sqrt{xy}}{x} \tag{1}$$

$$y' = \frac{\sqrt{xy}}{x}$$

$$y' = -\frac{\sqrt{xy}}{x}$$
(2)

In canonical form, the ODE is

$$y' = F(x, y)$$

$$= \frac{\sqrt{xy}}{x}$$
(1)

An ode of the form $y' = \frac{M(x,y)}{N(x,y)}$ is called homogeneous if the functions M(x,y) and N(x,y) are both homogeneous functions and of the same order. Recall that a function f(x,y) is homogeneous of order n if

$$f(t^n x, t^n y) = t^n f(x, y)$$

In this case, it can be seen that both $M = \sqrt{xy}$ and N = x are both homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u = \frac{y}{x}$, or y = ux. Hence

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x}x + u$$

Applying the transformation y = ux to the above ODE in (1) gives

$$\frac{\mathrm{d}u}{\mathrm{d}x}x + u = \sqrt{u}$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\sqrt{u(x)} - u(x)}{x}$$

Or

$$u'(x) - \frac{\sqrt{u(x)} - u(x)}{x} = 0$$

Or

$$u'(x) x - \sqrt{u(x)} + u(x) = 0$$

Which is now solved as separable in u(x).

The ode $u'(x) = \frac{\sqrt{u(x)} - u(x)}{x}$ is separable as it can be written as

$$u'(x) = \frac{\sqrt{u(x)} - u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = \frac{1}{x}$$
$$g(u) = \sqrt{u} - u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$

$$\int \frac{1}{\sqrt{u} - u} du = \int \frac{1}{x} dx$$

$$-2\ln\left(\sqrt{u(x)} - 1\right) = \ln(x) + c_1$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or $\sqrt{u} - u = 0$ for u(x) gives

$$u(x) = 0$$

$$u(x) = 1$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$-2\ln\left(\sqrt{u\left(x\right)}-1\right) = \ln\left(x\right) + c_{1}$$
$$u(x) = 0$$
$$u(x) = 1$$

Converting $-2 \ln \left(\sqrt{u(x)} - 1 \right) = \ln (x) + c_1$ back to y gives

$$-2\ln\left(\sqrt{\frac{y}{x}} - 1\right) = \ln\left(x\right) + c_1$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Converting u(x) = 1 back to y gives

$$y = x$$

In canonical form, the ODE is

$$y' = F(x, y)$$

$$= -\frac{\sqrt{xy}}{x} \tag{1}$$

An ode of the form $y' = \frac{M(x,y)}{N(x,y)}$ is called homogeneous if the functions M(x,y) and N(x,y) are both homogeneous functions and of the same order. Recall that a function f(x,y) is homogeneous of order n if

$$f(t^n x, t^n y) = t^n f(x, y)$$

In this case, it can be seen that both $M=-\sqrt{xy}$ and N=x are both homogeneous and of the same order n=1. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or y=ux. Hence

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x}x + u$$

Applying the transformation y = ux to the above ODE in (1) gives

$$\frac{\mathrm{d}u}{\mathrm{d}x}x + u = -\sqrt{u}$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{-\sqrt{u(x)} - u(x)}{x}$$

Or

$$u'(x) - \frac{-\sqrt{u(x)} - u(x)}{x} = 0$$

Or

$$u'(x) x + \sqrt{u(x)} + u(x) = 0$$

Which is now solved as separable in u(x).

The ode $u'(x) = -\frac{\sqrt{u(x)} + u(x)}{x}$ is separable as it can be written as

$$u'(x) = -\frac{\sqrt{u(x)} + u(x)}{x}$$
$$= f(x)g(u)$$

Where

$$f(x) = \frac{1}{x}$$
$$g(u) = -\sqrt{u} - u$$

Integrating gives

$$\int \frac{1}{g(u)} du = \int f(x) dx$$

$$\int \frac{1}{-\sqrt{u} - u} du = \int \frac{1}{x} dx$$

$$\ln \left(\frac{1}{\left(\sqrt{u(x)} + 1\right)^2}\right) = \ln(x) + c_2$$

We now need to find the singular solutions, these are found by finding for what values g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or $-\sqrt{u} - u = 0$ for u(x) gives

$$u(x) = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

$$\ln\left(\frac{1}{\left(\sqrt{u\left(x\right)}+1\right)^{2}}\right) = \ln\left(x\right) + c_{2}$$

$$u(x) = 0$$

Converting
$$\ln\left(\frac{1}{\left(\sqrt{u(x)}+1\right)^2}\right) = \ln\left(x\right) + c_2$$
 back to y gives
$$\ln\left(\frac{1}{\left(\sqrt{\frac{y}{x}}+1\right)^2}\right) = \ln\left(x\right) + c_2$$

Converting u(x) = 0 back to y gives

$$y = 0$$

Solving for y gives

$$y = 0$$

$$y = x$$

$$y = \left(\frac{2x e^{c_1} (\sqrt{x e^{c_1}} - 1)}{\sqrt{x e^{c_1}}} - x e^{c_1} + 1\right) e^{-c_1}$$

$$y = \left(\frac{2x e^{c_1} (\sqrt{x e^{c_1}} + 1)}{\sqrt{x e^{c_1}}} - x e^{c_1} + 1\right) e^{-c_1}$$

$$y = -\left(-\frac{2x e^{c_2} (\sqrt{x e^{c_2}} - 1)}{\sqrt{x e^{c_2}}} + x e^{c_2} - 1\right) e^{-c_2}$$

$$y = -\left(-\frac{2x e^{c_2} (\sqrt{x e^{c_2}} + 1)}{\sqrt{x e^{c_2}}} + x e^{c_2} - 1\right) e^{-c_2}$$

Summary of solutions found

$$y = 0$$

$$y = x$$

$$y = \left(\frac{2x e^{c_1} \left(\sqrt{x e^{c_1}} - 1\right)}{\sqrt{x e^{c_1}}} - x e^{c_1} + 1\right) e^{-c_1}$$

$$y = \left(\frac{2x e^{c_1} \left(\sqrt{x e^{c_1}} + 1\right)}{\sqrt{x e^{c_1}}} - x e^{c_1} + 1\right) e^{-c_1}$$

$$y = -\left(-\frac{2x e^{c_2} \left(\sqrt{x e^{c_2}} - 1\right)}{\sqrt{x e^{c_2}}} + x e^{c_2} - 1\right) e^{-c_2}$$

$$y = -\left(-\frac{2x e^{c_2} \left(\sqrt{x e^{c_2}} + 1\right)}{\sqrt{x e^{c_2}}} + x e^{c_2} - 1\right) e^{-c_2}$$

Solved as first order ode of type nonlinear p but separable

Time used: 0.242 (sec)

The ode has the form

$$(y')^{\frac{n}{m}} = f(x)g(y) \tag{1}$$

Where $n=2, m=1, f=\frac{1}{x}, g=y$. Hence the ode is

$$(y')^2 = \frac{y}{x}$$

Solving for y' from (1) gives

$$y' = \sqrt{fg}$$
$$y' = -\sqrt{fg}$$

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

$$\frac{1}{x} > 0$$
$$y > 0$$

Under the above assumption the differential equations become separable and can be written as

$$y' = \sqrt{f} \sqrt{g}$$
$$y' = -\sqrt{f} \sqrt{g}$$

Therefore

$$\frac{1}{\sqrt{g}} dy = \left(\sqrt{f}\right) dx$$
$$-\frac{1}{\sqrt{g}} dy = \left(\sqrt{f}\right) dx$$

Replacing f(x), g(y) by their values gives

$$\frac{1}{\sqrt{y}} dy = \left(\sqrt{\frac{1}{x}}\right) dx$$
$$-\frac{1}{\sqrt{y}} dy = \left(\sqrt{\frac{1}{x}}\right) dx$$

Integrating now gives the following solutions

$$\int \frac{1}{\sqrt{y}} dy = \int \sqrt{\frac{1}{x}} dx + c_1$$
$$2\sqrt{y} = 2x\sqrt{\frac{1}{x}}$$
$$\int -\frac{1}{\sqrt{y}} dy = \int \sqrt{\frac{1}{x}} dx + c_1$$
$$-2\sqrt{y} = 2x\sqrt{\frac{1}{x}}$$

Therefore

$$y = x\sqrt{\frac{1}{x}}c_1 + \frac{c_1^2}{4} + x$$
$$y = x\sqrt{\frac{1}{x}}c_1 + \frac{c_1^2}{4} + x$$

Summary of solutions found

$$y = x\sqrt{\frac{1}{x}}c_1 + \frac{c_1^2}{4} + x$$

Solved as first order ode of type dAlembert

Time used: 0.071 (sec)

Let p = y' the ode becomes

$$p^2 = \frac{y}{x}$$

Solving for y from the above results in

$$y = p^2 x \tag{1}$$

This has the form

$$y = xf(p) + g(p) \tag{*}$$

Where f, g are functions of p = y'(x). The above ode is dAlembert ode which is now solved.

Taking derivative of (*) w.r.t. x gives

$$p = f + (xf' + g')\frac{dp}{dx}$$

$$p - f = (xf' + g')\frac{dp}{dx}$$
(2)

Comparing the form y = xf + g to (1A) shows that

$$f = p^2$$
$$q = 0$$

Hence (2) becomes

$$-p^2 + p = 2xpp'(x) \tag{2A}$$

The singular solution is found by setting $\frac{dp}{dx} = 0$ in the above which gives

$$-p^2 + p = 0$$

Solving the above for p results in

$$p_1 = 0$$
$$p_2 = 1$$

Substituting these in (1A) and keeping singular solution that verifies the ode gives

$$y = 0$$
$$y = x$$

The general solution is found when $\frac{dp}{dx} \neq 0$. From eq. (2A). This results in

$$p'(x) = \frac{-p(x)^2 + p(x)}{2xp(x)}$$
(3)

This ODE is now solved for p(x). No inversion is needed. In canonical form a linear first order is

$$p'(x) + q(x)p(x) = p(x)$$

Comparing the above to the given ode shows that

$$q(x) = \frac{1}{2x}$$
$$p(x) = \frac{1}{2x}$$

The integrating factor μ is

$$\mu = e^{\int q \, dx}$$
$$= e^{\int \frac{1}{2x} dx}$$
$$= \sqrt{x}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu p) = \mu p$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu p) = (\mu) \left(\frac{1}{2x}\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(p\sqrt{x}) = (\sqrt{x}) \left(\frac{1}{2x}\right)$$

$$\mathrm{d}(p\sqrt{x}) = \left(\frac{1}{2\sqrt{x}}\right) \mathrm{d}x$$

Integrating gives

$$p\sqrt{x} = \int \frac{1}{2\sqrt{x}} dx$$
$$= \sqrt{x} + c_1$$

Dividing throughout by the integrating factor \sqrt{x} gives the final solution

$$p(x) = \frac{\sqrt{x} + c_1}{\sqrt{x}}$$

Substituing the above solution for p in (2A) gives

$$y = \left(\sqrt{x} + c_1\right)^2$$

Summary of solutions found

$$y = 0$$
$$y = x$$
$$y = (\sqrt{x} + c_1)^2$$

Maple step by step solution

Let's solve

$$\left(\frac{d}{dx}y(x)\right)^2 = \frac{y(x)}{x}$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\left[rac{d}{dx}y(x)=rac{\sqrt{xy(x)}}{x},rac{d}{dx}y(x)=-rac{\sqrt{xy(x)}}{x}
ight]$$

- Solve the equation $\frac{d}{dx}y(x) = \frac{\sqrt{xy(x)}}{x}$
- Solve the equation $\frac{d}{dx}y(x) = -\frac{\sqrt{xy(x)}}{x}$
- Set of solutions { workingODE, workingODE}

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful`</pre>
```

Maple dsolve solution

Solving time: 0.048 (sec)

Leaf size: 39

dsolve(diff(y(x),x) 2 = y(x)/x, y(x),singsol=all)

$$y = 0$$

$$y = \frac{\left(x + \sqrt{c_1 x}\right)^2}{x}$$

$$y = \frac{\left(-x + \sqrt{c_1 x}\right)^2}{x}$$

Mathematica DSolve solution

Solving time: 0.047 (sec)

Leaf size: 46

DSolve[{(D[y[x],x])^2==y[x]/x,{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \to \frac{1}{4} \left(-2\sqrt{x} + c_1 \right)^2$$
$$y(x) \to \frac{1}{4} \left(2\sqrt{x} + c_1 \right)^2$$
$$y(x) \to 0$$

2.1.52 problem 52

Maple step by step solution	377
Maple trace	378
Maple dsolve solution	379
Mathematica DSolve solution	379

Internal problem ID [8712]

Book: First order enumerated odes

Section : section 1 Problem number : 52

Date solved: Tuesday, December 17, 2024 at 12:58:16 PM

CAS classification : [_separable]

Solve

$${y'}^2 = \frac{y^2}{x}$$

Solving for the derivative gives these ODE's to solve

$$y' = \frac{y}{\sqrt{x}} \tag{1}$$

$$y' = -\frac{y}{\sqrt{x}} \tag{2}$$

Now each of the above is solved separately.

Solving Eq. (1)

In canonical form a linear first order is

$$y' + q(x)y = p(x)$$

Comparing the above to the given ode shows that

$$q(x) = -\frac{1}{\sqrt{x}}$$

$$p(x) = 0$$

The integrating factor μ is

$$\mu = e^{\int q \, dx}$$

$$= e^{\int -\frac{1}{\sqrt{x}} dx}$$

$$= e^{-2\sqrt{x}}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}x}\mu y = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(y\,\mathrm{e}^{-2\sqrt{x}}\right) = 0$$

Integrating gives

$$y e^{-2\sqrt{x}} = \int 0 dx + c_2$$
$$= c_2$$

Dividing throughout by the integrating factor $e^{-2\sqrt{x}}$ gives the final solution

$$y = e^{2\sqrt{x}}c_2$$

We now need to find the singular solutions, these are found by finding for what values $(\frac{y}{\sqrt{x}})$ is zero. These give

$$y = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

The solution y = 0 satisfies the ode and initial conditions.

Solving Eq. (2)

In canonical form a linear first order is

$$y' + q(x)y = p(x)$$

Comparing the above to the given ode shows that

$$q(x) = \frac{1}{\sqrt{x}}$$
$$p(x) = 0$$

The integrating factor μ is

$$\mu = e^{\int q \, dx}$$

$$= e^{\int \frac{1}{\sqrt{x}} dx}$$

$$= e^{2\sqrt{x}}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}x}\mu y = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(y\,\mathrm{e}^{2\sqrt{x}}\right) = 0$$

Integrating gives

$$y e^{2\sqrt{x}} = \int 0 dx + c_3$$
$$= c_3$$

Dividing throughout by the integrating factor $e^{2\sqrt{x}}$ gives the final solution

$$y = e^{-2\sqrt{x}}c_3$$

We now need to find the singular solutions, these are found by finding for what values $\left(-\frac{y}{\sqrt{x}}\right)$ is zero. These give

$$y = 0$$

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

The solution y = 0 satisfies the ode and initial conditions.

Maple step by step solution

Let's solve

$$\left(\frac{d}{dx}y(x)\right)^2 = \frac{y(x)^2}{x}$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\left[\frac{d}{dx}y(x) = \frac{y(x)}{\sqrt{x}}, \frac{d}{dx}y(x) = -\frac{y(x)}{\sqrt{x}}\right]$$

- \square Solve the equation $\frac{d}{dx}y(x) = \frac{y(x)}{\sqrt{x}}$
 - Separate variables

$$\frac{\frac{d}{dx}y(x)}{y(x)} = \frac{1}{\sqrt{x}}$$

 \circ Integrate both sides with respect to x

$$\int \frac{\frac{d}{dx}y(x)}{y(x)}dx = \int \frac{1}{\sqrt{x}}dx + \underline{C1}$$

• Evaluate integral

$$\ln\left(y(x)\right) = 2\sqrt{x} + \underline{C1}$$

 \circ Solve for y(x)

$$y(x) = e^{2\sqrt{x} + C1}$$

- \square Solve the equation $\frac{d}{dx}y(x) = -\frac{y(x)}{\sqrt{x}}$
 - Separate variables

$$\frac{\frac{d}{dx}y(x)}{y(x)} = -\frac{1}{\sqrt{x}}$$

 \circ Integrate both sides with respect to x

$$\int \frac{\frac{d}{dx}y(x)}{y(x)}dx = \int -\frac{1}{\sqrt{x}}dx + \underline{C1}$$

o Evaluate integral

$$\ln\left(y(x)\right) = -2\sqrt{x} + _C1$$

 \circ Solve for y(x)

$$y(x) = e^{-2\sqrt{x} + C1}$$

• Set of solutions

$$\{y(x) = e^{-2\sqrt{x} + CI}, y(x) = e^{2\sqrt{x} + CI}\}$$

Maple trace

`Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE

trying 1st order WeierstrassPPrime solution for high degree ODE

trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying simple symmetries for implicit equations

<- symmetries for implicit equations successful`</pre>

Maple dsolve solution

Solving time: 0.061 (sec)

Leaf size: 27

dsolve(diff(y(x),x) 2 = y(x) 2 /x, y(x),singsol=all)

$$y = 0$$

$$y = c_1 e^{-2\sqrt{x}}$$

$$y = c_1 e^{2\sqrt{x}}$$

Mathematica DSolve solution

Solving time: 0.067 (sec)

Leaf size: 38

DSolve[{(D[y[x],x])^2==y[x]^2/x,{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \to c_1 e^{-2\sqrt{x}}$$
$$y(x) \to c_1 e^{2\sqrt{x}}$$
$$y(x) \to 0$$

2.1.53 problem 53

Solved as first order ode of type nonlinear p but separable 3	380
Maple step by step solution	382
Maple trace	382
Maple dsolve solution	382
Mathematica DSolve solution	383

Internal problem ID [8713]

Book: First order enumerated odes

 ${f Section}:$ section 1

Problem number: 53

Date solved: Tuesday, December 17, 2024 at 12:58:18 PM

CAS classification: [[_homogeneous, 'class G']]

Solve

$${y'}^2 = \frac{y^3}{x}$$

Solved as first order ode of type nonlinear p but separable

Time used: 0.425 (sec)

The ode has the form

$$(y')^{\frac{n}{m}} = f(x)g(y) \tag{1}$$

Where $n=2, m=1, f=\frac{1}{x}, g=y^3$. Hence the ode is

$$(y')^2 = \frac{y^3}{r}$$

Solving for y' from (1) gives

$$y' = \sqrt{fg}$$
$$y' = -\sqrt{fg}$$

To be able to solve as separable ode, we have to now assume that f>0, g>0.

$$\frac{1}{x} > 0$$

$$y^3 > 0$$

Under the above assumption the differential equations become separable and can be written as

$$y' = \sqrt{f} \sqrt{g}$$
$$y' = -\sqrt{f} \sqrt{g}$$

Therefore

$$\frac{1}{\sqrt{g}} dy = \left(\sqrt{f}\right) dx$$
$$-\frac{1}{\sqrt{g}} dy = \left(\sqrt{f}\right) dx$$

Replacing f(x), g(y) by their values gives

$$\frac{1}{\sqrt{y^3}} dy = \left(\sqrt{\frac{1}{x}}\right) dx$$
$$-\frac{1}{\sqrt{y^3}} dy = \left(\sqrt{\frac{1}{x}}\right) dx$$

Integrating now gives the following solutions

$$\int \frac{1}{\sqrt{y^3}} dy = \int \sqrt{\frac{1}{x}} dx + c_1$$
$$-\frac{2\sqrt{y^3}}{y^2} = 2x\sqrt{\frac{1}{x}}$$
$$\int -\frac{1}{\sqrt{y^3}} dy = \int \sqrt{\frac{1}{x}} dx + c_1$$
$$\frac{2\sqrt{y^3}}{y^2} = 2x\sqrt{\frac{1}{x}}$$

Therefore

$$y = \frac{4}{4x\sqrt{\frac{1}{x}}c_1 + c_1^2 + 4x}$$
$$y = \frac{4}{4x\sqrt{\frac{1}{x}}c_1 + c_1^2 + 4x}$$

Summary of solutions found

$$y = \frac{4}{4x\sqrt{\frac{1}{x}}\,c_1 + c_1^2 + 4x}$$

Maple step by step solution

Let's solve

$$\left(\frac{d}{dx}y(x)\right)^2 = \frac{y(x)^3}{x}$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\left[rac{d}{dx}y(x) = rac{\sqrt{xy(x)}\,y(x)}{x}, rac{d}{dx}y(x) = -rac{\sqrt{xy(x)}\,y(x)}{x}
ight]$$

- Solve the equation $\frac{d}{dx}y(x) = \frac{\sqrt{xy(x)}y(x)}{x}$
- Solve the equation $\frac{d}{dx}y(x) = -\frac{\sqrt{xy(x)}y(x)}{x}$
- Set of solutions { workingODE, workingODE}

Maple trace

`Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt trying 1st order WeierstrassP solution for high degree ODE <- 1st_order WeierstrassP successful`

Maple dsolve solution

Solving time: 0.045 (sec)

Leaf size: 27

$$y = 0$$

$$y = \frac{\text{WeierstrassP}(1, 0, 0) 2^{2/3}}{(\sqrt{x} 2^{1/3} + c_1)^2}$$

Mathematica DSolve solution

Solving time: 0.071 (sec)

Leaf size : 42

DSolve[{(D[y[x],x])^2==y[x]^3/x,{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \to \frac{4}{\left(-2\sqrt{x} + c_1\right)^2}$$
$$y(x) \to \frac{4}{\left(2\sqrt{x} + c_1\right)^2}$$
$$y(x) \to 0$$

2.1.54 problem 54

Solved as first order ode of type nonlinear p but separable	384
Maple step by step solution	386
Maple trace	387
Maple dsolve solution	388
Mathematica DSolve solution	389

Internal problem ID [8714]

Book: First order enumerated odes

Section: section 1

Problem number: 54

Date solved: Tuesday, December 17, 2024 at 12:58:19 PM CAS classification: [[_homogeneous, 'class G'], _rational]

Solve

$${y'}^3 = \frac{y^2}{x}$$

Solved as first order ode of type nonlinear p but separable

Time used: 0.947 (sec)

The ode has the form

$$(y')^{\frac{n}{m}} = f(x)g(y) \tag{1}$$

Where $n = 3, m = 1, f = \frac{1}{x}, g = y^2$. Hence the ode is

$$(y')^3 = \frac{y^2}{x}$$

Solving for y' from (1) gives

$$y' = (fg)^{1/3}$$

$$y' = -\frac{(fg)^{1/3}}{2} + \frac{i\sqrt{3}(fg)^{1/3}}{2}$$

$$y' = -\frac{(fg)^{1/3}}{2} - \frac{i\sqrt{3}(fg)^{1/3}}{2}$$

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

$$\frac{1}{x} > 0$$

Under the above assumption the differential equations become separable and can be written as

$$y' = f^{1/3}g^{1/3}$$

$$y' = \frac{f^{1/3}g^{1/3}(-1+i\sqrt{3})}{2}$$

$$y' = -\frac{f^{1/3}g^{1/3}(1+i\sqrt{3})}{2}$$

Therefore

$$\begin{split} \frac{1}{g^{1/3}}\,dy &= \left(f^{1/3}\right)\,dx \\ \frac{2}{g^{1/3}\left(-1+i\sqrt{3}\right)}\,dy &= \left(f^{1/3}\right)\,dx \\ -\frac{2}{g^{1/3}\left(1+i\sqrt{3}\right)}\,dy &= \left(f^{1/3}\right)\,dx \end{split}$$

Replacing f(x), g(y) by their values gives

$$\frac{1}{(y^2)^{1/3}} dy = \left(\left(\frac{1}{x}\right)^{1/3}\right) dx$$

$$\frac{2}{(y^2)^{1/3} \left(-1 + i\sqrt{3}\right)} dy = \left(\left(\frac{1}{x}\right)^{1/3}\right) dx$$

$$-\frac{2}{(y^2)^{1/3} \left(1 + i\sqrt{3}\right)} dy = \left(\left(\frac{1}{x}\right)^{1/3}\right) dx$$

Integrating now gives the following solutions

$$\int \frac{1}{(y^2)^{1/3}} dy = \int \left(\frac{1}{x}\right)^{1/3} dx + c_1$$

$$\frac{3(y^2)^{2/3}}{y} = \frac{3x\left(\frac{1}{x}\right)^{1/3}}{2}$$

$$\int \frac{2}{(y^2)^{1/3} \left(-1 + i\sqrt{3}\right)} dy = \int \left(\frac{1}{x}\right)^{1/3} dx + c_1$$

$$-\frac{3(y^2)^{2/3} \left(1 + i\sqrt{3}\right)}{2y} = \frac{3x\left(\frac{1}{x}\right)^{1/3}}{2}$$

$$\int -\frac{2}{(y^2)^{1/3} \left(1 + i\sqrt{3}\right)} dy = \int \left(\frac{1}{x}\right)^{1/3} dx + c_1$$

$$\frac{3(y^2)^{2/3} \left(-1 + i\sqrt{3}\right)}{2y} = \frac{3x\left(\frac{1}{x}\right)^{1/3}}{2}$$

Therefore

$$\frac{3(y^2)^{2/3}}{y} = \frac{3x(\frac{1}{x})^{1/3}}{2} + c_1$$

$$y = \frac{x^2}{8} + \frac{\left(\frac{1}{x}\right)^{2/3}c_1x^2}{4} + \frac{\left(\frac{1}{x}\right)^{1/3}c_1^2x}{6} + \frac{c_1^3}{27}$$

$$y = \frac{x^2}{8} + \frac{\left(\frac{1}{x}\right)^{2/3}c_1x^2}{4} + \frac{\left(\frac{1}{x}\right)^{1/3}c_1^2x}{6} + \frac{c_1^3}{27}$$

Summary of solutions found

$$\frac{3(y^2)^{2/3}}{y} = \frac{3x(\frac{1}{x})^{1/3}}{2} + c_1$$
$$y = \frac{x^2}{8} + \frac{(\frac{1}{x})^{2/3}c_1x^2}{4} + \frac{(\frac{1}{x})^{1/3}c_1^2x}{6} + \frac{c_1^3}{27}$$

Maple step by step solution

Let's solve

$$\left(\frac{d}{dx}y(x)\right)^3 = \frac{y(x)^2}{x}$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\left[\frac{\frac{d}{dx}y(x)}{x}, \frac{\left(x^2y(x)^2\right)^{1/3}}{x}, \frac{d}{dx}y(x) = -\frac{\left(x^2y(x)^2\right)^{1/3}}{2x} - \frac{I\sqrt{3}\left(x^2y(x)^2\right)^{1/3}}{2x}, \frac{d}{dx}y(x) = -\frac{\left(x^2y(x)^2\right)^{1/3}}{2x} + \frac{I\sqrt{3}\left(x^2y(x)^2\right)^{1/3}}{2x} +$$

- Solve the equation $\frac{d}{dx}y(x) = \frac{\left(x^2y(x)^2\right)^{1/3}}{x}$
- Solve the equation $\frac{d}{dx}y(x) = -\frac{\left(x^2y(x)^2\right)^{1/3}}{2x} \frac{I\sqrt{3}\left(x^2y(x)^2\right)^{1/3}}{2x}$
- Solve the equation $\frac{d}{dx}y(x) = -\frac{\left(x^2y(x)^2\right)^{1/3}}{2x} + \frac{I\sqrt{3}\left(x^2y(x)^2\right)^{1/3}}{2x}$
- Set of solutions { workingODE, workingODE}

Maple trace

```
`Methods for first order ODEs:
  *** Sublevel 2 ***
  Methods for first order ODEs:
  -> Solving 1st order ODE of high degree, 1st attempt
  trying 1st order WeierstrassP solution for high degree ODE
  trying 1st order WeierstrassPPrime solution for high degree ODE
  trying 1st order JacobiSN solution for high degree ODE
  trying 1st order ODE linearizable by differentiation
  trying differential order: 1; missing variables
  trying simple symmetries for implicit equations
  Successful isolation of dy/dx: 3 solutions were found. Trying to solve each result:
     *** Sublevel 3 ***
     Methods for first order ODEs:
     --- Trying classification methods ---
     trying homogeneous types:
     trying homogeneous G
     trying an integrating factor from the invariance group
     <- integrating factor successful
     <- homogeneous successful</pre>
  * Tackling next ODE.
     *** Sublevel 3 ***
     Methods for first order ODEs:
     --- Trying classification methods ---
     trying homogeneous types:
     trying homogeneous G
     trying an integrating factor from the invariance group
     <- integrating factor successful
     <- homogeneous successful</pre>
  * Tackling next ODE.
     *** Sublevel 3 ***
     Methods for first order ODEs:
     --- Trying classification methods ---
     trying homogeneous types:
     trying homogeneous G
     trying an integrating factor from the invariance group
```

- <- integrating factor successful
- <- homogeneous successful`

Maple dsolve solution

Solving time: 0.104 (sec)

Leaf size: 341

$$\frac{\text{dsolve}(\text{diff}(y(x),x)^3 = y(x)^2/x,}{y(x),\text{singsol=all})}$$

$$\begin{split} y &= 0 \\ y &= -\frac{3x^{4/3}c_1}{8} + \frac{3x^{2/3}c_1^2}{8} - \frac{c_1^3}{8} + \frac{x^2}{8} \\ y &= \frac{3\left(-i\sqrt{3}-1\right)c_1^2x^{2/3}}{16} + \frac{3c_1\left(1-i\sqrt{3}\right)x^{4/3}}{16} - \frac{c_1^3}{8} + \frac{x^2}{8} \\ y &= \frac{3c_1^2\left(i\sqrt{3}-1\right)x^{2/3}}{16} + \frac{3c_1\left(1+i\sqrt{3}\right)x^{4/3}}{16} - \frac{c_1^3}{8} + \frac{x^2}{8} \\ y &= \frac{3x^{4/3}c_1}{16} + \frac{3x^{2/3}c_1^2}{32} + \frac{c_1^3}{64} + \frac{x^2}{8} \\ y &= \frac{3\left(-i\sqrt{3}-1\right)c_1^2x^{2/3}}{64} + \frac{3c_1\left(i\sqrt{3}-1\right)x^{4/3}}{32} + \frac{c_1^3}{64} + \frac{x^2}{8} \\ y &= \frac{3c_1^2\left(i\sqrt{3}-1\right)x^{2/3}}{64} + \frac{3c_1\left(-i\sqrt{3}-1\right)x^{4/3}}{32} + \frac{c_1^3}{64} + \frac{x^2}{8} \\ y &= -\frac{3x^{4/3}c_1}{16} + \frac{3x^{2/3}c_1^2}{32} - \frac{c_1^3}{64} + \frac{x^2}{8} \\ y &= \frac{3\left(-i\sqrt{3}-1\right)c_1^2x^{2/3}}{64} + \frac{3c_1\left(1-i\sqrt{3}\right)x^{4/3}}{32} - \frac{c_1^3}{64} + \frac{x^2}{8} \\ y &= \frac{3c_1^2\left(i\sqrt{3}-1\right)x^{2/3}}{64} + \frac{3c_1\left(1-i\sqrt{3}\right)x^{4/3}}{32} - \frac{c_1^3}{64} + \frac{x^2}{8} \\ y &= \frac{3c_1^2\left(i\sqrt{3}-1\right)x^{2/3}}{64} + \frac{3c_1\left(1+i\sqrt{3}\right)x^{4/3}}{32} - \frac{c_1^3}{64} + \frac{x^2}{8} \\ \end{split}$$

Mathematica DSolve solution

Solving time: 0.084 (sec)

Leaf size: 152

DSolve[{(D[y[x],x])^3==y[x]^2/x,{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \to \frac{1}{216} \left(3x^{2/3} + 2c_1 \right)^3$$

$$y(x) \to \frac{1}{216} \left(18i \left(\sqrt{3} + i \right) c_1^2 x^{2/3} - 27i \left(\sqrt{3} - i \right) c_1 x^{4/3} + 27x^2 + 8c_1^3 \right)$$

$$y(x) \to \frac{1}{216} \left(-18i \left(\sqrt{3} - i \right) c_1^2 x^{2/3} + 27i \left(\sqrt{3} + i \right) c_1 x^{4/3} + 27x^2 + 8c_1^3 \right)$$

$$y(x) \to 0$$

2.1.55 problem 55

Solved as first order ode of type nonlinear p but separable	390
Maple step by step solution	393
Maple trace	394
Maple dsolve solution	395
Mathematica DSolve solution	395

Internal problem ID [8715]

Book: First order enumerated odes

Section: section 1

Problem number: 55

Date solved: Tuesday, December 17, 2024 at 12:58:21 PM

CAS classification: [[_homogeneous, 'class G']]

Solve

$${y'}^2 = \frac{1}{yx}$$

Solved as first order ode of type nonlinear p but separable

Time used: 0.305 (sec)

The ode has the form

$$(y')^{\frac{n}{m}} = f(x)g(y) \tag{1}$$

Where $n=2, m=1, f=\frac{1}{x}, g=\frac{1}{y}.$ Hence the ode is

$$(y')^2 = \frac{1}{yx}$$

Solving for y' from (1) gives

$$y' = \sqrt{fg}$$
$$y' = -\sqrt{fg}$$

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

$$\frac{1}{x} > 0$$

$$\frac{1}{y} > 0$$

Under the above assumption the differential equations become separable and can be written as

$$y' = \sqrt{f} \sqrt{g}$$
$$y' = -\sqrt{f} \sqrt{g}$$

Therefore

$$\frac{1}{\sqrt{g}} dy = \left(\sqrt{f}\right) dx$$
$$-\frac{1}{\sqrt{g}} dy = \left(\sqrt{f}\right) dx$$

Replacing f(x), g(y) by their values gives

$$\frac{1}{\sqrt{\frac{1}{y}}} dy = \left(\sqrt{\frac{1}{x}}\right) dx$$
$$-\frac{1}{\sqrt{\frac{1}{y}}} dy = \left(\sqrt{\frac{1}{x}}\right) dx$$

Integrating now gives the following solutions

$$\int \frac{1}{\sqrt{\frac{1}{y}}} dy = \int \sqrt{\frac{1}{x}} dx + c_1$$
$$\frac{2y^2 \sqrt{\frac{1}{y}}}{3} = 2x \sqrt{\frac{1}{x}}$$
$$\int -\frac{1}{\sqrt{\frac{1}{y}}} dy = \int \sqrt{\frac{1}{x}} dx + c_1$$
$$-\frac{2y^2 \sqrt{\frac{1}{y}}}{3} = 2x \sqrt{\frac{1}{x}}$$

Therefore

$$rac{2y^2\sqrt{rac{1}{y}}}{3} = 2x\sqrt{rac{1}{x}} + c_1 \ -rac{2y^2\sqrt{rac{1}{y}}}{3} = 2x\sqrt{rac{1}{x}} + c_1$$

Solving for y gives

$$y = \frac{1}{\left(-\frac{\left(-18\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}\right)^{1/3}}{6\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}} - \frac{i\sqrt{3}\left(-18\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}\right)^{1/3}}{6\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}}\right)^{2}}$$

$$y = \frac{1}{\left(-\frac{\left(-18\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}\right)^{1/3}}{6\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}} + \frac{i\sqrt{3}\left(-18\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}\right)^{1/3}}{12x\sqrt{\frac{1}{x}}+6c_{1}}\right)^{2}}\right)^{2}}$$

$$y = \frac{1}{\left(-\frac{18^{1/3}\left(\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}\right)^{1/3}}{6\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)} - \frac{i\sqrt{3}18^{1/3}\left(\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}\right)^{1/3}}{6\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)}\right)^{2}}\right)^{2}}$$

$$y = \frac{1}{\left(-\frac{18^{1/3}\left(\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}\right)^{1/3}}{6\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)} + \frac{i\sqrt{3}18^{1/3}\left(\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}\right)^{1/3}}{12x\sqrt{\frac{1}{x}}+6c_{1}}\right)^{2}}\right)^{2}}$$

$$y = \frac{9\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}}{\left(-18\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}\right)^{2/3}}$$

$$y = \frac{\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}18^{1/3}}{2\left(\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}\right)^{2/3}}$$

Summary of solutions found

$$y = \frac{1}{\left(-\frac{\left(-18\left(2x\sqrt{\frac{1}{x}}+c_1\right)^2\right)^{1/3}}{6\left(2x\sqrt{\frac{1}{x}}+c_1\right)} - \frac{i\sqrt{3}\left(-18\left(2x\sqrt{\frac{1}{x}}+c_1\right)^2\right)^{1/3}}{6\left(2x\sqrt{\frac{1}{x}}+c_1\right)}\right)^2}$$

$$y = \frac{1}{\left(-\frac{\left(-18\left(2x\sqrt{\frac{1}{x}}+c_1\right)^2\right)^{1/3}}{6\left(2x\sqrt{\frac{1}{x}}+c_1\right)} + \frac{i\sqrt{3}\left(-18\left(2x\sqrt{\frac{1}{x}}+c_1\right)^2\right)^{1/3}}{12x\sqrt{\frac{1}{x}}+6c_1}\right)^2}\right)^2}$$

$$y = \frac{1}{\left(-\frac{18^{1/3}\left(\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}\right)^{1/3}}{6\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)} - \frac{i\sqrt{3}\,18^{1/3}\left(\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}\right)^{1/3}}{6\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)}\right)^{2}}$$

$$y = \frac{1}{\left(-\frac{18^{1/3}\left(\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}\right)^{1/3}}{6\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}} + \frac{i\sqrt{3}\,18^{1/3}\left(\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}\right)^{1/3}}{12x\sqrt{\frac{1}{x}}+6c_{1}}\right)^{2}}\right)^{2}}$$

$$y = \frac{9\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}}{\left(-18\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}\right)^{2/3}}$$

$$y = \frac{\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}18^{1/3}}{2\left(\left(2x\sqrt{\frac{1}{x}}+c_{1}\right)^{2}\right)^{2/3}}$$

Maple step by step solution

Let's solve

$$\left(\frac{d}{dx}y(x)\right)^2 = \frac{1}{xy(x)}$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\left[\frac{d}{dx}y(x) = \frac{1}{\sqrt{xy(x)}}, \frac{d}{dx}y(x) = -\frac{1}{\sqrt{xy(x)}}\right]$$

- Solve the equation $\frac{d}{dx}y(x) = \frac{1}{\sqrt{xy(x)}}$
- Solve the equation $\frac{d}{dx}y(x) = -\frac{1}{\sqrt{xy(x)}}$
- Set of solutions { workingODE, workingODE}

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable by differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting
   *** Sublevel 2 ***
   Methods for first order ODEs:
   --- Trying classification methods ---
   trying homogeneous types:
   trying homogeneous G
   1st order, trying the canonical coordinates of the invariance group
   <- 1st order, canonical coordinates successful
   <- homogeneous successful</pre>
* Tackling next ODE.
   *** Sublevel 2 ***
   Methods for first order ODEs:
   --- Trying classification methods ---
   trying homogeneous types:
   trying homogeneous G
   1st order, trying the canonical coordinates of the invariance group
   <- 1st order, canonical coordinates successful
   <- homogeneous successful`</pre>
```

Maple dsolve solution

Solving time: 0.085 (sec)

Leaf size: 51

 $\frac{\text{dsolve}(\text{diff}(y(x),x)^2 = 1/x/y(x),}{y(x),\text{singsol=all})}$

$$\frac{y\sqrt{xy} - c_1\sqrt{x} - 3x}{\sqrt{x}} = 0$$
$$\frac{y\sqrt{xy} - c_1\sqrt{x} + 3x}{\sqrt{x}} = 0$$

Mathematica DSolve solution

Solving time: 3.342 (sec)

Leaf size : 53

DSolve[{(D[y[x],x])^2==1/(y[x]*x),{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \to \left(\frac{3}{2}\right)^{2/3} \left(-2\sqrt{x} + c_1\right)^{2/3}$$

 $y(x) \to \left(\frac{3}{2}\right)^{2/3} \left(2\sqrt{x} + c_1\right)^{2/3}$

2.1.56 problem 56

Solved as first order ode of type nonlinear p but separable	396
Maple step by step solution	398
Maple trace	398
Maple dsolve solution	399
Mathematica DSolve solution	400

Internal problem ID [8716]

Book: First order enumerated odes

 ${\bf Section}: {\bf section}\ 1$

Problem number: 56

Date solved: Tuesday, December 17, 2024 at 12:58:22 PM

CAS classification: [[_homogeneous, 'class G']]

Solve

$${y'}^2 = \frac{1}{xy^3}$$

Solved as first order ode of type nonlinear p but separable

Time used: 0.294 (sec)

The ode has the form

$$(y')^{\frac{n}{m}} = f(x)g(y) \tag{1}$$

Where $n=2, m=1, f=\frac{1}{x}, g=\frac{1}{y^3}$. Hence the ode is

$$(y')^2 = \frac{1}{x y^3}$$

Solving for y' from (1) gives

$$y' = \sqrt{fg}$$
$$y' = -\sqrt{fg}$$

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

$$\frac{1}{x} > 0$$

$$\frac{1}{y^3} > 0$$

Under the above assumption the differential equations become separable and can be written as

$$y' = \sqrt{f} \sqrt{g}$$
$$y' = -\sqrt{f} \sqrt{g}$$

Therefore

$$\frac{1}{\sqrt{g}} dy = \left(\sqrt{f}\right) dx$$
$$-\frac{1}{\sqrt{g}} dy = \left(\sqrt{f}\right) dx$$

Replacing f(x), g(y) by their values gives

$$\frac{1}{\sqrt{\frac{1}{y^3}}} dy = \left(\sqrt{\frac{1}{x}}\right) dx$$
$$-\frac{1}{\sqrt{\frac{1}{y^3}}} dy = \left(\sqrt{\frac{1}{x}}\right) dx$$

Integrating now gives the following solutions

$$\int \frac{1}{\sqrt{\frac{1}{y^3}}} dy = \int \sqrt{\frac{1}{x}} dx + c_1$$

$$\frac{2y^4 \sqrt{\frac{1}{y^3}}}{5} = 2x \sqrt{\frac{1}{x}}$$

$$\int -\frac{1}{\sqrt{\frac{1}{y^3}}} dy = \int \sqrt{\frac{1}{x}} dx + c_1$$

$$-\frac{2y^4 \sqrt{\frac{1}{y^3}}}{5} = 2x \sqrt{\frac{1}{x}}$$

Therefore

$$\frac{2y^4\sqrt{\frac{1}{y^3}}}{5} = 2x\sqrt{\frac{1}{x}} + c_1$$
$$-\frac{2y^4\sqrt{\frac{1}{y^3}}}{5} = 2x\sqrt{\frac{1}{x}} + c_1$$

Summary of solutions found

$$-\frac{2y^4\sqrt{\frac{1}{y^3}}}{5} = 2x\sqrt{\frac{1}{x}} + c_1$$
$$\frac{2y^4\sqrt{\frac{1}{y^3}}}{5} = 2x\sqrt{\frac{1}{x}} + c_1$$

Maple step by step solution

Let's solve $\left(\frac{d}{dx}y(x)\right)^2 = \frac{1}{xy(x)^3}$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\left[\frac{d}{dx}y(x) = \frac{1}{\sqrt{xy(x)}y(x)}, \frac{d}{dx}y(x) = -\frac{1}{\sqrt{xy(x)}y(x)}\right]$$

- Solve the equation $\frac{d}{dx}y(x) = \frac{1}{\sqrt{xy(x)}y(x)}$
- Solve the equation $\frac{d}{dx}y(x) = -\frac{1}{\sqrt{xy(x)}y(x)}$
- Set of solutions { workingODE, workingODE}

