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1.1 section 1

Table 1.1: Lookup table for all problems in current section

ID problem ODE

8661 1 y′ = 0

8662 2 y′ = a

8663 3 y′ = x

8664 4 y′ = 1

8665 5 y′ = ax

8666 6 y′ = axy

8667 7 y′ = ax+ y

8668 8 y′ = ax+ by

8669 9 y′ = y

8670 10 y′ = by

8671 11 y′ = ax+ by2

8672 12 cy′ = 0

8673 13 cy′ = a

8674 14 cy′ = ax

8675 15 cy′ = ax+ y

8676 16 cy′ = ax+ by

8677 17 cy′ = y

8678 18 cy′ = by

8679 19 cy′ = ax+ by2

8680 20 cy′ = ax+by2

r

8681 21 cy′ = ax+by2

rx

8682 22 cy′ = ax+by2

r x2

Continued on next page
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Table 1.1 Lookup table
Continued from previous page

ID problem ODE

8683 23 cy′ = ax+by2

y

8684 24 a sin (x) yxy′ = 0

8685 25 f(x) sin (x) yxy′π = 0

8686 26 y′ = sin (x) + y

8687 27 y′ = sin (x) + y2

8688 28 y′ = cos (x) + y
x

8689 29 y′ = cos (x) + y2

x

8690 30 y′ = x+ y + by2

8691 31 xy′ = 0

8692 32 5y′ = 0

8693 33 ey′ = 0

8694 34 πy′ = 0

8695 35 sin (x) y′ = 0

8696 36 f(x) y′ = 0

8697 37 xy′ = 1

8698 38 xy′ = sin (x)

8699 39 (x− 1) y′ = 0

8700 40 yy′ = 0

8701 41 xyy′ = 0

8702 42 xy sin (x) y′ = 0

8703 43 πy sin (x) y′ = 0

8704 44 x sin (x) y′ = 0

8705 45 x sin (x) y′2 = 0

8706 46 yy′2 = 0
Continued on next page
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Table 1.1 Lookup table
Continued from previous page

ID problem ODE

8707 47 y′n = 0

8708 48 xy′n = 0

8709 49 y′2 = x

8710 50 y′2 = x+ y

8711 51 y′2 = y
x

8712 52 y′2 = y2

x

8713 53 y′2 = y3

x

8714 54 y′3 = y2

x

8715 55 y′2 = 1
yx

8716 56 y′2 = 1
xy3

8717 57 y′2 = 1
x2y3

8718 58 y′4 = 1
xy3

8719 59 y′2 = 1
x3y4

8720 60 y′ =
√
1 + 6x+ y

8721 61 y′ = (1 + 6x+ y)1/3

8722 62 y′ = (1 + 6x+ y)1/4

8723 63 y′ = (a+ bx+ y)4

8724 64 y′ = (π + x+ 7y)7/2

8725 65 y′ = (a+ bx+ cy)6

8726 66 y′ = ex+y

8727 67 y′ = 10 + ex+y

8728 68 y′ = 10 ex+y + x2

8729 69 y′ = x ex+y + sin (x)

8730 70 y′ = 5 ex2+20y + sin (x)
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1.2 section 2 (system of first order odes)

Table 1.2: Lookup table for all problems in current section

ID problem ODE

8731 1 [x′(t) + y′(t)− x(t) = y(t) + t, x′(t) + y′(t) = 2x(t) + 3y(t) + et]

8732 2 [2x′(t) + y′(t)− x(t) = y(t) + t, x′(t) + y′(t) = 2x(t) + 3y(t) + et]

8733 3 [x′(t) + y′(t)− x(t) = y(t) + t+ sin (t) + cos (t) , x′(t) + y′(t) = 2x(t) +
3y(t) + et]

1.3 section 3. First order odes solved using
Laplace method

Table 1.3: Lookup table for all problems in current section

ID problem ODE

8734 1 y′t+ y = t

8735 2 y′ − yt = 0

8736 3 y′t+ y = 0

8737 4 y′t+ y = 0

8738 5 y′t+ y = 0

8739 6 y′t+ y = 0

8740 7 y′t+ y = 0

8741 8 y′t+ y = sin (t)

8742 9 y′t+ y = t

8743 10 y′t+ y = t

8744 11 y′ + t2y = 0

8745 12 (at+ 1) y′ + y = t

8746 13 y′ + (at+ bt) y = 0
Continued on next page
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Table 1.3 Lookup table
Continued from previous page

ID problem ODE

8747 14 y′ + (at+ bt) y = 0
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Internal problem ID [8661]
Book : First order enumerated odes
Section : section 1
Problem number : 1
Date solved : Tuesday, December 17, 2024 at 12:57:13 PM
CAS classification : [_quadrature]

Solve

y′ = 0

Solved as first order quadrature ode

Time used: 0.025 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1
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Figure 2.1: Slope field plot
y′ = 0

Summary of solutions found
y = c1

Solved as first order homogeneous class D2 ode

Time used: 0.155 (sec)

Applying change of variables y = u(x)x, then the ode becomes

u′(x)x+ u(x) = 0

Which is now solved The ode u′(x) = −u(x)
x

is separable as it can be written as

u′(x) = −u(x)
x

= f(x)g(u)

Where

f(x) = −1
x

g(u) = u
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Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−1
x
dx

ln (u(x)) = ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ec1
x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = ec1
x

back to y gives

y = ec1
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Figure 2.2: Slope field plot
y′ = 0

Summary of solutions found
y = 0

y = ec1

Solved as first order ode of type differential

Time used: 0.010 (sec)

Writing the ode as

y′ = 0 (1)

Which becomes

(1) dy = (0) dx (2)

But the RHS is complete differential because

(0) dx = d(0)

Hence (2) becomes

(1) dy = d(0)

Integrating gives

y = c1
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Figure 2.3: Slope field plot
y′ = 0

Summary of solutions found
y = c1

Maple step by step solution

Let’s solve
d
dx
y(x) = 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 5� �
dsolve(diff(y(x),x) = 0,

y(x),singsol=all)� �
y = c1

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7� �
DSolve[{D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1
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2.1.2 problem 2
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Internal problem ID [8662]
Book : First order enumerated odes
Section : section 1
Problem number : 2
Date solved : Tuesday, December 17, 2024 at 12:57:14 PM
CAS classification : [_quadrature]

Solve

y′ = a

Solved as first order quadrature ode

Time used: 0.036 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
a dx

y = ax+ c1

Summary of solutions found
y = ax+ c1
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Solved as first order homogeneous class D2 ode

Time used: 0.186 (sec)

Applying change of variables y = u(x)x, then the ode becomes

u′(x)x+ u(x) = a

Which is now solved The ode u′(x) = −u(x)−a
x

is separable as it can be written as

u′(x) = −u(x)− a

x
= f(x)g(u)

Where

f(x) = 1
x

g(u) = −u+ a

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

−u+ a
du =

∫ 1
x
dx

− ln (−u(x) + a) = ln (x) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or −u+ a = 0 for
u(x) gives

u(x) = a

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

− ln (−u(x) + a) = ln (x) + c1

u(x) = a

Solving for u(x) gives
u(x) = a

u(x) = (x ec1a− 1) e−c1

x



chapter 2. book solved problems 22

Converting u(x) = a back to y gives

y = ax

Converting u(x) = (x ec1a−1)e−c1

x
back to y gives

y = (x ec1a− 1) e−c1

Summary of solutions found
y = ax

y = (x ec1a− 1) e−c1

Solved as first order Exact ode

Time used: 0.060 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
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and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy = (a) dx
(−a) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −a

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−a)

= 0

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−a dx

(3)φ = −ax+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1. Therefore equation (4) becomes

(5)1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −ax+ y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −ax+ y

Solving for y gives
y = ax+ c1

Summary of solutions found
y = ax+ c1
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Maple step by step solution

Let’s solve
d
dx
y(x) = a

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
adx+ C1

• Evaluate integral
y(x) = xa+ C1

• Solve for y(x)
y(x) = xa+ C1

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 9� �
dsolve(diff(y(x),x) = a,

y(x),singsol=all)� �
y = ax+ c1
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Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 11� �
DSolve[{D[y[x],x]==a,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ax+ c1
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2.1.3 problem 3

Solved as first order quadrature ode . . . . . . . . . . . . . . . 27
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 28
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 31
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 32
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 32

Internal problem ID [8663]
Book : First order enumerated odes
Section : section 1
Problem number : 3
Date solved : Tuesday, December 17, 2024 at 12:57:15 PM
CAS classification : [_quadrature]

Solve

y′ = x

Solved as first order quadrature ode

Time used: 0.038 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
x dx

y = x2

2 + c1
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Figure 2.4: Slope field plot
y′ = x

Summary of solutions found

y = x2

2 + c1

Solved as first order Exact ode

Time used: 0.056 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy = (x) dx
(−x) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1. Therefore equation (4) becomes