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting
  *** Sublevel 2 ***
  Methods for first order ODEs:
  --- Trying classification methods ---
  trying homogeneous types:
```

Maple dsolve solution

<- homogeneous successful`</pre>

Solving time: 0.109 (sec)

Leaf size : 55

$$\frac{dsolve(diff(y(x),x)^2 = 1/x/y(x)^3,}{y(x),singsol=all)}$$

$$\frac{\sqrt{xy} y^2 - c_1 \sqrt{x} - 5x}{\sqrt{x}} = 0$$

$$\frac{\sqrt{xy} y^2 - c_1 \sqrt{x} + 5x}{\sqrt{x}} = 0$$

Mathematica DSolve solution

Solving time: 0.109 (sec)

Leaf size : 53

 $DSolve[{(D[y[x],x])^2==1/(x*y[x]^3),{}}, \\ y[x],x,IncludeSingularSolutions->True]$

$$y(x) \to \left(\frac{5}{2}\right)^{2/5} \left(-2\sqrt{x} + c_1\right)^{2/5}$$

 $y(x) \to \left(\frac{5}{2}\right)^{2/5} \left(2\sqrt{x} + c_1\right)^{2/5}$

2.1.57 problem 57

Solved as first order ode of type nonlinear p but separable	401
Maple step by step solution	403
Maple trace	404
Maple dsolve solution	404
Mathematica DSolve solution	405

Internal problem ID [8717]

Book: First order enumerated odes

Section: section 1

Problem number: 57

Date solved: Tuesday, December 17, 2024 at 12:58:23 PM

CAS classification : [_separable]

Solve

$${y'}^2 = \frac{1}{x^2 y^3}$$

Solved as first order ode of type nonlinear p but separable

Time used: 0.325 (sec)

The ode has the form

$$(y')^{\frac{n}{m}} = f(x)g(y) \tag{1}$$

Where $n=2, m=1, f=\frac{1}{x^2}, g=\frac{1}{y^3}.$ Hence the ode is

$$(y')^2 = \frac{1}{x^2 y^3}$$

Solving for y' from (1) gives

$$y' = \sqrt{fg}$$
$$y' = -\sqrt{fg}$$

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

$$\frac{1}{x^2} > 0$$
$$\frac{1}{y^3} > 0$$

Under the above assumption the differential equations become separable and can be written as

$$y' = \sqrt{f} \sqrt{g}$$
$$y' = -\sqrt{f} \sqrt{g}$$

Therefore

$$\frac{1}{\sqrt{g}} dy = \left(\sqrt{f}\right) dx$$
$$-\frac{1}{\sqrt{g}} dy = \left(\sqrt{f}\right) dx$$

Replacing f(x), g(y) by their values gives

$$\frac{1}{\sqrt{\frac{1}{y^3}}} dy = \left(\sqrt{\frac{1}{x^2}}\right) dx$$
$$-\frac{1}{\sqrt{\frac{1}{y^3}}} dy = \left(\sqrt{\frac{1}{x^2}}\right) dx$$

Integrating now gives the following solutions

$$\int \frac{1}{\sqrt{\frac{1}{y^3}}} dy = \int \sqrt{\frac{1}{x^2}} dx + c_1$$
$$\frac{2y^4 \sqrt{\frac{1}{y^3}}}{5} = \sqrt{\frac{1}{x^2}} x \ln(x)$$
$$\int -\frac{1}{\sqrt{\frac{1}{y^3}}} dy = \int \sqrt{\frac{1}{x^2}} dx + c_1$$
$$-\frac{2y^4 \sqrt{\frac{1}{y^3}}}{5} = \sqrt{\frac{1}{x^2}} x \ln(x)$$

Therefore

$$\frac{2y^4\sqrt{\frac{1}{y^3}}}{5} = \sqrt{\frac{1}{x^2}} x \ln(x) + c_1$$
$$-\frac{2y^4\sqrt{\frac{1}{y^3}}}{5} = \sqrt{\frac{1}{x^2}} x \ln(x) + c_1$$

Summary of solutions found

$$-\frac{2y^4\sqrt{\frac{1}{y^3}}}{5} = \sqrt{\frac{1}{x^2}} x \ln(x) + c_1$$
$$\frac{2y^4\sqrt{\frac{1}{y^3}}}{5} = \sqrt{\frac{1}{x^2}} x \ln(x) + c_1$$

Maple step by step solution

Let's solve

$$\left(\frac{d}{dx}y(x)\right)^2 = \frac{1}{x^2y(x)^3}$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\left[\frac{d}{dx}y(x) = \frac{1}{y(x)^{3/2}x}, \frac{d}{dx}y(x) = -\frac{1}{y(x)^{3/2}x}\right]$$

- \square Solve the equation $\frac{d}{dx}y(x) = \frac{1}{y(x)^{3/2}x}$
 - Separate variables

$$\left(\frac{d}{dx}y(x)\right)y(x)^{3/2} = \frac{1}{x}$$

 $\circ\quad$ Integrate both sides with respect to x

$$\int \left(\frac{d}{dx}y(x)\right)y(x)^{3/2} dx = \int \frac{1}{x}dx + \underline{C1}$$

o Evaluate integral

$$\frac{2y(x)^{5/2}}{5} = \ln(x) + _C1$$

 \circ Solve for y(x)

$$y(x) = \frac{\left(80\ln(x) + 80 - C1\right)^{2/5}}{4}$$

- \square Solve the equation $\frac{d}{dx}y(x) = -\frac{1}{y(x)^{3/2}x}$
 - Separate variables

$$\left(\frac{d}{dx}y(x)\right)y(x)^{3/2} = -\frac{1}{x}$$

 \circ Integrate both sides with respect to x

$$\int \left(\frac{d}{dx}y(x)\right)y(x)^{3/2} dx = \int -\frac{1}{x}dx + \underline{C1}$$

o Evaluate integral

$$\frac{2y(x)^{5/2}}{5} = -\ln(x) + _C1$$

 \circ Solve for y(x)

$$y(x) = \frac{\left(-80\ln(x) + 80_C1\right)^{2/5}}{4}$$

• Set of solutions

$$\left\{ y(x) = \frac{(-80\ln(x) + 80C1)^{2/5}}{4}, y(x) = \frac{(80\ln(x) + 80C1)^{2/5}}{4} \right\}$$

Maple trace

`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations

<- symmetries for implicit equations successful`</pre>

Maple dsolve solution

Solving time: 0.158 (sec)

Leaf size: 29

dsolve(diff(y(x),x)
$$^2 = 1/x^2/y(x)^3$$
,
y(x),singsol=all)

$$\ln(x) - \frac{2y^{5/2}}{5} - c_1 = 0$$
$$\ln(x) + \frac{2y^{5/2}}{5} - c_1 = 0$$

Mathematica DSolve solution

Solving time: 0.132 (sec)

Leaf size: 45

DSolve[$\{(D[y[x],x])^2==1/(x^2*y[x]^3),\{\}\},$ y[x],x,IncludeSingularSolutions->True]

$$y(x) \to \left(\frac{5}{2}\right)^{2/5} (-\log(x) + c_1)^{2/5}$$

 $y(x) \to \left(\frac{5}{2}\right)^{2/5} (\log(x) + c_1)^{2/5}$

2.1.58 problem 58

Solved as first order ode of type nonlinear p but separable 4	:06
Maple step by step solution	:09
Maple trace	:10
Maple dsolve solution	111
Mathematica DSolve solution	12

Internal problem ID [8718]

Book: First order enumerated odes

Section: section 1

Problem number: 58

Date solved: Tuesday, December 17, 2024 at 12:58:24 PM CAS classification: [[_homogeneous, 'class G'], _rational]

Solve

$${y'}^4 = \frac{1}{xy^3}$$

Solved as first order ode of type nonlinear p but separable

Time used: 0.720 (sec)

The ode has the form

$$(y')^{\frac{n}{m}} = f(x)g(y) \tag{1}$$

Where $n=4, m=1, f=\frac{1}{x}, g=\frac{1}{y^3}.$ Hence the ode is

$$(y')^4 = \frac{1}{x y^3}$$

Solving for y' from (1) gives

$$y' = (fg)^{1/4}$$

 $y' = i(fg)^{1/4}$
 $y' = -(fg)^{1/4}$
 $y' = -i(fg)^{1/4}$

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

$$\frac{1}{x} > 0$$

$$\frac{1}{y^3} > 0$$

Under the above assumption the differential equations become separable and can be written as

$$y' = f^{1/4}g^{1/4}$$

$$y' = if^{1/4}g^{1/4}$$

$$y' = -f^{1/4}g^{1/4}$$

$$y' = -if^{1/4}g^{1/4}$$

Therefore

$$\frac{1}{g^{1/4}} dy = (f^{1/4}) dx$$

$$-\frac{i}{g^{1/4}} dy = (f^{1/4}) dx$$

$$-\frac{1}{g^{1/4}} dy = (f^{1/4}) dx$$

$$\frac{i}{g^{1/4}} dy = (f^{1/4}) dx$$

Replacing f(x), g(y) by their values gives

$$\frac{1}{\left(\frac{1}{y^3}\right)^{1/4}} dy = \left(\left(\frac{1}{x}\right)^{1/4}\right) dx$$

$$-\frac{i}{\left(\frac{1}{y^3}\right)^{1/4}} dy = \left(\left(\frac{1}{x}\right)^{1/4}\right) dx$$

$$-\frac{1}{\left(\frac{1}{y^3}\right)^{1/4}} dy = \left(\left(\frac{1}{x}\right)^{1/4}\right) dx$$

$$\frac{i}{\left(\frac{1}{y^3}\right)^{1/4}} dy = \left(\left(\frac{1}{x}\right)^{1/4}\right) dx$$

Integrating now gives the following solutions

$$\int \frac{1}{\left(\frac{1}{y^3}\right)^{1/4}} dy = \int \left(\frac{1}{x}\right)^{1/4} dx + c_1$$

$$\frac{4y^4 \left(\frac{1}{y^3}\right)^{3/4}}{7} = \frac{4x \left(\frac{1}{x}\right)^{1/4}}{3}$$

$$\int -\frac{i}{\left(\frac{1}{y^3}\right)^{1/4}} dy = \int \left(\frac{1}{x}\right)^{1/4} dx + c_1$$

$$-\frac{4iy^4 \left(\frac{1}{y^3}\right)^{3/4}}{7} = \frac{4x \left(\frac{1}{x}\right)^{1/4}}{3}$$

$$\int -\frac{1}{\left(\frac{1}{y^3}\right)^{1/4}} dy = \int \left(\frac{1}{x}\right)^{1/4} dx + c_1$$

$$-\frac{4y^4 \left(\frac{1}{y^3}\right)^{3/4}}{7} = \frac{4x \left(\frac{1}{x}\right)^{1/4}}{3}$$

$$\int \frac{i}{\left(\frac{1}{y^3}\right)^{1/4}} dy = \int \left(\frac{1}{x}\right)^{1/4} dx + c_1$$

$$\frac{4iy^4 \left(\frac{1}{y^3}\right)^{3/4}}{7} = \frac{4x \left(\frac{1}{x}\right)^{1/4}}{3}$$

Therefore

$$\frac{4y^4 \left(\frac{1}{y^3}\right)^{3/4}}{7} = \frac{4x \left(\frac{1}{x}\right)^{1/4}}{3} + c_1$$
$$-\frac{4iy^4 \left(\frac{1}{y^3}\right)^{3/4}}{7} = \frac{4x \left(\frac{1}{x}\right)^{1/4}}{3} + c_1$$
$$-\frac{4y^4 \left(\frac{1}{y^3}\right)^{3/4}}{7} = \frac{4x \left(\frac{1}{x}\right)^{1/4}}{3} + c_1$$
$$\frac{4iy^4 \left(\frac{1}{y^3}\right)^{3/4}}{7} = \frac{4x \left(\frac{1}{x}\right)^{1/4}}{3} + c_1$$

Summary of solutions found

$$-\frac{4iy^4 \left(\frac{1}{y^3}\right)^{3/4}}{7} = \frac{4x \left(\frac{1}{x}\right)^{1/4}}{3} + c_1$$

$$\frac{4iy^4 \left(\frac{1}{y^3}\right)^{3/4}}{7} = \frac{4x \left(\frac{1}{x}\right)^{1/4}}{3} + c_1$$

$$-\frac{4y^4 \left(\frac{1}{y^3}\right)^{3/4}}{7} = \frac{4x \left(\frac{1}{x}\right)^{1/4}}{3} + c_1$$

$$\frac{4y^4 \left(\frac{1}{y^3}\right)^{3/4}}{7} = \frac{4x \left(\frac{1}{x}\right)^{1/4}}{3} + c_1$$

Maple step by step solution

Let's solve

$$\left(\frac{d}{dx}y(x)\right)^4 = \frac{1}{xy(x)^3}$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\left[\frac{\frac{d}{dx}y(x) = \frac{(x^3y(x))^{1/4}}{xy(x)}, \frac{d}{dx}y(x) = -\frac{(x^3y(x))^{1/4}}{xy(x)}, \frac{d}{dx}y(x) = \frac{-\mathrm{I}(x^3y(x))^{1/4}}{xy(x)}, \frac{d}{dx}y(x) = \frac{\mathrm{I}(x^3y(x))^{1/4}}{xy(x)}\right]$$

- Solve the equation $\frac{d}{dx}y(x) = \frac{(x^3y(x))^{1/4}}{xu(x)}$
- Solve the equation $\frac{d}{dx}y(x) = -\frac{(x^3y(x))^{1/4}}{xy(x)}$
- Solve the equation $\frac{d}{dx}y(x) = \frac{-\mathrm{I}(x^3y(x))^{1/4}}{xy(x)}$
- Solve the equation $\frac{d}{dx}y(x) = \frac{I(x^3y(x))^{1/4}}{xy(x)}$
- Set of solutions { workingODE, workingODE, workingODE}

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable by differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 4 solutions were found. Trying to solve each resulting
   *** Sublevel 2 ***
   Methods for first order ODEs:
   --- Trying classification methods ---
   trying homogeneous types:
   trying homogeneous G
   1st order, trying the canonical coordinates of the invariance group
   <- 1st order, canonical coordinates successful
   <- homogeneous successful</pre>
* Tackling next ODE.
   *** Sublevel 2 ***
   Methods for first order ODEs:
   --- Trying classification methods ---
   trying homogeneous types:
   trying homogeneous G
   1st order, trying the canonical coordinates of the invariance group
   <- 1st order, canonical coordinates successful
   <- homogeneous successful</pre>
* Tackling next ODE.
   *** Sublevel 2 ***
   Methods for first order ODEs:
   --- Trying classification methods ---
   trying homogeneous types:
   trying homogeneous G
   1st order, trying the canonical coordinates of the invariance group
   <- 1st order, canonical coordinates successful
   <- homogeneous successful
```

```
* Tackling next ODE.

*** Sublevel 2 ***

Methods for first order ODEs:

--- Trying classification methods ---

trying homogeneous types:

trying homogeneous G

1st order, trying the canonical coordinates of the invariance group

<- 1st order, canonical coordinates successful

<- homogeneous successful`
```

Maple dsolve solution

Solving time: 0.223 (sec)

Leaf size: 121

dsolve(diff(y(x),x)
4
 = 1/x/y(x) 3 ,
y(x),singsol=all)

$$-\frac{7x^3 - 3(yx^3)^{3/4}y + c_1x^{9/4}}{x^{9/4}} = 0$$

$$\frac{-7x^3 + 3i(yx^3)^{3/4}y - c_1x^{9/4}}{x^{9/4}} = 0$$

$$\frac{7x^3 + 3i(yx^3)^{3/4}y - c_1x^{9/4}}{x^{9/4}} = 0$$

$$\frac{7x^3 + 3(yx^3)^{3/4}y - c_1x^{9/4}}{x^{9/4}} = 0$$

Mathematica DSolve solution

Solving time: 6.693 (sec)

Leaf size: 129

DSolve[{(D[y[x],x])^4==1/(x*y[x]^3),{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \to \frac{\left(-\frac{28x^{3/4}}{3} + 7c_1\right)^{4/7}}{2\sqrt[7]{2}}$$
$$y(x) \to \frac{\left(7c_1 - \frac{28}{3}ix^{3/4}\right)^{4/7}}{2\sqrt[7]{2}}$$
$$y(x) \to \frac{\left(\frac{28}{3}ix^{3/4} + 7c_1\right)^{4/7}}{2\sqrt[7]{2}}$$
$$y(x) \to \frac{\left(\frac{28x^{3/4}}{3} + 7c_1\right)^{4/7}}{2\sqrt[7]{2}}$$

2.1.59 problem 59

Solved as first order ode of type nonlinear p but separable	413
Maple step by step solution	415
Maple trace	416
Maple dsolve solution	417
Mathematica DSolve solution	418

Internal problem ID [8719]

Book: First order enumerated odes

 ${\bf Section}: {\rm section}\ 1$

Problem number: 59

Date solved: Tuesday, December 17, 2024 at 12:58:25 PM

CAS classification : [_separable]

Solve

$${y'}^2 = \frac{1}{x^3 y^4}$$

Solved as first order ode of type nonlinear p but separable

Time used: 0.469 (sec)

The ode has the form

$$(y')^{\frac{n}{m}} = f(x)g(y) \tag{1}$$

Where $n=2, m=1, f=\frac{1}{x^3}, g=\frac{1}{y^4}.$ Hence the ode is

$$(y')^2 = \frac{1}{x^3 y^4}$$

Solving for y' from (1) gives

$$y' = \sqrt{fg}$$
$$y' = -\sqrt{fg}$$

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

$$\frac{1}{x^3} > 0$$
$$\frac{1}{y^4} > 0$$

Under the above assumption the differential equations become separable and can be written as

$$y' = \sqrt{f} \sqrt{g}$$
$$y' = -\sqrt{f} \sqrt{g}$$

Therefore

$$\frac{1}{\sqrt{g}} dy = \left(\sqrt{f}\right) dx$$
$$-\frac{1}{\sqrt{g}} dy = \left(\sqrt{f}\right) dx$$

Replacing f(x), g(y) by their values gives

$$\frac{1}{\sqrt{\frac{1}{y^4}}} dy = \left(\sqrt{\frac{1}{x^3}}\right) dx$$
$$-\frac{1}{\sqrt{\frac{1}{y^4}}} dy = \left(\sqrt{\frac{1}{x^3}}\right) dx$$

Integrating now gives the following solutions

$$\int \frac{1}{\sqrt{\frac{1}{y^4}}} dy = \int \sqrt{\frac{1}{x^3}} dx + c_1$$
$$\frac{y^5 \sqrt{\frac{1}{y^4}}}{3} = -2x \sqrt{\frac{1}{x^3}}$$
$$\int -\frac{1}{\sqrt{\frac{1}{y^4}}} dy = \int \sqrt{\frac{1}{x^3}} dx + c_1$$
$$-\frac{y^5 \sqrt{\frac{1}{y^4}}}{3} = -2x \sqrt{\frac{1}{x^3}}$$

Therefore

$$\frac{y^5\sqrt{\frac{1}{y^4}}}{3} = -2x\sqrt{\frac{1}{x^3}} + c_1$$
$$-\frac{y^5\sqrt{\frac{1}{y^4}}}{3} = -2x\sqrt{\frac{1}{r^3}} + c_1$$

Summary of solutions found

$$-\frac{y^5\sqrt{\frac{1}{y^4}}}{3} = -2x\sqrt{\frac{1}{x^3}} + c_1$$
$$\frac{y^5\sqrt{\frac{1}{y^4}}}{3} = -2x\sqrt{\frac{1}{x^3}} + c_1$$

Maple step by step solution

Let's solve

$$\left(\frac{d}{dx}y(x)\right)^2 = \frac{1}{y(x)^4x^3}$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\left[\frac{d}{dx}y(x) = \frac{1}{x^{3/2}y(x)^2}, \frac{d}{dx}y(x) = -\frac{1}{x^{3/2}y(x)^2}\right]$$

- \square Solve the equation $\frac{d}{dx}y(x) = \frac{1}{x^{3/2}y(x)^2}$
 - Separate variables

$$y(x)^2 \left(rac{d}{dx} y(x)
ight) = rac{1}{x^{3/2}}$$

 $\circ\quad$ Integrate both sides with respect to x

$$\int y(x)^2 \left(\frac{d}{dx}y(x)\right) dx = \int \frac{1}{x^{3/2}} dx + _C1$$

o Evaluate integral

$$\frac{y(x)^3}{3} = -\frac{2}{\sqrt{x}} + _C1$$

 \circ Solve for y(x)

$$y(x) = \left(\frac{3\sqrt{x} C_{1-6}}{\sqrt{x}}\right)^{1/3}$$

- \square Solve the equation $\frac{d}{dx}y(x) = -\frac{1}{x^{3/2}y(x)^2}$
 - Separate variables

$$y(x)^{2}\left(\frac{d}{dx}y(x)\right) = -\frac{1}{x^{3/2}}$$

 \circ Integrate both sides with respect to x

$$\int y(x)^2 \left(\frac{d}{dx}y(x)\right) dx = \int -\frac{1}{x^{3/2}} dx + \underline{C1}$$

• Evaluate integral

$$\frac{y(x)^3}{3} = \frac{2}{\sqrt{x}} + _C1$$

• Solve for
$$y(x)$$

$$y(x) = \left(\frac{3\sqrt{x} - C_{1+6}}{\sqrt{x}}\right)^{1/3}$$

• Set of solutions

<- Bernoulli successful`

$$\left\{ y(x) = \left(\frac{3\sqrt{x} \, C_{1-6}}{\sqrt{x}} \right)^{1/3}, y(x) = \left(\frac{3\sqrt{x} \, C_{1+6}}{\sqrt{x}} \right)^{1/3} \right\}$$

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting
   *** Sublevel 2 ***
  Methods for first order ODEs:
   --- Trying classification methods ---
  trying a quadrature
  trying 1st order linear
  trying Bernoulli
   <- Bernoulli successful
* Tackling next ODE.
   *** Sublevel 2 ***
  Methods for first order ODEs:
   --- Trying classification methods ---
  trying a quadrature
  trying 1st order linear
  trying Bernoulli
```

Maple dsolve solution

Solving time: 0.070 (sec)

Leaf size: 133

dsolve(diff(y(x),x)^2 = $1/x^3/y(x)^4$, y(x),singsol=all)

$$y = \left(\frac{c_1\sqrt{x} - 6}{\sqrt{x}}\right)^{1/3}$$

$$y = -\frac{\left(\frac{c_1\sqrt{x} - 6}{\sqrt{x}}\right)^{1/3} (1 + i\sqrt{3})}{2}$$

$$y = \frac{\left(\frac{c_1\sqrt{x} - 6}{\sqrt{x}}\right)^{1/3} (i\sqrt{3} - 1)}{2}$$

$$y = \left(\frac{c_1\sqrt{x} + 6}{\sqrt{x}}\right)^{1/3}$$

$$y = -\frac{\left(\frac{c_1\sqrt{x} + 6}{\sqrt{x}}\right)^{1/3} (1 + i\sqrt{3})}{2}$$

$$y = \frac{\left(\frac{c_1\sqrt{x} + 6}{\sqrt{x}}\right)^{1/3} (i\sqrt{3} - 1)}{2}$$

Mathematica DSolve solution

Solving time: 3.383 (sec)

Leaf size: 157

DSolve[$\{(D[y[x],x])^2=1/(x^3*y[x]^4),\{\}\},$ y[x],x,IncludeSingularSolutions->True]

$$y(x) \to -\sqrt[3]{-3}\sqrt[3]{-\frac{2}{\sqrt{x}} + c_1}$$

$$y(x) \to \sqrt[3]{3}\sqrt[3]{-\frac{2}{\sqrt{x}} + c_1}$$

$$y(x) \to (-1)^{2/3}\sqrt[3]{3}\sqrt[3]{-\frac{2}{\sqrt{x}} + c_1}$$

$$y(x) \to -\sqrt[3]{-3}\sqrt[3]{\frac{2}{\sqrt{x}} + c_1}$$

$$y(x) \to \sqrt[3]{3}\sqrt[3]{\frac{2}{\sqrt{x}} + c_1}$$

$$y(x) \to (-1)^{2/3}\sqrt[3]{3}\sqrt[3]{\frac{2}{\sqrt{x}} + c_1}$$

2.1.60 problem 60

Solved as first order homogeneous class C ode	419
Solved using Lie symmetry for first order ode	420
Solved as first order ode of type dAlembert	426
Maple step by step solution	428
Maple trace	428
Maple dsolve solution	429
Mathematica DSolve solution	429

Internal problem ID [8720]

Book: First order enumerated odes

Section: section 1

Problem number: 60

Date solved: Tuesday, December 17, 2024 at 12:58:26 PM CAS classification: [[_homogeneous, 'class C'], _dAlembert]

Solve

$$y' = \sqrt{1 + 6x + y}$$

Solved as first order homogeneous class C ode

Time used: 0.536 (sec)

Let

$$z = 1 + 6x + y \tag{1}$$

Then

$$z'(x) = 6 + y'$$

Therefore

$$y' = z'(x) - 6$$

Hence the given ode can now be written as

$$z'(x) - 6 = \sqrt{z}$$

This is separable first order ode. Integrating

$$\int dx = \int \frac{1}{\sqrt{z} + 6} dz$$
$$x + c_1 = 2\sqrt{z} - 6\ln(\sqrt{z} + 6) + 6\ln(-6 + \sqrt{z}) - 6\ln(-36 + z)$$

Replacing z back by its value from (1) then the above gives the solution as Solving for y gives

$$y = e^{-2 \operatorname{LambertW}\left(-\frac{e^{-1-\frac{x}{12}-\frac{c_1}{12}}}{6}\right) - 2 - \frac{x}{6} - \frac{c_1}{6}} - 12 e^{-\operatorname{LambertW}\left(-\frac{e^{-1-\frac{x}{12}-\frac{c_1}{12}}}{6}\right) - 1 - \frac{x}{12} - \frac{c_1}{12}} - 6x + 35$$

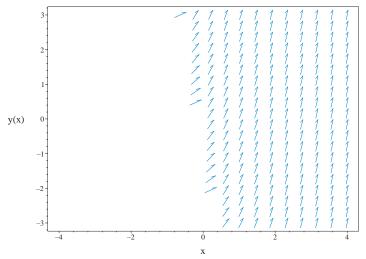


Figure 2.77: Slope field plot $y' = \sqrt{1 + 6x + y}$

Summary of solutions found

$$y = \mathrm{e}^{-2 \, \mathrm{LambertW}\left(-\frac{\mathrm{e}^{-1-\frac{x}{12}-\frac{c_1}{12}}}{6}\right) - 2 - \frac{x}{6} - \frac{c_1}{6}} - 12 \, \mathrm{e}^{-\mathrm{LambertW}\left(-\frac{\mathrm{e}^{-1-\frac{x}{12}-\frac{c_1}{12}}}{6}\right) - 1 - \frac{x}{12} - \frac{c_1}{12}} - 6x + 35$$

Solved using Lie symmetry for first order ode

Time used: 1.181 (sec)

Writing the ode as

$$y' = \sqrt{1 + 6x + y}$$
$$y' = \omega(x, y)$$

The condition of Lie symmetry is the linearized PDE given by

$$\eta_x + \omega(\eta_y - \xi_x) - \omega^2 \xi_y - \omega_x \xi - \omega_y \eta = 0$$
 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$\xi = xa_2 + ya_3 + a_1 \tag{1E}$$

$$\eta = xb_2 + yb_3 + b_1 \tag{2E}$$

Where the unknown coefficients are

$$\{a_1, a_2, a_3, b_1, b_2, b_3\}$$

Substituting equations (1E,2E) and ω into (A) gives

$$b_{2} + \sqrt{1+6x+y} (b_{3} - a_{2}) - (1+6x+y) a_{3} - \frac{3(xa_{2} + ya_{3} + a_{1})}{\sqrt{1+6x+y}} - \frac{xb_{2} + yb_{3} + b_{1}}{2\sqrt{1+6x+y}} = 0$$
(5E)

Putting the above in normal form gives

$$-\frac{12a_3\sqrt{1+6x+y}\,x+2a_3\sqrt{1+6x+y}\,y+2a_3\sqrt{1+6x+y}-2b_2\sqrt{1+6x+y}+18xa_2+xb_2-12b_3x+2a_3\sqrt{1+6x+y}}{2\sqrt{1+6x+y}}$$
= 0

Setting the numerator to zero gives

$$-12a_{3}\sqrt{1+6x+y}x-2a_{3}\sqrt{1+6x+y}y-2a_{3}\sqrt{1+6x+y} +2b_{2}\sqrt{1+6x+y}-18xa_{2}-xb_{2}+12b_{3}x -2a_{2}y-6ya_{3}+yb_{3}-6a_{1}-2a_{2}-b_{1}+2b_{3}=0$$
(6E)

Simplifying the above gives

$$-2(1+6x+y)a_2+2(1+6x+y)b_3-12a_3\sqrt{1+6x+y}x-2a_3\sqrt{1+6x+y}y$$

$$-2a_3\sqrt{1+6x+y}+2b_2\sqrt{1+6x+y}-6xa_2-xb_2-6ya_3-yb_3-6a_1-b_1=0$$
(6E)

Since the PDE has radicals, simplifying gives

$$-12a_3\sqrt{1+6x+y}\,x-2a_3\sqrt{1+6x+y}\,y-2a_3\sqrt{1+6x+y}+2b_2\sqrt{1+6x+y}\\-18xa_2-xb_2+12b_3x-2a_2y-6ya_3+yb_3-6a_1-2a_2-b_1+2b_3=0$$

Looking at the above PDE shows the following are all the terms with $\{x,y\}$ in them.

$$\left\{x, y, \sqrt{1+6x+y}\right\}$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$\left\{ x = v_1, y = v_2, \sqrt{1 + 6x + y} = v_3 \right\}$$

The above PDE (6E) now becomes

$$-12a_3v_3v_1 - 2a_3v_3v_2 - 18v_1a_2 - 2a_2v_2 - 6v_2a_3 - 2a_3v_3 - v_1b_2 + 2b_2v_3 + 12b_3v_1 + v_2b_3 - 6a_1 - 2a_2 - b_1 + 2b_3 = 0$$
(7E)

Collecting the above on the terms v_i introduced, and these are

$$\{v_1,v_2,v_3\}$$

Equation (7E) now becomes

$$-12a_3v_3v_1 + (-18a_2 - b_2 + 12b_3)v_1 - 2a_3v_3v_2 + (-2a_2 - 6a_3 + b_3)v_2$$

$$+ (-2a_3 + 2b_2)v_3 - 6a_1 - 2a_2 - b_1 + 2b_3 = 0$$
(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

$$-12a_3 = 0$$

$$-2a_3 = 0$$

$$-2a_3 + 2b_2 = 0$$

$$-18a_2 - b_2 + 12b_3 = 0$$

$$-2a_2 - 6a_3 + b_3 = 0$$

$$-6a_1 - 2a_2 - b_1 + 2b_3 = 0$$

Solving the above equations for the unknowns gives

$$a_1 = a_1$$
 $a_2 = 0$
 $a_3 = 0$
 $b_1 = -6a_1$
 $b_2 = 0$
 $b_3 = 0$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$\xi = 1$$
$$\eta = -6$$

Shifting is now applied to make $\xi = 0$ in order to simplify the rest of the computation

$$\eta = \eta - \omega(x, y) \xi$$

$$= -6 - \left(\sqrt{1 + 6x + y}\right) (1)$$

$$= -\sqrt{1 + 6x + y} - 6$$

$$\xi = 0$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \to (R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$\frac{dx}{\xi} = \frac{dy}{\eta} = dS \tag{1}$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}\right) S(x,y) = 1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Since $\xi = 0$ then in this special case

$$R = x$$

S is found from

$$S = \int \frac{1}{\eta} dy$$
$$= \int \frac{1}{-\sqrt{1+6x+y}-6} dy$$

Which results in

$$S = -2\sqrt{1+6x+y} + 6\ln\left(\sqrt{1+6x+y} + 6\right) - 6\ln\left(-6 + \sqrt{1+6x+y}\right) + 6\ln\left(-35 + 6x + y\right)$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$\frac{dS}{dR} = \frac{S_x + \omega(x, y)S_y}{R_x + \omega(x, y)R_y} \tag{2}$$

Where in the above R_x, R_y, S_x, S_y are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$\omega(x,y) = \sqrt{1 + 6x + y}$$

Evaluating all the partial derivatives gives

$$R_x = 1$$
 $R_y = 0$

$$S_x = -\frac{6}{\sqrt{1 + 6x + y} + 6}$$

$$S_y = \frac{1}{-\sqrt{1 + 6x + y} - 6}$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$\frac{dS}{dR} = -1\tag{2A}$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$\frac{dS}{dR} = -1$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S.

Since the ode has the form $\frac{d}{dR}S(R) = f(R)$, then we only need to integrate f(R).

$$\int dS = \int -1 dR$$
$$S(R) = -R + c_2$$

To complete the solution, we just need to transform the above back to x, y coordinates. This results in

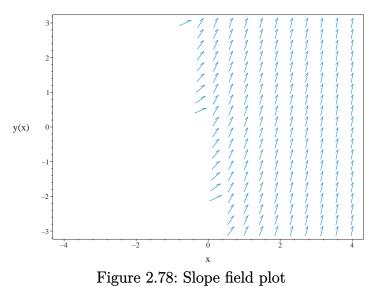
$$-2\sqrt{1+6x+y}+6\ln\left(\sqrt{1+6x+y}+6\right)-6\ln\left(-6+\sqrt{1+6x+y}\right)+6\ln\left(-35+6x+y\right)=-x+c_2$$

Which gives

$$y = e^{-2 \operatorname{LambertW}\left(-\frac{e^{-1 - \frac{x}{12} + \frac{c_2}{12}}}{6}\right) - 2 - \frac{x}{6} + \frac{c_2}{6}} - 12 e^{-\operatorname{LambertW}\left(-\frac{e^{-1 - \frac{x}{12} + \frac{c_2}{12}}}{6}\right) - 1 - \frac{x}{12} + \frac{c_2}{12}} - 6x + 35$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{dy}{dx} = \sqrt{1 + 6x + y}$	$R = x$ $S = -2\sqrt{1 + 6x + y} + \frac{1}{2}$	$rac{dS}{dR}=-1$



Summary of solutions found

$$y = \mathrm{e}^{-2 \, \mathrm{LambertW} \left(-\frac{\mathrm{e}^{-1 - \frac{x}{12} + \frac{c_2}{12}}}{6} \right) - 2 - \frac{x}{6} + \frac{c_2}{6}} - 12 \, \mathrm{e}^{-\mathrm{LambertW} \left(-\frac{\mathrm{e}^{-1 - \frac{x}{12} + \frac{c_2}{12}}}{6} \right) - 1 - \frac{x}{12} + \frac{c_2}{12}} - 6x + 35$$

 $y' = \sqrt{1 + 6x + y}$

Solved as first order ode of type dAlembert

Time used: 0.268 (sec)

Let p = y' the ode becomes

$$p = \sqrt{1 + 6x + y}$$

Solving for y from the above results in

$$y = p^2 - 6x - 1 (1)$$

This has the form

$$y = xf(p) + g(p) \tag{*}$$

Where f, g are functions of p = y'(x). The above ode is dAlembert ode which is now solved.

Taking derivative of (*) w.r.t. x gives

$$p = f + (xf' + g')\frac{dp}{dx}$$

$$p - f = (xf' + g')\frac{dp}{dx}$$
(2)

Comparing the form y = xf + g to (1A) shows that

$$f = -6$$
$$g = p^2 - 1$$

Hence (2) becomes

$$p + 6 = 2pp'(x) \tag{2A}$$

The singular solution is found by setting $\frac{dp}{dx} = 0$ in the above which gives

$$p + 6 = 0$$

No valid singular solutions found.

The general solution is found when $\frac{dp}{dx} \neq 0$. From eq. (2A). This results in

$$p'(x) = \frac{p(x) + 6}{2p(x)} \tag{3}$$

This ODE is now solved for p(x). No inversion is needed. Integrating gives

$$\int \frac{2p}{p+6} dp = dx$$
$$2p - 12\ln(p+6) = x + c_1$$

Singular solutions are found by solving

$$\frac{p+6}{2p} = 0$$

for p(x). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$p(x) = -6$$

Solving for p(x) gives

$$p(x) = -6$$

$$p(x) = -6 \text{ LambertW} \left(-\frac{e^{-1 - \frac{x}{12} - \frac{c_1}{12}}}{6} \right) - 6$$

Substituing the above solution for p in (2A) gives

$$y = -6x + 35$$

$$y = \left(-6 \text{ LambertW}\left(-\frac{e^{-1-\frac{x}{12}-\frac{c_1}{12}}}{6}\right) - 6\right)^2 - 6x - 1$$

The solution

$$y = -6x + 35$$

was found not to satisfy the ode or the IC. Hence it is removed.

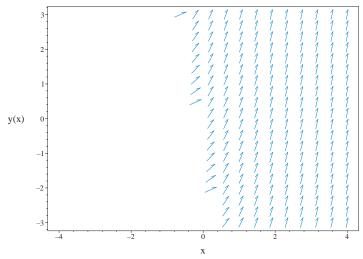


Figure 2.79: Slope field plot $y' = \sqrt{1 + 6x + y}$

Summary of solutions found

$$y = \left(-6 \text{ LambertW}\left(-\frac{e^{-1-\frac{x}{12}-\frac{c_1}{12}}}{6}\right) - 6\right)^2 - 6x - 1$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = \sqrt{1 + 6x + y(x)}$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = \sqrt{1 + 6x + y(x)}$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
   -> Calling odsolve with the ODE`, diff(y(x), x) = -6, y(x)` *** Sublevel 2 ***
```

Methods for first order ODEs:
--- Trying classification methods --trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- 1st order, canonical coordinates successful
<- homogeneous successful`

Maple dsolve solution

Solving time: 0.029 (sec)

Leaf size: 57

 $\frac{dsolve(diff(y(x),x) = (1+6*x+y(x))^{(1/2)},}{y(x),singsol=all)}$

$$x - 2\sqrt{1 + 6x + y} + 6\ln\left(6 + \sqrt{1 + 6x + y}\right)$$
$$-6\ln\left(-6 + \sqrt{1 + 6x + y}\right) + 6\ln\left(-35 + y + 6x\right) - c_1 = 0$$

Mathematica DSolve solution

Solving time: 10.898 (sec)

Leaf size: 112

DSolve[$\{D[y[x],x]==(1+6*x+y[x])^(1/2),\{\}\},$ y[x],x,IncludeSingularSolutions->True]

$$y(x) \to 36W \left(-\frac{1}{6} e^{\frac{1}{72}(-6x - 73 + 6c_1)} \right)^2 + 72W \left(-\frac{1}{6} e^{\frac{1}{72}(-6x - 73 + 6c_1)} \right) - 6x + 35$$

$$y(x) \to 35 - 6x$$

$$y(x) \to 36W \left(-\frac{1}{6} e^{\frac{1}{72}(-6x - 73)} \right)^2 + 72W \left(-\frac{1}{6} e^{\frac{1}{72}(-6x - 73)} \right) - 6x + 35$$

2.1.61 problem 61

Solved as first order homogeneous class C ode	430
Solved using Lie symmetry for first order ode	431
Maple step by step solution	437
Maple trace	437
Maple dsolve solution	437
Mathematica DSolve solution	438

Internal problem ID [8721]

Book: First order enumerated odes

Section : section 1 Problem number : 61

Date solved: Tuesday, December 17, 2024 at 12:58:29 PM CAS classification: [[_homogeneous, 'class C'], _dAlembert]

Solve

$$y' = (1 + 6x + y)^{1/3}$$

Solved as first order homogeneous class C ode

Time used: 0.240 (sec)

Let

$$z = 1 + 6x + y \tag{1}$$

Then

$$z'(x) = 6 + y'$$

Therefore

$$y' = z'(x) - 6$$

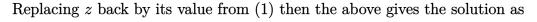
Hence the given ode can now be written as

$$z'(x) - 6 = z^{1/3}$$

This is separable first order ode. Integrating

$$\int dx = \int \frac{1}{z^{1/3} + 6} dz$$

$$x + c_1 = \frac{3z^{2/3}}{2} - 36\ln(z^{2/3} - 6z^{1/3} + 36) + 72\ln(z^{1/3} + 6) + 36\ln(216 + z) - 18z^{1/3}$$



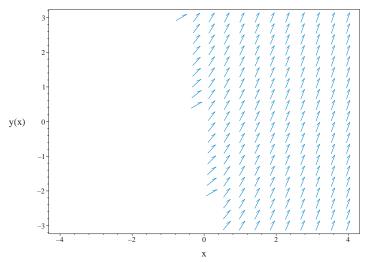


Figure 2.80: Slope field plot $y' = (1 + 6x + y)^{1/3}$

Summary of solutions found

$$\frac{3(1+6x+y)^{2/3}}{2} - 36\ln\left((1+6x+y)^{2/3} - 6(1+6x+y)^{1/3} + 36\right) + 72\ln\left((1+6x+y)^{1/3} + 6\right) + 36\ln\left(217+6x+y\right) - 18(1+6x+y)^{1/3} = x + c_1$$

Solved using Lie symmetry for first order ode

Time used: 0.928 (sec)

Writing the ode as

$$y' = (1 + 6x + y)^{1/3}$$
$$y' = \omega(x, y)$$

The condition of Lie symmetry is the linearized PDE given by

$$\eta_x + \omega(\eta_y - \xi_x) - \omega^2 \xi_y - \omega_x \xi - \omega_y \eta = 0$$
 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$\xi = xa_2 + ya_3 + a_1 \tag{1E}$$

$$\eta = xb_2 + yb_3 + b_1 \tag{2E}$$

Where the unknown coefficients are

$${a_1, a_2, a_3, b_1, b_2, b_3}$$

Substituting equations (1E,2E) and ω into (A) gives

$$b_{2} + (1 + 6x + y)^{1/3} (b_{3} - a_{2}) - (1 + 6x + y)^{2/3} a_{3} - \frac{2(xa_{2} + ya_{3} + a_{1})}{(1 + 6x + y)^{2/3}} - \frac{xb_{2} + yb_{3} + b_{1}}{3(1 + 6x + y)^{2/3}} = 0$$
(5E)

Putting the above in normal form gives

$$\frac{3(1+6x+y)^{4/3} a_3 - 3b_2(1+6x+y)^{2/3} + 24xa_2 + xb_2 - 18b_3x + 3a_2y + 6ya_3 - 2yb_3 + 6a_1 + 3a_2 + b_1}{3(1+6x+y)^{2/3}}$$

Setting the numerator to zero gives

$$-3(1+6x+y)^{4/3}a_3 + 3b_2(1+6x+y)^{2/3} - 24xa_2 - xb_2 + 18b_3x - 3a_2y - 6ya_3 + 2yb_3 - 6a_1 - 3a_2 - b_1 + 3b_3 = 0$$
 (6E)

Simplifying the above gives

$$-3(1+6x+y)^{4/3}a_3 - 3(1+6x+y)a_2 + 3(1+6x+y)b_3$$

$$+3b_2(1+6x+y)^{2/3} - 6xa_2 - xb_2 - 6ya_3 - yb_3 - 6a_1 - b_1 = 0$$
(6E)

Since the PDE has radicals, simplifying gives

$$-18(1+6x+y)^{1/3}a_3x + 3b_2(1+6x+y)^{2/3} - 3(1+6x+y)^{1/3}a_3y - 24xa_2 - xb_2 + 18b_3x - 3(1+6x+y)^{1/3}a_3 - 3a_2y - 6ya_3 + 2yb_3 - 6a_1 - 3a_2 - b_1 + 3b_3 = 0$$

Looking at the above PDE shows the following are all the terms with $\{x,y\}$ in them.

$$\left\{x, y, \left(1+6x+y\right)^{1/3}, \left(1+6x+y\right)^{2/3}\right\}$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$\left\{x = v_1, y = v_2, (1 + 6x + y)^{1/3} = v_3, (1 + 6x + y)^{2/3} = v_4\right\}$$

The above PDE (6E) now becomes

$$-18v_3a_3v_1 - 3v_3a_3v_2 - 24v_1a_2 - 3a_2v_2 - 6v_2a_3 - 3v_3a_3 - v_1b_2 + 3b_2v_4 + 18b_3v_1 + 2v_2b_3 - 6a_1 - 3a_2 - b_1 + 3b_3 = 0$$
(7E)

Collecting the above on the terms v_i introduced, and these are

$$\{v_1, v_2, v_3, v_4\}$$

Equation (7E) now becomes

$$-18v_3a_3v_1 + (-24a_2 - b_2 + 18b_3)v_1 - 3v_3a_3v_2 + (-3a_2 - 6a_3 + 2b_3)v_2 - 3v_3a_3 + 3b_2v_4 - 6a_1 - 3a_2 - b_1 + 3b_3 = 0$$
(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

$$-18a_3 = 0$$

$$-3a_3 = 0$$

$$3b_2 = 0$$

$$-24a_2 - b_2 + 18b_3 = 0$$

$$-3a_2 - 6a_3 + 2b_3 = 0$$

$$-6a_1 - 3a_2 - b_1 + 3b_3 = 0$$

Solving the above equations for the unknowns gives

$$a_1 = a_1$$
 $a_2 = 0$
 $a_3 = 0$
 $b_1 = -6a_1$
 $b_2 = 0$
 $b_3 = 0$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$\xi = 1$$
$$\eta = -6$$

Shifting is now applied to make $\xi = 0$ in order to simplify the rest of the computation

$$\eta = \eta - \omega(x, y) \xi
= -6 - \left((1 + 6x + y)^{1/3} \right) (1)
= -(1 + 6x + y)^{1/3} - 6
\xi = 0$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \to (R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$\frac{dx}{\xi} = \frac{dy}{\eta} = dS \tag{1}$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}\right) S(x,y) = 1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Since $\xi = 0$ then in this special case

$$R = x$$

S is found from

$$S = \int \frac{1}{\eta} dy$$

= $\int \frac{1}{-(1+6x+y)^{1/3}-6} dy$

Which results in

$$S = -\frac{3(1+6x+y)^{2/3}}{2} + 36\ln\left((1+6x+y)^{2/3} - 6(1+6x+y)^{1/3} + 36\right) - 72\ln\left((1+6x+y)^{1/3} + 6\right) - 36\ln\left((1+6x+y)^{1/3} + 6\right) - 36\ln\left((1+$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$\frac{dS}{dR} = \frac{S_x + \omega(x, y)S_y}{R_x + \omega(x, y)R_y} \tag{2}$$

Where in the above R_x, R_y, S_x, S_y are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$\omega(x, y) = (1 + 6x + y)^{1/3}$$

Evaluating all the partial derivatives gives

$$R_x = 1$$

$$R_y = 0$$

$$S_x = -\frac{6}{(1 + 6x + y)^{1/3} + 6}$$

$$S_y = \frac{1}{-(1 + 6x + y)^{1/3} - 6}$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$\frac{dS}{dR} = -1\tag{2A}$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$\frac{dS}{dR} = -1$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S.

Since the ode has the form $\frac{d}{dR}S(R) = f(R)$, then we only need to integrate f(R).

$$\int dS = \int -1 dR$$
$$S(R) = -R + c_2$$

To complete the solution, we just need to transform the above back to x, y coordinates. This results in

$$-\frac{3(1+6x+y)^{2/3}}{2}+36\ln\left((1+6x+y)^{2/3}-6(1+6x+y)^{1/3}+36\right)-72\ln\left((1+6x+y)^{1/3}+6\right)-362\ln\left((1+6x+y)^{1/3}+6\right)$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{dy}{dx} = (1+6x+y)^{1/3}$	$R = x$ $S = -\frac{3(1+6x+y)^{2/3}}{2}$	$rac{dS}{dR} = -1$

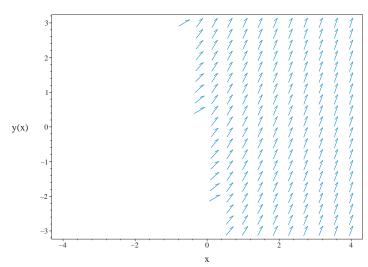


Figure 2.81: Slope field plot $y' = (1 + 6x + y)^{1/3}$

Summary of solutions found

$$-\frac{3(1+6x+y)^{2/3}}{2}+36 \ln \left((1+6x+y)^{2/3}\right. \\ \left.-6(1+6x+y)^{1/3}+36\right)-72 \ln \left((1+6x+y)^{1/3}+6\right)-36 \ln \left(217+6x+y\right)+18(1+6x+y)^{1/3}=-x+c_2$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = (1 + 6x + y(x))^{1/3}$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = (1 + 6x + y(x))^{1/3}$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`</pre>
```

Maple dsolve solution

Solving time: 0.029 (sec)

Leaf size: 79

$$\frac{dsolve(diff(y(x),x) = (1+6*x+y(x))^{(1/3)},}{y(x),singsol=all)}$$

$$x - \frac{3(1+6x+y)^{2/3}}{2} - 72\ln\left(6 + (1+6x+y)^{1/3}\right) + 36\ln\left((1+6x+y)^{2/3} - 6(1+6x+y)^{1/3} + 36\right) - 36\ln\left(217+y+6x\right) + 18(1+6x+y)^{1/3} - c_1 = 0$$

Mathematica DSolve solution

Solving time: 0.229 (sec)

Leaf size: 66

DSolve[$\{D[y[x],x]==(1+6*x+y[x])^(1/3),\{\}\},$ y[x],x,IncludeSingularSolutions->True]

Solve
$$\left[\frac{1}{6} \left(y(x) - 9(y(x) + 6x + 1)^{2/3} + 108\sqrt[3]{y(x) + 6x + 1} - 648 \log \left(\sqrt[3]{y(x) + 6x + 1} + 6 \right) + 6x + 1 \right) - \frac{y(x)}{6} = c_1, y(x) \right]$$

2.1.62 problem 62

Solved as first order homogeneous class C ode	439
Solved using Lie symmetry for first order ode	440
Maple step by step solution	446
Maple trace	446
Maple dsolve solution	446
Mathematica DSolve solution	447

Internal problem ID [8722]

Book: First order enumerated odes

Section: section 1
Problem number: 62

Date solved: Tuesday, December 17, 2024 at 12:58:31 PM CAS classification: [[_homogeneous, 'class C'], _dAlembert]

Solve

$$y' = (1 + 6x + y)^{1/4}$$

Solved as first order homogeneous class C ode

Time used: 0.237 (sec)

Let

$$z = 1 + 6x + y \tag{1}$$

Then

$$z'(x) = 6 + y'$$

Therefore

$$y' = z'(x) - 6$$

Hence the given ode can now be written as

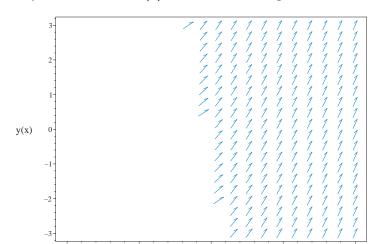
$$z'(x) - 6 = z^{1/4}$$

This is separable first order ode. Integrating

$$\int dx = \int \frac{1}{z^{1/4} + 6} dz$$

$$x + c_1 = -216 \ln (-z + 1296) - 12\sqrt{z} + 216 \ln (\sqrt{z} + 36) - 216 \ln (\sqrt{z} - 36)$$

$$+ 144z^{1/4} - 432 \ln (z^{1/4} + 6) + 432 \ln (z^{1/4} - 6) + \frac{4z^{3/4}}{3}$$



Replacing z back by its value from (1) then the above gives the solution as

Figure 2.82: Slope field plot $y' = (1 + 6x + y)^{1/4}$

Summary of solutions found

$$-216\ln\left(1295 - 6x - y\right) - 12\sqrt{1 + 6x + y} + 216\ln\left(\sqrt{1 + 6x + y} + 36\right)$$
$$-216\ln\left(\sqrt{1 + 6x + y} - 36\right) + 144(1 + 6x + y)^{1/4} - 432\ln\left((1 + 6x + y)^{1/4} + 6\right) + 432\ln\left((1 + 6x + y)^{1/4} - 6\right) + \frac{4(1 + 6x + y)^{3/4}}{3} = x + c_1$$

Solved using Lie symmetry for first order ode

Time used: 0.756 (sec)

Writing the ode as

$$y' = (1 + 6x + y)^{1/4}$$
$$y' = \omega(x, y)$$

The condition of Lie symmetry is the linearized PDE given by

$$\eta_x + \omega(\eta_y - \xi_x) - \omega^2 \xi_y - \omega_x \xi - \omega_y \eta = 0$$
 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$\xi = xa_2 + ya_3 + a_1 \tag{1E}$$

$$\eta = xb_2 + yb_3 + b_1 \tag{2E}$$

Where the unknown coefficients are

$${a_1, a_2, a_3, b_1, b_2, b_3}$$

Substituting equations (1E,2E) and ω into (A) gives

$$b_{2} + (1 + 6x + y)^{1/4} (b_{3} - a_{2}) - \sqrt{1 + 6x + y} a_{3}$$

$$- \frac{3(xa_{2} + ya_{3} + a_{1})}{2(1 + 6x + y)^{3/4}} - \frac{xb_{2} + yb_{3} + b_{1}}{4(1 + 6x + y)^{3/4}} = 0$$
(5E)

Putting the above in normal form gives

$$-\frac{4(1+6x+y)^{5/4} a_3 - 4 b_2 (1+6x+y)^{3/4} + 30 x a_2 + x b_2 - 24 b_3 x + 4 a_2 y + 6 y a_3 - 3 y b_3 + 6 a_1 + 4 a_2 + b_1}{4 \left(1+6 x+y\right)^{3/4}}$$

Setting the numerator to zero gives

$$-4(1+6x+y)^{5/4}a_3 + 4b_2(1+6x+y)^{3/4} - 30xa_2 - xb_2 + 24b_3x - 4a_2y - 6ya_3 + 3yb_3 - 6a_1 - 4a_2 - b_1 + 4b_3 = 0$$
 (6E)

Simplifying the above gives

$$-4(1+6x+y) a_2 + 4(1+6x+y) b_3 - 4(1+6x+y)^{5/4} a_3$$

$$+4b_2(1+6x+y)^{3/4} - 6xa_2 - xb_2 - 6ya_3 - yb_3 - 6a_1 - b_1 = 0$$
(6E)

Since the PDE has radicals, simplifying gives

$$4b_2(1+6x+y)^{3/4} - 24(1+6x+y)^{1/4}a_3x - 4(1+6x+y)^{1/4}a_3y - 30xa_2 - xb_2 + 24b_3x - 4(1+6x+y)^{1/4}a_3 - 4a_2y - 6ya_3 + 3yb_3 - 6a_1 - 4a_2 - b_1 + 4b_3 = 0$$

Looking at the above PDE shows the following are all the terms with $\{x,y\}$ in them.

$$\left\{x, y, \left(1+6x+y\right)^{1/4}, \left(1+6x+y\right)^{3/4}\right\}$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$\left\{x = v_1, y = v_2, (1 + 6x + y)^{1/4} = v_3, (1 + 6x + y)^{3/4} = v_4\right\}$$

The above PDE (6E) now becomes

$$-24v_3a_3v_1 - 4v_3a_3v_2 - 30v_1a_2 - 4a_2v_2 - 6v_2a_3 - 4v_3a_3 - v_1b_2 + 4b_2v_4 + 24b_3v_1 + 3v_2b_3 - 6a_1 - 4a_2 - b_1 + 4b_3 = 0$$
(7E)

Collecting the above on the terms v_i introduced, and these are

$$\{v_1, v_2, v_3, v_4\}$$

Equation (7E) now becomes

$$-24v_3a_3v_1 + (-30a_2 - b_2 + 24b_3)v_1 - 4v_3a_3v_2 + (-4a_2 - 6a_3 + 3b_3)v_2 - 4v_3a_3 + 4b_2v_4 - 6a_1 - 4a_2 - b_1 + 4b_3 = 0$$
(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

$$-24a_3 = 0$$

$$-4a_3 = 0$$

$$4b_2 = 0$$

$$-30a_2 - b_2 + 24b_3 = 0$$

$$-4a_2 - 6a_3 + 3b_3 = 0$$

$$-6a_1 - 4a_2 - b_1 + 4b_3 = 0$$

Solving the above equations for the unknowns gives

$$a_1 = a_1$$
 $a_2 = 0$
 $a_3 = 0$
 $b_1 = -6a_1$
 $b_2 = 0$
 $b_3 = 0$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$\xi = 1$$
$$\eta = -6$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \to (R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$\frac{dx}{\xi} = \frac{dy}{\eta} = dS \tag{1}$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}\right) S(x,y) = 1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Therefore

$$\frac{dy}{dx} = \frac{\eta}{\xi}$$
$$= \frac{-6}{1}$$
$$= -6$$

This is easily solved to give

$$y = -6x + c_1$$

Where now the coordinate R is taken as the constant of integration. Hence

$$R = 6x + y$$

And S is found from

$$dS = \frac{dx}{\xi}$$
$$= \frac{dx}{1}$$

Integrating gives

$$S = \int \frac{dx}{T}$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$\frac{dS}{dR} = \frac{S_x + \omega(x, y)S_y}{R_x + \omega(x, y)R_y} \tag{2}$$

Where in the above R_x, R_y, S_x, S_y are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$\omega(x,y) = (1 + 6x + y)^{1/4}$$

Evaluating all the partial derivatives gives

$$R_x = 6$$

$$R_y = 1$$

$$S_x = 1$$

$$S_y = 0$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$\frac{dS}{dR} = \frac{1}{(1+6x+y)^{1/4}+6} \tag{2A}$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$\frac{dS}{dR} = \frac{1}{(1+R)^{1/4} + 6}$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S.

Since the ode has the form $\frac{d}{dR}S(R) = f(R)$, then we only need to integrate f(R).

$$\int dS = \int \frac{1}{(1+R)^{1/4} + 6} dR$$

$$S(R) = \frac{4(1+R)^{3/4}}{3} - 12\sqrt{1+R} + 144(1+R)^{1/4} - 864 \ln\left((1+R)^{1/4} + 6\right) + c_2$$

To complete the solution, we just need to transform the above back to x, y coordinates. This results in

$$x = \frac{4(1+6x+y)^{3/4}}{3} - 12\sqrt{1+6x+y} + 144(1+6x+y)^{1/4} - 864\ln\left((1+6x+y)^{1/4} + 6\right) + c_2$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{dy}{dx} = (1+6x+y)^{1/4}$	R = 6x + y $S = x$	$\frac{dS}{dR} = \frac{1}{(1+R)^{1/4}+6}$ $S(R)$

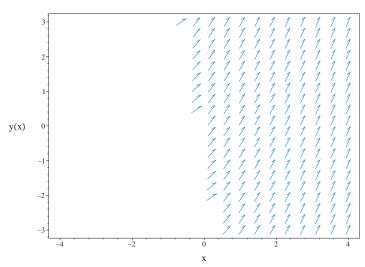


Figure 2.83: Slope field plot $y' = (1 + 6x + y)^{1/4}$

Summary of solutions found

$$x = \frac{4(1+6x+y)^{3/4}}{3} - 12\sqrt{1+6x+y} + 144(1+6x+y)^{1/4} - 864\ln\left((1+6x+y)^{1/4} + 6\right) + c_2$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = (1 + 6x + y(x))^{1/4}$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = (1+6x+y(x))^{1/4}$$

Maple trace

`Methods for first order ODEs:
--- Trying classification methods --trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful</pre>

Maple dsolve solution

<- homogeneous successful`</pre>

Solving time: 0.030 (sec)

Leaf size: 109

$$\frac{\text{dsolve}(\text{diff}(y(x),x) = (1+6*x+y(x))^{(1/4)},}{y(x),\text{singsol=all})}$$

$$x + 216 \ln \left(-y - 6x + 1295 \right) + 12\sqrt{1 + 6x + y} - 216 \ln \left(\sqrt{1 + 6x + y} + 36 \right)$$

$$+ 216 \ln \left(\sqrt{1 + 6x + y} - 36 \right) - 144(1 + 6x + y)^{1/4} + 432 \ln \left(6 + (1 + 6x + y)^{1/4} \right) - 432 \ln \left((1 + 6x + y)^{1/4} - 6 \right) - \frac{4(1 + 6x + y)^{3/4}}{3} - c_1 = 0$$

Mathematica DSolve solution

Solving time: 0.325 (sec)

Leaf size: 79

DSolve[$\{D[y[x],x]==(1+6*x+y[x])^(1/4),\{\}\},$ y[x],x,IncludeSingularSolutions->True]

Solve
$$\left[\frac{1}{6}\left(y(x) - 8(y(x) + 6x + 1)^{3/4} + 72\sqrt{y(x) + 6x + 1} - 864\sqrt[4]{y(x) + 6x + 1}\right) + 5184\log\left(\sqrt[4]{y(x) + 6x + 1} + 6\right) + 6x + 1\right) - \frac{y(x)}{6} = c_1, y(x)$$

2.1.63 problem 63

Solved as first order homogeneous class C ode	448
Solved using Lie symmetry for first order ode	449
Maple step by step solution	455
Maple trace	455
Maple dsolve solution	456
Mathematica DSolve solution	456

Internal problem ID [8723]

Book: First order enumerated odes

Section: section 1
Problem number: 63

Date solved: Tuesday, December 17, 2024 at 12:58:33 PM CAS classification: [[_homogeneous, 'class C'], _dAlembert]

Solve

$$y' = (a + bx + y)^4$$

Solved as first order homogeneous class C ode

Time used: 0.510 (sec)

Let

$$z = a + bx + y \tag{1}$$

Then

$$z'(x) = b + y'$$

Therefore

$$y' = z'(x) - b$$

Hence the given ode can now be written as

$$z'(x) - b = z^4$$

This is separable first order ode. Integrating

Replacing z back by its value from (1) then the above gives the solution as Summary of solutions found

$$\frac{\sqrt{2} \left(\ln \left(\frac{(a+bx+y)^2 + b^{1/4} (a+bx+y) \sqrt{2} + \sqrt{b}}{(a+bx+y)^2 - b^{1/4} (a+bx+y) \sqrt{2} + \sqrt{b}} \right) + 2 \arctan \left(\frac{\sqrt{2} \left(a+bx+y \right)}{b^{1/4}} + 1 \right) + 2 \arctan \left(\frac{\sqrt{2} \left(a+bx+y \right)}{b^{1/4}} - 1 \right) \right)}{8b^{3/4}} = x + c_1$$

Solved using Lie symmetry for first order ode

Time used: 0.961 (sec)

Writing the ode as

$$y' = (bx + a + y)^4$$
$$y' = \omega(x, y)$$

The condition of Lie symmetry is the linearized PDE given by

$$\eta_x + \omega(\eta_y - \xi_x) - \omega^2 \xi_y - \omega_x \xi - \omega_y \eta = 0$$
 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$\xi = xa_2 + ya_3 + a_1 \tag{1E}$$

$$\eta = xb_2 + yb_3 + b_1 \tag{2E}$$

Where the unknown coefficients are

$$\{a_1, a_2, a_3, b_1, b_2, b_3\}$$

Substituting equations (1E,2E) and ω into (A) gives

$$b_2 + (bx + a + y)^4 (b_3 - a_2) - (bx + a + y)^8 a_3$$

$$-4(bx + a + y)^3 b(xa_2 + ya_3 + a_1) - 4(bx + a + y)^3 (xb_2 + yb_3 + b_1) = 0$$
(5E)

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

Looking at the above PDE shows the following are all the terms with $\{x,y\}$ in them.

$$\{x,y\}$$

The following substitution is now made to be able to collect on all terms with $\{x,y\}$ in them

$$\{x=v_1,y=v_2\}$$

The above PDE (6E) now becomes

Collecting the above on the terms v_i introduced, and these are

$$\{v_1, v_2\}$$

Equation (7E) now becomes

$$-56ab^6a_3v_1^6v_2 - 168a^2b^5a_3v_1^5v_2 - 168ab^5a_3v_1^5v_2^2 \\ -280a^3b^4a_3v_1^4v_2 - 420a^2b^4a_3v_1^4v_2^2 - 280ab^4a_3v_1^4v_2^3 \\ -560a^3b^3a_3v_1^3v_2^3 - 560a^2b^3a_3v_1^3v_2^3 - 280ab^3a_3v_1^3v_2^4 \\ -560a^3b^2a_3v_1^2v_2^3 - 420a^2b^2a_3v_1^2v_2^4 - 168ab^2a_3v_1^2v_2^5 \\ -280a^3ba_3v_1v_2^4 - 168a^2ba_3v_1v_2^5 - 56aba_3v_1v_2^6 \\ + (-280a^4b^3a_3 - 4b^4a_3 - 16b^3a_2 - 12b^2b_2)v_1^3v_2 \\ + (-420a^4b^2a_3 - 12b^3a_3 - 18b^2a_2 - 6b^2b_3 - 12bb_2)v_1^2v_2^2 \\ + (-168a^5b^2a_3 - 12ab^3a_3 - 36ab^2a_2 \\ - 12b^3a_1 - 24abb_2 - 12b^2b_1)v_1^2v_2 \\ + (-280a^4ba_3 - 12b^2a_3 - 8ba_2 - 8bb_3 - 4b_2)v_1v_2^3 \\ + (-168a^5ba_3 - 24ab^2a_3 - 24aba_2 - 12abb_3 - 12b^2a_1 \\ - 12ab_2 - 12bb_1)v_1v_2^2 + (-56a^6ba_3 - 12a^2b^2a_3 \\ - 24a^2ba_2 - 24ab^2a_1 - 12a^2b_2 - 24abb_1)v_1v_2 \\ - 28b^2a_3v_1^2v_2^6 - 8ba_3v_1v_2^7 - 8ab^7a_3v_1^7 - 8b^7a_3v_1^7v_2 \\ - 28a^2b^6a_3v_1^6 - 28b^6a_3v_1^6v_2^2 - 56a^3b^5a_3v_1^5 - 56b^5a_3v_1^5v_2^3 \\ - 70b^4a_3v_1^4v_2^4 - 56b^3a_3v_1^3v_2^5 + b_2 - 4a^3ba_1 \\ + (-70a^4b^4a_3 - 5b^4a_2 + b^4b_3 - 4b^3b_2)v_1^4 + (-56a^5b^3a_3 - 16ab^3a_2 + 4ab^3b_3 - 4b^4a_1 - 12ab^2b_2 - 4b^3b_1)v_1^3 \\ + (-28a^6b^2a_3 - 18a^2b^2a_2 + 6a^2b^2b_3 - 12ab^3a_1 - 12a^2ba_2 - 12ab^2b_1)v_1^2 + (-8a^7ba_3 - 8a^3ba_2 + 4a^3ba_3 - 2a^2ba_1 - 4a^3b_2 - 12a^2bb_1)v_1 + (-70a^4a_3 - 4ba_3 - a_2 - 3b_3)v_2^4 \\ + (-56a^5a_3 - 12aba_1 - 12ab_1)v_2^2 \\ + (-8a^7a_3 - 4a^3ba_3 - 4a^3a_2 - 12a^2ba_1 - 12a^2b_1)v_2 - 6a^3a_3v_1^8 - 56a^3a_3v_2^5 - 28a^2a_3v_2^6 - 8aa_3v_2^7 \\ - a^4a_2 + a^4b_3 - a^8a_3 - 4a^3b_1 - 3a_3v_3^8 = 0$$

 $-a_3 = 0$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$-8aa_3 = 0$$

$$-28a^2a_3 = 0$$

$$-56a^3a_3 = 0$$

$$-8ba_3 = 0$$

$$-28b^2a_3 = 0$$

$$-28b^2a_3 = 0$$

$$-56b^3a_3 = 0$$

$$-70b^4a_3 = 0$$

$$-56b^5a_3 = 0$$

$$-28b^6a_3 = 0$$

$$-28b^6a_3 = 0$$

$$-28b^6a_3 = 0$$

$$-168ab^2a_3 = 0$$

$$-168ab^2a_3 = 0$$

$$-168ab^3a_3 = 0$$

$$-280ab^4a_3 = 0$$

$$-168ab^5a_3 = 0$$

$$-168a^5a_3 = 0$$

$$-168a^2ba_3 = 0$$

$$-168a^2b^3a_3 = 0$$

$$-168a^2b^3a_3 = 0$$

$$-168a^2b^3a_3 = 0$$

$$-168a^2b^3a_3 = 0$$

$$-280a^3b^3a_3 = 0$$

$$-280a^4b^3a_3 - 12b^3a_3 - 12b^3a$$

Solving the above equations for the unknowns gives

$$a_1 = a_1$$
 $a_2 = 0$
 $a_3 = 0$
 $b_1 = -ba_1$
 $b_2 = 0$
 $b_3 = 0$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$\xi = 1$$
$$\eta = -b$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \to (R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$\frac{dx}{\xi} = \frac{dy}{\eta} = dS \tag{1}$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}\right) S(x,y) = 1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Therefore

$$\frac{dy}{dx} = \frac{\eta}{\xi}$$
$$= \frac{-b}{1}$$
$$= -b$$

This is easily solved to give

$$y = -bx + c_1$$

Where now the coordinate R is taken as the constant of integration. Hence

$$R = bx + y$$

And S is found from

$$dS = \frac{dx}{\xi}$$
$$= \frac{dx}{1}$$

Integrating gives

$$S = \int \frac{dx}{T}$$
$$= x$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$\frac{dS}{dR} = \frac{S_x + \omega(x, y)S_y}{R_x + \omega(x, y)R_y} \tag{2}$$

Where in the above R_x, R_y, S_x, S_y are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$\omega(x,y) = (bx + a + y)^4$$

Evaluating all the partial derivatives gives

$$R_x = b$$

$$R_y = 1$$

$$S_x = 1$$

$$S_y = 0$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$\frac{dS}{dR} = \frac{1}{b + (bx + a + y)^4} \tag{2A}$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$\frac{dS}{dR} = \frac{1}{b + (R+a)^4}$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S.

Since the ode has the form $\frac{d}{dR}S(R) = f(R)$, then we only need to integrate f(R).

$$\begin{split} \int dS &= \int \frac{1}{R^4 + 4R^3 a + 6R^2 a^2 + 4R \, a^3 + a^4 + b} \, dR \\ S(R) &= \frac{\left(\sum\limits_{R = \text{RootOf}\left(_Z^4 + 4_Z^3 a + 6_Z^2 a^2 + 4a^3_Z + a^4 + b \right)} \frac{\ln\left(R - _R \right)}{_R^3 + 3_R^2 a + 3_R \, a^2 + a^3} \right)}{4} + c_2 \end{split}$$

$$S(R) = \int \frac{1}{R^4 + 4R^3a + 6R^2a^2 + 4Ra^3 + a^4 + b} dR + c_2$$

This results in

$$x = \int^{y} \frac{1}{(bx + \underline{a})^{4} + 4(bx + \underline{a})^{3} a + 6(bx + \underline{a})^{2} a^{2} + 4(bx + \underline{a}) a^{3} + a^{4} + b} d\underline{a} + c_{2}$$

Summary of solutions found

$$x = \int_{-\pi}^{\pi} \frac{1}{(bx + a)^{4} + 4(bx + a)^{3} a + 6(bx + a)^{2} a^{2} + 4(bx + a)^{3} a + 6(bx + a)^{2} a^{2} + 4(bx + a)^{3} a + 6(bx + a)^{2} a^{2} + 4(bx + a)^{3} a + 6(bx + a)^{3} a +$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = (a + bx + y(x))^4$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = (a + bx + y(x))^4$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
```

```
trying homogeneous types:
trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
   -> Calling odsolve with the ODE`, diff(y(x), x) = -b, y(x)` ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
<- 1st order, canonical coordinates successful
<- homogeneous successful`</pre>
```

Maple dsolve solution

Solving time: 0.040 (sec)

Leaf size: 49

$$\frac{dsolve(diff(y(x),x) = (a+b*x+y(x))^4,}{y(x),singsol=all)}$$

$$y = -bx + \text{RootOf}\left(-x + \int^{-Z} \frac{1}{\underline{a^4 + 4\underline{a^3a + 6\underline{a^2a^2 + 4\underline{a a^3 + a^4 + b}}}} d\underline{a} + c_1\right)$$

Mathematica DSolve solution

Solving time: 0.413 (sec)

Leaf size: 163

Solve
$$\frac{2\sqrt{2}\arctan\left(1-\frac{\sqrt{2}(a+bx+y(x))}{\sqrt[4]{b}}\right)-2\sqrt{2}\arctan\left(\frac{\sqrt{2}(a+bx+y(x))}{\sqrt[4]{b}}+1\right)+\sqrt{2}\log\left((a+bx+y(x))^2-\sqrt{2}\arctan\left(\frac{\sqrt{2}(a+bx+y(x))}{\sqrt[4]{b}}+1\right)+\sqrt{2}\log\left((a+bx+y(x))^2-\sqrt{2}\arctan\left(\frac{\sqrt{2}(a+bx+y(x))}{\sqrt[4]{b}}+1\right)+\sqrt{2}\log\left((a+bx+y(x))^2-\sqrt{2}\arctan\left(\frac{\sqrt{2}(a+bx+y(x))}{\sqrt[4]{b}}+1\right)+\sqrt{2}\log\left((a+bx+y(x))^2-\sqrt{2}\arctan\left(\frac{\sqrt{2}(a+bx+y(x))}{\sqrt[4]{b}}+1\right)+\sqrt{2}\log\left((a+bx+y(x))^2-\sqrt{2}\arctan\left(\frac{\sqrt{2}(a+bx+y(x))}{\sqrt[4]{b}}+1\right)+\sqrt{2}\log\left((a+bx+y(x))^2-\sqrt{2}\arctan\left(\frac{\sqrt{2}(a+bx+y(x))}{\sqrt{b}}+1\right)+\sqrt{2}\log\left((a+bx+y(x))^2-\sqrt{2}\arctan\left(\frac{\sqrt{2}(a+bx+y(x))}{\sqrt{b}}+1\right)+\sqrt{2}\log\left((a+bx+y(x))^2-\sqrt{2}\arctan\left(\frac{\sqrt{2}(a+bx+y(x))}{\sqrt{b}}+1\right)+\sqrt{2}\log\left((a+bx+y(x))^2-\sqrt{2}\arctan\left(\frac{\sqrt{2}(a+bx+y(x))}{\sqrt{b}}+1\right)+\sqrt{2}\log\left((a+bx+y(x))^2-\sqrt{2}\arctan\left(\frac{\sqrt{2}(a+bx+y(x))}{\sqrt{b}}+1\right)+\sqrt{2}\log\left((a+bx+y(x))^2-\sqrt{2}\arctan\left(\frac{\sqrt{2}(a+bx+y(x))}{\sqrt{b}}+1\right)+\sqrt{2}\log\left(\frac{\sqrt{2}(a+b$$

2.1.64 problem 64

Solved as first order homogeneous class C ode	457
Solved using Lie symmetry for first order ode	459
Solved as first order ode of type dAlembert	468
Maple step by step solution $\dots \dots \dots \dots \dots$	481
Maple trace	481
Maple dsolve solution $\ldots \ldots \ldots \ldots \ldots \ldots$	481
Mathematica DSolve solution	482

Internal problem ID [8724]

Book: First order enumerated odes

Section: section 1

Problem number: 64

Date solved: Tuesday, December 17, 2024 at 01:01:14 PM CAS classification: [[_homogeneous, 'class C'], _dAlembert]

Solve

$$y' = (\pi + x + 7y)^{7/2}$$

Solved as first order homogeneous class C ode

Time used: 0.861 (sec)

Let

$$z = \pi + x + 7y \tag{1}$$

Then

$$z'(x) = 1 + 7y'$$

Therefore

$$y' = \frac{z'(x)}{7} - \frac{1}{7}$$

Hence the given ode can now be written as

$$\frac{z'(x)}{7} - \frac{1}{7} = z^{7/2}$$

This is separable first order ode. Integrating

$$\begin{split} \int dx &= \int \frac{1}{7z^{7/2} + 1} dz \\ x + c_1 &= -\frac{\left(\sum\limits_{R = \text{RootOf}(49_Z^7 - 1)} \frac{\ln\left(z - \underline{R}\right)}{\underline{R}^6}\right)}{343} + \frac{\left(\sum\limits_{R = \text{RootOf}(7_Z^7 + 1)} \frac{\ln\left(\sqrt{z} - \underline{R}\right)}{\underline{R}^5}\right)}{49} \\ &+ \frac{\left(\sum\limits_{R = \text{RootOf}(7_Z^7 - 1)} \frac{\ln\left(\sqrt{z} - \underline{R}\right)}{\underline{R}^5}\right)}{49} \end{split}$$

Replacing z back by its value from (1) then the above gives the solution as

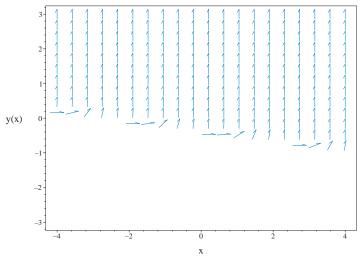


Figure 2.84: Slope field plot $y' = (\pi + x + 7y)^{7/2}$

Summary of solutions found

$$-\frac{\left(\sum\limits_{R=\text{RootOf}(49_Z^7-1)} \frac{\ln(\pi+x+7y-R)}{R^6}\right)}{343} + \frac{\left(\sum\limits_{R=\text{RootOf}(7_Z^7+1)} \frac{\ln(\sqrt{\pi+x+7y}-R)}{R^5}\right)}{49} + \frac{\left(\sum\limits_{R=\text{RootOf}(7_Z^7-1)} \frac{\ln(\sqrt{\pi+x+7y}-R)}{R^5}\right)}{49} = x + c_1$$

Solved using Lie symmetry for first order ode

Time used: 2.738 (sec)

Writing the ode as

$$y' = (\pi + x + 7y)^{7/2}$$
$$y' = \omega(x, y)$$

The condition of Lie symmetry is the linearized PDE given by

$$\eta_x + \omega(\eta_y - \xi_x) - \omega^2 \xi_y - \omega_x \xi - \omega_y \eta = 0 \tag{A}$$

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$\xi = xa_2 + ya_3 + a_1 \tag{1E}$$

$$\eta = xb_2 + yb_3 + b_1 \tag{2E}$$

Where the unknown coefficients are

$$\{a_1, a_2, a_3, b_1, b_2, b_3\}$$

Substituting equations (1E,2E) and ω into (A) gives

$$b_{2} + (\pi + x + 7y)^{7/2} (b_{3} - a_{2}) - (\pi + x + 7y)^{7} a_{3}$$

$$- \frac{7(\pi + x + 7y)^{5/2} (xa_{2} + ya_{3} + a_{1})}{2}$$

$$- \frac{49(\pi + x + 7y)^{5/2} (xb_{2} + yb_{3} + b_{1})}{2} = 0$$
(5E)

Putting the above in normal form gives

$$-x^{7}a_{3} - 823543y^{7}a_{3} + (\pi + x + 7y)^{7/2}b_{3}$$

$$-(\pi + x + 7y)^{7/2}a_{2} - \pi^{7}a_{3} - \frac{7(\pi + x + 7y)^{5/2}a_{1}}{2} - \frac{49(\pi + x + 7y)^{5/2}b_{1}}{2}$$

$$+ b_{2} - \frac{7(\pi + x + 7y)^{5/2}xa_{2}}{2} - \frac{7(\pi + x + 7y)^{5/2}ya_{3}}{2}$$

$$- \frac{49(\pi + x + 7y)^{5/2}xb_{2}}{2} - \frac{49(\pi + x + 7y)^{5/2}yb_{3}}{2} - 7\pi^{6}xa_{3} - 49\pi^{6}ya_{3}$$

$$- 21\pi^{5}x^{2}a_{3} - 1029\pi^{5}y^{2}a_{3} - 35\pi^{4}x^{3}a_{3} - 12005\pi^{4}y^{3}a_{3} - 35\pi^{3}x^{4}a_{3}$$

$$- 84035\pi^{3}y^{4}a_{3} - 21\pi^{2}x^{5}a_{3} - 352947\pi^{2}y^{5}a_{3} - 7\pi x^{6}a_{3} - 823543\pi y^{6}a_{3}$$

$$- 49x^{6}ya_{3} - 1029x^{5}y^{2}a_{3} - 12005x^{4}y^{3}a_{3} - 84035x^{3}y^{4}a_{3} - 352947x^{2}y^{5}a_{3}$$

$$- 823543xy^{6}a_{3} - 735\pi^{4}x^{2}ya_{3} - 5145\pi^{4}xy^{2}a_{3} - 980\pi^{3}x^{3}ya_{3}$$

$$- 10290\pi^{3}x^{2}y^{2}a_{3} - 48020\pi^{3}xy^{3}a_{3} - 735\pi^{2}x^{4}ya_{3} - 10290\pi^{2}x^{3}y^{2}a_{3}$$

$$- 72030\pi^{2}x^{2}y^{3}a_{3} - 252105\pi^{2}xy^{4}a_{3} - 294\pi x^{5}ya_{3} - 5145\pi x^{4}y^{2}a_{3}$$

$$- 48020\pi x^{3}y^{3}a_{3} - 252105\pi x^{2}y^{4}a_{3} - 705894\pi xy^{5}a_{3} - 294\pi^{5}xya_{3} = 0$$

Setting the numerator to zero gives

$$-2x^{7}a_{3}-1647086y^{7}a_{3}+2(\pi+x+7y)^{7/2}b_{3}-2(\pi+x+7y)^{7/2}a_{2}-2\pi^{7}a_{3}-7(\pi+x+7y)^{5/2}b_{1}\\-49(\pi+x+7y)^{5/2}b_{1}+2b_{2}-7(\pi+x+7y)^{5/2}xa_{2}-7(\pi+x+7y)^{5/2}ya_{3}-49(\pi+x+7y)^{5/2}xb_{2}-49(\pi+x+7y)^{5/2}b_{1}+3b_{2}-49(\pi+x+7y)^{5/2}b_{2}-49(\pi+x+7$$

Since the PDE has radicals, simplifying gives

$$-2x^{7}a_{3} - 1647086y^{7}a_{3} - 2\pi^{7}a_{3} + 2b_{2}$$

$$-14\pi x \sqrt{\pi + x + 7y} yb_{3} - 2\pi^{3} \sqrt{\pi + x + 7y} a_{2}$$

$$+2\pi^{3} \sqrt{\pi + x + 7y} b_{3} - 9x^{3} \sqrt{\pi + x + 7y} a_{2}$$

$$-49x^{3} \sqrt{\pi + x + 7y} y^{3}a_{2} - 343 \sqrt{\pi + x + 7y} y^{3}a_{3}$$

$$-686 \sqrt{\pi + x + 7y} y^{3}a_{2} - 343 \sqrt{\pi + x + 7y} y^{3}a_{3}$$

$$-1715 \sqrt{\pi + x + 7y} y^{3}b_{3} - 7\pi^{2} \sqrt{\pi + x + 7y} a_{1}$$

$$-49\pi^{2} \sqrt{\pi + x + 7y} b_{1} - 7x^{2} \sqrt{\pi + x + 7y} a_{1}$$

$$-49x^{2} \sqrt{\pi + x + 7y} b_{1} - 343 \sqrt{\pi + x + 7y} y^{2}a_{1}$$

$$-2401 \sqrt{\pi + x + 7y} y^{2}b_{1} - 182\pi x \sqrt{\pi + x + 7y} ya_{2}$$

$$-14\pi x \sqrt{\pi + x + 7y} ya_{3} - 686\pi x \sqrt{\pi + x + 7y} yb_{2}$$

$$-14\pi^{6}xa_{3} - 98\pi^{6}ya_{3} - 42\pi^{5}x^{2}a_{3} - 2058\pi^{5}y^{2}a_{3}$$

$$-70\pi^{4}x^{3}a_{3} - 24010\pi^{4}y^{3}a_{3} - 70\pi^{3}x^{4}a_{3} - 168070\pi^{3}y^{4}a_{3}$$

$$-42\pi^{2}x^{5}a_{3} - 705894\pi^{2}y^{5}a_{3} - 14\pi x^{6}a_{3} - 1647086\pi y^{6}a_{3}$$

$$-98x^{6}ya_{3} - 2058x^{5}y^{2}a_{3} - 24010x^{4}y^{3}a_{3}$$

$$-168070x^{3}y^{4}a_{3} - 705894x^{2}y^{5}a_{3} - 1647086x y^{6}a_{3}$$

$$-13\pi^{2}x \sqrt{\pi + x + 7y} ya_{3} - 7\pi^{2} \sqrt{\pi + x + 7y} ya_{2}$$

$$-7\pi^{2} \sqrt{\pi + x + 7y} ya_{3} - 7\pi^{2} \sqrt{\pi + x + 7y} ya_{2}$$

$$-7\pi^{2} \sqrt{\pi + x + 7y} ya_{3} - 7\pi^{2} \sqrt{\pi + x + 7y} ya_{2}$$

$$-98\pi \sqrt{\pi + x + 7y} ya_{3} - 7\pi^{2} \sqrt{\pi + x + 7y} ya_{2}$$

$$-98\pi \sqrt{\pi + x + 7y} ya_{2} - 98\pi x^{2} \sqrt{\pi + x + 7y} ya_{3}$$

$$-686x^{2} \sqrt{\pi + x + 7y} ya_{2} - 7x^{2} \sqrt{\pi + x + 7y} ya_{3}$$

$$-686x^{2} \sqrt{\pi + x + 7y} ya_{2} - 7x^{2} \sqrt{\pi + x + 7y} ya_{3}$$

$$-686x^{2} \sqrt{\pi + x + 7y} ya_{2} - 98x \sqrt{\pi + x + 7y} ya_{3}$$

$$-686x^{2} \sqrt{\pi + x + 7y} ya_{1} - 686\pi \sqrt{\pi + x + 7y} yb_{1}$$

$$-98\pi \sqrt{\pi + x + 7y} ya_{1} - 686\pi \sqrt{\pi + x + 7y} yb_{1}$$

$$-98\pi \sqrt{\pi + x + 7y} ya_{1} - 686\pi \sqrt{\pi + x + 7y} yb_{1}$$

$$-98\pi \sqrt{\pi + x + 7y} ya_{1} - 686\pi \sqrt{\pi + x + 7y} yb_{1}$$

$$-1470\pi^{4}x^{2}ya_{3} - 10290\pi^{4}x^{2}y^{2}a_{3} - 19604\pi^{x}y^{3}a_{3}$$

$$-20580\pi^{2}x^{3}y^{2}a_{3} - 1044060\pi^{2}x^{2}y^{3}a_{3} - 504210\pi^{2}x^{4}a_{3}$$

$$-504210\pi x^{2}y^{4}a_{3} - 1411788\pi xy^{5}a_{3} - 588\pi^{5}xya_{3} = 0$$

Looking at the above PDE shows the following are all the terms with $\{x,y\}$ in them.

$$\left\{x, y, \sqrt{\pi + x + 7y}\right\}$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$\left\{ x = v_1, y = v_2, \sqrt{\pi + x + 7y} = v_3 \right\}$$

The above PDE (6E) now becomes

$$-2\pi^{7}a_{3} - 14\pi^{6}v_{1}a_{3} - 98\pi^{6}v_{2}a_{3} - 42\pi^{5}v_{1}^{2}a_{3}$$

$$-588\pi^{5}v_{1}v_{2}a_{3} - 2058\pi^{5}v_{2}^{2}a_{3} - 70\pi^{4}v_{1}^{3}a_{3} - 1470\pi^{4}v_{1}^{2}v_{2}a_{3}$$

$$-10290\pi^{4}v_{1}v_{2}^{2}a_{3} - 24010\pi^{4}v_{2}^{3}a_{3} - 70\pi^{3}v_{1}^{4}a_{3}$$

$$-1960\pi^{3}v_{1}^{3}v_{2}a_{3} - 20580\pi^{3}v_{1}^{2}v_{2}^{2}a_{3} - 96040\pi^{3}v_{1}v_{2}^{3}a_{3}$$

$$-168070\pi^{3}v_{2}^{4}a_{3} - 42\pi^{2}v_{1}^{5}a_{3} - 1470\pi^{2}v_{1}^{4}v_{2}a_{3}$$

$$-20580\pi^{2}v_{1}^{3}v_{2}^{2}a_{3} - 144060\pi^{2}v_{1}^{2}v_{2}^{3}a_{3} - 504210\pi^{2}v_{1}v_{2}^{4}a_{3}$$

$$-705894\pi^{2}v_{2}^{5}a_{3} - 14\pi v_{1}^{6}a_{3} - 588\pi v_{1}^{5}v_{2}a_{3} - 10290\pi v_{1}^{4}v_{2}^{2}a_{3}$$

$$-96040\pi v_{1}^{3}v_{2}^{3}a_{3} - 504210\pi v_{1}^{2}v_{2}^{4}a_{3} - 1411788\pi v_{1}v_{2}^{5}a_{3}$$

$$-1647086\pi v_{2}^{6}a_{3} - 2v_{1}^{7}a_{3} - 98v_{1}^{6}v_{2}a_{3} - 2058v_{1}^{5}v_{2}^{2}a_{3}$$

$$-24010v_{1}^{4}v_{2}^{3}a_{3} - 168070v_{1}^{3}v_{2}^{4}a_{3} - 705894v_{1}^{2}v_{2}^{5}a_{3}$$

$$-1647086v_{1}v_{2}^{6}a_{3} - 1647086v_{2}^{7}a_{3} - 2\pi^{3}v_{3}a_{2}$$

$$+2\pi^{3}v_{3}b_{3} - 13\pi^{2}v_{1}v_{3}a_{2} - 42\pi^{2}v_{3}v_{2}a_{2} - 7\pi^{2}v_{3}v_{2}a_{3}$$

$$-49\pi^{2}v_{1}v_{3}v_{2}a_{2} - 294\pi v_{3}v_{2}^{2}a_{2} - 14\pi v_{1}v_{3}v_{2}a_{3} - 98\pi v_{3}v_{2}^{2}a_{3}$$

$$-98\pi v_{1}^{2}v_{3}b_{2} - 686\pi v_{1}v_{3}v_{2}b_{2} + 6\pi v_{1}^{2}v_{3}v_{2}a_{3} - 343v_{3}v_{2}^{2}a_{2}$$

$$-686v_{3}v_{2}^{3}a_{2} - 7v_{1}^{2}v_{3}v_{2}a_{3} - 98v_{1}v_{3}v_{2}^{2}a_{3} - 343v_{3}v_{2}^{2}a_{3}$$

$$-7v_{1}^{2}v_{3}v_{2}b_{3} - 392v_{1}v_{3}v_{2}^{2}b_{3} - 1715v_{3}v_{3}^{2}b_{3} - 7\pi^{2}v_{3}a_{1}$$

$$-49\pi^{2}v_{3}b_{1} - 14\pi v_{1}v_{3}a_{1} - 98\pi v_{3}v_{2}a_{1} - 98\pi v_{1}v_{3}b_{1}$$

$$-686\pi v_{3}v_{2}b_{1} - 7v_{1}^{2}v_{3}a_{1} - 98v_{1}v_{3}v_{2}a_{1} - 343v_{3}v_{2}^{2}a_{1}$$

$$-49v_{1}^{2}v_{3}b_{1} - 686v_{1}v_{3}v_{2}b_{1} - 2401v_{3}v_{2}^{2}b_{1} + 2b_{2} = 0$$