(5)1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −x2

2 + y
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Solving for y gives

y = x2

2 + c1
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Figure 2.5: Slope field plot
y′ = x

Summary of solutions found

y = x2

2 + c1

Maple step by step solution

Let’s solve
d
dx
y(x) = x

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
xdx+ C1

• Evaluate integral
y(x) = x2

2 + C1
• Solve for y(x)

y(x) = x2

2 + C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 11� �
dsolve(diff(y(x),x) = x,

y(x),singsol=all)� �
y = x2

2 + c1

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 15� �
DSolve[{D[y[x],x]==x,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x2

2 + c1
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2.1.4 problem 4

Solved as first order quadrature ode . . . . . . . . . . . . . . . 33
Solved as first order homogeneous class D2 ode . . . . . . . . . 34
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 36
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 39
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 39
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 40

Internal problem ID [8664]
Book : First order enumerated odes
Section : section 1
Problem number : 4
Date solved : Tuesday, December 17, 2024 at 12:57:15 PM
CAS classification : [_quadrature]

Solve

y′ = 1

Solved as first order quadrature ode

Time used: 0.032 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
1 dx

y = x+ c1
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Figure 2.6: Slope field plot
y′ = 1

Summary of solutions found
y = x+ c1

Solved as first order homogeneous class D2 ode

Time used: 0.173 (sec)

Applying change of variables y = u(x)x, then the ode becomes

u′(x)x+ u(x) = 1

Which is now solved The ode u′(x) = −u(x)−1
x

is separable as it can be written as

u′(x) = −u(x)− 1
x

= f(x)g(u)

Where

f(x) = 1
x

g(u) = −u+ 1

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

−u+ 1 du =
∫ 1

x
dx

− ln (u(x)− 1) = ln (x) + c1
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We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or −u+ 1 = 0 for
u(x) gives

u(x) = 1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

− ln (u(x)− 1) = ln (x) + c1

u(x) = 1

Solving for u(x) gives
u(x) = 1

u(x) = (x ec1 + 1) e−c1

x

Converting u(x) = 1 back to y gives

y = x

Converting u(x) = (x ec1+1)e−c1

x
back to y gives

y = (x ec1 + 1) e−c1
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Figure 2.7: Slope field plot
y′ = 1
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Summary of solutions found
y = x

y = (x ec1 + 1) e−c1

Solved as first order Exact ode

Time used: 0.056 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(1) dy = dx
− dx+(1) dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −1
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−1)

= 0

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1 dx

(3)φ = −x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1. Therefore equation (4) becomes

(5)1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x+ y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −x+ y

Solving for y gives
y = x+ c1
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Figure 2.8: Slope field plot
y′ = 1
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Summary of solutions found
y = x+ c1

Maple step by step solution

Let’s solve
d
dx
y(x) = 1

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
1dx+ C1

• Evaluate integral
y(x) = x+ C1

• Solve for y(x)
y(x) = x+ C1

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 7� �
dsolve(diff(y(x),x) = 1,

y(x),singsol=all)� �
y = x+ c1
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Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 9� �
DSolve[{D[y[x],x]==1,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x+ c1
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2.1.5 problem 5

Solved as first order quadrature ode . . . . . . . . . . . . . . . 41
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 42
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 44
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 45
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 45

Internal problem ID [8665]
Book : First order enumerated odes
Section : section 1
Problem number : 5
Date solved : Tuesday, December 17, 2024 at 12:57:16 PM
CAS classification : [_quadrature]

Solve

y′ = ax

Solved as first order quadrature ode

Time used: 0.040 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
ax dx

y = a x2

2 + c1

Summary of solutions found

y = a x2

2 + c1
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Solved as first order Exact ode

Time used: 0.061 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (ax) dx
(−ax) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ax

N(x, y) = 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−ax)

= 0

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−ax dx

(3)φ = −a x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1. Therefore equation (4) becomes

(5)1 = 0 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −a x2

2 + y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −a x2

2 + y

Solving for y gives

y = a x2

2 + c1

Summary of solutions found

y = a x2

2 + c1

Maple step by step solution

Let’s solve
d
dx
y(x) = xa

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
xadx+ C1
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• Evaluate integral
y(x) = x2a

2 + C1
• Solve for y(x)

y(x) = x2a
2 + C1

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 12� �
dsolve(diff(y(x),x) = a*x,

y(x),singsol=all)� �
y = a x2

2 + c1

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 16� �
DSolve[{D[y[x],x]==a*x,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ax2