Collecting the above on the terms v_i introduced, and these are

$$\{v_1, v_2, v_3\}$$

Equation (7E) now becomes

$$-2\pi^{7}a_{3} - 1470\pi^{4}v_{1}^{2}v_{2}a_{3} - 10290\pi^{4}v_{1}v_{2}^{2}a_{3}$$

$$- 1960\pi^{3}v_{1}^{3}v_{2}a_{3} - 20580\pi^{3}v_{1}^{2}v_{2}^{2}a_{3} - 96040\pi^{3}v_{1}v_{2}^{3}a_{3}$$

$$- 1470\pi^{2}v_{1}^{4}v_{2}a_{3} - 20580\pi^{2}v_{1}^{3}v_{2}^{2}a_{3} - 144060\pi^{2}v_{1}^{2}v_{2}^{3}a_{3}$$

$$- 504210\pi^{2}v_{1}v_{2}^{4}a_{3} - 588\pi v_{1}^{5}v_{2}a_{3} - 10290\pi v_{1}^{4}v_{2}^{2}a_{3}$$

$$- 96040\pi v_{1}^{3}v_{2}^{3}a_{3} - 504210\pi v_{1}^{2}v_{2}^{4}a_{3} - 1411788\pi v_{1}v_{2}^{5}a_{3}$$

$$- 588\pi^{5}v_{1}v_{2}a_{3} + (-9a_{2} - 49b_{2} + 2b_{3})v_{1}^{3}v_{3}$$

$$+ (-20\pi a_{2} - 98\pi b_{2} + 6\pi b_{3} - 7a_{1} - 49b_{1})v_{1}^{2}v_{3}$$

$$+ (-13\pi^{2}a_{2} - 49\pi^{2}b_{2} + 6\pi^{2}b_{3} - 14\pi a_{1} - 98\pi b_{1})v_{1}v_{3}$$

$$+ (-686a_{2} - 343a_{3} - 1715b_{3})v_{2}^{3}v_{3}$$

$$+ (-294\pi a_{2} - 98\pi a_{3} - 392\pi b_{3} - 343a_{1} - 2401b_{1})v_{2}^{2}v_{3}$$

$$+ (-42\pi^{2}a_{2} - 7\pi^{2}a_{3} - 7\pi^{2}b_{3} - 98\pi a_{1} - 686\pi b_{1})v_{2}v_{3}$$

$$+ 2b_{2} + (-2\pi^{3}a_{2} + 2\pi^{3}b_{3} - 7\pi^{2}a_{1} - 49\pi^{2}b_{1})v_{3}$$

$$- 2v_{1}^{7}a_{3} - 1647086v_{2}^{7}a_{3} - 14\pi^{6}v_{1}a_{3} - 98\pi^{6}v_{2}a_{3}$$

$$- 42\pi^{5}v_{1}^{2}a_{3} - 2058\pi^{5}v_{2}^{2}a_{3} - 70\pi^{4}v_{1}^{3}a_{3} - 24010\pi^{4}v_{2}^{3}a_{3}$$

$$- 70\pi^{3}v_{1}^{4}a_{3} - 168070\pi^{3}v_{2}^{4}a_{3} - 42\pi^{2}v_{1}^{5}a_{3} - 705894\pi^{2}v_{2}^{5}a_{3}$$

$$- 14\pi v_{1}^{6}a_{3} - 1647086\pi v_{2}^{6}a_{3} - 98v_{1}^{6}v_{2}a_{3} - 2058v_{1}^{5}v_{2}^{2}a_{3}$$

$$- 24010v_{1}^{4}v_{2}^{3}a_{3} - 168070v_{1}^{3}v_{2}^{4}a_{3} - 705894v_{1}^{2}v_{2}^{5}a_{3}$$

$$- 1647086v_{1}v_{2}^{6}a_{3} + (-140a_{2} - 7a_{3} - 686b_{2} - 7b_{3})v_{1}^{2}v_{2}v_{3}$$

$$+ (-637a_{2} - 98a_{3} - 2401b_{2} - 392b_{3})v_{1}v_{2}^{2}v_{3} + (-182\pi a_{2} - 14\pi a_{3} - 686\pi b_{2} - 14\pi b_{3} - 98a_{1} - 686b_{1})v_{1}v_{2}v_{3} = 0$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$-705894a_3 = 0$$

$$-168070a_3 = 0$$

$$-24010a_3 = 0$$

$$-2058a_3 = 0$$

$$-98a_3 = 0$$

$$-2a_3 = 0$$

$$-1647086\pi a_3 = 0$$

$$-1411788\pi a_3 = 0$$

$$-504210\pi a_3 = 0$$

$$-96040\pi a_3 = 0$$

$$-10290\pi a_3 = 0$$

$$-14\pi a_3 = 0$$

$$-14\pi a_3 = 0$$

$$-705894\pi^2 a_3 = 0$$

$$-144060\pi^2 a_3 = 0$$

$$-144060\pi^2 a_3 = 0$$

$$-1470\pi^2 a_3 = 0$$

$$-1470\pi^2 a_3 = 0$$

$$-168070\pi^3 a_3 = 0$$

$$-96040\pi^3 a_3 = 0$$

$$-96040\pi^3 a_3 = 0$$

$$-1960\pi^3 a_3 = 0$$

$$-1960\pi^3 a_3 = 0$$

$$-1960\pi^3 a_3 = 0$$

$$-10290\pi^4 a_3 = 0$$

$$-10290\pi^4 a_3 = 0$$

$$-1070\pi^4 a_3 = 0$$

$$-1070\pi^4 a_3 = 0$$

$$-1470\pi^4 a_3$$

 $-1647086a_3=0$

Solving the above equations for the unknowns gives

$$a_1 = -7b_1$$

$$a_2 = 0$$

$$a_3 = 0$$

$$b_1 = b_1$$

$$b_2 = 0$$

$$b_3 = 0$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$\xi = -7$$
$$\eta = 1$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \to (R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$\frac{dx}{\xi} = \frac{dy}{\eta} = dS \tag{1}$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}\right) S(x,y) = 1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Therefore

$$\frac{dy}{dx} = \frac{\eta}{\xi}$$
$$= \frac{1}{-7}$$
$$= -\frac{1}{7}$$

This is easily solved to give

$$y = -\frac{x}{7} + c_1$$

Where now the coordinate R is taken as the constant of integration. Hence

$$R = \frac{x}{7} + y$$

And S is found from

$$dS = \frac{dx}{\xi}$$
$$= \frac{dx}{-7}$$

Integrating gives

$$S = \int \frac{dx}{T}$$
$$= -\frac{x}{7}$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$\frac{dS}{dR} = \frac{S_x + \omega(x, y)S_y}{R_x + \omega(x, y)R_y} \tag{2}$$

Where in the above R_x, R_y, S_x, S_y are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$\omega(x, y) = (\pi + x + 7y)^{7/2}$$

Evaluating all the partial derivatives gives

$$R_x = \frac{1}{7}$$

$$R_y = 1$$

$$S_x = -\frac{1}{7}$$

$$S_y = 0$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$\frac{dS}{dR} = -\frac{1}{1 + 7(\pi + x + 7y)^{7/2}}$$
 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$\frac{dS}{dR} = -\frac{1}{1 + 7(\pi + 7R)^{7/2}}$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S.

Since the ode has the form $\frac{d}{dR}S(R) = f(R)$, then we only need to integrate f(R).

$$\int dS = \int -\frac{1}{1+7(\pi+7R)^{7/2}} dR$$

$$S(R) = -\frac{2\left(\sum_{R=\text{RootOf}(7_Z^7+1)} \frac{\ln(\sqrt{\pi+7R}-_R)}{_R^5}\right)}{343} + c_2$$

$$S(R) = \int -\frac{1}{1 + 7(\pi + 7R)^{7/2}} dR + c_2$$

This results in

$$-\frac{x}{7} = \int^{y} -\frac{1}{1 + 7(\pi + x + 7_a)^{7/2}} d_a + c_2$$

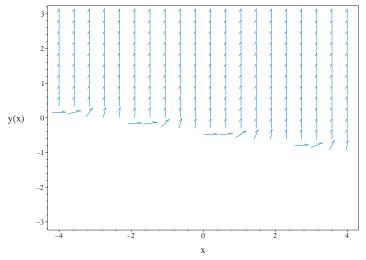


Figure 2.85: Slope field plot $y' = (\pi + x + 7y)^{7/2}$

Summary of solutions found

$$-\frac{x}{7} = \int^{y} -\frac{1}{1 + 7(\pi + x + 7\underline{a})^{7/2}} d\underline{a} + c_{2}$$

Solved as first order ode of type dAlembert

Time used: 12.446 (sec)

Let p = y' the ode becomes

$$p = (\pi + x + 7y)^{7/2}$$

Solving for y from the above results in

$$y = \frac{p^{2/7}}{7} - \frac{\pi}{7} - \frac{x}{7} \tag{1}$$

$$y = \frac{\left(\cos\left(\frac{2\pi}{7}\right) + i\cos\left(\frac{3\pi}{14}\right)\right)^2 p^{2/7}}{7} - \frac{\pi}{7} - \frac{x}{7}$$
 (2)

$$y = \frac{\left(-\cos\left(\frac{3\pi}{7}\right) + i\cos\left(\frac{\pi}{14}\right)\right)^2 p^{2/7}}{7} - \frac{\pi}{7} - \frac{x}{7} \tag{3}$$

$$y = \frac{\left(-\cos\left(\frac{\pi}{7}\right) + i\cos\left(\frac{5\pi}{14}\right)\right)^2 p^{2/7}}{7} - \frac{\pi}{7} - \frac{x}{7} \tag{4}$$

$$y = \frac{\left(-\cos\left(\frac{\pi}{7}\right) - i\cos\left(\frac{5\pi}{14}\right)\right)^2 p^{2/7}}{7} - \frac{\pi}{7} - \frac{x}{7} \tag{5}$$

$$y = \frac{\left(-\cos\left(\frac{3\pi}{7}\right) - i\cos\left(\frac{\pi}{14}\right)\right)^2 p^{2/7}}{7} - \frac{\pi}{7} - \frac{x}{7} \tag{6}$$

$$y = \frac{\left(\cos\left(\frac{2\pi}{7}\right) - i\cos\left(\frac{3\pi}{14}\right)\right)^2 p^{2/7}}{7} - \frac{\pi}{7} - \frac{x}{7} \tag{7}$$

This has the form

$$y = xf(p) + g(p) \tag{*}$$

Where f, g are functions of p = y'(x). Each of the above ode's is dAlembert ode which is now solved.

Solving ode 1A

Taking derivative of (*) w.r.t. x gives

$$p = f + (xf' + g')\frac{dp}{dx}$$

$$p - f = (xf' + g')\frac{dp}{dx}$$
(2)

Comparing the form y = xf + g to (1A) shows that

$$f = -\frac{1}{7}$$

$$g = \frac{p^{2/7}}{7} - \frac{\pi}{7}$$

Hence (2) becomes

$$p + \frac{1}{7} = \frac{2p'(x)}{49p^{5/7}} \tag{2A}$$

The singular solution is found by setting $\frac{dp}{dx} = 0$ in the above which gives

$$p + \frac{1}{7} = 0$$

Solving the above for p results in

$$p_1 = -\frac{1}{7}$$

Substituting these in (1A) and keeping singular solution that verifies the ode gives

$$y = \frac{(-1)^{2/7} 7^{5/7}}{49} - \frac{\pi}{7} - \frac{x}{7}$$

The general solution is found when $\frac{dp}{dx} \neq 0$. From eq. (2A). This results in

$$p'(x) = \frac{49(p(x) + \frac{1}{7})p(x)^{5/7}}{2}$$
(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or intergal too complicated), and since no initial conditions are given, then the result can be written as

$$\int_{0}^{p(x)} \frac{2}{7(7\tau+1)\tau^{5/7}} d\tau = x + c_1$$

Singular solutions are found by solving

$$\frac{7(7p+1)\,p^{5/7}}{2} = 0$$

for p(x). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$p(x) = 0$$
$$p(x) = -\frac{1}{7}$$

Substituing the above solution for p in (2A) gives

$$y = \frac{\text{RootOf}\left(-\int^{-Z} \frac{2}{7(7\tau+1)\tau^{5/7}} d\tau + x + c_1\right)^{2/7}}{7} - \frac{\pi}{7} - \frac{x}{7}$$
$$y = -\frac{\pi}{7} - \frac{x}{7}$$
$$y = \frac{(-1)^{2/7} 7^{5/7}}{49} - \frac{\pi}{7} - \frac{x}{7}$$

Solving ode 2A

Taking derivative of (*) w.r.t. x gives

$$p = f + (xf' + g')\frac{dp}{dx}$$

$$p - f = (xf' + g')\frac{dp}{dx}$$
(2)

Comparing the form y = xf + g to (1A) shows that

$$f = -\frac{1}{7}$$

$$g = \frac{p^{2/7} \left(-\cos\left(\frac{3\pi}{7}\right) + i\sin\left(\frac{3\pi}{7}\right)\right)}{7} - \frac{\pi}{7}$$

Hence (2) becomes

$$p + \frac{1}{7} = \left(-\frac{2\cos\left(\frac{3\pi}{7}\right)}{49p^{5/7}} + \frac{2i\sin\left(\frac{3\pi}{7}\right)}{49p^{5/7}}\right)p'(x)$$
 (2A)

The singular solution is found by setting $\frac{dp}{dx} = 0$ in the above which gives

$$p + \frac{1}{7} = 0$$

Solving the above for p results in

$$p_1 = -\frac{1}{7}$$

Substituting these in (1A) and keeping singular solution that verifies the ode gives

$$y = \frac{7^{5/7}(-1)^{6/7}}{49} - \frac{\pi}{7} - \frac{x}{7}$$

The general solution is found when $\frac{dp}{dx} \neq 0$. From eq. (2A). This results in

$$p'(x) = \frac{p(x) + \frac{1}{7}}{-\frac{2\cos(\frac{3\pi}{7})}{49p(x)^{5/7}} + \frac{2i\sin(\frac{3\pi}{7})}{49p(x)^{5/7}}}$$
(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or intergal too complicated), and since no initial conditions are given, then the result can be written as

$$\int^{p(x)} \frac{2(-1)^{4/7}}{7(7\tau+1)\,\tau^{5/7}} d\tau = x + c_2$$

Singular solutions are found by solving

$$-\frac{7(-1)^{3/7} (7p+1) p^{5/7}}{2} = 0$$

for p(x). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$p(x) = 0$$
$$p(x) = -\frac{1}{7}$$

Substituing the above solution for p in (2A) gives

$$y = -\frac{x}{7} + \frac{\text{RootOf}\left(-\int^{-Z} \frac{2(-1)^{4/7}}{7(7\tau+1)\tau^{5/7}} d\tau + x + c_2\right)^{2/7} \left(-\cos\left(\frac{3\pi}{7}\right) + i\sin\left(\frac{3\pi}{7}\right)\right)}{7} - \frac{\pi}{7}$$
$$y = -\frac{\pi}{7} - \frac{x}{7}$$
$$y = -\frac{x}{7} + \frac{(-1)^{2/7} 7^{5/7} \left(-\cos\left(\frac{3\pi}{7}\right) + i\sin\left(\frac{3\pi}{7}\right)\right)}{49} - \frac{\pi}{7}$$

Solving ode 3A

Taking derivative of (*) w.r.t. x gives

$$p = f + (xf' + g')\frac{dp}{dx}$$

$$p - f = (xf' + g')\frac{dp}{dx}$$
(2)

Comparing the form y = xf + g to (1A) shows that

$$f = -\frac{1}{7}$$

$$g = \frac{p^{2/7} \left(-i \sin\left(\frac{\pi}{7}\right) - \cos\left(\frac{\pi}{7}\right)\right)}{7} - \frac{\pi}{7}$$

Hence (2) becomes

$$p + \frac{1}{7} = \left(-\frac{2i\sin\left(\frac{\pi}{7}\right)}{49p^{5/7}} - \frac{2\cos\left(\frac{\pi}{7}\right)}{49p^{5/7}}\right)p'(x) \tag{2A}$$

The singular solution is found by setting $\frac{dp}{dx} = 0$ in the above which gives

$$p + \frac{1}{7} = 0$$

No valid singular solutions found.

The general solution is found when $\frac{dp}{dx} \neq 0$. From eq. (2A). This results in

$$p'(x) = \frac{p(x) + \frac{1}{7}}{-\frac{2i\sin(\frac{\pi}{7})}{49p(x)^{5/7}} - \frac{2\cos(\frac{\pi}{7})}{49p(x)^{5/7}}}$$
(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or intergal too complicated), and since no initial conditions are given, then the result can be written as

$$\int_{0}^{p(x)} -\frac{2(-1)^{1/7}}{7(7\tau+1)\tau^{5/7}} d\tau = x + c_3$$

Singular solutions are found by solving

$$\frac{7(-1)^{6/7} (7p+1) p^{5/7}}{2} = 0$$

for p(x). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$p(x) = 0$$
$$p(x) = -\frac{1}{7}$$

Substituing the above solution for p in (2A) gives

$$y = -\frac{x}{7} + \frac{\text{RootOf}\left(-\int^{-Z} - \frac{2(-1)^{1/7}}{7(7\tau+1)\tau^{5/7}}d\tau + x + c_3\right)^{2/7}\left(-i\sin\left(\frac{\pi}{7}\right) - \cos\left(\frac{\pi}{7}\right)\right)}{7} - \frac{\pi}{7}$$

$$y = -\frac{\pi}{7} - \frac{x}{7}$$

$$y = -\frac{x}{7} + \frac{(-1)^{2/7}}{7} \frac{7^{5/7}\left(-i\sin\left(\frac{\pi}{7}\right) - \cos\left(\frac{\pi}{7}\right)\right)}{49} - \frac{\pi}{7}$$

Solving ode 4A

Taking derivative of (*) w.r.t. x gives

$$p = f + (xf' + g')\frac{dp}{dx}$$

$$p - f = (xf' + g')\frac{dp}{dx}$$
(2)

Comparing the form y = xf + g to (1A) shows that

$$\begin{split} f &= -\frac{1}{7} \\ g &= -\frac{\pi}{7} + \frac{p^{2/7} \left(-i \sin\left(\frac{2\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right)\right)}{7} \end{split}$$

Hence (2) becomes

$$p + \frac{1}{7} = \left(-\frac{2i\sin\left(\frac{2\pi}{7}\right)}{49p^{5/7}} + \frac{2\cos\left(\frac{2\pi}{7}\right)}{49p^{5/7}}\right)p'(x)$$
 (2A)

The singular solution is found by setting $\frac{dp}{dx} = 0$ in the above which gives

$$p + \frac{1}{7} = 0$$

No valid singular solutions found.

The general solution is found when $\frac{dp}{dx} \neq 0$. From eq. (2A). This results in

$$p'(x) = \frac{p(x) + \frac{1}{7}}{-\frac{2i\sin(\frac{2\pi}{7})}{49p(x)^{5/7}} + \frac{2\cos(\frac{2\pi}{7})}{49p(x)^{5/7}}}$$
(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or intergal too complicated), and since no initial conditions are given, then the result can be written as

$$\int_{0}^{p(x)} -\frac{2(-1)^{5/7}}{7(7\tau+1)\tau^{5/7}} d\tau = x + c_4$$

Singular solutions are found by solving

$$\frac{7(-1)^{2/7} (7p+1) p^{5/7}}{2} = 0$$

for p(x). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$p(x) = 0$$
$$p(x) = -\frac{1}{7}$$

Substituing the above solution for p in (2A) gives

$$y = -\frac{x}{7} - \frac{\pi}{7} + \frac{\text{RootOf}\left(-\int^{-Z} - \frac{2(-1)^{5/7}}{7(7\tau+1)\tau^{5/7}}d\tau + x + c_4\right)^{2/7}\left(-i\sin\left(\frac{2\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right)\right)}{7}$$

$$y = -\frac{\pi}{7} - \frac{x}{7}$$

$$y = -\frac{x}{7} - \frac{\pi}{7} + \frac{(-1)^{2/7}}{7^{5/7}}\frac{7^{5/7}\left(-i\sin\left(\frac{2\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right)\right)}{49}$$

Solving ode 5A

Taking derivative of (*) w.r.t. x gives

$$p = f + (xf' + g')\frac{dp}{dx}$$

$$p - f = (xf' + g')\frac{dp}{dx}$$
(2)

Comparing the form y = xf + g to (1A) shows that

$$f = -\frac{1}{7}$$

$$g = -\frac{\pi}{7} + \frac{p^{2/7} \left(i \sin\left(\frac{2\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right)\right)}{7}$$

Hence (2) becomes

$$p + \frac{1}{7} = \left(\frac{2i\sin\left(\frac{2\pi}{7}\right)}{49p^{5/7}} + \frac{2\cos\left(\frac{2\pi}{7}\right)}{49p^{5/7}}\right)p'(x) \tag{2A}$$

The singular solution is found by setting $\frac{dp}{dx} = 0$ in the above which gives

$$p + \frac{1}{7} = 0$$

No valid singular solutions found.

The general solution is found when $\frac{dp}{dx} \neq 0$. From eq. (2A). This results in

$$p'(x) = \frac{p(x) + \frac{1}{7}}{\frac{2i\sin(\frac{2\pi}{7})}{49p(x)^{5/7}} + \frac{2\cos(\frac{2\pi}{7})}{49p(x)^{5/7}}}$$
(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or intergal too complicated), and since no initial conditions are given, then the result can be written as

$$\int_{0}^{p(x)} \frac{2(-1)^{2/7}}{7(7\tau+1)\tau^{5/7}} d\tau = x + c_5$$

Singular solutions are found by solving

$$-\frac{7(-1)^{5/7}(7p+1)p^{5/7}}{2}=0$$

for p(x). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$p(x) = 0$$
$$p(x) = -\frac{1}{7}$$

Substituing the above solution for p in (2A) gives

$$y = -\frac{x}{7} - \frac{\pi}{7} + \frac{\text{RootOf}\left(-\int^{-Z} \frac{2(-1)^{2/7}}{7(7\tau+1)\tau^{5/7}} d\tau + x + c_5\right)^{2/7} \left(i\sin\left(\frac{2\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right)\right)}{7}$$
$$y = -\frac{\pi}{7} - \frac{x}{7}$$
$$y = -\frac{x}{7} - \frac{\pi}{7} + \frac{(-1)^{2/7} 7^{5/7} \left(i\sin\left(\frac{2\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right)\right)}{49}$$

Solving ode 6A

Taking derivative of (*) w.r.t. x gives

$$p = f + (xf' + g')\frac{dp}{dx}$$

$$p - f = (xf' + g')\frac{dp}{dx}$$
(2)

Comparing the form y = xf + g to (1A) shows that

$$f = -\frac{1}{7}$$

$$g = \frac{p^{2/7} \left(i \sin\left(\frac{\pi}{7}\right) - \cos\left(\frac{\pi}{7}\right)\right)}{7} - \frac{\pi}{7}$$

Hence (2) becomes

$$p + \frac{1}{7} = \left(\frac{2i\sin\left(\frac{\pi}{7}\right)}{49p^{5/7}} - \frac{2\cos\left(\frac{\pi}{7}\right)}{49p^{5/7}}\right)p'(x)$$
 (2A)

The singular solution is found by setting $\frac{dp}{dx} = 0$ in the above which gives

$$p + \frac{1}{7} = 0$$

Solving the above for p results in

$$p_1 = -\frac{1}{7}$$

Substituting these in (1A) and keeping singular solution that verifies the ode gives

$$y = -\frac{7^{5/7}(-1)^{1/7}}{49} - \frac{\pi}{7} - \frac{x}{7}$$

The general solution is found when $\frac{dp}{dx} \neq 0$. From eq. (2A). This results in

$$p'(x) = \frac{p(x) + \frac{1}{7}}{\frac{2i\sin(\frac{\pi}{7})}{49p(x)^{5/7}} - \frac{2\cos(\frac{\pi}{7})}{49p(x)^{5/7}}}$$
(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or intergal too complicated), and since no initial conditions are given, then the result can be written as

$$\int^{p(x)} \frac{2(-1)^{6/7}}{7(7\tau+1)\tau^{5/7}} d\tau = x + c_6$$

Singular solutions are found by solving

$$-\frac{7(-1)^{1/7}(7p+1)p^{5/7}}{2} = 0$$

for p(x). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$p(x) = 0$$
$$p(x) = -\frac{1}{7}$$

Substituing the above solution for p in (2A) gives

$$y = -\frac{x}{7} + \frac{\text{RootOf}\left(-\int^{-Z} \frac{2(-1)^{6/7}}{7(7\tau+1)\tau^{5/7}} d\tau + x + c_6\right)^{2/7} \left(i\sin\left(\frac{\pi}{7}\right) - \cos\left(\frac{\pi}{7}\right)\right)}{7} - \frac{\pi}{7}$$
$$y = -\frac{\pi}{7} - \frac{x}{7}$$
$$y = -\frac{x}{7} + \frac{(-1)^{2/7}}{7^{5/7}} \left(i\sin\left(\frac{\pi}{7}\right) - \cos\left(\frac{\pi}{7}\right)\right)}{49} - \frac{\pi}{7}$$

Taking derivative of (*) w.r.t. x gives

$$p = f + (xf' + g')\frac{dp}{dx}$$

$$p - f = (xf' + g')\frac{dp}{dx}$$
(2)

Comparing the form y = xf + g to (1A) shows that

$$f = -\frac{1}{7}$$

$$g = \frac{p^{2/7} \left(-\cos\left(\frac{3\pi}{7}\right) - i\sin\left(\frac{3\pi}{7}\right)\right)}{7} - \frac{\pi}{7}$$

Hence (2) becomes

$$p + \frac{1}{7} = \left(-\frac{2\cos\left(\frac{3\pi}{7}\right)}{49p^{5/7}} - \frac{2i\sin\left(\frac{3\pi}{7}\right)}{49p^{5/7}}\right)p'(x)$$
 (2A)

The singular solution is found by setting $\frac{dp}{dx} = 0$ in the above which gives

$$p + \frac{1}{7} = 0$$

Solving the above for p results in

$$p_1 = -\frac{1}{7}$$

Substituting these in (1A) and keeping singular solution that verifies the ode gives

$$y = -\frac{(-7)^{5/7}}{49} - \frac{\pi}{7} - \frac{x}{7}$$

The general solution is found when $\frac{dp}{dx} \neq 0$. From eq. (2A). This results in

$$p'(x) = \frac{p(x) + \frac{1}{7}}{-\frac{2\cos(\frac{3\pi}{7})}{49p(x)^{5/7}} - \frac{2i\sin(\frac{3\pi}{7})}{49p(x)^{5/7}}}$$
(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or intergal too complicated), and since no initial conditions are given, then the result can be written as

$$\int_{0}^{p(x)} -\frac{2(-1)^{3/7}}{7(7\tau+1)\tau^{5/7}} d\tau = x + c_7$$

Singular solutions are found by solving

$$\frac{7(-1)^{4/7} (7p+1) p^{5/7}}{2} = 0$$

for p(x). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$p(x) = 0$$
$$p(x) = -\frac{1}{7}$$

Substituing the above solution for p in (2A) gives

$$y = -\frac{x}{7} + \frac{\text{RootOf}\left(-\int^{-Z} - \frac{2(-1)^{3/7}}{7(7\tau+1)\tau^{5/7}}d\tau + x + c_7\right)^{2/7}\left(-\cos\left(\frac{3\pi}{7}\right) - i\sin\left(\frac{3\pi}{7}\right)\right)}{7} - \frac{\pi}{7}$$

$$y = -\frac{\pi}{7} - \frac{x}{7}$$

$$y = -\frac{x}{7} + \frac{(-1)^{2/7}7^{5/7}\left(-\cos\left(\frac{3\pi}{7}\right) - i\sin\left(\frac{3\pi}{7}\right)\right)}{49} - \frac{\pi}{7}$$

The solution

$$y = -\frac{\pi}{7} - \frac{x}{7}$$

was found not to satisfy the ode or the IC. Hence it is removed. The solution

$$y = -\frac{x}{7} - \frac{\pi}{7} + \frac{\text{RootOf}\left(-\int^{-Z} \frac{2(-1)^{2/7}}{7(7\tau+1)\tau^{5/7}} d\tau + x + c_5\right)^{2/7} \left(i\sin\left(\frac{2\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right)\right)}{7}$$

was found not to satisfy the ode or the IC. Hence it is removed. The solution

$$y = -\frac{x}{7} - \frac{\pi}{7} + \frac{\text{RootOf}\left(-\int^{-Z} - \frac{2(-1)^{5/7}}{7(7\tau+1)\tau^{5/7}}d\tau + x + c_4\right)^{2/7}\left(-i\sin\left(\frac{2\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right)\right)}{7}$$

was found not to satisfy the ode or the IC. Hence it is removed. The solution

$$y = -\frac{x}{7} - \frac{\pi}{7} + \frac{\left(-1\right)^{2/7} 7^{5/7} \left(-i \sin\left(\frac{2\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right)\right)}{49}$$

was found not to satisfy the ode or the IC. Hence it is removed. The solution

$$y = -\frac{x}{7} - \frac{\pi}{7} + \frac{(-1)^{2/7} 7^{5/7} \left(i \sin\left(\frac{2\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right)\right)}{49}$$

was found not to satisfy the ode or the IC. Hence it is removed. The solution

$$y = -\frac{x}{7} + \frac{\text{RootOf}\left(-\int^{-Z} -\frac{2(-1)^{1/7}}{7(7\tau+1)\tau^{5/7}}d\tau + x + c_3\right)^{2/7}\left(-i\sin\left(\frac{\pi}{7}\right) - \cos\left(\frac{\pi}{7}\right)\right)}{7} - \frac{\pi}{7}$$

was found not to satisfy the ode or the IC. Hence it is removed. The solution

$$y = -\frac{x}{7} + \frac{\text{RootOf}\left(-\int^{-Z} -\frac{2(-1)^{3/7}}{7(7\tau+1)\tau^{5/7}}d\tau + x + c_7\right)^{2/7} \left(-\cos\left(\frac{3\pi}{7}\right) - i\sin\left(\frac{3\pi}{7}\right)\right)}{7} - \frac{\pi}{7}$$

was found not to satisfy the ode or the IC. Hence it is removed. The solution

$$y = -\frac{x}{7} + \frac{\text{RootOf}\left(-\int^{-Z} \frac{2(-1)^{4/7}}{7(7\tau+1)\tau^{5/7}} d\tau + x + c_2\right)^{2/7} \left(-\cos\left(\frac{3\pi}{7}\right) + i\sin\left(\frac{3\pi}{7}\right)\right)}{7} - \frac{\pi}{7}$$

was found not to satisfy the ode or the IC. Hence it is removed. The solution

$$y = -\frac{x}{7} + \frac{\text{RootOf}\left(-\int^{-Z} \frac{2(-1)^{6/7}}{7(7\tau+1)\tau^{5/7}} d\tau + x + c_6\right)^{2/7} \left(i\sin\left(\frac{\pi}{7}\right) - \cos\left(\frac{\pi}{7}\right)\right)}{7} - \frac{\pi}{7}$$

was found not to satisfy the ode or the IC. Hence it is removed. The solution

$$y = -\frac{x}{7} + \frac{(-1)^{2/7} 7^{5/7} \left(-i \sin\left(\frac{\pi}{7}\right) - \cos\left(\frac{\pi}{7}\right)\right)}{49} - \frac{\pi}{7}$$

was found not to satisfy the ode or the IC. Hence it is removed.

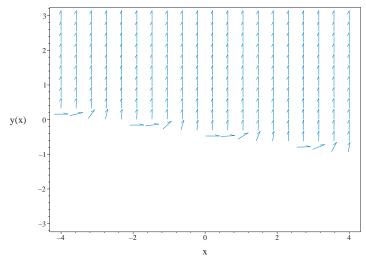


Figure 2.86: Slope field plot $y' = (\pi + x + 7y)^{7/2}$

Summary of solutions found

$$y = -\frac{x}{7} + \frac{(-1)^{2/7} 7^{5/7} \left(i \sin\left(\frac{\pi}{7}\right) - \cos\left(\frac{\pi}{7}\right)\right)}{49} - \frac{\pi}{7}$$

$$y = -\frac{x}{7} + \frac{(-1)^{2/7} 7^{5/7} \left(-\cos\left(\frac{3\pi}{7}\right) - i \sin\left(\frac{3\pi}{7}\right)\right)}{49} - \frac{\pi}{7}$$

$$y = -\frac{x}{7} + \frac{(-1)^{2/7} 7^{5/7} \left(-\cos\left(\frac{3\pi}{7}\right) + i \sin\left(\frac{3\pi}{7}\right)\right)}{49} - \frac{\pi}{7}$$

$$y = -\frac{(-7)^{5/7}}{49} - \frac{\pi}{7} - \frac{x}{7}$$

$$y = \frac{\operatorname{RootOf}\left(-\int^{-Z} \frac{2}{7(7\tau+1)\tau^{5/7}} d\tau + x + c_1\right)^{2/7}}{7} - \frac{\pi}{7} - \frac{x}{7}$$

$$y = \frac{(-1)^{2/7} 7^{5/7}}{49} - \frac{\pi}{7} - \frac{x}{7}$$

$$y = -\frac{7^{5/7} (-1)^{1/7}}{49} - \frac{\pi}{7} - \frac{x}{7}$$

$$y = \frac{7^{5/7} (-1)^{6/7}}{49} - \frac{\pi}{7} - \frac{x}{7}$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = (\pi + x + 7y(x))^{7/2}$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = (\pi + x + 7y(x))^{7/2}$$

Maple trace

Maple dsolve solution

Solving time: 0.061 (sec)

Leaf size: 33

$$\frac{dsolve(diff(y(x),x) = (Pi+x+7*y(x))^{(7/2)},}{y(x),singsol=all)}$$

$$y = -\frac{x}{7} + \text{RootOf}\left(-x + 7\left(\int^{-Z} \frac{1}{1 + 7(\pi + 7\underline{a})^{7/2}} d\underline{a}\right) + c_1\right)$$

Mathematica DSolve solution

Solving time: 30.453 (sec)

Leaf size: 43

DSolve[$\{D[y[x],x]==(Pi+x+7*y[x])^(7/2),\{\}\},$ y[x],x,IncludeSingularSolutions->True]

Solve
$$\left[-(7y(x)+x+\pi)\left(\text{Hypergeometric2F1}\left(\frac{2}{7},1,\frac{9}{7},-7(x+7y(x)+\pi)^{7/2}\right)-1\right)$$

 $-7y(x)=c_1,y(x)\right]$

2.1.65 problem 65

Solved as first order homogeneous class C ode	483
Solved using Lie symmetry for first order ode	484
Solved as first order ode of type dAlembert	490
Maple step by step solution	502
Maple trace	502
Maple dsolve solution	503
Mathematica DSolve solution	503

Internal problem ID [8725]

Book: First order enumerated odes

Section: section 1

Problem number: 65

Date solved: Tuesday, December 17, 2024 at 01:01:31 PM CAS classification: [[_homogeneous, 'class C'], _dAlembert]

Solve

$$y' = (a + bx + cy)^6$$

Solved as first order homogeneous class C ode

Time used: 1.395 (sec)

Let

$$z = a + bx + cy \tag{1}$$

Then

$$z'(x) = b + cy'$$

Therefore

$$y' = \frac{z'(x) - b}{c}$$

Hence the given ode can now be written as

$$\frac{z'(x) - b}{c} = z^6$$

This is separable first order ode. Integrating

$$\int dx = \int \frac{1}{c z^{6} + b} dz$$

$$x + c_{1} = \frac{\sqrt{3} \left(\frac{b}{c}\right)^{1/6} \ln \left(z^{2} + \sqrt{3} \left(\frac{b}{c}\right)^{1/6} z + \left(\frac{b}{c}\right)^{1/3}\right)}{12b} + \frac{\left(\frac{b}{c}\right)^{1/6} \arctan \left(\frac{2z}{\left(\frac{b}{c}\right)^{1/6}} + \sqrt{3}\right)}{6b}$$

$$- \frac{\sqrt{3} \left(\frac{b}{c}\right)^{1/6} \ln \left(z^{2} - \sqrt{3} \left(\frac{b}{c}\right)^{1/6} z + \left(\frac{b}{c}\right)^{1/3}\right)}{12b}$$

$$+ \frac{\left(\frac{b}{c}\right)^{1/6} \arctan \left(\frac{2z}{\left(\frac{b}{c}\right)^{1/6}} - \sqrt{3}\right)}{6b} + \frac{\left(\frac{b}{c}\right)^{1/6} \arctan \left(\frac{z}{\left(\frac{b}{c}\right)^{1/6}}\right)}{3b}$$

Replacing z back by its value from (1) then the above gives the solution as Summary of solutions found

$$\frac{\sqrt{3} \left(\frac{b}{c}\right)^{1/6} \ln \left(\left(a + bx + cy\right)^{2} + \sqrt{3} \left(\frac{b}{c}\right)^{1/6} \left(a + bx + cy\right) + \left(\frac{b}{c}\right)^{1/3}\right)}{12b} + \frac{\left(\frac{b}{c}\right)^{1/6} \arctan \left(\frac{2cy + 2bx + 2a}{\left(\frac{b}{c}\right)^{1/6}} + \sqrt{3}\right)}{6b} - \frac{\sqrt{3} \left(\frac{b}{c}\right)^{1/6} \ln \left(\left(a + bx + cy\right)^{2} - \sqrt{3} \left(\frac{b}{c}\right)^{1/6} \left(a + bx + cy\right) + \left(\frac{b}{c}\right)^{1/3}\right)}{12b} + \frac{\left(\frac{b}{c}\right)^{1/6} \arctan \left(\frac{2cy + 2bx + 2a}{\left(\frac{b}{c}\right)^{1/6}} - \sqrt{3}\right)}{6b} + \frac{\left(\frac{b}{c}\right)^{1/6} \arctan \left(\frac{a + bx + cy}{\left(\frac{b}{c}\right)^{1/6}}\right)}{3b} = x + c_{1}$$

Solved using Lie symmetry for first order ode

Time used: 1.539 (sec)

Writing the ode as

$$y' = (bx + cy + a)^{6}$$
$$y' = \omega(x, y)$$

The condition of Lie symmetry is the linearized PDE given by

$$\eta_x + \omega(\eta_y - \xi_x) - \omega^2 \xi_y - \omega_x \xi - \omega_y \eta = 0$$
 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$\xi = xa_2 + ya_3 + a_1 \tag{1E}$$

$$\eta = xb_2 + yb_3 + b_1 \tag{2E}$$

Where the unknown coefficients are

$${a_1, a_2, a_3, b_1, b_2, b_3}$$

Substituting equations (1E,2E) and ω into (A) gives

$$b_2 + (bx + cy + a)^6 (b_3 - a_2) - (bx + cy + a)^{12} a_3$$

$$-6(bx + cy + a)^5 b(xa_2 + ya_3 + a_1) - 6(bx + cy + a)^5 c(xb_2 + yb_3 + b_1) = 0$$
(5E)

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

Looking at the above PDE shows the following are all the terms with $\{x,y\}$ in them.

$$\{x,y\}$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$${x = v_1, y = v_2}$$

The above PDE (6E) now becomes

Collecting the above on the terms v_i introduced, and these are

$$\{v_1, v_2\}$$

Equation (7E) now becomes

Expression too large to display

(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

$$-b^{12}a_3 = 0$$

$$-c^{12}a_3 = 0$$

$$-12ab^{11}a_3 = 0$$

$$-16a^2b^{10}a_3 = 0$$

$$-66a^2b^{10}a_3 = 0$$

$$-66a^2c^{10}a_3 = 0$$

$$-220a^3b^9a_3 = 0$$

$$-220a^3c^9a_3 = 0$$

$$-495a^4c^8a_3 = 0$$

$$-792a^5b^7a_3 = 0$$

$$-792a^5c^7a_3 = 0$$

$$-12bc^{11}a_3 = 0$$

$$-66b^2c^{10}a_3 = 0$$

$$-220b^3c^9a_3 = 0$$

$$-220b^3c^9a_3 = 0$$

$$-220b^3c^9a_3 = 0$$

$$-924b^6c^6a_3 = 0$$

$$-924b^6c^6a_3 = 0$$

$$-924b^6c^6a_3 = 0$$

$$-924b^6c^6a_3 = 0$$

$$-192b^7c^5a_3 = 0$$

$$-192b^7c^5a_3 = 0$$

$$-12b^{11}ca_3 = 0$$

$$-12b^{11}ca_3 = 0$$

$$-132abc^{10}a_3 = 0$$

$$-132abc^{10}a_3 = 0$$

$$-132abc^{10}a_3 = 0$$

$$-132abc^{10}a_3 = 0$$

$$-1980ab^3c^8a_3 = 0$$

$$-5544ab^5c^6a_3 = 0$$

$$-5544ab^5c^6a_3 = 0$$

$$-5544ab^5c^6a_3 = 0$$

$$-1980ab^8c^3a_3 = 0$$

Solving the above equations for the unknowns gives

$$a_1 = -\frac{cb_1}{b}$$

$$a_2 = 0$$

$$a_3 = 0$$

$$b_1 = b_1$$

$$b_2 = 0$$

$$b_3 = 0$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$\xi = -\frac{c}{b}$$

$$\eta = 1$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \to (R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$\frac{dx}{\xi} = \frac{dy}{\eta} = dS \tag{1}$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}\right) S(x,y) = 1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Therefore

$$\frac{dy}{dx} = \frac{\eta}{\xi}$$

$$= \frac{1}{-\frac{c}{b}}$$

$$= -\frac{b}{c}$$

This is easily solved to give

$$y = -\frac{bx}{c} + c_1$$

Where now the coordinate R is taken as the constant of integration. Hence

$$R = \frac{bx + cy}{c}$$

And S is found from

$$dS = \frac{dx}{\xi}$$
$$= \frac{dx}{-\frac{c}{b}}$$

Integrating gives

$$S = \int \frac{dx}{T}$$
$$= -\frac{bx}{c}$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$\frac{dS}{dR} = \frac{S_x + \omega(x, y)S_y}{R_x + \omega(x, y)R_y} \tag{2}$$

Where in the above R_x, R_y, S_x, S_y are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$\omega(x,y) = (bx + cy + a)^6$$

Evaluating all the partial derivatives gives

$$R_x = \frac{b}{c}$$

$$R_y = 1$$

$$S_x = -\frac{b}{c}$$

$$S_y = 0$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$\frac{dS}{dR} = -\frac{b}{c\left(\frac{b}{c} + (bx + cy + a)^6\right)}$$
 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$\frac{dS}{dR} = -\frac{b}{R^6c^7 + 6R^5a\,c^6 + 15R^4a^2c^5 + 20R^3a^3c^4 + 15R^2a^4c^3 + 6R\,a^5c^2 + a^6c + b}$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S.

Since the ode has the form $\frac{d}{dR}S(R) = f(R)$, then we only need to integrate f(R).

$$\int dS = \int -\frac{b}{R^6c^7 + 6R^5a\,c^6 + 15R^4a^2c^5 + 20R^3a^3c^4 + 15R^2a^4c^3 + 6R\,a^5c^2 + a^6c + b}\,dR$$

$$S(R) = -\frac{b\left(\sum_{R = \text{RootOf}\left(c^7 _ Z^6 + 6_Z^5a\,c^6 + 15_Z^4a^2c^5 + 20_Z^3a^3c^4 + 15_Z^2a^4c^3 + 6a^5c^2_Z + a^6c + b\right)}{6c^2}\frac{\ln\left(R - \frac{1}{2}\right)}{R^5c^5 + 5_R^4a\,c^4 + 10_R^3a^2c^4}\right)}$$

$$S(R) = \int -\frac{b}{R^6 c^7 + 6R^5 a c^6 + 15R^4 a^2 c^5 + 20R^3 a^3 c^4 + 15R^2 a^4 c^3 + 6R a^5 c^2 + a^6 c + b} dR + c_2$$

To complete the solution, we just need to transform the above back to x, y coordinates. This results in

$$-\frac{bx}{c} = \int_{-a^6c^7 + 6_a^5a c^6 + 15_a^4a^2c^5 + 20_a^3a^3c^4 + 15_a^2a^4c^3 + 6_a^2a^5c^2 + a^6c + b} \frac{b}{a^2a^4c^3 + 6_a^2a^5c^2 + a^6c + b} d_a^2a + c_2^2a^4a^2b^2a^2a^2b^2a^2a^2b^2a^2a^2b^2a^2a^2b^2a$$

Summary of solutions found

$$-\frac{bx}{c} = \int^{\frac{cy+bx}{c}} -\frac{b}{a^6c^7 + 6_a^5a c^6 + 15_a^4a^2c^5 + 20_a^3a^3c^4 + 15_a^2a^4c^3 + 6_a a^5c^2 + a^6c + b} d_a$$

Solved as first order ode of type dAlembert

Time used: 2.337 (sec)

Let p = y' the ode becomes

$$p = (bx + cy + a)^6$$

Solving for y from the above results in

$$y = -\frac{bx}{c} + \frac{p^{1/6} - a}{c} \tag{1}$$

$$y = -\frac{bx}{c} + \frac{\left(\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)p^{1/6} - a}{c}$$
 (2)

$$y = -\frac{bx}{c} + \frac{\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)p^{1/6} - a}{c}$$
 (3)

$$y = -\frac{bx}{c} + \frac{-p^{1/6} - a}{c} \tag{4}$$

$$y = -\frac{bx}{c} + \frac{\left(-\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)p^{1/6} - a}{c}$$
 (5)

$$y = -\frac{bx}{c} + \frac{\left(\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)p^{1/6} - a}{c}$$
 (6)

This has the form

$$y = xf(p) + g(p) \tag{*}$$

Where f, g are functions of p = y'(x). Each of the above ode's is dAlembert ode which is now solved.

Solving ode 1A

Taking derivative of (*) w.r.t. x gives

$$p = f + (xf' + g')\frac{dp}{dx}$$

$$p - f = (xf' + g')\frac{dp}{dx}$$
(2)

Comparing the form y = xf + g to (1A) shows that

$$f = -\frac{b}{c}$$
$$g = \frac{p^{1/6} - a}{c}$$

Hence (2) becomes

$$p + \frac{b}{c} = \frac{p'(x)}{6p^{5/6}c} \tag{2A}$$

The singular solution is found by setting $\frac{dp}{dx} = 0$ in the above which gives

$$p + \frac{b}{c} = 0$$

Solving the above for p results in

$$p_1 = -\frac{b}{c}$$

Substituting these in (1A) and keeping singular solution that verifies the ode gives

$$y = \frac{-bx + \left(-\frac{b}{c}\right)^{1/6} - a}{c}$$

The general solution is found when $\frac{dp}{dx} \neq 0$. From eq. (2A). This results in

$$p'(x) = 6\left(p(x) + \frac{b}{c}\right)p(x)^{5/6}c$$
(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or intergal too complicated), and since no initial conditions are given, then the result can be written as

$$\int^{p(x)} \frac{1}{6(c\tau + b)\tau^{5/6}} d\tau = x + c_1$$

Singular solutions are found by solving

$$6(pc+b) p^{5/6} = 0$$

for p(x). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$p(x) = 0$$
$$p(x) = -\frac{b}{c}$$

Substituing the above solution for p in (2A) gives

$$y = -\frac{bx}{c} + \frac{\text{RootOf}\left(-\int^{-Z} \frac{1}{6(c\tau + b)\tau^{5/6}} d\tau + x + c_1\right)^{1/6} - a}{c}$$
$$y = -\frac{bx}{c} - \frac{a}{c}$$
$$y = -\frac{bx}{c} + \frac{\left(-\frac{b}{c}\right)^{1/6} - a}{c}$$

Solving ode 2A

Taking derivative of (*) w.r.t. x gives

$$p = f + (xf' + g')\frac{dp}{dx}$$

$$p - f = (xf' + g')\frac{dp}{dx}$$
(2)

Comparing the form y = xf + g to (1A) shows that

$$f = -\frac{b}{c}$$

$$g = \frac{ip^{1/6}\sqrt{3} + p^{1/6} - 2a}{2c}$$

Hence (2) becomes

$$p + \frac{b}{c} = \left(\frac{i\sqrt{3}}{12c \, p^{5/6}} + \frac{1}{12p^{5/6}c}\right) p'(x) \tag{2A}$$

The singular solution is found by setting $\frac{dp}{dx} = 0$ in the above which gives

$$p + \frac{b}{c} = 0$$

Solving the above for p results in

$$p_1 = -\frac{b}{c}$$

Substituting these in (1A) and keeping singular solution that verifies the ode gives

$$y = \frac{i(-\frac{b}{c})^{1/6}\sqrt{3} - 2bx + (-\frac{b}{c})^{1/6} - 2a}{2c}$$

The general solution is found when $\frac{dp}{dx} \neq 0$. From eq. (2A). This results in

$$p'(x) = \frac{p(x) + \frac{b}{c}}{\frac{i\sqrt{3}}{12cp(x)^{5/6}} + \frac{1}{12p(x)^{5/6}c}}$$
(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or intergal too complicated), and since no initial conditions are given, then the result can be written as

$$\int_{0}^{p(x)} \frac{1 + i\sqrt{3}}{12(c\tau + b)\tau^{5/6}} d\tau = x + c_2$$

Singular solutions are found by solving

$$\frac{12(pc+b)\,p^{5/6}}{1+i\sqrt{3}} = 0$$

for p(x). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$p(x) = 0$$
$$p(x) = -\frac{b}{c}$$

Substituing the above solution for p in (2A) gives

$$y = -\frac{bx}{c} + \frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6} \sqrt{3} + \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{bx}{c} + \frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{bx}{c} + \frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{bx}{c} + \frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{bx}{c} + \frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{bx}{c} + \frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{bx}{c} + \frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{bx}{c} + \frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{bx}{c} + \frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{bx}{c} + \frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{bx}{c} + \frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{bx}{c} + \frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{bx}{c} + \frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{bx}{c} + \frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{bx}{c} + \frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{bx}{c} + \frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^{1/6}}{2c} y = -\frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_2\right)^$$

$$y = -\frac{bx}{c} + \frac{i(-\frac{b}{c})^{1/6}\sqrt{3} + (-\frac{b}{c})^{1/6}}{2c}$$

Solving ode 3A

Taking derivative of (*) w.r.t. x gives

$$p = f + (xf' + g')\frac{dp}{dx}$$

$$p - f = (xf' + g')\frac{dp}{dx}$$
(2)

Comparing the form y = xf + g to (1A) shows that

$$f = -\frac{b}{c}$$

$$g = \frac{ip^{1/6}\sqrt{3} - p^{1/6} - 2a}{2c}$$

Hence (2) becomes

$$p + \frac{b}{c} = \left(\frac{i\sqrt{3}}{12c \, p^{5/6}} - \frac{1}{12p^{5/6}c}\right) p'(x) \tag{2A}$$

The singular solution is found by setting $\frac{dp}{dx} = 0$ in the above which gives

$$p + \frac{b}{c} = 0$$

Solving the above for p results in

$$p_1 = -rac{b}{c}$$

Substituting these in (1A) and keeping singular solution that verifies the ode gives

$$y = \frac{i\left(-\frac{b}{c}\right)^{1/6}\sqrt{3} - 2bx - \left(-\frac{b}{c}\right)^{1/6} - 2a}{2c}$$

The general solution is found when $\frac{dp}{dx} \neq 0$. From eq. (2A). This results in

$$p'(x) = \frac{p(x) + \frac{b}{c}}{\frac{i\sqrt{3}}{12cp(x)^{5/6}} - \frac{1}{12p(x)^{5/6}c}}$$
(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or intergal too complicated), and since no initial conditions are given, then the result can be written as

$$\int^{p(x)} \frac{i\sqrt{3} - 1}{12(c\tau + b)\tau^{5/6}} d\tau = x + c_3$$

Singular solutions are found by solving

$$\frac{12(pc+b)\,p^{5/6}}{i\sqrt{3}-1}=0$$

for p(x). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$p(x) = 0$$
$$p(x) = -\frac{b}{c}$$

Substituing the above solution for p in (2A) gives

$$y = -\frac{bx}{c} + \frac{i \operatorname{RootOf}\left(-\int^{-Z} \frac{i\sqrt{3}-1}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_3\right)^{1/6} \sqrt{3} - \operatorname{RootOf}\left(-\int^{-Z} \frac{i\sqrt{3}-1}{12(c\tau+b)\tau^{5/6}} d\tau + x + c_3\right)^{1/6}}{2c}$$

$$y = -\frac{bx}{c}$$
$$y = -\frac{bx}{c} + \frac{i\left(-\frac{b}{c}\right)^{1/6}\sqrt{3} - \left(-\frac{b}{c}\right)^{1/6}}{2c}$$

Taking derivative of (*) w.r.t. x gives

$$p = f + (xf' + g')\frac{dp}{dx}$$

$$p - f = (xf' + g')\frac{dp}{dx}$$
(2)

Comparing the form y = xf + g to (1A) shows that

$$f = -\frac{b}{c}$$
$$g = \frac{-p^{1/6} - a}{c}$$

Hence (2) becomes

$$p + \frac{b}{c} = -\frac{p'(x)}{6p^{5/6}c} \tag{2A}$$

The singular solution is found by setting $\frac{dp}{dx} = 0$ in the above which gives

$$p + \frac{b}{c} = 0$$

Solving the above for p results in

$$p_1 = -\frac{b}{c}$$

Substituting these in (1A) and keeping singular solution that verifies the ode gives

$$y = \frac{-bx - \left(-\frac{b}{c}\right)^{1/6} - a}{c}$$

The general solution is found when $\frac{dp}{dx} \neq 0$. From eq. (2A). This results in

$$p'(x) = -6\left(p(x) + \frac{b}{c}\right)p(x)^{5/6}c$$
(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or intergal too complicated), and since no initial conditions are given, then the result can be written as

$$\int_{0}^{p(x)} -\frac{1}{6(c\tau+b)\tau^{5/6}} d\tau = x + c_4$$

Singular solutions are found by solving

$$-6(pc+b) \, p^{5/6} = 0$$

for p(x). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$p(x) = 0$$
$$p(x) = -\frac{b}{c}$$

Substituing the above solution for p in (2A) gives

$$y = -\frac{bx}{c} + \frac{-\text{RootOf}\left(-\int^{-Z} - \frac{1}{6(c\tau + b)\tau^{5/6}}d\tau + x + c_4\right)^{1/6} - a}{c}$$
$$y = -\frac{bx}{c} - \frac{a}{c}$$
$$y = -\frac{bx}{c} + \frac{-\left(-\frac{b}{c}\right)^{1/6} - a}{c}$$

Solving ode 5A

Taking derivative of (*) w.r.t. x gives

$$p = f + (xf' + g')\frac{dp}{dx}$$

$$p - f = (xf' + g')\frac{dp}{dx}$$
(2)

Comparing the form y = xf + g to (1A) shows that

$$f = -\frac{b}{c}$$

$$g = \frac{-ip^{1/6}\sqrt{3} - p^{1/6} - 2a}{2c}$$

Hence (2) becomes

$$p + \frac{b}{c} = \left(-\frac{i\sqrt{3}}{12c p^{5/6}} - \frac{1}{12p^{5/6}c}\right) p'(x)$$
 (2A)

The singular solution is found by setting $\frac{dp}{dx} = 0$ in the above which gives

$$p + \frac{b}{c} = 0$$

Solving the above for p results in

$$p_1 = -\frac{b}{c}$$

Substituting these in (1A) and keeping singular solution that verifies the ode gives

$$y = rac{-i\left(-rac{b}{c}
ight)^{1/6}\sqrt{3} - 2bx - \left(-rac{b}{c}
ight)^{1/6} - 2a}{2c}$$

The general solution is found when $\frac{dp}{dx} \neq 0$. From eq. (2A). This results in

$$p'(x) = \frac{p(x) + \frac{b}{c}}{-\frac{i\sqrt{3}}{12cp(x)^{5/6}} - \frac{1}{12p(x)^{5/6}c}}$$
(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or intergal too complicated), and since no initial conditions are given, then the result can be written as

$$\int_{0}^{p(x)} -\frac{1+i\sqrt{3}}{12(c\tau+b)\tau^{5/6}} d\tau = x + c_5$$

Singular solutions are found by solving

$$-\frac{12(pc+b)\,p^{5/6}}{1+i\sqrt{3}}=0$$

for p(x). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$p(x) = 0$$
$$p(x) = -\frac{b}{c}$$

Substituing the above solution for p in (2A) gives

$$y = -\frac{bx}{c} + \frac{-i \operatorname{RootOf}\left(-\int^{-Z} - \frac{1 + i\sqrt{3}}{12(c\tau + b)\tau^{5/6}}d\tau + x + c_5\right)^{1/6}\sqrt{3} - \operatorname{RootOf}\left(-\int^{-Z} - \frac{1 + i\sqrt{3}}{12(c\tau + b)\tau^{5/6}}d\tau + x + c_5\right)^{1/6}}{2c}d\tau + x + c_5$$

$$y = -\frac{bx}{c} + \frac{-i\left(-\frac{b}{c}\right)^{1/6}\sqrt{3} - \left(-\frac{b}{c}\right)^{1/6}}{2c}$$

Solving ode 6A

Taking derivative of (*) w.r.t. x gives

$$p = f + (xf' + g')\frac{dp}{dx}$$

$$p - f = (xf' + g')\frac{dp}{dx}$$
(2)

Comparing the form y = xf + g to (1A) shows that

$$f = -\frac{b}{c}$$

$$g = \frac{-ip^{1/6}\sqrt{3} + p^{1/6} - 2a}{2c}$$

Hence (2) becomes

$$p + \frac{b}{c} = \left(-\frac{i\sqrt{3}}{12c p^{5/6}} + \frac{1}{12p^{5/6}c}\right)p'(x)$$
 (2A)

The singular solution is found by setting $\frac{dp}{dx} = 0$ in the above which gives

$$p + \frac{b}{c} = 0$$

Solving the above for p results in

$$p_1 = -\frac{b}{c}$$

Substituting these in (1A) and keeping singular solution that verifies the ode gives

$$y = \frac{-i\left(-\frac{b}{c}\right)^{1/6}\sqrt{3} - 2bx + \left(-\frac{b}{c}\right)^{1/6} - 2a}{2c}$$

The general solution is found when $\frac{dp}{dx} \neq 0$. From eq. (2A). This results in

$$p'(x) = \frac{p(x) + \frac{b}{c}}{-\frac{i\sqrt{3}}{12cp(x)^{5/6}} + \frac{1}{12p(x)^{5/6}c}}$$
(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or intergal too complicated), and since no initial conditions are given, then the result can be written as

$$\int_{0}^{p(x)} -\frac{i\sqrt{3}-1}{12(c\tau+b)\tau^{5/6}} d\tau = x + c_6$$

Singular solutions are found by solving

$$-\frac{12(pc+b)\,p^{5/6}}{i\sqrt{3}-1}=0$$

for p(x). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$p(x) = 0$$
$$p(x) = -\frac{b}{c}$$

Substituing the above solution for p in (2A) gives

$$y = -\frac{bx}{c} + \frac{-i \operatorname{RootOf}\left(-\int^{-Z} - \frac{i\sqrt{3} - 1}{12(c\tau + b)\tau^{5/6}}d\tau + x + c_6\right)^{1/6}\sqrt{3} + \operatorname{RootOf}\left(-\int^{-Z} - \frac{i\sqrt{3} - 1}{12(c\tau + b)\tau^{5/6}}d\tau + x + c_6\right)^{1/6}}{2c}d\tau + x + c_6$$

 $y = -\frac{bx}{c} + \frac{-i\left(-\frac{b}{c}\right)^{1/6}\sqrt{3} + \left(-\frac{b}{c}\right)^{1/6}}{2c}$

The solution

$$y = -\frac{bx}{c} - \frac{a}{c}$$

was found not to satisfy the ode or the IC. Hence it is removed.

Summary of solutions found

$$y = \frac{-bx - \left(-\frac{b}{c}\right)^{1/6} - a}{c}$$

$$y = \frac{-bx + \left(-\frac{b}{c}\right)^{1/6} - a}{c}$$

$$y = \frac{-i\left(-\frac{b}{c}\right)^{1/6} \sqrt{3} - 2bx - \left(-\frac{b}{c}\right)^{1/6} - 2a}{2c}$$

$$y = \frac{-i\left(-\frac{b}{c}\right)^{1/6} \sqrt{3} - 2bx + \left(-\frac{b}{c}\right)^{1/6} - 2a}{2c}$$

$$y = \frac{i\left(-\frac{b}{c}\right)^{1/6} \sqrt{3} - 2bx - \left(-\frac{b}{c}\right)^{1/6} - 2a}{2c}$$

$$y = \frac{i\left(-\frac{b}{c}\right)^{1/6} \sqrt{3} - 2bx + \left(-\frac{b}{c}\right)^{1/6} - 2a}{2c}$$

$$y = -\frac{bx}{c} + \frac{-\left(-\frac{b}{c}\right)^{1/6} - a}{c}$$

$$y = -\frac{bx}{c} + \frac{\left(-\frac{b}{c}\right)^{1/6} - a}{c}$$

$$y = -\frac{bx}{c} + \frac{-\operatorname{RootOf}\left(-\int^{-Z} - \frac{1}{6(c\tau + b)\tau^{5/6}} d\tau + x + c_4\right)^{1/6} - a}{c}$$

$$\begin{split} y &= -\frac{bx}{c} + \frac{\text{RootOf}\left(-\int^{-Z} \frac{1}{6(cr+b)r^{5/6}}d\tau + x + c_1\right)^{1/6} - a}{c} \\ y &= -\frac{bx}{c} + \frac{-i(-\frac{b}{c})^{1/6}\sqrt{3} - (-\frac{b}{c})^{1/6} - 2a}{2c} \\ y &= -\frac{bx}{c} + \frac{-i(-\frac{b}{c})^{1/6}\sqrt{3} + (-\frac{b}{c})^{1/6} - 2a}{2c} \\ y &= -\frac{bx}{c} \\ &+ \frac{-i\operatorname{RootOf}\left(-\int^{-Z} - \frac{i\sqrt{3} - 1}{12(cr+b)r^{5/6}}d\tau + x + c_6\right)^{1/6}\sqrt{3} + \operatorname{RootOf}\left(-\int^{-Z} - \frac{i\sqrt{3} - 1}{12(cr+b)r^{5/6}}d\tau + x + c_6\right)^{1/6} - 2a}{2c} \\ y &= -\frac{bx}{c} \\ &+ \frac{-i\operatorname{RootOf}\left(-\int^{-Z} - \frac{1+i\sqrt{3}}{12(cr+b)r^{5/6}}d\tau + x + c_5\right)^{1/6}\sqrt{3} - \operatorname{RootOf}\left(-\int^{-Z} - \frac{1+i\sqrt{3}}{12(cr+b)r^{5/6}}d\tau + x + c_5\right)^{1/6} - 2a}{2c} \\ y &= -\frac{bx}{c} + \frac{i\left(-\frac{b}{c}\right)^{1/6}\sqrt{3} - \left(-\frac{b}{c}\right)^{1/6} - 2a}{2c} \\ y &= -\frac{bx}{c} + \frac{i\left(-\frac{b}{c}\right)^{1/6}\sqrt{3} + \left(-\frac{b}{c}\right)^{1/6} - 2a}{2c} \\ y &= -\frac{bx}{c} \\ &+ \frac{i\operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(cr+b)r^{5/6}}d\tau + x + c_2\right)^{1/6}\sqrt{3} + \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(cr+b)r^{5/6}}d\tau + x + c_2\right)^{1/6} - 2a}{2c} \\ y &= -\frac{bx}{c} \\ &+ \frac{i\operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(cr+b)r^{5/6}}d\tau + x + c_3\right)^{1/6}\sqrt{3} - \operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(cr+b)r^{5/6}}d\tau + x + c_3\right)^{1/6} - 2a}{2c} \\ &+ \frac{i\operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(cr+b)r^{5/6}}d\tau + x + c_3\right)^{1/6}\sqrt{3} - \operatorname{RootOf}\left(-\int^{-Z} \frac{i\sqrt{3} - 1}{12(cr+b)r^{5/6}}d\tau + x + c_3\right)^{1/6} - 2a}{2c} \\ &+ \frac{i\operatorname{RootOf}\left(-\int^{-Z} \frac{1+i\sqrt{3}}{12(cr+b)r^{5/6}}d\tau + x + c_3\right)^{1/6}\sqrt{3} - \operatorname{RootOf}\left(-\int^{-Z} \frac{i\sqrt{3} - 1}{12(cr+b)r^{5/6}}d\tau + x + c_3\right)^{1/6} - 2a}{2c} \\ &+ \frac{i\operatorname{RootOf}\left(-\int^{-Z} \frac{i\sqrt{3} - 1}{12(cr+b)r^{5/6}}d\tau + x + c_3\right)^{1/6}\sqrt{3} - \operatorname{RootOf}\left(-\int^{-Z} \frac{i\sqrt{3} - 1}{12(cr+b)r^{5/6}}d\tau + x + c_3\right)^{1/6} - 2a}{2c} \\ &+ \frac{i\operatorname{RootOf}\left(-\int^{-Z} \frac{i\sqrt{3} - 1}{12(cr+b)r^{5/6}}d\tau + x + c_3\right)^{1/6}\sqrt{3} - \operatorname{RootOf}\left(-\int^{-Z} \frac{i\sqrt{3} - 1}{12(cr+b)r^{5/6}}d\tau + x + c_3\right)^{1/6} - 2a}{2c} \\ &+ \frac{i\operatorname{RootOf}\left(-\int^{-Z} \frac{i\sqrt{3} - 1}{12(cr+b)r^{5/6}}d\tau + x + c_3\right)^{1/6}\sqrt{3} - \operatorname{RootOf}\left(-\int^{-Z} \frac{i\sqrt{3} - 1}{12(cr+b)r^{5/6}}d\tau + x + c_3\right)^{1/6} - 2a}{2c} \\ &+ \frac{i\operatorname{RootOf}\left(-\int^{-Z} \frac{i\sqrt{3} - 1}{12(cr+b)r^{5/6}}d\tau + x + c_3\right)^{1/6}\sqrt{3} - \operatorname{RootOf}\left(-\int^{-Z} \frac{i\sqrt{3} - 1}{12(cr+b)r^{5/6}}d\tau + x$$

Maple step by step solution

<- homogeneous successful`</pre>

Let's solve
$$\frac{d}{dx}y(x) = (a + bx + cy(x))^6$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\frac{d}{dx}y(x) = (a + bx + cy(x))^6$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
   -> Calling odsolve with the ODE, diff(y(x), x) = -b/c, y(x)
                                                                    *** Sublevel 2 >
      Methods for first order ODEs:
      --- Trying classification methods ---
     trying a quadrature
     trying 1st order linear
      <- 1st order linear successful
<- 1st order, canonical coordinates successful
```

Maple dsolve solution

Solving time: 0.045 (sec)

Leaf size: 94

$$\frac{dsolve(diff(y(x),x) = (a+b*x+c*y(x))^6,}{y(x),singsol=all)}$$

$$= \frac{\text{RootOf}\left(\left(\int^{-Z} \frac{1}{c^7_a^6 + 6_a^5 a \, c^6 + 15_a^4 a^2 c^5 + 20_a^3 a^3 c^4 + 15_a^2 a^4 c^3 + 6_a \, a^5 c^2 + a^6 c + b}{c} d_a\right) c - x + c_1\right) c - bx}{c}$$

Mathematica DSolve solution

Solving time: 1.783 (sec)

Leaf size : 274

Solve
$$\frac{-4\sqrt[6]{b}\arctan\left(\frac{\sqrt[6]{c}(a+bx+cy(x))}{\sqrt[6]{b}}\right) + 2\sqrt[6]{b}\arctan\left(\sqrt{3} - \frac{2\sqrt[6]{c}(a+bx+cy(x))}{\sqrt[6]{b}}\right) - 2\sqrt[6]{b}\arctan\left(\frac{2\sqrt[6]{c}(a+bx+cy(x))}{\sqrt[6]{b}}\right) - 2\sqrt[6]{b}$$

2.1.66 problem 66

Solved as first order form A1 ode	504
Solved as first order separable ode	506
Solved as first order Exact ode	507
Solved using Lie symmetry for first order ode	512
Solved as first order ode of type ID 1	517
Solved as first order ode of type dAlembert	518
Maple step by step solution	521
Maple trace	521
Maple dsolve solution	521
Mathematica DSolve solution	522

Internal problem ID [8726]

Book: First order enumerated odes

Section: section 1
Problem number: 66

Date solved: Tuesday, December 17, 2024 at 01:01:37 PM

CAS classification: [separable]

Solve

$$y' = e^{x+y}$$

Solved as first order form A1 ode

Time used: 0.232 (sec)

The given ode has the general form

$$y' = B + Cf(ax + by + c) \tag{1}$$

Comparing (1) to the ode given shows the parameters in the ODE have these values

$$B = 0$$

$$C = 1$$

$$a = 1$$

$$b = 1$$

$$c = 0$$

This form of ode can be solved by change of variables u = ax + by + c which makes the ode separable.

$$u'(x) = a + by'$$

Or

$$y' = \frac{u'(x) - a}{b}$$

The ode becomes

$$\frac{u'-a}{b} = B + Cf(u)$$

$$u' = bB + bCf(u) + a$$

$$\frac{du}{bB + bCf(u) + a} = dx$$

Integrating gives

$$\int \frac{du}{bB + bCf(u) + a} = x + c_1$$
$$\int^u \frac{d\tau}{bB + bCf(\tau) + a} = x + c_1$$

Replacing back u = ax + by + c the above becomes

$$\int^{ax+by+c} \frac{d\tau}{bB + bCf(\tau) + a} = x + c_1 \tag{2}$$

If initial conditions are given as $y(x_0) = y_0$, the above becomes

$$\int_{0}^{ax_{0}+by_{0}+c} \frac{d\tau}{bB+bCf(\tau)+a} = x_{0}+c_{1}$$

$$c_{1} = \int_{0}^{ax+by_{0}+c} \frac{d\tau}{bB+bCf(\tau)+a} - x_{0}$$

Substituting this into (2) gives

$$\int^{ax+by+c} \frac{d\tau}{bB + bCf(\tau) + a} = x + \int_0^{ax+by_0+c} \frac{d\tau}{bB + bCf(\tau) + a} - x_0 \tag{3}$$

Since no initial conditions are given, then using (2) and replacing the values of the parameters into (2) gives the solution as

$$\int_{0}^{x+y} \frac{1}{1+e^{\tau}} d\tau = x + c_1$$

Which simplifies to

$$-\ln(1 + e^{x+y}) + \ln(e^{x+y}) = x + c_1$$

Solving for y gives

$$y = \ln\left(-\frac{1}{-1 + e^{x+c_1}}\right) + c_1$$

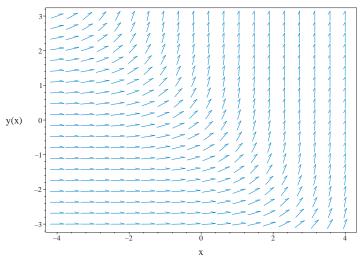


Figure 2.87: Slope field plot $y' = e^{x+y}$

Summary of solutions found

$$y = \ln\left(-\frac{1}{-1 + e^{x+c_1}}\right) + c_1$$

Solved as first order separable ode

Time used: 0.044 (sec)

The ode $y' = e^{x+y}$ is separable as it can be written as

$$y' = e^{x+y}$$
$$= f(x)g(y)$$

Where

$$f(x) = e^x$$
$$g(y) = e^y$$

Integrating gives

$$\int \frac{1}{g(y)} dy = \int f(x) dx$$
$$\int e^{-y} dy = \int e^{x} dx$$
$$-e^{-y} = e^{x} + c_{1}$$

Solving for y gives

$$y = -\ln\left(-\mathrm{e}^x - c_1\right)$$

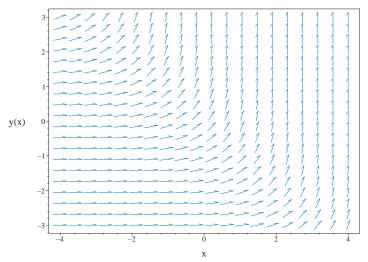


Figure 2.88: Slope field plot $y' = e^{x+y}$

Summary of solutions found

$$y = -\ln\left(-\mathrm{e}^x - c_1\right)$$

Solved as first order Exact ode

Time used: 0.164 (sec)

To solve an ode of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 (A)

We assume there exists a function $\phi(x,y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$\frac{d}{dx}\phi(x,y) = 0$$

Hence

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \frac{dy}{dx} = 0 \tag{B}$$

Comparing (A,B) shows that

$$\frac{\partial \phi}{\partial x} = M$$
$$\frac{\partial \phi}{\partial y} = N$$

But since $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x,y)$ but at least we know now that we can do that since the condition $\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$M(x,y) dx + N(x,y) dy = 0$$
(1A)

Therefore

$$dy = (e^{x+y}) dx$$

$$(-e^{x+y}) dx + dy = 0$$
(2A)

Comparing (1A) and (2A) shows that

$$M(x,y) = -e^{x+y}$$
$$N(x,y) = 1$$

The next step is to determine if the ODE is exact or not. The ODE is exact when the following condition is satisfied

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Using result found above gives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left(-e^{x+y} \right)$$
$$= -e^{x+y}$$

And

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(1)$$
$$= 0$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is <u>not exact</u>. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$A = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$
$$= 1((-e^{x+y}) - (0))$$
$$= -e^{x+y}$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$B = \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$$
$$= -e^{-x-y} ((0) - (-e^{x+y}))$$
$$= -1$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ . Then

$$\mu = e^{\int B \, \mathrm{d}y}$$
$$= e^{\int -1 \, \mathrm{d}y}$$

The result of integrating gives

$$\mu = e^{-y}$$
$$= e^{-y}$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \overline{M} and \overline{N} so not to confuse them with the original M and N.

$$\overline{M} = \mu M$$

$$= e^{-y} (-e^{x+y})$$

$$= -e^{x}$$

And

$$\overline{N} = \mu N$$
$$= e^{-y}(1)$$
$$= e^{-y}$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$\overline{M} + \overline{N} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
$$(-e^x) + (e^{-y}) \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

The following equations are now set up to solve for the function $\phi(x,y)$

$$\frac{\partial \phi}{\partial x} = \overline{M} \tag{1}$$

$$\frac{\partial \hat{\phi}}{\partial y} = \overline{N} \tag{2}$$

Integrating (1) w.r.t. x gives

$$\int \frac{\partial \phi}{\partial x} dx = \int \overline{M} dx$$

$$\int \frac{\partial \phi}{\partial x} dx = \int -e^x dx$$

$$\phi = -e^x + f(y)$$
(3)

Where f(y) is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$\frac{\partial \phi}{\partial y} = 0 + f'(y) \tag{4}$$

But equation (2) says that $\frac{\partial \phi}{\partial y} = e^{-y}$. Therefore equation (4) becomes

$$e^{-y} = 0 + f'(y)$$
 (5)

Solving equation (5) for f'(y) gives

$$f'(y) = e^{-y}$$

Integrating the above w.r.t y gives

$$\int f'(y) dy = \int (e^{-y}) dy$$
$$f(y) = -e^{-y} + c_1$$

Where c_1 is constant of integration. Substituting result found above for f(y) into equation (3) gives ϕ

$$\phi = -\mathbf{e}^x - \mathbf{e}^{-y} + c_1$$

But since ϕ itself is a constant function, then let $\phi = c_2$ where c_2 is new constant and combining c_1 and c_2 constants into the constant c_1 gives the solution as

$$c_1 = -\mathrm{e}^x - \mathrm{e}^{-y}$$

Solving for y gives

$$y = -\ln\left(-\mathrm{e}^x - c_1\right)$$

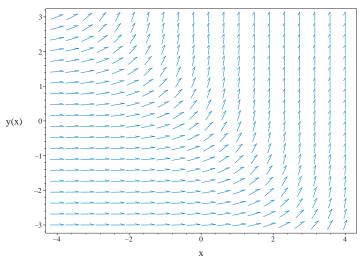


Figure 2.89: Slope field plot $y' = e^{x+y}$

Summary of solutions found

$$y = -\ln\left(-\mathrm{e}^x - c_1\right)$$

Solved using Lie symmetry for first order ode

Time used: 0.805 (sec)

Writing the ode as

$$y' = e^{x+y}$$
$$y' = \omega(x, y)$$

The condition of Lie symmetry is the linearized PDE given by

$$\eta_x + \omega(\eta_y - \xi_x) - \omega^2 \xi_y - \omega_x \xi - \omega_y \eta = 0 \tag{A}$$

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$\xi = xa_2 + ya_3 + a_1 \tag{1E}$$

$$\eta = xb_2 + yb_3 + b_1 \tag{2E}$$

Where the unknown coefficients are

$${a_1, a_2, a_3, b_1, b_2, b_3}$$

Substituting equations (1E,2E) and ω into (A) gives

$$b_2 + e^{x+y}(b_3 - a_2) - e^{2x+2y}a_3 - e^{x+y}(xa_2 + ya_3 + a_1) - e^{x+y}(xb_2 + yb_3 + b_1) = 0$$
 (5E)

Putting the above in normal form gives

$$-e^{2x+2y}a_3 - e^{x+y}xa_2 - e^{x+y}xb_2 - e^{x+y}ya_3 - e^{x+y}yb_3 - e^{x+y}a_1 - e^{x+y}a_2 - e^{x+y}b_1 + e^{x+y}b_3 + b_2 = 0$$

Setting the numerator to zero gives

$$-e^{2x+2y}a_3 - e^{x+y}xa_2 - e^{x+y}xb_2 - e^{x+y}ya_3 - e^{x+y}yb_3 - e^{x+y}a_1 - e^{x+y}a_2 - e^{x+y}b_1 + e^{x+y}b_3 + b_2 = 0$$
(6E)

Simplifying the above gives

$$-e^{2x+2y}a_3 - e^{x+y}xa_2 - e^{x+y}xb_2 - e^{x+y}ya_3 - e^{x+y}yb_3 - e^{x+y}a_1 - e^{x+y}a_2 - e^{x+y}b_1 + e^{x+y}b_3 + b_2 = 0$$
(6E)

Looking at the above PDE shows the following are all the terms with $\{x,y\}$ in them.

$$\{x, y, e^{x+y}, e^{2x+2y}\}$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$${x = v_1, y = v_2, e^{x+y} = v_3, e^{2x+2y} = v_4}$$

The above PDE (6E) now becomes

$$-v_3v_1a_2 - v_3v_2a_3 - v_3v_1b_2 - v_3v_2b_3 - v_3a_1 - v_3a_2 - v_4a_3 - v_3b_1 + v_3b_3 + b_2 = 0$$
 (7E)

Collecting the above on the terms v_i introduced, and these are

$$\{v_1, v_2, v_3, v_4\}$$

Equation (7E) now becomes

$$(-a_2 - b_2) v_1 v_3 + (-a_3 - b_3) v_2 v_3 + (-a_1 - a_2 - b_1 + b_3) v_3 - v_4 a_3 + b_2 = 0$$
 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

$$b_{2} = 0$$

$$-a_{3} = 0$$

$$-a_{2} - b_{2} = 0$$

$$-a_{3} - b_{3} = 0$$

$$-a_{1} - a_{2} - b_{1} + b_{3} = 0$$

Solving the above equations for the unknowns gives

$$a_1 = -b_1$$

$$a_2 = 0$$

$$a_3 = 0$$

$$b_1 = b_1$$

$$b_2 = 0$$

$$b_3 = 0$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$\xi = -1$$
$$\eta = 1$$

Shifting is now applied to make $\xi = 0$ in order to simplify the rest of the computation

$$\eta = \eta - \omega(x, y) \xi$$

$$= 1 - (e^{x+y}) (-1)$$

$$= 1 + e^x e^y$$

$$\xi = 0$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \to (R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$\frac{dx}{\xi} = \frac{dy}{\eta} = dS \tag{1}$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}\right) S(x,y) = 1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Since $\xi = 0$ then in this special case

$$R = x$$

S is found from

$$S = \int \frac{1}{\eta} dy$$
$$= \int \frac{1}{1 + e^x e^y} dy$$

Which results in

$$S = \ln\left(e^y\right) - \ln\left(1 + e^x e^y\right)$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$\frac{dS}{dR} = \frac{S_x + \omega(x, y)S_y}{R_x + \omega(x, y)R_y} \tag{2}$$

Where in the above R_x, R_y, S_x, S_y are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$\omega(x,y) = e^{x+y}$$

Evaluating all the partial derivatives gives

$$R_x = 1$$

$$R_y = 0$$

$$S_x = -\frac{e^{x+y}}{1 + e^{x+y}}$$

$$S_y = \frac{1}{1 + e^{x+y}}$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$\frac{dS}{dR} = 0 \tag{2A}$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$\frac{dS}{dR} = 0$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S.

Since the ode has the form $\frac{d}{dR}S(R) = f(R)$, then we only need to integrate f(R).

$$\int dS = \int 0 dR + c_2$$
$$S(R) = c_2$$

To complete the solution, we just need to transform the above back to x, y coordinates. This results in

$$y - \ln\left(1 + e^{x+y}\right) = c_2$$

Which gives

$$y = \ln\left(-\frac{1}{-1 + e^{x+c_2}}\right) + c_2$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R,S)
	$R = x$ $S = y - \ln(1 + e^{x+y})$	$\frac{dS}{dR} = 0$

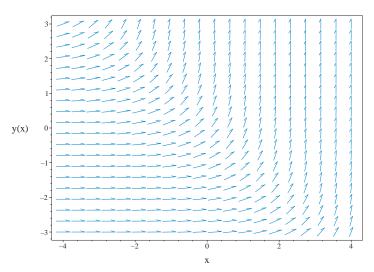


Figure 2.90: Slope field plot $y' = e^{x+y}$

Summary of solutions found

$$y = \ln\left(-\frac{1}{-1 + \mathrm{e}^{x+c_2}}\right) + c_2$$

Solved as first order ode of type ID 1

Time used: 0.106 (sec)

Writing the ode as

$$y' = e^{x+y} \tag{1}$$

And using the substitution $u = e^{-y}$ then

$$u' = -y'e^{-y}$$

The above shows that

$$y' = -u'(x) e^{y}$$
$$= -\frac{u'(x)}{u}$$

Substituting this in (1) gives

$$-\frac{u'(x)}{u} = \frac{e^x}{u}$$

The above simplifies to

$$u'(x) = -e^x (2)$$

Now ode (2) is solved for u(x).

Since the ode has the form u'(x) = f(x), then we only need to integrate f(x).

$$\int du = \int -e^x dx$$
$$u(x) = -e^x + c_1$$

Substituting the solution found for u(x) in $u = e^{-y}$ gives

$$y = -\ln(u(x))$$

= $-\ln(-\ln(-e^x + c_1))$
= $-\ln(-e^x + c_1)$

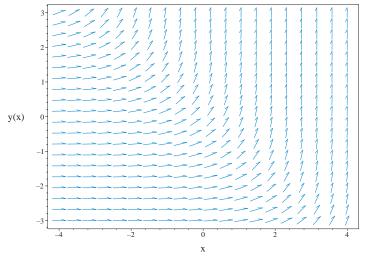


Figure 2.91: Slope field plot $y' = e^{x+y}$

Summary of solutions found

$$y = -\ln\left(-\mathrm{e}^x + c_1\right)$$

Solved as first order ode of type dAlembert

Time used: 0.109 (sec)

Let p = y' the ode becomes

$$p = e^{x+y}$$

Solving for y from the above results in

$$y = -x + \ln\left(p\right) \tag{1}$$

This has the form

$$y = xf(p) + g(p) \tag{*}$$

Where f, g are functions of p = y'(x). The above ode is dAlembert ode which is now solved.

Taking derivative of (*) w.r.t. x gives

$$p = f + (xf' + g')\frac{dp}{dx}$$

$$p - f = (xf' + g')\frac{dp}{dx}$$
(2)

Comparing the form y = xf + g to (1A) shows that

$$f = -1$$
$$g = \ln(p)$$

Hence (2) becomes

$$p+1 = \frac{p'(x)}{p} \tag{2A}$$

The singular solution is found by setting $\frac{dp}{dx} = 0$ in the above which gives

$$p + 1 = 0$$

Solving the above for p results in

$$p_1 = -1$$

Substituting these in (1A) and keeping singular solution that verifies the ode gives

$$y = i\pi - x$$

The general solution is found when $\frac{dp}{dx} \neq 0$. From eq. (2A). This results in

$$p'(x) = (p(x) + 1) p(x)$$
(3)

This ODE is now solved for p(x). No inversion is needed. Integrating gives

$$\int \frac{1}{(p+1)p} dp = dx$$
$$-\ln(p+1) + \ln(p) = x + c_1$$

Singular solutions are found by solving

$$(p+1) p = 0$$

for p(x). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$p(x) = -1$$
$$p(x) = 0$$

Solving for p(x) gives

$$p(x) = -1$$

 $p(x) = 0$
 $p(x) = -\frac{e^{x+c_1}}{-1 + e^{x+c_1}}$

Substituing the above solution for p in (2A) gives

$$y = i\pi - x$$
$$y = -x + \ln\left(-\frac{e^{x+c_1}}{-1 + e^{x+c_1}}\right)$$

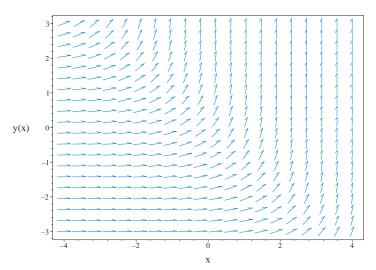


Figure 2.92: Slope field plot $y' = e^{x+y}$

Summary of solutions found

$$y = i\pi - x$$
$$y = -x + \ln\left(-\frac{e^{x+c_1}}{-1 + e^{x+c_1}}\right)$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = e^{x+y(x)}$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\frac{d}{dx}y(x) = e^{x+y(x)}$
- Separate variables

$$\frac{\frac{d}{dx}y(x)}{e^{y(x)}} = e^x$$

• Integrate both sides with respect to x

$$\int \frac{\frac{d}{dx}y(x)}{e^{y(x)}} dx = \int e^x dx + C1$$

• Evaluate integral

$$-\frac{1}{e^{y(x)}} = e^x + C1$$

• Solve for y(x)

$$y(x) = \ln\left(-\frac{1}{e^x + C1}\right)$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`</pre>
```

Maple dsolve solution

Solving time: 0.006 (sec)

Leaf size : 13

$$y = \ln\left(-\frac{1}{c_1 + e^x}\right)$$

Mathematica DSolve solution

Solving time: 0.822 (sec)

Leaf size : 18

DSolve[{D[y[x],x]==Exp[x+y[x]],{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \rightarrow -\log\left(-e^x - c_1\right)$$

2.1.67 problem 67

Solved as first order form A1 ode	523
Solved using Lie symmetry for first order ode $\ \ldots \ \ldots \ \ldots$	525
Solved as first order ode of type ID 1	530
Solved as first order ode of type d Alembert $\ \ldots \ \ldots \ \ldots$	532
Maple step by step solution $\dots \dots \dots \dots \dots$	535
Maple trace	535
Maple d solve solution $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	535
Mathematica DSolve solution	536

Internal problem ID [8727]

Book: First order enumerated odes

Section: section 1
Problem number: 67

Date solved: Tuesday, December 17, 2024 at 01:01:39 PM CAS classification: [[_homogeneous, 'class C'], _dAlembert]

Solve

$$y' = 10 + e^{x+y}$$

Solved as first order form A1 ode

Time used: 0.241 (sec)

The given ode has the general form

$$y' = B + Cf(ax + by + c) \tag{1}$$

Comparing (1) to the ode given shows the parameters in the ODE have these values

$$B = 10$$

$$C = 1$$

$$a = 1$$

$$b = 1$$

$$c = 0$$

This form of ode can be solved by change of variables u = ax + by + c which makes the ode separable.

$$u'(x) = a + by'$$

Or

$$y' = \frac{u'(x) - a}{b}$$

The ode becomes

$$\frac{u'-a}{b} = B + Cf(u)$$

$$u' = bB + bCf(u) + a$$

$$\frac{du}{bB + bCf(u) + a} = dx$$

Integrating gives

$$\int \frac{du}{bB + bCf(u) + a} = x + c_1$$
$$\int^u \frac{d\tau}{bB + bCf(\tau) + a} = x + c_1$$

Replacing back u = ax + by + c the above becomes

$$\int^{ax+by+c} \frac{d\tau}{bB + bCf(\tau) + a} = x + c_1 \tag{2}$$

If initial conditions are given as $y(x_0) = y_0$, the above becomes

$$\int_{0}^{ax_{0}+by_{0}+c} \frac{d\tau}{bB + bCf(\tau) + a} = x_{0} + c_{1}$$

$$c_{1} = \int_{0}^{ax+by_{0}+c} \frac{d\tau}{bB + bCf(\tau) + a} - x_{0}$$

Substituting this into (2) gives

$$\int^{ax+by+c} \frac{d\tau}{bB + bCf(\tau) + a} = x + \int_0^{ax+by_0+c} \frac{d\tau}{bB + bCf(\tau) + a} - x_0$$
 (3)

Since no initial conditions are given, then using (2) and replacing the values of the parameters into (2) gives the solution as

$$\int_{0}^{x+y} \frac{1}{11 + e^{\tau}} d\tau = x + c_1$$

Which simplifies to

$$-\frac{\ln(11 + e^{x+y})}{11} + \frac{\ln(e^{x+y})}{11} = x + c_1$$

Solving for y gives

$$y = 10x + \ln\left(-\frac{11}{-1 + e^{11x + 11c_1}}\right) + 11c_1$$

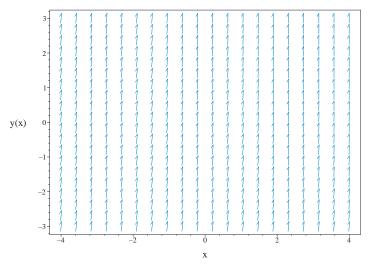


Figure 2.93: Slope field plot $y' = 10 + e^{x+y}$

Summary of solutions found

$$y = 10x + \ln\left(-\frac{11}{-1 + e^{11x + 11c_1}}\right) + 11c_1$$

Solved using Lie symmetry for first order ode

Time used: 0.963 (sec)

Writing the ode as

$$y' = 10 + e^{x+y}$$
$$y' = \omega(x, y)$$

The condition of Lie symmetry is the linearized PDE given by

$$\eta_x + \omega(\eta_y - \xi_x) - \omega^2 \xi_y - \omega_x \xi - \omega_y \eta = 0 \tag{A}$$

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$\xi = xa_2 + ya_3 + a_1 \tag{1E}$$

$$\eta = xb_2 + yb_3 + b_1 \tag{2E}$$

Where the unknown coefficients are

$$\{a_1, a_2, a_3, b_1, b_2, b_3\}$$

Substituting equations (1E,2E) and ω into (A) gives

$$b_2 + (10 + e^{x+y}) (b_3 - a_2) - (10 + e^{x+y})^2 a_3$$

$$- e^{x+y} (xa_2 + ya_3 + a_1) - e^{x+y} (xb_2 + yb_3 + b_1) = 0$$
(5E)

Putting the above in normal form gives

$$-e^{2x+2y}a_3 - e^{x+y}xa_2 - e^{x+y}xb_2 - e^{x+y}ya_3 - e^{x+y}yb_3 - e^{x+y}a_1 - e^{x+y}a_2 - 20e^{x+y}a_3 - e^{x+y}b_1 + e^{x+y}b_3 - 10a_2 - 100a_3 + b_2 + 10b_3 = 0$$

Setting the numerator to zero gives

$$-e^{2x+2y}a_3 - e^{x+y}xa_2 - e^{x+y}xb_2 - e^{x+y}ya_3 - e^{x+y}yb_3 - e^{x+y}a_1 - e^{x+y}a_2$$

$$-20e^{x+y}a_3 - e^{x+y}b_1 + e^{x+y}b_3 - 10a_2 - 100a_3 + b_2 + 10b_3 = 0$$
(6E)

Simplifying the above gives

$$-e^{2x+2y}a_3 - e^{x+y}xa_2 - e^{x+y}xb_2 - e^{x+y}ya_3 - e^{x+y}yb_3 - e^{x+y}a_1 - e^{x+y}a_2$$

$$-20e^{x+y}a_3 - e^{x+y}b_1 + e^{x+y}b_3 - 10a_2 - 100a_3 + b_2 + 10b_3 = 0$$
(6E)

Looking at the above PDE shows the following are all the terms with $\{x,y\}$ in them.

$$\{x, y, e^{x+y}, e^{2x+2y}\}$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$${x = v_1, y = v_2, e^{x+y} = v_3, e^{2x+2y} = v_4}$$

The above PDE (6E) now becomes

$$-v_3v_1a_2 - v_3v_2a_3 - v_3v_1b_2 - v_3v_2b_3 - v_3a_1 - v_3a_2 - 20v_3a_3 - v_4a_3 - v_3b_1 + v_3b_3 - 10a_2 - 100a_3 + b_2 + 10b_3 = 0$$
(7E)

Collecting the above on the terms v_i introduced, and these are

$$\{v_1, v_2, v_3, v_4\}$$

Equation (7E) now becomes

$$(-a_2 - b_2) v_1 v_3 + (-a_3 - b_3) v_2 v_3 + (-a_1 - a_2 - 20a_3 - b_1 + b_3) v_3$$

$$- v_4 a_3 - 10a_2 - 100a_3 + b_2 + 10b_3 = 0$$
(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

$$-a_3 = 0$$

$$-a_2 - b_2 = 0$$

$$-a_3 - b_3 = 0$$

$$-10a_2 - 100a_3 + b_2 + 10b_3 = 0$$

$$-a_1 - a_2 - 20a_3 - b_1 + b_3 = 0$$

Solving the above equations for the unknowns gives

$$a_1 = -b_1$$
 $a_2 = 0$
 $a_3 = 0$
 $b_1 = b_1$
 $b_2 = 0$
 $b_3 = 0$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$\xi = -1$$
$$\eta = 1$$

Shifting is now applied to make $\xi = 0$ in order to simplify the rest of the computation

$$\eta = \eta - \omega(x, y) \xi$$
= 1 - (10 + e^{x+y}) (-1)
= 11 + e^xe^y
 $\xi = 0$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \to (R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$\frac{dx}{\xi} = \frac{dy}{\eta} = dS \tag{1}$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}\right) S(x,y) = 1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where S(R). Since $\xi = 0$ then in this special case

$$R = x$$

S is found from

$$S = \int \frac{1}{\eta} dy$$
$$= \int \frac{1}{11 + e^x e^y} dy$$

Which results in

$$S = -\frac{\ln(11 + e^x e^y)}{11} + \frac{\ln(e^y)}{11}$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$\frac{dS}{dR} = \frac{S_x + \omega(x, y)S_y}{R_x + \omega(x, y)R_y} \tag{2}$$

Where in the above R_x, R_y, S_x, S_y are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$\omega(x,y) = 10 + e^{x+y}$$

Evaluating all the partial derivatives gives

$$R_x = 1$$
 $R_y = 0$

$$S_x = -\frac{e^{x+y}}{121 + 11 e^{x+y}}$$

$$S_y = \frac{1}{11 + e^{x+y}}$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$\frac{dS}{dR} = \frac{10}{11} \tag{2A}$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$\frac{dS}{dR} = \frac{10}{11}$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S.

Since the ode has the form $\frac{d}{dR}S(R) = f(R)$, then we only need to integrate f(R).

$$\int dS = \int \frac{10}{11} dR$$
$$S(R) = \frac{10R}{11} + c_2$$

To complete the solution, we just need to transform the above back to x, y coordinates. This results in

$$-\frac{\ln(11 + e^{x+y})}{11} + \frac{y}{11} = \frac{10x}{11} + c_2$$

Which gives

$$y = 10x + \ln\left(-\frac{11}{-1 + e^{11x + 11c_2}}\right) + 11c_2$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{dy}{dx} = 10 + e^{x+y}$		$\frac{dS}{dR} = \frac{10}{11}$
	$R = x$ $S = -\frac{\ln(11 + e^{x+y})}{11} + \frac{\ln(11 + e^{x+y})}{11} + \ln(11$	<u>y</u> 11

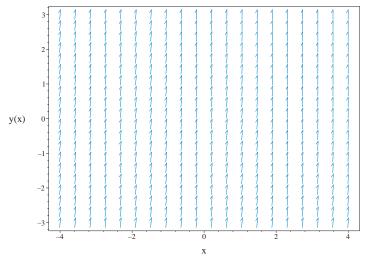


Figure 2.94: Slope field plot $y' = 10 + e^{x+y}$

Summary of solutions found

$$y = 10x + \ln\left(-\frac{11}{-1 + e^{11x + 11c_2}}\right) + 11c_2$$

Solved as first order ode of type ID 1

Time used: 0.121 (sec)

Writing the ode as

$$y' = 10 + e^{x+y} (1)$$

And using the substitution $u = e^{-y}$ then

$$u' = -y'e^{-y}$$

The above shows that

$$y' = -u'(x) e^{y}$$
$$= -\frac{u'(x)}{u}$$

Substituting this in (1) gives

$$-\frac{u'(x)}{u} = \frac{e^x}{u} + 10$$

The above simplifies to

$$-u'(x) = e^x + 10u(x)$$

$$u'(x) + 10u(x) = -e^x$$
 (2)

Now ode (2) is solved for u(x).

In canonical form a linear first order is

$$u'(x) + q(x)u(x) = p(x)$$

Comparing the above to the given ode shows that

$$q(x) = 10$$
$$p(x) = -e^x$$

The integrating factor μ is

$$\mu = e^{\int q \, dx}$$
$$= e^{\int 10 dx}$$
$$= e^{10x}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu u) = \mu p$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu u) = (\mu) (-\mathrm{e}^x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(u \,\mathrm{e}^{10x}) = (\mathrm{e}^{10x}) (-\mathrm{e}^x)$$

$$\mathrm{d}(u \,\mathrm{e}^{10x}) = (-\mathrm{e}^x \mathrm{e}^{10x}) \,\mathrm{d}x$$

Integrating gives

$$u e^{10x} = \int -e^x e^{10x} dx$$
$$= -\frac{e^{11x}}{11} + c_1$$

Dividing throughout by the integrating factor e^{10x} gives the final solution

$$u(x) = -\frac{\left(e^{11x} - 11c_1\right)e^{-10x}}{11}$$

Substituting the solution found for u(x) in $u = e^{-y}$ gives

$$y = -\ln(u(x))$$
= $-\ln(\ln(11) - \ln((-e^{11x} + 11c_1)e^{-10x}))$
= $\ln(11) - \ln((-e^{11x} + 11c_1)e^{-10x})$

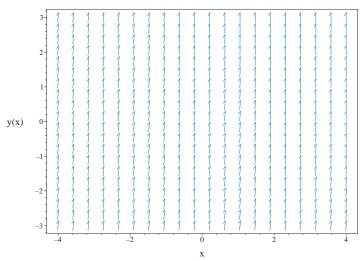


Figure 2.95: Slope field plot $y' = 10 + e^{x+y}$

Summary of solutions found

$$y = \ln{(11)} - \ln{\left(\left(-e^{11x} + 11c_1\right)e^{-10x}\right)}$$

Solved as first order ode of type dAlembert

Time used: 0.155 (sec)

Let p = y' the ode becomes

$$p = 10 + e^{x+y}$$

Solving for y from the above results in

$$y = -x + \ln\left(p - 10\right) \tag{1}$$

This has the form

$$y = xf(p) + g(p) \tag{*}$$

Where f, g are functions of p = y'(x). The above ode is dAlembert ode which is now solved.

Taking derivative of (*) w.r.t. x gives

$$p = f + (xf' + g')\frac{dp}{dx}$$

$$p - f = (xf' + g')\frac{dp}{dx}$$
(2)

Comparing the form y = xf + g to (1A) shows that

$$f = -1$$
$$g = \ln(p - 10)$$

Hence (2) becomes

$$p + 1 = \frac{p'(x)}{p - 10} \tag{2A}$$

The singular solution is found by setting $\frac{dp}{dx} = 0$ in the above which gives

$$p + 1 = 0$$

Solving the above for p results in

$$p_1 = -1$$

Substituting these in (1A) and keeping singular solution that verifies the ode gives

$$y = -x + \ln\left(11\right) + i\pi$$

The general solution is found when $\frac{dp}{dx} \neq 0$. From eq. (2A). This results in

$$p'(x) = (p(x) + 1)(p(x) - 10)$$
(3)

This ODE is now solved for p(x). No inversion is needed. Integrating gives

$$\int \frac{1}{(p+1)(p-10)} dp = dx$$

$$\frac{\ln(p-10)}{11} - \frac{\ln(p+1)}{11} = x + c_1$$

Singular solutions are found by solving

$$(p+1)(p-10) = 0$$

for p(x). This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

$$p(x) = -1$$
$$p(x) = 10$$

Solving for p(x) gives

$$p(x) = -1$$

$$p(x) = 10$$

$$p(x) = -\frac{10 + e^{11x + 11c_1}}{-1 + e^{11x + 11c_1}}$$

Substituing the above solution for p in (2A) gives

$$y = -x + \ln(11) + i\pi$$
$$y = -x + \ln\left(-\frac{10 + e^{11x + 11c_1}}{-1 + e^{11x + 11c_1}} - 10\right)$$

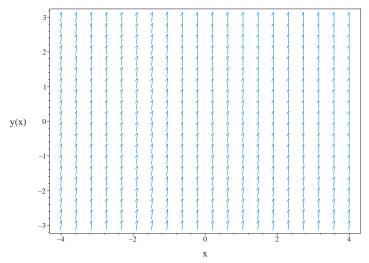


Figure 2.96: Slope field plot $y' = 10 + e^{x+y}$

Summary of solutions found

$$y = -x + \ln\left(-\frac{10 + e^{11x + 11c_1}}{-1 + e^{11x + 11c_1}} - 10\right)$$
$$y = -x + \ln(11) + i\pi$$

Maple step by step solution

Let's solve $\frac{d}{dx}y(x) = 10 + e^{x+y(x)}$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative $\frac{d}{dx}y(x) = 10 + e^{x+y(x)}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`</pre>
```

Maple dsolve solution

Solving time: 0.072 (sec)

Leaf size: 26

```
dsolve(diff(y(x),x) = 10+exp(x+y(x)),
    y(x),singsol=all)
```

$$y = -x + \ln(11) + \ln\left(\frac{e^{11x}}{-e^{11x} + c_1}\right)$$

Mathematica DSolve solution

Solving time: 3.188 (sec)

Leaf size : 42

DSolve[{D[y[x],x]==10+Exp[x+y[x]],{}},
 y[x],x,IncludeSingularSolutions->True]

$$y(x) \to \log\left(-\frac{11e^{10x+11c_1}}{-1+e^{11(x+c_1)}}\right)$$

 $y(x) \to \log\left(-11e^{-x}\right)$

2.1.68 problem 68

Solved as first order ode of type ID 1	537
Maple step by step solution	539
Maple trace	539
Maple dsolve solution	540
Mathematica DSolve solution	541

Internal problem ID [8728]

Book: First order enumerated odes

Section: section 1
Problem number: 68

Date solved: Tuesday, December 17, 2024 at 01:01:42 PM

CAS classification: [[_1st_order, '_with_symmetry_[F(x),G(x)]']]

Solve

$$y' = 10 e^{x+y} + x^2$$

Solved as first order ode of type ID 1

Time used: 0.491 (sec)

Writing the ode as

$$y' = 10 e^{x+y} + x^2 (1)$$

And using the substitution $u = e^{-y}$ then

$$u' = -y' e^{-y}$$

The above shows that

$$y' = -u'(x) e^{y}$$
$$= -\frac{u'(x)}{u}$$

Substituting this in (1) gives

$$-\frac{u'(x)}{u} = \frac{10 e^x}{u} + x^2$$

The above simplifies to

$$-u'(x) = 10 e^x + x^2 u(x)$$

$$u'(x) + x^2 u(x) = -10 e^x$$
 (2)

Now ode (2) is solved for u(x).

In canonical form a linear first order is

$$u'(x) + q(x)u(x) = p(x)$$

Comparing the above to the given ode shows that

$$q(x) = x^2$$
$$p(x) = -10 e^x$$

The integrating factor μ is

$$\mu = e^{\int q \, dx}$$
$$= e^{\int x^2 dx}$$
$$= e^{\frac{x^3}{3}}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu u) = \mu p$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu u) = (\mu) \left(-10 \,\mathrm{e}^x\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(u \,\mathrm{e}^{\frac{x^3}{3}}\right) = \left(\mathrm{e}^{\frac{x^3}{3}}\right) \left(-10 \,\mathrm{e}^x\right)$$

$$\mathrm{d}\left(u \,\mathrm{e}^{\frac{x^3}{3}}\right) = \left(-10 \,\mathrm{e}^x \mathrm{e}^{\frac{x^3}{3}}\right) \,\mathrm{d}x$$

Integrating gives

$$u e^{\frac{x^3}{3}} = \int -10 e^x e^{\frac{x^3}{3}} dx$$
$$= \int -10 e^x e^{\frac{x^3}{3}} dx + c_1$$

Dividing throughout by the integrating factor $e^{\frac{x^3}{3}}$ gives the final solution

$$u(x) = e^{-\frac{x^3}{3}} \left(\int -10 e^x e^{\frac{x^3}{3}} dx + c_1 \right)$$

Substituting the solution found for u(x) in $u = e^{-y}$ gives

$$y = -\ln(u(x))$$

$$= -\ln\left(-\ln\left(\left(-10\left(\int e^{\frac{x(x^2+3)}{3}}dx\right) + c_1\right)e^{-\frac{x^3}{3}}\right)\right)$$

$$= -\ln\left(\left(-10\left(\int e^{\frac{x(x^2+3)}{3}}dx\right) + c_1\right)e^{-\frac{x^3}{3}}\right)$$

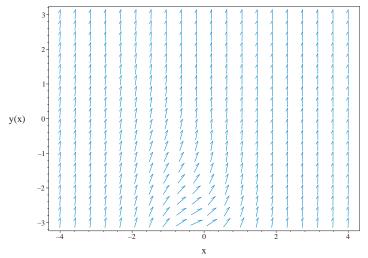


Figure 2.97: Slope field plot $y' = 10 e^{x+y} + x^2$

Summary of solutions found

$$y=-\ln\left(\left(-10igg(\int \mathrm{e}^{rac{x\left(x^2+3
ight)}{3}}dx
ight)+c_1
ight)\mathrm{e}^{-rac{x^3}{3}}
ight)$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = 10 e^{x+y(x)} + x^2$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = 10e^{x+y(x)} + x^2$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
```

```
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables \{x \rightarrow y(x), y(x) \rightarrow x\}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
 , `-> Computing symmetries using: way = 3
  `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
<- symmetry pattern of the form [0, F(x)*G(y)] successful
```

Maple dsolve solution

Solving time: 0.019 (sec)

Leaf size : 30

```
\frac{dsolve(diff(y(x),x) = 10*exp(x+y(x))+x^2,}{y(x),singsol=all)}
```

$$y = rac{x^3}{3} - \ln\left(-c_1 - 10\left(\int \mathrm{e}^{rac{x(x^2+3)}{3}}dx
ight)
ight)$$

Mathematica DSolve solution

Solving time: 0.413 (sec)

Leaf size: 115

DSolve[{D[y[x],x]==10*Exp[x+y[x]]+x^2,{}},
 y[x],x,IncludeSingularSolutions->True]

Solve
$$\left[\int_{1}^{y(x)} -\frac{1}{10} e^{-K[2]} \left(10 e^{K[2]} \int_{1}^{x} -\frac{1}{10} e^{\frac{K[1]^{3}}{3} - K[2]} K[1]^{2} dK[1] + e^{\frac{x^{3}}{3}} \right) dK[2] \right]$$

$$+ \int_{1}^{x} \left(\frac{1}{10} e^{\frac{K[1]^{3}}{3} - y(x)} K[1]^{2} + e^{\frac{K[1]^{3}}{3} + K[1]} \right) dK[1] = c_{1}, y(x)$$

2.1.69 problem 69

Solved as first order ode of type ID 1	542
Maple step by step solution	544
Maple trace	544
Maple dsolve solution	545
Mathematica DSolve solution	546

Internal problem ID [8729]

Book: First order enumerated odes

Section: section 1
Problem number: 69

Date solved: Tuesday, December 17, 2024 at 01:01:44 PM

CAS classification: [[_1st_order, '_with_symmetry_[F(x),G(x)]']]

Solve

$$y' = x e^{x+y} + \sin(x)$$

Solved as first order ode of type ID 1

Time used: 0.654 (sec)

Writing the ode as

$$y' = x e^{x+y} + \sin(x) \tag{1}$$

And using the substitution $u = e^{-y}$ then

$$u' = -y' e^{-y}$$

The above shows that

$$y' = -u'(x) e^{y}$$
$$= -\frac{u'(x)}{u}$$

Substituting this in (1) gives

$$-\frac{u'(x)}{u} = \frac{x e^x}{u} + \sin(x)$$

The above simplifies to

$$-u'(x) = x e^{x} + \sin(x) u(x)$$

$$u'(x) + \sin(x) u(x) = -x e^{x}$$
 (2)

Now ode (2) is solved for u(x).

In canonical form a linear first order is

$$u'(x) + q(x)u(x) = p(x)$$

Comparing the above to the given ode shows that

$$q(x) = \sin(x)$$
$$p(x) = -x e^x$$

The integrating factor μ is

$$\mu = e^{\int q \, dx}$$

$$= e^{\int \sin(x) dx}$$

$$= e^{-\cos(x)}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu u) = \mu p$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mu u) = (\mu) (-x e^x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(u e^{-\cos(x)}) = (e^{-\cos(x)}) (-x e^x)$$

$$\mathrm{d}(u e^{-\cos(x)}) = (-x e^x e^{-\cos(x)}) dx$$

Integrating gives

$$u e^{-\cos(x)} = \int -x e^x e^{-\cos(x)} dx$$
$$= \int -x e^x e^{-\cos(x)} dx + c_1$$

Dividing throughout by the integrating factor $e^{-\cos(x)}$ gives the final solution

$$u(x) = e^{\cos(x)} \left(\int -x e^x e^{-\cos(x)} dx + c_1 \right)$$

Substituting the solution found for u(x) in $u = e^{-y}$ gives

$$y = -\ln(u(x))$$

$$= -\ln\left(-\ln\left(\left(-\int x e^{x-\cos(x)} dx + c_1\right) e^{\cos(x)}\right)\right)$$

$$= -\ln\left(\left(-\int x e^{x-\cos(x)} dx + c_1\right) e^{\cos(x)}\right)$$

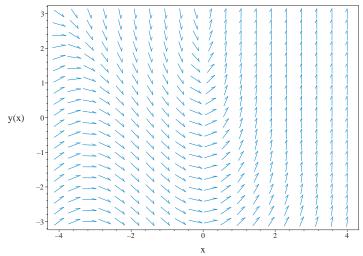


Figure 2.98: Slope field plot $y' = x e^{x+y} + \sin(x)$

Summary of solutions found

$$y = -\ln\left(\left(-\int x e^{x-\cos(x)} dx + c_1\right) e^{\cos(x)}\right)$$

Maple step by step solution

Let's solve

$$\frac{d}{dx}y(x) = x e^{x+y(x)} + \sin(x)$$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = x e^{x+y(x)} + \sin(x)$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
```

```
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables \{x \rightarrow y(x), y(x) \rightarrow x\}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
 , `-> Computing symmetries using: way = 3
  `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
<- symmetry pattern of the form [0, F(x)*G(y)] successful
```

Maple dsolve solution

Solving time: 0.020 (sec)

Leaf size: 29

```
dsolve(diff(y(x),x) = x*exp(x+y(x))+sin(x),
     y(x),singsol=all)
```

$$y = -\cos(x) - \ln\left(-c_1 - \left(\int x e^{x - \cos(x)} dx\right)\right)$$

Mathematica DSolve solution

Solving time: 3.151 (sec)

Leaf size: 100

DSolve[{D[y[x],x]==x*Exp[x+y[x]]+Sin[x],{}},
 y[x],x,IncludeSingularSolutions->True]

$$Solve \left[\int_{1}^{x} \left(-e^{K[1] - \cos(K[1])} K[1] - e^{-\cos(K[1]) - y(x)} \sin(K[1]) \right) dK[1] + \int_{1}^{y(x)} e^{-\cos(x) - K[2]} \left(e^{\cos(x) + K[2]} \int_{1}^{x} e^{-\cos(K[1]) - K[2]} \sin(K[1]) dK[1] - 1 \right) dK[2] = c_{1}, y(x) \right]$$

2.1.70 problem 70

Solved as first order ode of type ID 1	47
Maple step by step solution	49
Maple trace	50
Maple dsolve solution	51
Mathematica DSolve solution	51

Internal problem ID [8730]

Book: First order enumerated odes

Section: section 1

Problem number: 70

Date solved: Tuesday, December 17, 2024 at 01:01:46 PM

CAS classification: [[_1st_order, '_with_symmetry_[F(x),G(x)]']]

Solve

$$y' = 5 e^{x^2 + 20y} + \sin(x)$$

Solved as first order ode of type ID 1

Time used: 0.685 (sec)

Writing the ode as

$$y' = 5e^{x^2 + 20y} + \sin(x) \tag{1}$$

And using the substitution $u = e^{-20y}$ then

$$u' = -20y' e^{-20y}$$

The above shows that

$$y' = -\frac{u'(x) e^{20y}}{20}$$
$$= -\frac{u'(x)}{20u}$$

Substituting this in (1) gives

$$-\frac{u'(x)}{20u} = \frac{5e^{x^2}}{u} + \sin(x)$$

The above simplifies to

$$-\frac{u'(x)}{20} = 5 e^{x^2} + \sin(x) u(x)$$
$$u'(x) + 20 \sin(x) u(x) = -100 e^{x^2}$$
 (2)

Now ode (2) is solved for u(x).

In canonical form a linear first order is

$$u'(x) + q(x)u(x) = p(x)$$

Comparing the above to the given ode shows that

$$q(x) = 20\sin(x)$$
$$p(x) = -100 e^{x^2}$$

The integrating factor μ is

$$\mu = e^{\int q \, dx}$$

$$= e^{\int 20 \sin(x) dx}$$

$$= e^{-20 \cos(x)}$$

The ode becomes

$$\frac{d}{dx}(\mu u) = \mu p$$

$$\frac{d}{dx}(\mu u) = (\mu) \left(-100 e^{x^2}\right)$$

$$\frac{d}{dx}(u e^{-20\cos(x)}) = \left(e^{-20\cos(x)}\right) \left(-100 e^{x^2}\right)$$

$$d(u e^{-20\cos(x)}) = \left(-100 e^{x^2} e^{-20\cos(x)}\right) dx$$

Integrating gives

$$u e^{-20\cos(x)} = \int -100 e^{x^2} e^{-20\cos(x)} dx$$
$$= \int -100 e^{x^2} e^{-20\cos(x)} dx + c_1$$

Dividing throughout by the integrating factor $e^{-20\cos(x)}$ gives the final solution

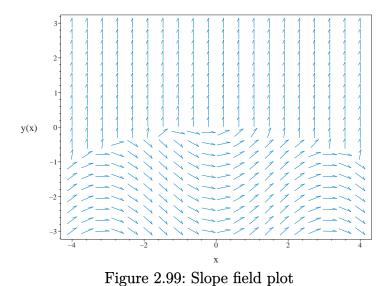
$$u(x) = e^{20\cos(x)} \left(\int -100 e^{x^2} e^{-20\cos(x)} dx + c_1 \right)$$

Substituting the solution found for u(x) in $u = e^{-20y}$ gives

$$y = -\frac{\ln(u(x))}{20}$$

$$= -\frac{\ln\left(-\frac{\ln((-100(\int e^{x^2 - 20\cos(x)}dx) + c_1)e^{20\cos(x)})}{20}\right)}{20}$$

$$= -\frac{\ln\left((-100(\int e^{x^2 - 20\cos(x)}dx) + c_1\right)e^{20\cos(x)})}{20}$$



 $y' = 5 e^{x^2 + 20y} + \sin(x)$

Summary of solutions found

$$y = -\frac{\ln\left(\left(-100\left(\int \mathrm{e}^{x^2 - 20\cos(x)} dx\right) + c_1\right)\mathrm{e}^{20\cos(x)}\right)}{20}$$

Maple step by step solution

Let's solve $\frac{d}{dx}y(x) = 5 e^{x^2 + 20y(x)} + \sin(x)$

- Highest derivative means the order of the ODE is 1 $\frac{d}{dx}y(x)$
- Solve for the highest derivative

$$\frac{d}{dx}y(x) = 5e^{x^2 + 20y(x)} + \sin(x)$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables \{x \rightarrow y(x), y(x) \rightarrow x\}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable by differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
 , `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
<- symmetry pattern of the form [0, F(x)*G(y)] successful
```

Maple dsolve solution

Solving time: 0.023 (sec)

Leaf size: 33

 $\frac{dsolve(diff(y(x),x) = 5*exp(x^2+20*y(x))+sin(x),}{y(x),singsol=all)}$

$$y = -\cos(x) - \frac{\ln(20)}{20} - \frac{\ln(-c_1 - 5(\int e^{x^2 - 20\cos(x)} dx))}{20}$$

Mathematica DSolve solution

Solving time: 7.542 (sec)

Leaf size: 140

DSolve[{D[y[x],x]==5*Exp[x^2+20*y[x]]+Sin[x],{}},
 y[x],x,IncludeSingularSolutions->True]

Solve
$$\left[\int_{1}^{x} -\frac{1}{100} e^{-20\cos(K[1]) - 20y(x)} \left(\sin(K[1]) + 5e^{K[1]^{2} + 20y(x)} \right) dK[1] + \int_{1}^{y(x)} -\frac{1}{100} e^{-20\cos(x) - 20K[2]} \left(100e^{20\cos(x) + 20K[2]} \int_{1}^{x} \left(\frac{1}{5} e^{-20\cos(K[1]) - 20K[2]} \left(\sin(K[1]) + 5e^{K[1]^{2} + 20K[2]} \right) - e^{K[1]^{2} - 20\cos(K[1]) - 20K[2]} - 1 \right) dK[2] = c_{1}, y(x)$$

2.2	section 2 (system of first order odes)	
2.2.1	problem 1	553
2.2.2	problem 2	556
2.2.3	problem 3	565

2.2.1 problem 1

Maple step by step solution .	 	•				•	•		•	555
Maple dsolve solution										555
Mathematica DSolve solution	 		_							555

Internal problem ID [8731]

Book: First order enumerated odes

Section: section 2 (system of first order odes)

Problem number: 1

Date solved: Thursday, December 12, 2024 at 09:42:36 AM

CAS classification: system_of_ODEs

$$x' + y' - x = y + t$$

 $x' + y' = 2x + 3y + e^{t}$

In canonical form a linear first order is

$$x' + q(t)x = p(t)$$

Comparing the above to the given ode shows that

$$q(t) = -1$$
$$p(t) = 3t - 1$$

The integrating factor μ is

$$\mu = e^{\int q \, dt}$$
$$= e^{\int (-1)dt}$$
$$= e^{-t}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mu x) = \mu p$$

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mu x) = (\mu) (3t - 1)$$

$$\frac{\mathrm{d}}{\mathrm{d}t}(x e^{-t}) = (e^{-t}) (3t - 1)$$

$$\mathrm{d}(x e^{-t}) = ((3t - 1) e^{-t}) dt$$

Integrating gives

$$x e^{-t} = \int (3t - 1) e^{-t} dt$$

= $-(3t + 2) e^{-t} + C$

Dividing throughout by the integrating factor e^{-t} gives the final solution

$$x = _Ce^t - 3t - 2$$

The system is

$$x' + y' = x + y + t \tag{1}$$

$$x' + y' = 2x + 3y + e^t (2)$$

Since the left side is the same, this implies

$$x + y + t = 2x + 3y + e^{t}$$

$$y = -\frac{x}{2} - \frac{e^{t}}{2} + \frac{t}{2}$$
(3)

Taking derivative of the above w.r.t. t gives

$$y' = -\frac{x'}{2} - \frac{e^t}{2} + \frac{1}{2} \tag{4}$$

Substituting (3,4) in (1) to eliminate y, y' gives

$$\frac{x'}{2} - \frac{e^t}{2} + \frac{1}{2} = \frac{x}{2} - \frac{e^t}{2} + \frac{3t}{2}$$

$$x' = x + 3t - 1 \tag{5}$$

Which is now solved for x. Given now that we have the solution

$$x = \underline{C}e^t - 3t - 2 \tag{6}$$

Then substituting (6) into (3) gives

$$y = -\frac{Ce^t}{2} + 2t + 1 - \frac{e^t}{2} \tag{7}$$

Maple step by step solution

Maple dsolve solution

Solving time: 0.044 (sec)

Leaf size: 30

 $\frac{\text{dsolve}([\text{diff}(x(t),t)+\text{diff}(y(t),t)-x(t) = y(t)+t, \ \text{diff}(x(t),t)+\text{diff}(y(t),t) = 2*x(t)+3*x(t)+3*x(t), \ \text{diff}(x(t),y(t)))}{\text{diff}(x(t),y(t))}$

$$x(t) = -3t - 2 + c_1 e^t$$

$$y(t) = 2t + 1 - \frac{c_1 e^t}{2} - \frac{e^t}{2}$$

Mathematica DSolve solution

Solving time: 0.026 (sec)

Leaf size : 37

 $DSolve[\{\{D[x[t],t]+D[y[t],t]-x[t]==y[t]+t,D[x[t],t]+D[y[t],t]==2*x[t]+3*y[t]+Exp[t]\},\{\}\},\\ \{x[t],y[t]\},t,IncludeSingularSolutions->True]$

$$x(t) \to -3t + (1+2c_1)e^t - 2$$

 $y(t) \to 2t - (1+c_1)e^t + 1$

2.2.2 problem 2

Solution using Matrix exponential method	556
Solution using explicit Eigenvalue and Eigenvector method	558
Maple step by step solution	564
Maple dsolve solution	564
Mathematica DSolve solution	564

Internal problem ID [8732]

Book: First order enumerated odes

Section: section 2 (system of first order odes)

Problem number: 2

Date solved: Thursday, December 12, 2024 at 09:42:36 AM

CAS classification: system of ODEs

$$2x' + y' - x = y + t$$

 $x' + y' = 2x + 3y + e^{t}$

Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential e^{At} allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$\vec{x}'(t) = A\,\vec{x}(t) + \vec{G}(t)$$

Or

$$\left[\begin{array}{c} x' \\ y' \end{array} \right] = \left[\begin{array}{cc} -1 & -2 \\ 3 & 5 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right] + \left[\begin{array}{c} t - \mathbf{e}^t \\ -t + 2 \, \mathbf{e}^t \end{array} \right]$$

Since the system is nonhomogeneous, then the solution is given by

$$\vec{x}(t) = \vec{x}_h(t) + \vec{x}_p(t)$$

Where $\vec{x}_h(t)$ is the homogeneous solution to $\vec{x}'(t) = A \vec{x}(t)$ and $\vec{x}_p(t)$ is a particular solution to $\vec{x}'(t) = A \vec{x}(t) + \vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix. For the above matrix A, the

matrix exponential can be found to be

$$e^{At} = \begin{bmatrix} \frac{(1+\sqrt{3})e^{-(-2+\sqrt{3})t}}{2} - \frac{e^{(2+\sqrt{3})t}(\sqrt{3}-1)}{2} & \frac{(-e^{(2+\sqrt{3})t}+e^{-(-2+\sqrt{3})t})\sqrt{3}}{3} \\ -\frac{(-e^{(2+\sqrt{3})t}+e^{-(-2+\sqrt{3})t})\sqrt{3}}{2} & \frac{(-\sqrt{3}+1)e^{-(-2+\sqrt{3})t}}{2} + \frac{e^{(2+\sqrt{3})t}(1+\sqrt{3})}{2} \end{bmatrix}$$

Therefore the homogeneous solution is

$$\begin{split} \vec{x}_h(t) &= e^{At} \vec{c} \\ &= \begin{bmatrix} \frac{\left(1 + \sqrt{3}\right) \mathrm{e}^{-\left(-2 + \sqrt{3}\right)t}}{2} - \frac{\mathrm{e}^{\left(2 + \sqrt{3}\right)t}\left(\sqrt{3} - 1\right)}{2} & \frac{\left(-\mathrm{e}^{\left(2 + \sqrt{3}\right)t} + \mathrm{e}^{-\left(-2 + \sqrt{3}\right)t}\right)\sqrt{3}}{3} \\ - \frac{\left(-\mathrm{e}^{\left(2 + \sqrt{3}\right)t} + \mathrm{e}^{-\left(-2 + \sqrt{3}\right)t}\right)\sqrt{3}}{2} & \frac{\left(-\sqrt{3} + 1\right)\mathrm{e}^{-\left(-2 + \sqrt{3}\right)t}}{2} + \frac{\mathrm{e}^{\left(2 + \sqrt{3}\right)t}\left(1 + \sqrt{3}\right)}{2} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \\ &= \begin{bmatrix} \left(\frac{\left(1 + \sqrt{3}\right)\mathrm{e}^{-\left(-2 + \sqrt{3}\right)t}}{2} - \frac{\mathrm{e}^{\left(2 + \sqrt{3}\right)t}\left(\sqrt{3} - 1\right)}{2}\right)c_1 + \frac{\left(-\mathrm{e}^{\left(2 + \sqrt{3}\right)t} + \mathrm{e}^{-\left(-2 + \sqrt{3}\right)t}\right)\sqrt{3}c_2}{3} \\ - \frac{\left(-\mathrm{e}^{\left(2 + \sqrt{3}\right)t} + \mathrm{e}^{-\left(-2 + \sqrt{3}\right)t}\right)\sqrt{3}c_1}{2} + \left(\frac{\left(-\sqrt{3} + 1\right)\mathrm{e}^{-\left(-2 + \sqrt{3}\right)t}}{2} + \frac{\mathrm{e}^{\left(2 + \sqrt{3}\right)t}\left(1 + \sqrt{3}\right)}{2}\right)c_2 \end{bmatrix} \\ &= \begin{bmatrix} \frac{\left(\left(3c_1 + 2c_2\right)\sqrt{3} + 3c_1\right)\mathrm{e}^{-\left(-2 + \sqrt{3}\right)t}}{6} - \frac{\mathrm{e}^{\left(2 + \sqrt{3}\right)t}\left(\left(c_1 + \frac{2c_2}{3}\right)\sqrt{3} - c_1\right)}{2} \\ \frac{\left(\left(-c_1 - c_2\right)\sqrt{3} + c_2\right)\mathrm{e}^{-\left(-2 + \sqrt{3}\right)t}}{2} + \frac{\left(\left(c_1 + c_2\right)\sqrt{3} + c_2\right)\mathrm{e}^{\left(2 + \sqrt{3}\right)t}}{2} \end{bmatrix} \end{bmatrix} \end{split}$$

The particular solution given by

$$ec{x}_p(t) = e^{At} \int e^{-At} ec{G}(t) dt$$

But

$$e^{-At} = (e^{At})^{-1}$$

$$= \begin{bmatrix} \frac{e^{-4t} \left(\left(-\sqrt{3} + 1 \right) e^{-\left(-2 + \sqrt{3} \right) t} + e^{\left(2 + \sqrt{3} \right) t} \left(1 + \sqrt{3} \right) \right)}{2} & -\frac{\sqrt{3} e^{-4t} \left(-e^{\left(2 + \sqrt{3} \right) t} + e^{-\left(-2 + \sqrt{3} \right) t} \right)}{3} \\ \frac{\sqrt{3} e^{-4t} \left(-e^{\left(2 + \sqrt{3} \right) t} + e^{-\left(-2 + \sqrt{3} \right) t} \right)}{2} & \frac{e^{-4t} \left(\sqrt{3} e^{-\left(-2 + \sqrt{3} \right) t} - \sqrt{3} e^{\left(2 + \sqrt{3} \right) t} + e^{-\left(-2 + \sqrt{3} \right) t} \right)}{2} \end{bmatrix}$$

Hence

$$\begin{split} \vec{x}_p(t) &= \begin{bmatrix} \frac{\left(1+\sqrt{3}\right)\mathrm{e}^{-\left(-2+\sqrt{3}\right)t}}{2} - \frac{\mathrm{e}^{\left(2+\sqrt{3}\right)t}\left(\sqrt{3}-1\right)}{2} & \frac{\left(-\mathrm{e}^{\left(2+\sqrt{3}\right)t}+\mathrm{e}^{-\left(-2+\sqrt{3}\right)t}\right)\sqrt{3}}{3} \\ -\frac{\left(-\mathrm{e}^{\left(2+\sqrt{3}\right)t}+\mathrm{e}^{-\left(-2+\sqrt{3}\right)t}\right)\sqrt{3}}{2} & \frac{\left(-\sqrt{3}+1\right)\mathrm{e}^{-\left(-2+\sqrt{3}\right)t}}{2} + \frac{\mathrm{e}^{\left(2+\sqrt{3}\right)t}\left(1+\sqrt{3}\right)}{2} \end{bmatrix} \int \begin{bmatrix} \frac{\mathrm{e}^{-4t}\left(\left(-\sqrt{3}+1\right)\mathrm{e}^{-\left(-2+\sqrt{3}\right)t}\right)}{2} \\ \frac{\sqrt{3}\,\mathrm{e}^{-4t}\left(-\mathrm{e}^{\left(2+\sqrt{3}\right)t}\right)}{2} + \frac{\mathrm{e}^{\left(2+\sqrt{3}\right)t}\left(\sqrt{3}-1\right)}{2} \\ -\frac{\left(-\mathrm{e}^{\left(2+\sqrt{3}\right)t}+\mathrm{e}^{-\left(-2+\sqrt{3}\right)t}\right)\sqrt{3}}{2} + \frac{\mathrm{e}^{\left(2+\sqrt{3}\right)t}\left(1+\sqrt{3}\right)}{2} \end{bmatrix} \begin{bmatrix} \frac{\left((5t+19)\sqrt{3}-9t-33\right)\mathrm{e}^{-t}}{6} \\ \frac{\left(-\sqrt{3}+1\right)\mathrm{e}^{-\left(-2+\sqrt{3}\right)t}}{2} + \frac{\mathrm{e}^{\left(2+\sqrt{3}\right)t}\left(1+\sqrt{3}\right)}{2} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{\left(-\sqrt{3}+1\right)\mathrm{e}^{-\left(-2+\sqrt{3}\right)t}}{2} + \frac{\mathrm{e}^{\left(2+\sqrt{3}\right)t}\left(1+\sqrt{3}\right)}{2} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \frac{\mathrm{e}^{-4t}\left(\left(-\sqrt{3}+1\right)\mathrm{e}^{-\left(-2+\sqrt{3}\right)t}}\mathrm{e}^{-\left(-2+\sqrt{3}\right)t}}\mathrm{e}^{-\left(-2+\sqrt{3}\right)t}\mathrm{e}^{-\left(-2+$$

Hence the complete solution is

$$\vec{x}(t) = \vec{x}_h(t) + \vec{x}_p(t)$$

$$= \begin{bmatrix} \frac{\left((3c_1 + 2c_2)\sqrt{3} + 3c_1\right)e^{-\left(-2 + \sqrt{3}\right)t}}{6} + \frac{\left((-3c_1 - 2c_2)\sqrt{3} + 3c_1\right)e^{\left(2 + \sqrt{3}\right)t}}{6} - 3t - 11 \\ \frac{\left((-c_1 - c_2)\sqrt{3} + c_2\right)e^{-\left(-2 + \sqrt{3}\right)t}}{2} + \frac{\left((c_1 + c_2)\sqrt{3} + c_2\right)e^{\left(2 + \sqrt{3}\right)t}}{2} + 2t + 7 - \frac{e^t}{2} \end{bmatrix}$$

Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$\vec{x}'(t) = A \, \vec{x}(t) + \vec{G}(t)$$

Or

$$\left[\begin{array}{c} x' \\ y' \end{array} \right] = \left[\begin{array}{cc} -1 & -2 \\ 3 & 5 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right] + \left[\begin{array}{c} t - \mathbf{e}^t \\ -t + 2 \, \mathbf{e}^t \end{array} \right]$$

Since the system is nonhomogeneous, then the solution is given by

$$\vec{x}(t) = \vec{x}_h(t) + \vec{x}_p(t)$$

Where $\vec{x}_h(t)$ is the homogeneous solution to $\vec{x}'(t) = A \vec{x}(t)$ and $\vec{x}_p(t)$ is a particular solution to $\vec{x}'(t) = A \vec{x}(t) + \vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$\det\left(A - \lambda I\right) = 0$$

Expanding gives

$$\det\left(\left[\begin{array}{cc} -1 & -2 \\ 3 & 5 \end{array}\right] - \lambda \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]\right) = 0$$

Therefore

$$\det\left(\left[\begin{array}{cc} -1 - \lambda & -2\\ 3 & 5 - \lambda \end{array}\right]\right) = 0$$

Which gives the characteristic equation

$$\lambda^2 - 4\lambda + 1 = 0$$

The roots of the above are the eigenvalues.

$$\lambda_1 = 2 + \sqrt{3}$$
$$\lambda_2 = 2 - \sqrt{3}$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$2-\sqrt{3}$	1	real eigenvalue
$2+\sqrt{3}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue $\lambda_1 = 2 - \sqrt{3}$

We need to solve $A\vec{v} = \lambda \vec{v}$ or $(A - \lambda I)\vec{v} = \vec{0}$ which becomes

$$\left(\begin{bmatrix} -1 & -2 \\ 3 & 5 \end{bmatrix} - \left(2 - \sqrt{3} \right) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\
\begin{bmatrix} -3 + \sqrt{3} & -2 \\ 3 & 3 + \sqrt{3} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Now forward elimination is applied to solve for the eigenvector \vec{v} . The augmented matrix is

$$\begin{bmatrix} -3 + \sqrt{3} & -2 & 0 \\ 3 & 3 + \sqrt{3} & 0 \end{bmatrix}$$

$$R_2 = R_2 - \frac{3R_1}{-3 + \sqrt{3}} \Longrightarrow \begin{bmatrix} -3 + \sqrt{3} & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Therefore the system in Echelon form is

$$\begin{bmatrix} -3+\sqrt{3} & -2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

The free variables are $\{v_2\}$ and the leading variables are $\{v_1\}$. Let $v_2 = t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_1 = \frac{2t}{-3+\sqrt{3}}\right\}$

Hence the solution is

$$\left[\begin{array}{c} v_1 \\ t \end{array}\right] = \left[\begin{array}{c} \frac{2t}{-3+\sqrt{3}} \\ t \end{array}\right]$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$\left[\begin{array}{c} v_1 \\ t \end{array}\right] = t \left[\begin{array}{c} \frac{2}{-3+\sqrt{3}} \\ 1 \end{array}\right]$$

Let t = 1 the eigenvector becomes

$$\left[\begin{array}{c} v_1 \\ t \end{array}\right] = \left[\begin{array}{c} \frac{2}{-3+\sqrt{3}} \\ 1 \end{array}\right]$$

Which is normalized to

$$\left[\begin{array}{c} v_1 \\ t \end{array}\right] = \left[\begin{array}{c} \frac{2}{-3+\sqrt{3}} \\ 1 \end{array}\right]$$

Considering the eigenvalue $\lambda_2 = 2 + \sqrt{3}$

We need to solve $A\vec{v} = \lambda \vec{v}$ or $(A - \lambda I)\vec{v} = \vec{0}$ which becomes

$$\left(\begin{bmatrix} -1 & -2 \\ 3 & 5 \end{bmatrix} - \left(2 + \sqrt{3} \right) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\
\begin{bmatrix} -3 - \sqrt{3} & -2 \\ 3 & 3 - \sqrt{3} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Now forward elimination is applied to solve for the eigenvector \vec{v} . The augmented matrix is

$$\begin{bmatrix} -3 - \sqrt{3} & -2 & 0 \\ 3 & 3 - \sqrt{3} & 0 \end{bmatrix}$$

$$R_2 = R_2 - \frac{3R_1}{-3 - \sqrt{3}} \Longrightarrow \begin{bmatrix} -3 - \sqrt{3} & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Therefore the system in Echelon form is

$$\left[\begin{array}{cc} -3 - \sqrt{3} & -2 \\ 0 & 0 \end{array}\right] \left[\begin{array}{c} v_1 \\ v_2 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right]$$

The free variables are $\{v_2\}$ and the leading variables are $\{v_1\}$. Let $v_2=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_1=-\frac{2t}{3+\sqrt{3}}\right\}$

Hence the solution is

$$\left[\begin{array}{c} v_1 \\ t \end{array}\right] = \left[\begin{array}{c} -\frac{2t}{3+\sqrt{3}} \\ t \end{array}\right]$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$\left[\begin{array}{c} v_1 \\ t \end{array}\right] = t \left[\begin{array}{c} -\frac{2}{3+\sqrt{3}} \\ 1 \end{array}\right]$$

Let t = 1 the eigenvector becomes

$$\left[\begin{array}{c} v_1 \\ t \end{array}\right] = \left[\begin{array}{c} -\frac{2}{3+\sqrt{3}} \\ 1 \end{array}\right]$$

Which is normalized to

$$\left[\begin{array}{c} v_1 \\ t \end{array}\right] = \left[\begin{array}{c} -\frac{2}{3+\sqrt{3}} \\ 1 \end{array}\right]$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If m > k then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional m - k generalized eigenvectors for this eigenvalue.

	multi	plicity		
eigenvalue	algebraic m	geometric k	defective?	eigenvectors
$2+\sqrt{3}$	1	1	No	$\left[\begin{array}{c} -\frac{2}{3+\sqrt{3}} \\ 1 \end{array}\right]$
$2-\sqrt{3}$	1	1	No	$\left[\begin{array}{c} -\frac{2}{3-\sqrt{3}} \\ 1 \end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $2 + \sqrt{3}$ is real and distinct then the corresponding eigenvector solution is

$$\vec{x}_1(t) = \vec{v}_1 e^{\left(2+\sqrt{3}\right)t}$$

$$= \begin{bmatrix} -\frac{2}{3+\sqrt{3}} \\ 1 \end{bmatrix} e^{\left(2+\sqrt{3}\right)t}$$

Since eigenvalue $2-\sqrt{3}$ is real and distinct then the corresponding eigenvector solution is

$$\vec{x}_2(t) = \vec{v}_2 e^{\left(2-\sqrt{3}\right)t}$$

$$= \begin{bmatrix} -\frac{2}{3-\sqrt{3}} \\ 1 \end{bmatrix} e^{\left(2-\sqrt{3}\right)t}$$

Therefore the homogeneous solution is

$$\vec{x}_h(t) = c_1 \vec{x}_1(t) + c_2 \vec{x}_2(t)$$

Which is written as

$$\left[\begin{array}{c} x \\ y \end{array}\right] = c_1 \left[\begin{array}{c} -\frac{2\operatorname{e}^{\left(2+\sqrt{3}\right)t}}{3+\sqrt{3}} \\ \operatorname{e}^{\left(2+\sqrt{3}\right)t} \end{array}\right] + c_2 \left[\begin{array}{c} -\frac{2\operatorname{e}^{\left(2-\sqrt{3}\right)t}}{3-\sqrt{3}} \\ \operatorname{e}^{\left(2-\sqrt{3}\right)t} \end{array}\right]$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_p(t)$. We will use Variation of parameters. The fundamental matrix is

$$\Phi = egin{bmatrix} ec{x}_1 & ec{x}_2 & \cdots \end{bmatrix}$$

Where \vec{x}_i are the solution basis found above. Therefore the fundamental matrix is

$$\Phi(t) = \left[egin{array}{ccc} -rac{2\operatorname{e}^{\left(2+\sqrt{3}
ight)t}}{3+\sqrt{3}} & -rac{2\operatorname{e}^{\left(2-\sqrt{3}
ight)t}}{3-\sqrt{3}} \ \operatorname{e}^{\left(2+\sqrt{3}
ight)t} & \operatorname{e}^{\left(2-\sqrt{3}
ight)t} \end{array}
ight]$$

The particular solution is then given by

$$\vec{x}_p(t) = \Phi \int \Phi^{-1} \vec{G}(t) dt$$

But

$$\Phi^{-1} = \begin{bmatrix} \frac{\sqrt{3} e^{-(2+\sqrt{3})t}}{2} & \frac{\sqrt{3} (3+\sqrt{3}) e^{-(2+\sqrt{3})t}}{6} \\ -\frac{\sqrt{3} e^{(-2+\sqrt{3})t}}{2} & \frac{e^{(-2+\sqrt{3})t}\sqrt{3} (-3+\sqrt{3})}{6} \end{bmatrix}$$

Hence

$$\begin{split} \vec{x}_p(t) &= \begin{bmatrix} -\frac{2e^{\left(2+\sqrt{3}\right)t}}{3+\sqrt{3}} & -\frac{2e^{\left(2-\sqrt{3}\right)t}}{3-\sqrt{3}} \\ e^{\left(2+\sqrt{3}\right)t} & e^{\left(2-\sqrt{3}\right)t} \end{bmatrix} \int \begin{bmatrix} \frac{\sqrt{3}e^{-\left(2+\sqrt{3}\right)t}}{2} & \frac{\sqrt{3}\left(3+\sqrt{3}\right)e^{-\left(2+\sqrt{3}\right)t}}{6} \\ -\frac{\sqrt{3}e^{\left(-2+\sqrt{3}\right)t}}{2} & \frac{e^{\left(-2+\sqrt{3}\right)t}\sqrt{3}\left(-3+\sqrt{3}\right)}{6} \end{bmatrix} \begin{bmatrix} t-e^t \\ -t+2e^t \end{bmatrix} dt \\ &= \begin{bmatrix} -\frac{2e^{\left(2+\sqrt{3}\right)t}}{3+\sqrt{3}} & -\frac{2e^{\left(2-\sqrt{3}\right)t}}{3-\sqrt{3}} \\ e^{\left(2+\sqrt{3}\right)t} & e^{\left(2-\sqrt{3}\right)t} \end{bmatrix} \int \begin{bmatrix} \frac{\sqrt{3}e^{-t}\left(1+\sqrt{3}\right)}{2} + e^{-t\left(1+\sqrt{3}\right)} - \frac{e^{-\left(2+\sqrt{3}\right)t}}{2} \\ -\frac{\sqrt{3}e^{t}\left(\sqrt{3}-1\right)}{2} + e^{t\left(\sqrt{3}-1\right)} - \frac{e^{\left(-2+\sqrt{3}\right)t}}{2} \end{bmatrix} dt \\ &= \begin{bmatrix} -\frac{2e^{\left(2+\sqrt{3}\right)t}}{3+\sqrt{3}} & -\frac{2e^{\left(2-\sqrt{3}\right)t}}{3-\sqrt{3}} \\ e^{\left(2+\sqrt{3}\right)t} & e^{\left(2-\sqrt{3}\right)t} \end{bmatrix} \begin{bmatrix} \frac{5\left(\left((t+\frac{1}{5})\sqrt{3}+\frac{9t}{5}+\frac{3}{5}\right)e^{-\left(2+\sqrt{3}\right)t}+e^{-t\left(1+\sqrt{3}\right)}\left(-\frac{26\sqrt{3}}{5}-9\right)\right)\sqrt{3}} \\ 6\left(1+\sqrt{3}\right)\left(2+\sqrt{3}\right)^2 \\ -\frac{5\left(\left((t+\frac{1}{5})\sqrt{3}-\frac{9t}{5}-\frac{3}{5}\right)e^{-\left(2+\sqrt{3}\right)t}+e^{-t\left(\sqrt{3}-1\right)}\left(-\frac{26\sqrt{3}}{5}+9\right)\right)\sqrt{3}} \\ 6\left(\sqrt{3}-1\right)\left(-2+\sqrt{3}\right)^2 \end{bmatrix} \\ &= \begin{bmatrix} -3t-11 \\ 2t+7-\frac{e^t}{2} \end{bmatrix} \end{split}$$

Now that we found particular solution, the final solution is

$$\vec{x}(t) = \vec{x}_h(t) + \vec{x}_p(t)$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -\frac{2c_1 e^{(2+\sqrt{3})t}}{3+\sqrt{3}} \\ c_1 e^{(2+\sqrt{3})t} \end{bmatrix} + \begin{bmatrix} -\frac{2c_2 e^{(2-\sqrt{3})t}}{3-\sqrt{3}} \\ c_2 e^{(2-\sqrt{3})t} \end{bmatrix} + \begin{bmatrix} -3t - 11 \\ 2t + 7 - \frac{e^t}{2} \end{bmatrix}$$

Which becomes

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -\frac{c_2(3+\sqrt{3})e^{-(-2+\sqrt{3})t}}{3} + \frac{c_1(-3+\sqrt{3})e^{(2+\sqrt{3})t}}{3} - 3t - 11 \\ c_1 e^{(2+\sqrt{3})t} + c_2 e^{-(-2+\sqrt{3})t} + 2t + 7 - \frac{e^t}{2} \end{bmatrix}$$

Maple step by step solution

Maple dsolve solution

Solving time: 0.070 (sec)

Leaf size: 94

$$x(t) = e^{\left(2+\sqrt{3}\right)t}c_2 + e^{-\left(-2+\sqrt{3}\right)t}c_1 - 3t - 11$$

$$y(t) = -\frac{e^{\left(2+\sqrt{3}\right)t}c_2\sqrt{3}}{2} + \frac{e^{-\left(-2+\sqrt{3}\right)t}c_1\sqrt{3}}{2} - \frac{3e^{\left(2+\sqrt{3}\right)t}c_2}{2} - \frac{3e^{-\left(-2+\sqrt{3}\right)t}c_1}{2} - \frac{e^t}{2} + 2t + 7e^{-\left(-2+\sqrt{3}\right)t}c_1$$

Mathematica DSolve solution

Solving time: 6.59 (sec)

Leaf size: 174

 $DSolve [\{\{2*D[x[t],t]+D[y[t],t]-x[t]==y[t]+t,D[x[t],t]+D[y[t],t]==2*x[t]+3*y[t]+Exp[t]\},\{\}\},\\ \{x[t],y[t]\},t,IncludeSingularSolutions->True]$

$$x(t) \to \frac{1}{6}e^{-\left(\left(\sqrt{3}-2\right)t\right)} \left(-6e^{\left(\sqrt{3}-2\right)t}(3t+11) + \left(-3\left(\sqrt{3}-1\right)c_1 - 2\sqrt{3}c_2\right)e^{2\sqrt{3}t} + 3\left(1+\sqrt{3}\right)c_1 + 2\sqrt{3}c_2\right)$$

$$y(t) \to \frac{1}{2} \left(4t - e^t + \left(-\sqrt{3}c_1 - \sqrt{3}c_2 + c_2\right)e^{-\left(\left(\sqrt{3}-2\right)t\right)} + \left(\sqrt{3}c_1 + \left(1+\sqrt{3}\right)c_2\right)e^{\left(2+\sqrt{3}\right)t} + 14\right)$$

2.2.3 problem 3

Maple step by step solution .							•				567
Maple dsolve solution											567
Mathematica DSolve solution											567

Internal problem ID [8733]

Book: First order enumerated odes

Section: section 2 (system of first order odes)

Problem number: 3

Date solved: Thursday, December 12, 2024 at 09:42:37 AM

CAS classification: system of ODEs

$$x' + y' - x = y + t + \sin(t) + \cos(t)$$

 $x' + y' = 2x + 3y + e^t$

In canonical form a linear first order is

$$x' + q(t)x = p(t)$$

Comparing the above to the given ode shows that

$$q(t) = -1$$

$$p(t) = 3t + 4\sin(t) + 2\cos(t) - 1$$

The integrating factor μ is

$$\mu = e^{\int q \, dt}$$
$$= e^{\int (-1)dt}$$
$$= e^{-t}$$

The ode becomes

$$\frac{d}{dt}(\mu x) = \mu p$$

$$\frac{d}{dt}(\mu x) = (\mu) (3t + 4\sin(t) + 2\cos(t) - 1)$$

$$\frac{d}{dt}(xe^{-t}) = (e^{-t}) (3t + 4\sin(t) + 2\cos(t) - 1)$$

$$d(xe^{-t}) = ((3t + 4\sin(t) + 2\cos(t) - 1)e^{-t}) dt$$

Integrating gives

$$x e^{-t} = \int (3t + 4\sin(t) + 2\cos(t) - 1) e^{-t} dt$$
$$= -3 e^{-t} t - 2 e^{-t} - 3 e^{-t} \cos(t) - e^{-t} \sin(t) + C$$

Dividing throughout by the integrating factor e^{-t} gives the final solution

$$x = _Ce^{t} - \sin(t) - 3\cos(t) - 3t - 2$$

The system is

$$x' + y' = x + y + t + \sin(t) + \cos(t) \tag{1}$$

$$x' + y' = 2x + 3y + e^t (2)$$

Since the left side is the same, this implies

$$x + y + t + \sin(t) + \cos(t) = 2x + 3y + e^{t}$$

$$y = -\frac{x}{2} - \frac{e^{t}}{2} + \frac{t}{2} + \frac{\sin(t)}{2} + \frac{\cos(t)}{2}$$
(3)

Taking derivative of the above w.r.t. t gives

$$y' = -\frac{x'}{2} - \frac{e^t}{2} + \frac{1}{2} + \frac{\cos(t)}{2} - \frac{\sin(t)}{2}$$
(4)

Substituting (3,4) in (1) to eliminate y, y' gives

$$\frac{x'}{2} - \frac{e^t}{2} + \frac{1}{2} + \frac{\cos(t)}{2} - \frac{\sin(t)}{2} = \frac{x}{2} - \frac{e^t}{2} + \frac{3t}{2} + \frac{3\sin(t)}{2} + \frac{3\cos(t)}{2}$$
$$x' = x + 3t + 4\sin(t) + 2\cos(t) - 1 \tag{5}$$

Which is now solved for x. Given now that we have the solution

$$x = Ce^{t} - \sin(t) - 3\cos(t) - 3t - 2$$
(6)

Then substituting (6) into (3) gives

$$y = -\frac{Ce^{t}}{2} + \sin(t) + 2\cos(t) + 2t + 1 - \frac{e^{t}}{2}$$
 (7)

Maple step by step solution

Maple dsolve solution

Solving time: 0.198 (sec)

Leaf size: 44

$$\frac{dsolve([diff(x(t),t)+diff(y(t),t)-x(t) = y(t)+t+sin(t)+cos(t), diff(x(t),t)+diff(y(t),t)-x(t) = y(t)+t+sin(t)+cos(t), diff(x(t),t)-x(t) = y(t)+cos($$

$$x(t) = -\sin(t) - 3\cos(t) + c_1 e^t - 3t - 2$$

$$y(t) = \sin(t) + 2\cos(t) - \frac{c_1 e^t}{2} + 2t + 1 - \frac{e^t}{2}$$

Mathematica DSolve solution

Solving time: 0.038 (sec)

Leaf size: 54

 $DSolve[\{\{D[x[t],t]+D[y[t],t]-x[t]==y[t]+t+Sin[t]+Cos[t],D[x[t],t]+D[y[t],t]==2*x[t]+3*y[t]+E(x[t],y[t]),t,IncludeSingularSolutions->True]$

$$x(t) \to -3t + e^t - \sin(t) - 3\cos(t) + 2c_1e^t - 2$$

 $y(t) \to 2t - e^t + \sin(t) + 2\cos(t) - c_1e^t + 1$

2.3	section 3. First order odes solved using
	Laplace method

2.3.1	problem 1.			•														569
2.3.2	problem 2 .																	573
2.3.3	problem 3 .																	577
2.3.4	problem 4 .																	580
2.3.5	problem 5 .								•									583
2.3.6	problem 6 .																	588
2.3.7	problem 7 .								•									591
2.3.8	problem 8 .																	596
2.3.9	problem 9 .								•									601
2.3.10	problem 10																	606
2.3.11	problem 11																	611
2.3.12	problem 12								•									615
2.3.13	problem 13																	620
2.3.14	problem 14																	624

2.3.1 problem 1

Maple step by step solution	571
Maple trace	572
Maple dsolve solution	572
Mathematica DSolve solution	572

Internal problem ID [8734]

Book: First order enumerated odes

Section: section 3. First order odes solved using Laplace method

Problem number: 1

Date solved: Tuesday, December 17, 2024 at 01:01:49 PM

CAS classification : [_linear]

Solve

$$ty' + y = t$$

With initial conditions

$$y(0) = 5$$

We will now apply Laplace transform to each term in the ode. Since this is time varying, the following Laplace transform property will be used

$$t^n f(t) \xrightarrow{\mathscr{L}} (-1)^n \frac{d^n}{ds^n} F(s)$$

Where in the above F(s) is the laplace transform of f(t). Applying the above property to each term of the ode gives

$$y \xrightarrow{\mathscr{L}} Y(s)$$

$$ty' \xrightarrow{\mathscr{L}} -Y(s) - s\left(\frac{d}{ds}Y(s)\right)$$

$$t \xrightarrow{\mathscr{L}} \frac{1}{s^2}$$

Collecting all the terms above, the ode in Laplace domain becomes

$$-sY' = \frac{1}{s^2}$$

The above ode in Y(s) is now solved.

Since the ode has the form Y' = f(s), then we only need to integrate f(s).

$$\int dY = \int -\frac{1}{s^3} ds$$
$$Y = \frac{1}{2s^2} + c_1$$

Applying inverse Laplace transform on the above gives.

$$y = \frac{t}{2} + c_1 \delta(t) \tag{1}$$

Substituting initial conditions y(0) = 5 and y'(0) = 5 into the above solution Gives

$$5 = c_1 \delta(0)$$

Solving for the constant c_1 from the above equation gives

$$c_1 = \frac{5}{\delta\left(0\right)}$$

Substituting the above back into the solution (1) gives

$$y = \frac{t}{2} + \frac{5\delta(t)}{\delta(0)}$$

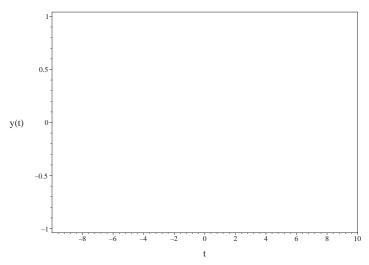


Figure 2.100: Solution plot $y = \frac{t}{2} + \frac{5\delta(t)}{\delta(0)}$

Maple step by step solution

Let's solve

$$[ty' + y = t, y(0) = 5]$$

- Highest derivative means the order of the ODE is 1 y'
- Isolate the derivative

$$y' = 1 - \frac{y}{t}$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y' + \frac{y}{4} = 1$
- The ODE is linear; multiply by an integrating factor $\mu(t)$

$$\mu(t)\left(y' + \frac{y}{t}\right) = \mu(t)$$

• Assume the lhs of the ODE is the total derivative $\frac{d}{dt}(y\mu(t))$

$$\mu(t)\left(y' + \frac{y}{t}\right) = y'\mu(t) + y\mu'(t)$$

• Isolate $\mu'(t)$

$$\mu'(t) = \frac{\mu(t)}{t}$$

• Solve to find the integrating factor

$$\mu(t) = t$$

• Integrate both sides with respect to t

$$\int \left(\frac{d}{dt}(y\mu(t))\right)dt = \int \mu(t) dt + C1$$

• Evaluate the integral on the lhs

$$y\mu(t) = \int \mu(t) dt + C1$$

• Solve for y

$$y = rac{\int \mu(t)dt + C1}{\mu(t)}$$

• Substitute $\mu(t) = t$

$$y = \frac{\int t dt + C1}{t}$$

• Evaluate the integrals on the rhs

$$y = rac{rac{t^2}{2} + C1}{t}$$

Simplify

$$y = \frac{t^2 + 2C1}{2t}$$

• Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.033 (sec)

Leaf size: 16

$$y = \frac{t}{2} + \frac{5\delta(t)}{\delta(0)}$$

Mathematica DSolve solution

Solving time: 0.0 (sec)

Leaf size: 0

```
DSolve[{t*D[y[t],t]+y[t]==t,{y[0]==5}},
    y[t],t,IncludeSingularSolutions->True]
```

Not solved

2.3.2 problem 2

Maple step by step solution	575
Maple trace	576
Maple dsolve solution	576
Mathematica DSolve solution	576

Internal problem ID [8735]

Book: First order enumerated odes

Section: section 3. First order odes solved using Laplace method

Problem number: 2

Date solved: Tuesday, December 17, 2024 at 01:01:49 PM

CAS classification: [separable]

Solve

$$y' - ty = 0$$

With initial conditions

$$y(0) = 0$$

We will now apply Laplace transform to each term in the ode. Since this is time varying, the following Laplace transform property will be used

$$t^n f(t) \xrightarrow{\mathscr{L}} (-1)^n \frac{d^n}{ds^n} F(s)$$

Where in the above F(s) is the laplace transform of f(t). Applying the above property to each term of the ode gives

$$-ty \xrightarrow{\mathscr{L}} \frac{d}{ds}Y(s)$$
$$y' \xrightarrow{\mathscr{L}} sY(s) - y(0)$$

Collecting all the terms above, the ode in Laplace domain becomes

$$sY - y(0) + Y' = 0$$

Replacing y(0) = 0 in the above results in

$$sY + Y' = 0$$

The above ode in Y(s) is now solved.

In canonical form a linear first order is

$$Y' + q(s)Y = p(s)$$

Comparing the above to the given ode shows that

$$q(s) = s$$

$$p(s) = 0$$

The integrating factor μ is

$$\mu = \mathrm{e}^{\int s ds}$$

Therefore the solution is

$$Y = c_1 e^{-\int s ds}$$

Expanding and simplifying Y(s) found above gives

$$Y = c_1 e^{-\frac{s^2}{2}}$$

Applying inverse Laplace transform on the above gives.

$$y = c_1 \mathcal{L}^{-1} \left(e^{-\frac{s^2}{2}}, s, t \right)$$
 (1)

Substituting initial conditions y(0) = 0 and y'(0) = 0 into the above solution Gives

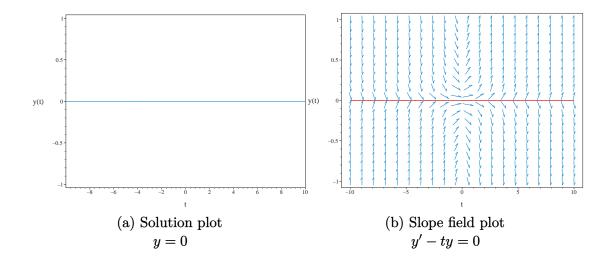
$$0 = c_1 \mathcal{L}^{-1} \left(e^{-\frac{s^2}{2}}, s, t \right)$$

Solving for the constant c_1 from the above equation gives

$$c_1 = 0$$

Substituting the above back into the solution (1) gives

$$y = 0$$



Maple step by step solution

Let's solve

$$[y' - yt = 0, y(0) = 0]$$

- Highest derivative means the order of the ODE is 1 y'
- Solve for the highest derivative y' = yt
- Separate variables $\frac{y'}{y} = t$
- Integrate both sides with respect to t $\int \frac{y'}{y} dt = \int t dt + C1$
- Evaluate integral $\ln{(y)} = \frac{t^2}{2} + C1$
- Solve for y $y = e^{\frac{t^2}{2} + C1}$
- Use initial condition y(0) = 0 $0 = e^{C1}$
- Solve for _*C1 C1* = ()
- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.032 (sec)

Leaf size: 5

$$y = 0$$

Mathematica DSolve solution

Solving time: 0.001 (sec)

Leaf size: 6

```
DSolve[{D[y[t],t]-t*y[t]==0,y[0]==0},
    y[t],t,IncludeSingularSolutions->True]
```

$$y(t) \to 0$$

2.3.3 problem 3

Maple step by step solution	578
Maple trace	579
Maple dsolve solution	579
Mathematica DSolve solution	579

Internal problem ID [8736]

Book: First order enumerated odes

Section: section 3. First order odes solved using Laplace method

Problem number: 3

Date solved: Tuesday, December 17, 2024 at 01:01:50 PM

CAS classification: [separable]

Solve

$$ty' + y = 0$$

With initial conditions

$$y(0) = 0$$

We will now apply Laplace transform to each term in the ode. Since this is time varying, the following Laplace transform property will be used

$$t^n f(t) \xrightarrow{\mathscr{L}} (-1)^n \frac{d^n}{ds^n} F(s)$$

Where in the above F(s) is the laplace transform of f(t). Applying the above property to each term of the ode gives

$$y \xrightarrow{\mathscr{L}} Y(s)$$
 $ty' \xrightarrow{\mathscr{L}} -Y(s) - s\left(\frac{d}{ds}Y(s)\right)$

Collecting all the terms above, the ode in Laplace domain becomes

$$-sY'=0$$

The above ode in Y(s) is now solved.

Since the ode has the form Y' = f(s), then we only need to integrate f(s).

$$\int dY = \int 0 \, ds + c_1$$
$$Y = c_1$$

Applying inverse Laplace transform on the above gives.

$$y = c_1 \delta(t) \tag{1}$$

Substituting initial conditions y(0) = 0 and y'(0) = 0 into the above solution Gives

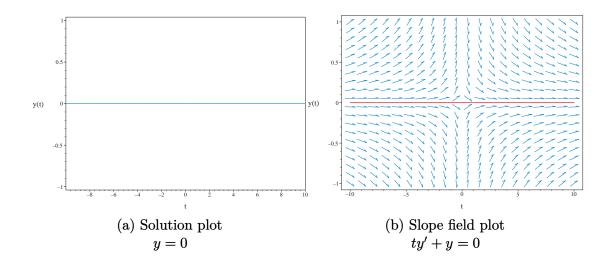
$$0 = c_1 \delta(0)$$

Solving for the constant c_1 from the above equation gives

$$c_1 = 0$$

Substituting the above back into the solution (1) gives

$$y = 0$$



Maple step by step solution

Let's solve

$$[ty' + y = 0, y(0) = 0]$$

- \bullet Highest derivative means the order of the ODE is 1
- Separate variables

$$\frac{y'}{y} = -\frac{1}{t}$$

 \bullet Integrate both sides with respect to t

$$\int \frac{y'}{y} dt = \int -\frac{1}{t} dt + C1$$

- Evaluate integral
 - $\ln\left(y\right) = -\ln\left(t\right) + C1$
- Solve for y $y = \frac{e^{C1}}{t}$
- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.020 (sec)

 $Leaf\ size:5$

$$y = 0$$

Mathematica DSolve solution

Solving time: 0.001 (sec)

Leaf size : 6

$$y(t) \to 0$$

2.3.4 problem 4

Maple step by step solution	581
Maple trace	582
Maple dsolve solution	582
Mathematica DSolve solution	582

Internal problem ID [8737]

Book: First order enumerated odes

Section: section 3. First order odes solved using Laplace method

Problem number: 4

Date solved: Tuesday, December 17, 2024 at 01:01:51 PM

CAS classification: [separable]

Solve

$$ty' + y = 0$$

With initial conditions

$$y(0) = y_0$$

We will now apply Laplace transform to each term in the ode. Since this is time varying, the following Laplace transform property will be used

$$t^n f(t) \xrightarrow{\mathscr{L}} (-1)^n \frac{d^n}{ds^n} F(s)$$

Where in the above F(s) is the laplace transform of f(t). Applying the above property to each term of the ode gives

$$y \xrightarrow{\mathscr{L}} Y(s)$$
 $ty' \xrightarrow{\mathscr{L}} -Y(s) - s\left(\frac{d}{ds}Y(s)\right)$

Collecting all the terms above, the ode in Laplace domain becomes

$$-sY'=0$$

The above ode in Y(s) is now solved.

Since the ode has the form Y' = f(s), then we only need to integrate f(s).

$$\int dY = \int 0 \, ds + c_1$$
$$Y = c_1$$

Applying inverse Laplace transform on the above gives.

$$y = c_1 \delta(t) \tag{1}$$

Substituting initial conditions $y(0) = y_0$ and $y'(0) = y_0$ into the above solution Gives

$$y_0 = c_1 \delta(0)$$

Solving for the constant c_1 from the above equation gives

$$c_1 = \frac{y_0}{\delta\left(0\right)}$$

Substituting the above back into the solution (1) gives

$$y = \frac{y_0 \delta(t)}{\delta(0)}$$

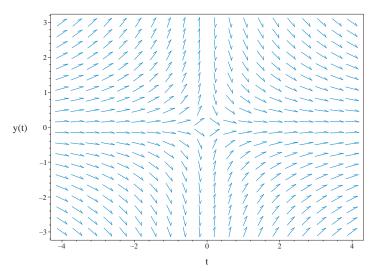


Figure 2.103: Slope field plot ty' + y = 0

Maple step by step solution

Let's solve
$$[ty' + y = 0, y(0) = y_0]$$

• Highest derivative means the order of the ODE is 1 y'

• Separate variables

$$\frac{y'}{y} = -\frac{1}{t}$$

• Integrate both sides with respect to t

$$\int \frac{y'}{y} dt = \int -\frac{1}{t} dt + C1$$

• Evaluate integral

$$\ln\left(y\right) = -\ln\left(t\right) + C1$$

• Solve for y

$$y=rac{\mathrm{e}^{C1}}{t}$$

• Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.020 (sec)

Leaf size: 12

$$y = \frac{y_0 \delta(t)}{\delta(0)}$$

Mathematica DSolve solution

Solving time: 0.0 (sec)

Leaf size: 0

Not solved

2.3.5 problem 5

Maple step by step solution	586
Maple trace	586
Maple dsolve solution	587
Mathematica DSolve solution	587

Internal problem ID [8738]

Book: First order enumerated odes

Section: section 3. First order odes solved using Laplace method

Problem number: 5

Date solved: Tuesday, December 17, 2024 at 01:01:52 PM

CAS classification: [separable]

Solve

$$ty' + y = 0$$

With initial conditions

$$y(x_0) = y_0$$

Since initial condition is not at zero, then change of variable is used to transform the ode so that initial condition is at zero.

$$\tau = t - x_0$$

Solve

$$(\tau + x_0)y' + y = 0$$

With initial conditions

$$y(0) = y_0$$

We will now apply Laplace transform to each term in the ode. Since this is time varying, the following Laplace transform property will be used

$$\tau^n f(\tau) \xrightarrow{\mathscr{L}} (-1)^n \frac{d^n}{ds^n} F(s)$$

Where in the above F(s) is the laplace transform of $f(\tau)$. Applying the above property to each term of the ode gives

$$y(\tau) \xrightarrow{\mathscr{L}} Y(s)$$

$$(\tau + x_0) \left(\frac{d}{d\tau}y(\tau)\right) \xrightarrow{\mathscr{L}} -Y(s) - s\left(\frac{d}{ds}Y(s)\right) + x_0(sY(s) - y(0))$$

Collecting all the terms above, the ode in Laplace domain becomes

$$-sY' + x_0(sY - y(0)) = 0$$

Replacing $y(0) = y_0$ in the above results in

$$-sY' + x_0(sY - y_0) = 0$$

The above ode in Y(s) is now solved.

In canonical form a linear first order is

$$Y' + q(s)Y = p(s)$$

Comparing the above to the given ode shows that

$$q(s) = -x_0$$
$$p(s) = -\frac{x_0 y_0}{s}$$

The integrating factor μ is

$$\mu = e^{\int q \, ds}$$
$$= e^{\int -x_0 ds}$$
$$= e^{-x_0 s}$$

The ode becomes

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}s}(\mu Y) &= \mu p \\ \frac{\mathrm{d}}{\mathrm{d}s}(\mu Y) &= (\mu) \left(-\frac{x_0 y_0}{s} \right) \\ \frac{\mathrm{d}}{\mathrm{d}s} \left(Y \, \mathrm{e}^{-x_0 s} \right) &= \left(\mathrm{e}^{-x_0 s} \right) \left(-\frac{x_0 y_0}{s} \right) \\ \mathrm{d} \left(Y \, \mathrm{e}^{-x_0 s} \right) &= \left(-\frac{x_0 y_0 \mathrm{e}^{-x_0 s}}{s} \right) \, \mathrm{d}s \end{split}$$

Integrating gives

$$Y e^{-x_0 s} = \int -\frac{x_0 y_0 e^{-x_0 s}}{s} ds$$
$$= x_0 y_0 \operatorname{Ei}_1(x_0 s) + c_1$$

Dividing throughout by the integrating factor e^{-x_0s} gives the final solution

$$Y = e^{x_0 s} (x_0 y_0 \operatorname{Ei}_1 (x_0 s) + c_1)$$

Applying inverse Laplace transform on the above gives.

$$y = \frac{x_0 y_0}{\tau + x_0} + c_1 \mathcal{L}^{-1}(e^{x_0 s}, s, \tau)$$
 (1)

Substituting initial conditions $y(0) = y_0$ and $y'(0) = y_0$ into the above solution Gives

$$y_0 = c_1 \mathcal{L}^{-1}(e^{x_0 s}, s, \tau) + y_0$$

Solving for the constant c_1 from the above equation gives

$$c_1 = 0$$

Substituting the above back into the solution (1) gives

$$y = \frac{x_0 y_0}{\tau + x_0}$$

Changing back the solution from τ to t using

$$\tau = t - x_0$$

the solution becomes

$$y(t) = \frac{x_0 y_0}{t}$$



Figure 2.104: Slope field plot $t(\frac{d}{dt}y(t)) + y(t) = 0$

Maple step by step solution

Let's solve

$$[ty' + y = 0, y(x_0) = y_0]$$

- Highest derivative means the order of the ODE is 1 y'
- Separate variables

$$\frac{y'}{y} = -\frac{1}{t}$$

 \bullet Integrate both sides with respect to t

$$\int \frac{y'}{y} dt = \int -\frac{1}{t} dt + C1$$

• Evaluate integral

$$\ln\left(y\right) = -\ln\left(t\right) + C1$$

• Solve for y

$$y=rac{\mathrm{e}^{C1}}{t}$$

• Use initial condition $y(x_0) = y_0$

$$y_0=rac{\mathrm{e}^{C1}}{x_0}$$

• Solve for _*C1*

$$C1 = \ln\left(x_0 y_0\right)$$

• Substitute $C1 = \ln(x_0y_0)$ into general solution and simplify

$$y = \frac{x_0 y_0}{t}$$

• Solution to the IVP

$$y = \frac{x_0 y_0}{t}$$

Maple trace

`Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

<- 1st order linear successful`

Maple dsolve solution

Solving time: 0.028 (sec)

Leaf size : 10

$$y = \frac{x_0 y_0}{t}$$

Mathematica DSolve solution

Solving time: 1.702 (sec)

Leaf size: 11

$$y(t) \to \frac{\text{x0y0}}{t}$$

2.3.6 problem 6

Maple step by step solution	589
Maple trace	590
Maple dsolve solution	590
Mathematica DSolve solution	590

Internal problem ID [8739]

Book: First order enumerated odes

Section: section 3. First order odes solved using Laplace method

Problem number: 6

Date solved: Tuesday, December 17, 2024 at 01:01:52 PM

CAS classification: [separable]

Solve

$$ty' + y = 0$$

Since no initial condition is explicitly given, then let

$$y(0) = c_1$$

We will now apply Laplace transform to each term in the ode. Since this is time varying, the following Laplace transform property will be used

$$t^n f(t) \xrightarrow{\mathscr{L}} (-1)^n \frac{d^n}{ds^n} F(s)$$

Where in the above F(s) is the laplace transform of f(t). Applying the above property to each term of the ode gives

$$y \xrightarrow{\mathscr{L}} Y(s)$$
 $ty' \xrightarrow{\mathscr{L}} -Y(s) - s\left(\frac{d}{ds}Y(s)\right)$

Collecting all the terms above, the ode in Laplace domain becomes

$$-sY'=0$$

The above ode in Y(s) is now solved.

Since the ode has the form Y' = f(s), then we only need to integrate f(s).

$$\int dY = \int 0 \, ds + c_2$$
$$Y = c_2$$

Applying inverse Laplace transform on the above gives.

$$y = c_2 \delta(t) \tag{1}$$

Substituting initial conditions $y(0) = c_1$ and $y'(0) = c_1$ into the above solution Gives

$$c_1 = c_2 \delta(0)$$

Solving for the constant c_2 from the above equation gives

$$c_2 = \frac{c_1}{\delta\left(0\right)}$$

Substituting the above back into the solution (1) gives

$$y = \frac{c_1 \delta(t)}{\delta(0)}$$

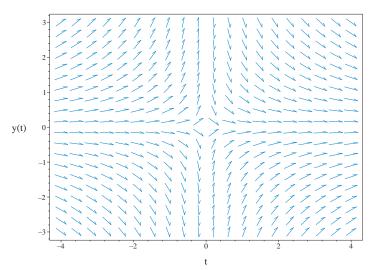


Figure 2.105: Slope field plot ty' + y = 0

Maple step by step solution

Let's solve

$$ty' + y = 0$$

• Highest derivative means the order of the ODE is 1 y'

• Separate variables

$$\frac{y'}{y} = -\frac{1}{t}$$

• Integrate both sides with respect to t

$$\int \frac{y'}{y} dt = \int -\frac{1}{t} dt + C1$$

• Evaluate integral

$$\ln\left(y\right) = -\ln\left(t\right) + C1$$

• Solve for y

$$y=rac{\mathrm{e}^{C1}}{t}$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.027 (sec)

Leaf size: 8

$$y = c_1 \delta(t)$$

Mathematica DSolve solution

Solving time: 0.02 (sec)

Leaf size: 16

$$y(t) \to \frac{c_1}{t}$$
$$y(t) \to 0$$

2.3.7 problem 7

Maple step by step solution	594
Maple trace	594
Maple dsolve solution	595
Mathematica DSolve solution	595

Internal problem ID [8740]

Book: First order enumerated odes

Section: section 3. First order odes solved using Laplace method

Problem number: 7

Date solved: Tuesday, December 17, 2024 at 01:01:53 PM

CAS classification: [separable]

Solve

$$ty' + y = 0$$

With initial conditions

$$y(1) = 5$$

Since initial condition is not at zero, then change of variable is used to transform the ode so that initial condition is at zero.

$$\tau = t - 1$$

Solve

$$(\tau + 1)y' + y = 0$$

With initial conditions

$$y(0) = 5$$

We will now apply Laplace transform to each term in the ode. Since this is time varying, the following Laplace transform property will be used

$$\tau^n f(\tau) \xrightarrow{\mathscr{L}} (-1)^n \frac{d^n}{ds^n} F(s)$$

Where in the above F(s) is the laplace transform of $f(\tau)$. Applying the above property to each term of the ode gives

$$y(\tau) \xrightarrow{\mathscr{L}} Y(s)$$
$$(\tau+1) \left(\frac{d}{d\tau}y(\tau)\right) \xrightarrow{\mathscr{L}} -Y(s) - s\left(\frac{d}{ds}Y(s)\right) + sY(s) - y(0)$$

Collecting all the terms above, the ode in Laplace domain becomes

$$-sY' + sY - y(0) = 0$$

Replacing y(0) = 5 in the above results in

$$-sY' + sY - 5 = 0$$

The above ode in Y(s) is now solved.

In canonical form a linear first order is

$$Y' + q(s)Y = p(s)$$

Comparing the above to the given ode shows that

$$q(s) = -1$$
$$p(s) = -\frac{5}{s}$$

The integrating factor μ is

$$\mu = e^{\int q \, ds}$$
$$= e^{\int (-1)ds}$$
$$= e^{-s}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}s}(\mu Y) = \mu p$$

$$\frac{\mathrm{d}}{\mathrm{d}s}(\mu Y) = (\mu) \left(-\frac{5}{s}\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}s}(Y e^{-s}) = \left(e^{-s}\right) \left(-\frac{5}{s}\right)$$

$$\mathrm{d}(Y e^{-s}) = \left(-\frac{5 e^{-s}}{s}\right) ds$$

Integrating gives

$$Y e^{-s} = \int -\frac{5 e^{-s}}{s} ds$$

= 5 Ei₁ (s) + c₁

Dividing throughout by the integrating factor e^{-s} gives the final solution

$$Y = e^{s}(5 \operatorname{Ei}_{1}(s) + c_{1})$$

Applying inverse Laplace transform on the above gives.

$$y = \frac{5}{\tau + 1} + c_1 \mathcal{L}^{-1}(e^s, s, \tau)$$
 (1)

Substituting initial conditions y(0) = 5 and y'(0) = 5 into the above solution Gives

$$5 = c_1 \mathcal{L}^{-1}(\mathbf{e}^s, s, \tau) + 5$$

Solving for the constant c_1 from the above equation gives

$$c_1 = 0$$

Substituting the above back into the solution (1) gives

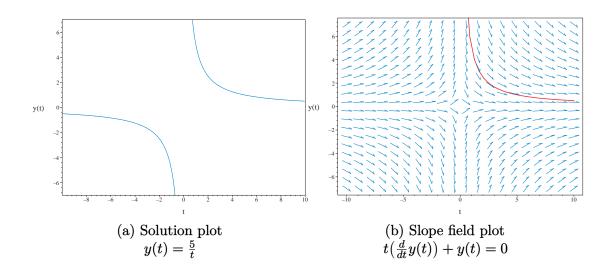
$$y = \frac{5}{\tau + 1}$$

Changing back the solution from τ to t using

$$\tau = t - 1$$

the solution becomes

$$y(t) = \frac{5}{t}$$



Maple step by step solution

Let's solve
$$[ty' + y = 0, y(1) = 5]$$

- Highest derivative means the order of the ODE is 1 y'
- Separate variables

$$\frac{y'}{y} = -\frac{1}{t}$$

ullet Integrate both sides with respect to t

$$\int \frac{y'}{y} dt = \int -\frac{1}{t} dt + C1$$

• Evaluate integral

$$\ln\left(y\right) = -\ln\left(t\right) + C1$$

• Solve for y

$$y=rac{\mathrm{e}^{C1}}{t}$$

• Use initial condition y(1) = 5

$$5 = e^{C1}$$

• Solve for *_C1*

$$C1 = \ln(5)$$

• Substitute $C1 = \ln(5)$ into general solution and simplify

$$y = \frac{5}{t}$$

• Solution to the IVP

$$y = \frac{5}{t}$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.046 (sec)

Leaf size: 9

$$y = \frac{5}{t}$$

Mathematica DSolve solution

Solving time: 0.019 (sec)

Leaf size: 10

$$y(t) \to \frac{5}{t}$$

2.3.8 problem 8

Maple step by step solution	598
Maple trace	600
Maple dsolve solution	600
Mathematica DSolve solution	600

Internal problem ID [8741]

Book: First order enumerated odes

Section: section 3. First order odes solved using Laplace method

Problem number: 8

Date solved: Tuesday, December 17, 2024 at 01:01:54 PM

CAS classification : [_linear]

Solve

$$ty' + y = \sin(t)$$

With initial conditions

$$y(1) = 0$$

Since initial condition is not at zero, then change of variable is used to transform the ode so that initial condition is at zero.

$$\tau = t - 1$$

Solve

$$(\tau+1)y'+y=\sin(\tau+1)$$

With initial conditions

$$y(0) = 0$$

We will now apply Laplace transform to each term in the ode. Since this is time varying, the following Laplace transform property will be used

$$\tau^n f(\tau) \xrightarrow{\mathscr{L}} (-1)^n \frac{d^n}{ds^n} F(s)$$

Where in the above F(s) is the laplace transform of $f(\tau)$. Applying the above property to each term of the ode gives

$$y(\tau) \xrightarrow{\mathcal{L}} Y(s)$$

$$(\tau + 1) \left(\frac{d}{d\tau}y(\tau)\right) \xrightarrow{\mathcal{L}} -Y(s) - s\left(\frac{d}{ds}Y(s)\right) + sY(s) - y(0)$$

$$\sin(\tau + 1) \xrightarrow{\mathcal{L}} \frac{\sin(1)s + \cos(1)}{s^2 + 1}$$

Collecting all the terms above, the ode in Laplace domain becomes

$$-sY' + sY - y(0) = \frac{\sin(1)s + \cos(1)}{s^2 + 1}$$

Replacing y(0) = 0 in the above results in

$$-sY' + sY = \frac{\sin(1) s + \cos(1)}{s^2 + 1}$$

The above ode in Y(s) is now solved.

In canonical form a linear first order is

$$Y' + q(s)Y = p(s)$$

Comparing the above to the given ode shows that

$$q(s) = -1$$

 $p(s) = \frac{-\sin(1)s - \cos(1)}{(s^2 + 1)s}$

The integrating factor μ is

$$\mu = e^{\int q \, ds}$$
$$= e^{\int (-1)ds}$$
$$= e^{-s}$$

The ode becomes

$$\frac{d}{ds}(\mu Y) = \mu p$$

$$\frac{d}{ds}(\mu Y) = (\mu) \left(\frac{-\sin(1)s - \cos(1)}{(s^2 + 1)s} \right)$$

$$\frac{d}{ds}(Ye^{-s}) = (e^{-s}) \left(\frac{-\sin(1)s - \cos(1)}{(s^2 + 1)s} \right)$$

$$d(Ye^{-s}) = \left(\frac{(-\sin(1)s - \cos(1))e^{-s}}{(s^2 + 1)s} \right) ds$$

Integrating gives

$$\begin{split} Y \, \mathrm{e}^{-s} &= \int \frac{\left(-\sin\left(1\right) s - \cos\left(1\right)\right) \mathrm{e}^{-s}}{\left(s^2 + 1\right) s} \, ds \\ &= -\cos\left(1\right) \left(\frac{\mathrm{e}^i \, \mathrm{Ei}_1 \, (s+i)}{2} + \frac{\mathrm{e}^{-i} \, \mathrm{Ei}_1 \, (s-i)}{2} - \mathrm{Ei}_1 \, (s)\right) + \sin\left(1\right) \left(\frac{i \mathrm{e}^i \, \mathrm{Ei}_1 \, (s+i)}{2} - \frac{i \mathrm{e}^{-i} \, \mathrm{Ei}_1 \, (s-i)}{2}\right) \end{split}$$

Dividing throughout by the integrating factor e^{-s} gives the final solution

$$Y = -\frac{(-2\cos(1)\operatorname{Ei}_{1}(s) + \operatorname{Ei}_{1}(s+i) + \operatorname{Ei}_{1}(s-i) - 2c_{1})e^{s}}{2}$$

Applying inverse Laplace transform on the above gives.

$$y = \frac{\cos(1)}{\tau + 1} + c_1 \mathcal{L}^{-1}(e^s, s, \tau) - \frac{\cos(\tau + 1)}{\tau + 2}$$
 (1)

Substituting initial conditions y(0) = 0 and y'(0) = 0 into the above solution Gives

$$0 = c_1 \mathcal{L}^{-1}(e^s, s, \tau) + \frac{\cos(1)}{2}$$

Solving for the constant c_1 from the above equation gives

$$c_1 = -\frac{\cos\left(1\right)}{2\mathcal{L}^{-1}\left(e^s, s, \tau\right)}$$

Substituting the above back into the solution (1) gives

$$y = \frac{\cos(1)}{\tau + 1} - \frac{\cos(1)}{2} - \frac{\cos(\tau + 1)}{\tau + 2}$$

Changing back the solution from τ to t using

$$\tau = t - 1$$

the solution becomes

$$y(t) = \frac{\cos(1)}{t} - \frac{\cos(1)}{2} - \frac{\cos(t)}{t+1}$$

The solution was found not to satisfy the ode or the IC. Hence it is removed.

Maple step by step solution

Let's solve

$$[ty' + y = \sin(t), y(1) = 0]$$

- Highest derivative means the order of the ODE is 1 y'
- Isolate the derivative

$$y' = -\frac{y}{t} + \frac{\sin(t)}{t}$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y' + \frac{y}{t} = \frac{\sin(t)}{t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$

$$\mu(t)\left(y'+\frac{y}{t}\right) = \frac{\mu(t)\sin(t)}{t}$$

• Assume the lhs of the ODE is the total derivative $\frac{d}{dt}(y\mu(t))$

$$\mu(t)\left(y' + \frac{y}{t}\right) = y'\mu(t) + y\mu'(t)$$

• Isolate $\mu'(t)$

$$\mu'(t) = \frac{\mu(t)}{t}$$

• Solve to find the integrating factor

$$\mu(t) = t$$

• Integrate both sides with respect to t

$$\int \left(\frac{d}{dt}(y\mu(t))\right)dt = \int \frac{\mu(t)\sin(t)}{t}dt + C1$$

• Evaluate the integral on the lhs

$$y\mu(t)=\intrac{\mu(t)\sin(t)}{t}dt+\mathit{C1}$$

• Solve for y

$$y = rac{\int rac{\mu(t)\sin(t)}{t}dt + C1}{\mu(t)}$$

• Substitute $\mu(t) = t$

$$y = \frac{\int \sin(t)dt + C1}{t}$$

• Evaluate the integrals on the rhs

$$y = \frac{-\cos(t) + C1}{t}$$

• Use initial condition y(1) = 0

$$0 = -\cos(1) + C1$$

• Solve for *_C1*

$$C1 = \cos(1)$$

• Substitute $C1 = \cos(1)$ into general solution and simplify

$$y = \frac{-\cos(t) + \cos(1)}{t}$$

• Solution to the IVP

$$y = \frac{-\cos(t) + \cos(1)}{t}$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.237 (sec) Leaf size: maple_leaf_size

No solution found

Mathematica DSolve solution

Solving time: 0.09 (sec)

Leaf size: 16

```
DSolve[{t*D[y[t],t]+y[t]==Sin[t],y[1]==0},
    y[t],t,IncludeSingularSolutions->True]
```

$$y(t) \to \frac{\cos(1) - \cos(t)}{t}$$

2.3.9 problem 9

Maple step by step solution	604
Maple trace	605
Maple dsolve solution	605
Mathematica DSolve solution	605

Internal problem ID [8742]

Book: First order enumerated odes

Section: section 3. First order odes solved using Laplace method

Problem number: 9

Date solved: Tuesday, December 17, 2024 at 01:01:54 PM

CAS classification: [linear]

Solve

$$ty' + y = t$$

With initial conditions

$$y(1) = 0$$

Since initial condition is not at zero, then change of variable is used to transform the ode so that initial condition is at zero.

$$\tau = t - 1$$

Solve

$$(\tau+1)y'+y=\tau+1$$

With initial conditions

$$y(0) = 0$$

We will now apply Laplace transform to each term in the ode. Since this is time varying, the following Laplace transform property will be used

$$\tau^n f(\tau) \xrightarrow{\mathscr{L}} (-1)^n \frac{d^n}{ds^n} F(s)$$

Where in the above F(s) is the laplace transform of $f(\tau)$. Applying the above property to each term of the ode gives

$$\begin{split} y(\tau) &\xrightarrow{\mathscr{L}} Y(s) \\ (\tau+1) \left(\frac{d}{d\tau}y(\tau)\right) &\xrightarrow{\mathscr{L}} -Y(s) - s \left(\frac{d}{ds}Y(s)\right) + sY(s) - y(0) \\ \tau+1 &\xrightarrow{\mathscr{L}} \frac{1+s}{s^2} \end{split}$$

Collecting all the terms above, the ode in Laplace domain becomes

$$-sY' + sY - y(0) = \frac{1+s}{s^2}$$

Replacing y(0) = 0 in the above results in

$$-sY' + sY = \frac{1+s}{s^2}$$

The above ode in Y(s) is now solved.

In canonical form a linear first order is

$$Y' + q(s)Y = p(s)$$

Comparing the above to the given ode shows that

$$q(s) = -1$$
$$p(s) = \frac{-s - 1}{s^3}$$

The integrating factor μ is

$$\mu = e^{\int q \, ds}$$
$$= e^{\int (-1)ds}$$
$$= e^{-s}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}s}(\mu Y) = \mu p$$

$$\frac{\mathrm{d}}{\mathrm{d}s}(\mu Y) = (\mu) \left(\frac{-s-1}{s^3}\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}s}(Y e^{-s}) = \left(e^{-s}\right) \left(\frac{-s-1}{s^3}\right)$$

$$\mathrm{d}(Y e^{-s}) = \left(\frac{(-s-1) e^{-s}}{s^3}\right) ds$$

Integrating gives

$$Y e^{-s} = \int \frac{(-s-1) e^{-s}}{s^3} ds$$
$$= \frac{e^{-s}}{2s^2} + \frac{e^{-s}}{2s} - \frac{\text{Ei}_1(s)}{2} + c_1$$

Dividing throughout by the integrating factor e^{-s} gives the final solution

$$Y = \frac{2c_1 e^s s^2 - \text{Ei}_1(s) e^s s^2 + s + 1}{2s^2}$$

Applying inverse Laplace transform on the above gives.

$$y = c_1 \mathcal{L}^{-1}(e^s, s, \tau) - \frac{1}{2(\tau + 1)} + \frac{1}{2} + \frac{\tau}{2}$$
(1)

Substituting initial conditions y(0) = 0 and y'(0) = 0 into the above solution Gives

$$0 = c_1 \mathcal{L}^{-1}(\mathbf{e}^s, s, \tau)$$

Solving for the constant c_1 from the above equation gives

$$c_1 = 0$$

Substituting the above back into the solution (1) gives

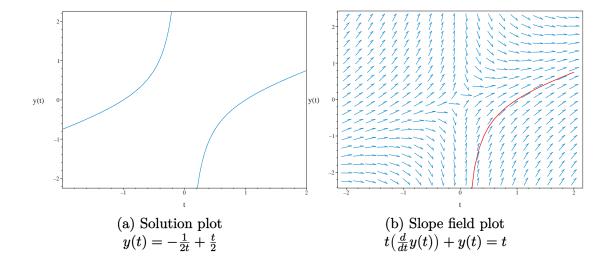
$$y = \frac{1}{2} - \frac{1}{2(\tau+1)} + \frac{\tau}{2}$$

Changing back the solution from τ to t using

$$\tau = t - 1$$

the solution becomes

$$y(t) = -\frac{1}{2t} + \frac{t}{2}$$



Maple step by step solution

Let's solve

$$[ty' + y = t, y(1) = 0]$$

- Highest derivative means the order of the ODE is 1 y'
- Isolate the derivative

$$y' = 1 - \frac{y}{t}$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y' + \frac{y}{4} = 1$
- The ODE is linear; multiply by an integrating factor $\mu(t)$

$$\mu(t)\left(y' + \frac{y}{t}\right) = \mu(t)$$

• Assume the lhs of the ODE is the total derivative $\frac{d}{dt}(y\mu(t))$

$$\mu(t)\left(y' + \frac{y}{t}\right) = y'\mu(t) + y\mu'(t)$$

• Isolate $\mu'(t)$

$$\mu'(t) = \frac{\mu(t)}{t}$$

• Solve to find the integrating factor

$$\mu(t) = t$$

 \bullet Integrate both sides with respect to t

$$\int \left(\frac{d}{dt}(y\mu(t))\right)dt = \int \mu(t)\,dt + C1$$

• Evaluate the integral on the lhs

$$y\mu(t) = \int \mu(t) dt + C1$$

• Solve for y

$$y = rac{\int \mu(t)dt + C1}{\mu(t)}$$

• Substitute $\mu(t) = t$

$$y = \frac{\int t dt + C1}{t}$$

• Evaluate the integrals on the rhs

$$y = \frac{\frac{t^2}{2} + C1}{t}$$

• Simplify

$$y = \frac{t^2 + 2C1}{2t}$$

• Use initial condition y(1) = 0

$$0 = C1 + \frac{1}{2}$$

• Solve for *_C1*

$$C1 = -\frac{1}{2}$$

• Substitute $C1 = -\frac{1}{2}$ into general solution and simplify

$$y = \frac{t^2 - 1}{2t}$$

• Solution to the IVP

$$y = \frac{t^2 - 1}{2t}$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.058 (sec)

Leaf size: 13

$$y = -\frac{1}{2t} + \frac{t}{2}$$

Mathematica DSolve solution

Solving time: 0.022 (sec)

Leaf size: 17

$$y(t) o rac{t^2 - 1}{2t}$$

2.3.10 problem 10

Maple step by step solution	609
Maple trace	610
Maple dsolve solution	610
Mathematica DSolve solution	610

Internal problem ID [8743]

Book: First order enumerated odes

Section: section 3. First order odes solved using Laplace method

Problem number: 10

Date solved: Tuesday, December 17, 2024 at 01:01:55 PM

CAS classification: [linear]

Solve

$$ty' + y = t$$

With initial conditions

$$y(1) = 1$$

Since initial condition is not at zero, then change of variable is used to transform the ode so that initial condition is at zero.

$$\tau = t - 1$$

Solve

$$(\tau+1)y'+y=\tau+1$$

With initial conditions

$$y(0) = 1$$

We will now apply Laplace transform to each term in the ode. Since this is time varying, the following Laplace transform property will be used

$$\tau^n f(\tau) \xrightarrow{\mathscr{L}} (-1)^n \frac{d^n}{ds^n} F(s)$$

Where in the above F(s) is the laplace transform of $f(\tau)$. Applying the above property to each term of the ode gives

$$\begin{split} y(\tau) &\xrightarrow{\mathscr{L}} Y(s) \\ (\tau+1) \left(\frac{d}{d\tau}y(\tau)\right) &\xrightarrow{\mathscr{L}} -Y(s) - s \left(\frac{d}{ds}Y(s)\right) + sY(s) - y(0) \\ \tau+1 &\xrightarrow{\mathscr{L}} \frac{1+s}{s^2} \end{split}$$

Collecting all the terms above, the ode in Laplace domain becomes

$$-sY' + sY - y(0) = \frac{1+s}{s^2}$$

Replacing y(0) = 1 in the above results in

$$-sY' + sY - 1 = \frac{1+s}{s^2}$$

The above ode in Y(s) is now solved.

In canonical form a linear first order is

$$Y' + q(s)Y = p(s)$$

Comparing the above to the given ode shows that

$$q(s) = -1$$

 $p(s) = \frac{-s^2 - s - 1}{s^3}$

The integrating factor μ is

$$\mu = e^{\int q \, ds}$$
$$= e^{\int (-1)ds}$$
$$= e^{-s}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}s}(\mu Y) = \mu p$$

$$\frac{\mathrm{d}}{\mathrm{d}s}(\mu Y) = (\mu) \left(\frac{-s^2 - s - 1}{s^3}\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}s}(Y e^{-s}) = \left(e^{-s}\right) \left(\frac{-s^2 - s - 1}{s^3}\right)$$

$$\mathrm{d}(Y e^{-s}) = \left(\frac{(-s^2 - s - 1) e^{-s}}{s^3}\right) \mathrm{d}s$$

Integrating gives

$$Y e^{-s} = \int \frac{(-s^2 - s - 1) e^{-s}}{s^3} ds$$
$$= \frac{e^{-s}}{2s^2} + \frac{e^{-s}}{2s} + \frac{\text{Ei}_1(s)}{2} + c_1$$

Dividing throughout by the integrating factor e^{-s} gives the final solution

$$Y = \frac{2c_1 e^s s^2 + \text{Ei}_1(s) e^s s^2 + s + 1}{2s^2}$$

Applying inverse Laplace transform on the above gives.

$$y = c_1 \mathcal{L}^{-1}(e^s, s, \tau) + \frac{1}{2\tau + 2} + \frac{1}{2} + \frac{\tau}{2}$$
(1)

Substituting initial conditions y(0) = 1 and y'(0) = 1 into the above solution Gives

$$1 = c_1 \mathcal{L}^{-1}(\mathbf{e}^s, s, \tau) + 1$$

Solving for the constant c_1 from the above equation gives

$$c_1 = 0$$

Substituting the above back into the solution (1) gives

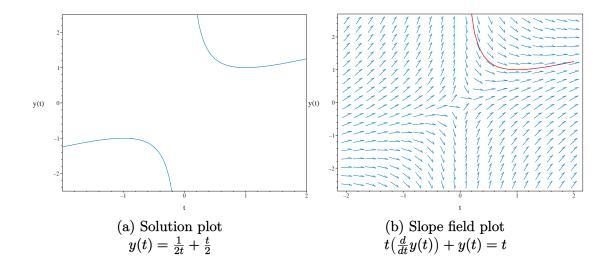
$$y = \frac{1}{2} + \frac{1}{2\tau + 2} + \frac{\tau}{2}$$

Changing back the solution from τ to t using

$$\tau = t - 1$$

the solution becomes

$$y(t) = \frac{1}{2t} + \frac{t}{2}$$



Maple step by step solution

Let's solve

$$[ty' + y = t, y(1) = 1]$$

- Highest derivative means the order of the ODE is 1 y'
- Isolate the derivative

$$y' = 1 - \frac{y}{t}$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y' + \frac{y}{t} = 1$
- The ODE is linear; multiply by an integrating factor $\mu(t)$

$$\mu(t)\left(y' + \frac{y}{t}\right) = \mu(t)$$

• Assume the lhs of the ODE is the total derivative $\frac{d}{dt}(y\mu(t))$

$$\mu(t)\left(y' + \frac{y}{t}\right) = y'\mu(t) + y\mu'(t)$$

• Isolate $\mu'(t)$

$$\mu'(t) = \frac{\mu(t)}{t}$$

• Solve to find the integrating factor

$$\mu(t) = t$$

• Integrate both sides with respect to t

$$\int \left(\frac{d}{dt}(y\mu(t))\right)dt = \int \mu(t)\,dt + C1$$

• Evaluate the integral on the lhs

$$y\mu(t) = \int \mu(t) dt + C1$$

• Solve for y

$$y = rac{\int \mu(t)dt + C1}{\mu(t)}$$

• Substitute $\mu(t) = t$

$$y = \frac{\int t dt + C1}{t}$$

• Evaluate the integrals on the rhs

$$y = \frac{\frac{t^2}{2} + C1}{t}$$

Simplify

$$y = \frac{t^2 + 2C1}{2t}$$

• Use initial condition y(1) = 1

$$1 = C1 + \frac{1}{2}$$

• Solve for *_C1*

$$C1 = \frac{1}{2}$$

• Substitute $C1 = \frac{1}{2}$ into general solution and simplify

$$y = \frac{t^2 + 1}{2t}$$

• Solution to the IVP

$$y = \frac{t^2+1}{2t}$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.053 (sec)

Leaf size : 13

$$y = \frac{1}{2t} + \frac{t}{2}$$

Mathematica DSolve solution

Solving time: 0.022 (sec)

Leaf size: 17

$$y(t) \rightarrow \frac{t^2+1}{2t}$$

2.3.11 problem 11

Maple step by step solution	613
Maple trace	613
Maple dsolve solution	614
Mathematica DSolve solution	614

Internal problem ID [8744]

Book: First order enumerated odes

Section: section 3. First order odes solved using Laplace method

Problem number: 11

Date solved: Tuesday, December 17, 2024 at 01:01:56 PM

CAS classification: [separable]

Solve

$$y' + t^2 y = 0$$

With initial conditions

$$y(0) = 0$$

We will now apply Laplace transform to each term in the ode. Since this is time varying, the following Laplace transform property will be used

$$t^n f(t) \xrightarrow{\mathscr{L}} (-1)^n \frac{d^n}{ds^n} F(s)$$

Where in the above F(s) is the laplace transform of f(t). Applying the above property to each term of the ode gives

$$t^2 y \xrightarrow{\mathscr{L}} \frac{d^2}{ds^2} Y(s)$$
 $y' \xrightarrow{\mathscr{L}} sY(s) - y(0)$

Collecting all the terms above, the ode in Laplace domain becomes

$$sY - y(0) + Y'' = 0$$

Replacing y(0) = 0 in the above results in

$$sY + Y'' = 0$$

The above ode in Y(s) is now solved.

This is Airy ODE. It has the general form

$$aY'' + bY' + csY = F(s)$$

Where in this case

$$a = 1$$

$$b = 0$$

$$c = 1$$

$$F = 0$$

Therefore the solution to the homogeneous Airy ODE becomes

$$Y = c_1 \operatorname{AiryAi}(-s) + c_2 \operatorname{AiryBi}(-s)$$

Will add steps showing solving for IC soon.

Applying inverse Laplace transform on the above gives.

$$y = c_1 \mathcal{L}^{-1}(\text{AiryAi}(-s), s, t) + c_2 \mathcal{L}^{-1}(\text{AiryBi}(-s), s, t)$$
(1)

Substituting initial conditions y(0) = 0 and y'(0) = 0 into the above solution Gives

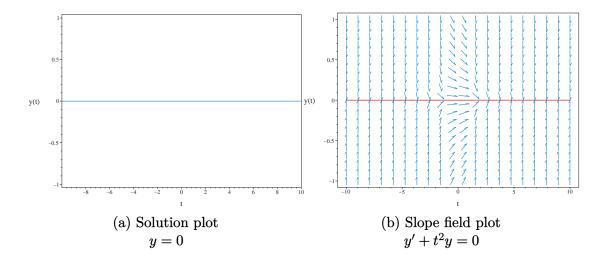
$$0 = c_1 \mathcal{L}^{-1}(AiryAi(-s), s, t) + c_2 \mathcal{L}^{-1}(AiryBi(-s), s, t)$$

Solving for the constant c_1 from the above equation gives

$$c_{1} = -\frac{c_{2}\mathcal{L}^{-1}(\operatorname{AiryBi}\left(-s\right), s, t)}{\mathcal{L}^{-1}\left(\operatorname{AiryAi}\left(-s\right), s, t\right)}$$

Substituting the above back into the solution (1) gives

$$y = 0$$



Maple step by step solution

Let's solve
$$[y' + yt^2 = 0, y(0) = 0]$$

- Highest derivative means the order of the ODE is 1 y'
- Solve for the highest derivative $y' = -yt^2$
- Separate variables $\frac{y'}{y} = -t^2$
- Integrate both sides with respect to t $\int \frac{y'}{y} dt = \int -t^2 dt + C1$
- Evaluate integral $\ln(y) = -\frac{t^3}{3} + C1$
- Solve for y $y = e^{-\frac{t^3}{3} + C1}$
- Use initial condition y(0) = 0 $0 = e^{C1}$
- Solve for _*C1 C1* = ()
- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.071 (sec)

Leaf size: 40

$$y = -\frac{c_2 \mathcal{L}^{-1}(\text{AiryBi}(-_s1), _s1, 0) \mathcal{L}^{-1}(\text{AiryAi}(-_s1), _s1, t)}{\mathcal{L}^{-1}(\text{AiryAi}(-_s1), _s1, 0)} + c_2 \mathcal{L}^{-1}(\text{AiryBi}(-_s1), _s1, t)$$

Mathematica DSolve solution

Solving time: 0.001 (sec)

Leaf size: 6

$$y(t) \to 0$$

2.3.12 problem 12

Maple step by step solution	617
Maple trace	619
Maple dsolve solution	619
Mathematica DSolve solution	619

Internal problem ID [8745]

Book: First order enumerated odes

Section: section 3. First order odes solved using Laplace method

Problem number: 12

Date solved: Tuesday, December 17, 2024 at 01:01:57 PM

CAS classification : [_linear]

Solve

$$(at+1)y'+y=t$$

With initial conditions

$$y(1) = 0$$

Since initial condition is not at zero, then change of variable is used to transform the ode so that initial condition is at zero.

$$\tau = t - 1$$

Solve

$$(a(\tau + 1) + 1) y' + y = \tau + 1$$

With initial conditions

$$y(0) = 0$$

We will now apply Laplace transform to each term in the ode. Since this is time varying, the following Laplace transform property will be used

$$\tau^n f(\tau) \xrightarrow{\mathscr{L}} (-1)^n \frac{d^n}{ds^n} F(s)$$

Where in the above F(s) is the laplace transform of $f(\tau)$. Applying the above property to each term of the ode gives

$$y(\tau) \xrightarrow{\mathscr{L}} Y(s)$$

$$(a\tau + a + 1) \left(\frac{d}{d\tau}y(\tau)\right) \xrightarrow{\mathscr{L}} -a\left(Y(s) + s\left(\frac{d}{ds}Y(s)\right)\right) + a(sY(s) - y(0)) + sY(s) - y(0)$$

$$\tau + 1 \xrightarrow{\mathscr{L}} \frac{1+s}{s^2}$$

Collecting all the terms above, the ode in Laplace domain becomes

$$-a(Y + sY') + a(sY - y(0)) + sY - y(0) + Y = \frac{1+s}{s^2}$$

Replacing y(0) = 0 in the above results in

$$-a(Y + sY') + asY + sY + Y = \frac{1+s}{s^2}$$

The above ode in Y(s) is now solved.

In canonical form a linear first order is

$$Y' + q(s)Y = p(s)$$

Comparing the above to the given ode shows that

$$q(s) = -\frac{(s-1)a+1+s}{as}$$
$$p(s) = \frac{-s-1}{s^3a}$$

The integrating factor μ is

$$\mu = e^{\int q \, ds}$$

$$= e^{\int -\frac{(s-1)a+1+s}{as} ds}$$

$$= s^{\frac{a-1}{a}} e^{-\frac{s(a+1)}{a}}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}s}(\mu Y) = \mu p$$

$$\frac{\mathrm{d}}{\mathrm{d}s}(\mu Y) = (\mu) \left(\frac{-s-1}{s^3 a}\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}s} \left(Y s^{\frac{a-1}{a}} \mathrm{e}^{-\frac{s(a+1)}{a}}\right) = \left(s^{\frac{a-1}{a}} \mathrm{e}^{-\frac{s(a+1)}{a}}\right) \left(\frac{-s-1}{s^3 a}\right)$$

$$\mathrm{d}\left(Y s^{\frac{a-1}{a}} \mathrm{e}^{-\frac{s(a+1)}{a}}\right) = \left(\frac{(-s-1) s^{\frac{a-1}{a}} \mathrm{e}^{-\frac{s(a+1)}{a}}}{s^3 a}\right) \mathrm{d}s$$

Integrating gives

$$Y s^{\frac{a-1}{a}} e^{-\frac{s(a+1)}{a}} = \int \frac{(-s-1) s^{\frac{a-1}{a}} e^{-\frac{s(a+1)}{a}}}{s^3 a} ds$$
$$= \frac{s^{-2 + \frac{a-1}{a}} e^{-\frac{s(a+1)}{a}}}{a+1} + c_1$$

Dividing throughout by the integrating factor $s^{\frac{a-1}{a}} e^{-\frac{s(a+1)}{a}}$ gives the final solution

$$Y = \frac{1 + c_1 s^{\frac{a+1}{a}} (a+1) e^{\frac{s(a+1)}{a}}}{s^2 (a+1)}$$

Applying inverse Laplace transform on the above gives.

$$y = \frac{\tau}{a+1} + c_1 \mathcal{L}^{-1} \left(e^{s + \frac{s}{a}} s^{-1 + \frac{1}{a}}, s, \tau \right)$$
 (1)

Substituting initial conditions y(0) = 0 and y'(0) = 0 into the above solution Gives

$$0 = c_1 \mathcal{L}^{-1} \left(e^{s + \frac{s}{a}} s^{-1 + \frac{1}{a}}, s, \tau \right)$$

Solving for the constant c_1 from the above equation gives

$$c_1 = 0$$

Substituting the above back into the solution (1) gives

$$y = \frac{\tau}{a+1}$$

Changing back the solution from τ to t using

$$\tau = t - 1$$

the solution becomes

$$y(t) = \frac{t-1}{a+1}$$

Maple step by step solution

Let's solve
$$[(at + 1) y' + y = t, y(1) = 0]$$

- Highest derivative means the order of the ODE is 1 y'
- Solve for the highest derivative

$$y' = \frac{-y+t}{at+1}$$

• Collect w.r.t. y and simplify

$$y' = -\frac{y}{at+1} + \frac{t}{at+1}$$

ullet Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

$$y' + \frac{y}{at+1} = \frac{t}{at+1}$$

• The ODE is linear; multiply by an integrating factor $\mu(t)$

$$\mu(t)\left(y'+rac{y}{at+1}
ight)=rac{\mu(t)t}{at+1}$$

• Assume the lhs of the ODE is the total derivative $\frac{d}{dt}(y\mu(t))$

$$\mu(t)\left(y' + \frac{y}{at+1}\right) = y'\mu(t) + y\mu'(t)$$

• Isolate $\mu'(t)$

$$\mu'(t) = \frac{\mu(t)}{at+1}$$

• Solve to find the integrating factor

$$\mu(t) = (at+1)^{\frac{1}{a}}$$

• Integrate both sides with respect to t

$$\int \left(\frac{d}{dt}(y\mu(t))\right)dt = \int \frac{\mu(t)t}{at+1}dt + C1$$

• Evaluate the integral on the lhs

$$y\mu(t) = \int \frac{\mu(t)t}{at+1} dt + C1$$

• Solve for y

$$y = rac{\int rac{\mu(t)t}{at+1}dt + C1}{\mu(t)}$$

• Substitute $\mu(t) = (at+1)^{\frac{1}{a}}$

$$y = rac{\int rac{t(at+1)^{rac{1}{a}}}{at+1} dt + C1}{(at+1)^{rac{1}{a}}}$$

• Evaluate the integrals on the rhs

$$y = rac{rac{(t-1)(at+1)^{rac{1}{a}}}{a+1} + C1}{(at+1)^{rac{1}{a}}}$$

• Simplify

$$y = \frac{t-1+(at+1)^{-\frac{1}{a}}C1(a+1)}{a+1}$$

• Use initial condition y(1) = 0

$$0 = (a+1)^{-\frac{1}{a}} C1$$

- Solve for $_C1$ C1 = 0
- Substitute C1 = 0 into general solution and simplify $y = \frac{t-1}{a+1}$
- Solution to the IVP $y = \frac{t-1}{a+1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.079 (sec)

Leaf size: 13

$$y = \frac{t-1}{a+1}$$

Mathematica DSolve solution

Solving time: 0.897 (sec)

Leaf size: 14

DSolve[{(1+a*t)*D[y[t],t]+y[t]==t,y[1]==0},
 y[t],t,IncludeSingularSolutions->True]

$$y(t) o rac{t-1}{a+1}$$

2.3.13 problem 13

Maple step by step solution	622
Maple trace	623
Maple dsolve solution	623
Mathematica DSolve solution	623

Internal problem ID [8746]

Book: First order enumerated odes

Section: section 3. First order odes solved using Laplace method

Problem number: 13

Date solved: Tuesday, December 17, 2024 at 01:01:57 PM

CAS classification: [separable]

Solve

$$y' + (at + bt)y = 0$$

With initial conditions

$$y(0) = 0$$

We will now apply Laplace transform to each term in the ode. Since this is time varying, the following Laplace transform property will be used

$$t^n f(t) \xrightarrow{\mathscr{L}} (-1)^n \frac{d^n}{ds^n} F(s)$$

Where in the above F(s) is the laplace transform of f(t). Applying the above property to each term of the ode gives

$$(at + bt) y \xrightarrow{\mathscr{L}} -a \left(\frac{d}{ds} Y(s)\right) - b \left(\frac{d}{ds} Y(s)\right)$$
$$y' \xrightarrow{\mathscr{L}} Y(s) s - y(0)$$

Collecting all the terms above, the ode in Laplace domain becomes

$$Ys - y(0) - aY' - bY' = 0$$

Replacing y(0) = 0 in the above results in

$$Ys - aY' - bY' = 0$$

The above ode in Y(s) is now solved.

In canonical form a linear first order is

$$Y' + q(s)Y = p(s)$$

Comparing the above to the given ode shows that

$$q(s) = -\frac{s}{a+b}$$
$$p(s) = 0$$

The integrating factor μ is

$$\mu = e^{\int q \, ds}$$

$$= e^{\int -\frac{s}{a+b} \, ds}$$

$$= e^{-\frac{s^2}{2a+2b}}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}s}\mu Y = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}s}\left(Y \,\mathrm{e}^{-\frac{s^2}{2a+2b}}\right) = 0$$

Integrating gives

$$Y e^{-\frac{s^2}{2a+2b}} = \int 0 ds + c_1$$

= c_1

Dividing throughout by the integrating factor $e^{-\frac{s^2}{2a+2b}}$ gives the final solution

$$Y = c_1 e^{\frac{s^2}{2a+2b}}$$

Applying inverse Laplace transform on the above gives.

$$y = c_1 \mathcal{L}^{-1} \left(e^{\frac{s^2}{2a+2b}}, s, t \right)$$
 (1)

Substituting initial conditions y(0) = 0 and y'(0) = 0 into the above solution Gives

$$0 = c_1 \mathcal{L}^{-1} \left(e^{\frac{s^2}{2a+2b}}, s, t \right)$$

Solving for the constant c_1 from the above equation gives

$$c_1 = 0$$

Substituting the above back into the solution (1) gives

$$y = 0$$

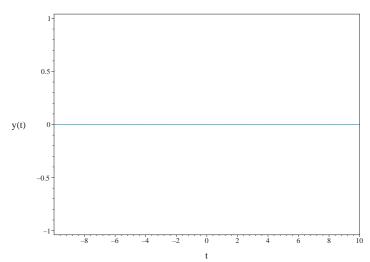


Figure 2.110: Solution plot y = 0

Maple step by step solution

Let's solve

$$[y' + (at + bt) y = 0, y(0) = 0]$$

- Highest derivative means the order of the ODE is 1 y'
- Solve for the highest derivative y' = -(at + bt) y
- Separate variables

$$\frac{y'}{y} = -at - bt$$

• Integrate both sides with respect to t

$$\int \frac{y'}{y} dt = \int (-at - bt) dt + C1$$

• Evaluate integral

$$\ln(y) = -\frac{t^2(a+b)}{2} + C1$$

- Solve for y $y = e^{-\frac{1}{2}t^2a - \frac{1}{2}t^2b + CI}$
- Use initial condition y(0) = 0 $0 = e^{C1}$
- Solve for $_C1$ C1 = ()
- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.032 (sec)

Leaf size : 5

$$y = 0$$

Mathematica DSolve solution

Solving time: 0.001 (sec)

Leaf size: 6

$$y(t) \to 0$$

2.3.14 problem 14

Maple step by step solution	327
Maple trace	327
Maple dsolve solution	328
Mathematica DSolve solution	328

Internal problem ID [8747]

Book: First order enumerated odes

Section: section 3. First order odes solved using Laplace method

Problem number: 14

Date solved: Tuesday, December 17, 2024 at 01:01:58 PM

CAS classification: [separable]

Solve

$$y' + (at + bt) y = 0$$

With initial conditions

$$y(-3) = 0$$

Since initial condition is not at zero, then change of variable is used to transform the ode so that initial condition is at zero.

$$\tau = t + 3$$

Solve

$$y' + (a(\tau - 3) + b(\tau - 3)) y = 0$$

With initial conditions

$$y(0) = 0$$

We will now apply Laplace transform to each term in the ode. Since this is time varying, the following Laplace transform property will be used

$$\tau^n f(\tau) \xrightarrow{\mathscr{L}} (-1)^n \frac{d^n}{ds^n} F(s)$$

Where in the above F(s) is the laplace transform of $f(\tau)$. Applying the above property to each term of the ode gives

$$(a\tau + b\tau - 3a - 3b) y(\tau) \xrightarrow{\mathscr{L}} -a\left(\frac{d}{ds}Y(s)\right) - b\left(\frac{d}{ds}Y(s)\right) - 3aY(s) - 3bY(s)$$
$$\frac{d}{d\tau}y(\tau) \xrightarrow{\mathscr{L}} Y(s) s - y(0)$$

Collecting all the terms above, the ode in Laplace domain becomes

$$Ys - y(0) - aY' - bY' - 3aY - 3bY = 0$$

Replacing y(0) = 0 in the above results in

$$Ys - aY' - bY' - 3aY - 3bY = 0$$

The above ode in Y(s) is now solved.

In canonical form a linear first order is

$$Y' + q(s)Y = p(s)$$

Comparing the above to the given ode shows that

$$q(s) = -\frac{-3a - 3b + s}{a + b}$$
$$p(s) = 0$$

The integrating factor μ is

$$\mu = e^{\int q \, ds}$$

$$= e^{\int -\frac{-3a - 3b + s}{a + b} ds}$$

$$= e^{\frac{s(6a + 6b - s)}{2a + 2b}}$$

The ode becomes

$$\frac{\mathrm{d}}{\mathrm{d}s}\mu Y = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}s}\left(Y e^{\frac{s(6a+6b-s)}{2a+2b}}\right) = 0$$

Integrating gives

$$Y e^{\frac{s(6a+6b-s)}{2a+2b}} = \int 0 ds + c_1$$
= c_1

Dividing throughout by the integrating factor $e^{\frac{s(6a+6b-s)}{2a+2b}}$ gives the final solution

$$Y = c_1 e^{-\frac{s(6a+6b-s)}{2a+2b}}$$

Applying inverse Laplace transform on the above gives.

$$y = c_1 \mathcal{L}^{-1} \left(e^{-\frac{s(6a+6b-s)}{2a+2b}}, s, \tau \right)$$
 (1)

Substituting initial conditions y(0) = 0 and y'(0) = 0 into the above solution Gives

$$0 = c_1 \mathcal{L}^{-1} \left(e^{-\frac{s(6a+6b-s)}{2a+2b}}, s, \tau \right)$$

Solving for the constant c_1 from the above equation gives

$$c_1 = 0$$

Substituting the above back into the solution (1) gives

$$y = 0$$

Changing back the solution from τ to t using

$$\tau = t + 3$$

the solution becomes

$$y(t) = 0$$

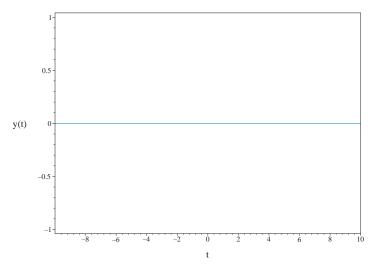


Figure 2.111: Solution plot y(t) = 0

Maple step by step solution

Let's solve [y' + (at + bt) y = 0, y(-3) = 0]

- Highest derivative means the order of the ODE is 1 y'
- Solve for the highest derivative y' = -(at + bt) y
- Separate variables $\frac{y'}{y} = -at bt$
- Integrate both sides with respect to t $\int \frac{y'}{y} dt = \int (-at bt) dt + C1$
- Evaluate integral $\ln{(y)} = -\frac{t^2(a+b)}{2} + C1$
- Solve for y $y = e^{-\frac{1}{2}t^2a \frac{1}{2}t^2b + C1}$
- Use initial condition y(-3) = 0 $0 = e^{-\frac{9a}{2} - \frac{9b}{2} + C1}$
- Solve for _*C1 C1* = ()
- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`</pre>
```

Maple dsolve solution

Solving time: 0.032 (sec)

Leaf size : 5

$$y = 0$$

Mathematica DSolve solution

Solving time: 0.001 (sec)

Leaf size: 6

```
DSolve[{D[y[t],t]+(a*t+b*t)*y[t]==0,y[-3]==0},
    y[t],t,IncludeSingularSolutions->True]
```

$$y(t) \to 0$$