2 + c1
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2.1.6 problem 6

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 46
Solved as first order separable ode . . . . . . . . . . . . . . . . 47
Solved as first order homogeneous class D2 ode . . . . . . . . . 48
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 50
Solved using Lie symmetry for first order ode . . . . . . . . . . 53
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 57
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 57
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 58

Internal problem ID [8666]
Book : First order enumerated odes
Section : section 1
Problem number : 6
Date solved : Tuesday, December 17, 2024 at 12:57:17 PM
CAS classification : [_separable]

Solve

y′ = axy

Solved as first order linear ode

Time used: 0.086 (sec)

In canonical form a linear first order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) = −ax

p(x) = 0

The integrating factor µ is

µ = e
∫
q dx

= e
∫
−axdx

= e−a x2
2
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The ode becomes

d
dxµy = 0

d
dx

(
y e−a x2

2

)
= 0

Integrating gives

y e−a x2
2 =

∫
0 dx+ c1

= c1

Dividing throughout by the integrating factor e−a x2
2 gives the final solution

y = ea x2
2 c1

Summary of solutions found

y = ea x2
2 c1

Solved as first order separable ode

Time used: 0.109 (sec)

The ode y′ = axy is separable as it can be written as

y′ = axy

= f(x)g(y)

Where

f(x) = ax

g(y) = y

Integrating gives ∫ 1
g(y) dy =

∫
f(x) dx∫ 1

y
dy =

∫
ax dx

ln (y) = a x2

2 + c1
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We now need to find the singular solutions, these are found by finding for what values
g(y) is zero, since we had to divide by this above. Solving g(y) = 0 or y = 0 for y gives

y = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (y) = a x2

2 + c1

y = 0

Solving for y gives
y = 0

y = ea x2
2 +c1

Summary of solutions found
y = 0

y = ea x2
2 +c1

Solved as first order homogeneous class D2 ode

Time used: 0.126 (sec)

Applying change of variables y = u(x)x, then the ode becomes

u′(x)x+ u(x) = a x2u(x)

Which is now solved The ode u′(x) = u(x)
(
a x2−1

)
x

is separable as it can be written as

u′(x) = u(x) (a x2 − 1)
x

= f(x)g(u)

Where

f(x) = a x2 − 1
x

g(u) = u
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Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
a x2 − 1

x
dx

ln (u(x)) = a x2

2 + ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = a x2

2 + ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ea x2
2 +c1

x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = e
a x2
2 +c1

x
back to y gives

y = ea x2
2 +c1

Summary of solutions found
y = 0

y = ea x2
2 +c1
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Solved as first order Exact ode

Time used: 0.173 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (axy) dx
(−axy) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −axy

N(x, y) = 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−axy)

= −ax

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−ax)− (0))
= −ax

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−axdx

The result of integrating gives

µ = e−
a x2
2

= e−a x2
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−a x2
2 (−axy)

= −axy e−a x2
2
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And

N = µN

= e−a x2
2 (1)

= e−a x2
2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−axy e−a x2
2

)
+
(
e−a x2

2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (2) w.r.t. y gives ∫
∂φ

∂y
dy =

∫
N dy∫

∂φ

∂y
dy =

∫
e−a x2

2 dy

(3)φ = y e−a x2
2 + f(x)

Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= −axy e−a x2

2 + f ′(x)

But equation (1) says that ∂φ
∂x

= −axy e−a x2
2 . Therefore equation (4) becomes

(5)−axy e−a x2
2 = −axy e−a x2

2 + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = 0
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Therefore
f(x) = c1

Where c1 is constant of integration. Substituting this result for f(x) into equation (3)
gives φ

φ = y e−a x2
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = y e−a x2
2

Solving for y gives

y = ea x2
2 c1

Summary of solutions found

y = ea x2
2 c1

Solved using Lie symmetry for first order ode

Time used: 0.212 (sec)

Writing the ode as

y′ = axy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + axy(b3 − a2)− a2x2y2a3 − ay(xa2 + ya3 + a1)− ax(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−a2x2y2a3 − a x2b2 − 2axya2 − a y2a3 − axb1 − aya1 + b2 = 0

Setting the numerator to zero gives

(6E)−a2x2y2a3 − a x2b2 − 2axya2 − a y2a3 − axb1 − aya1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2a3v
2
1v

2
2 − 2aa2v1v2 − aa3v

2
2 − ab2v

2
1 − aa1v2 − ab1v1 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−a2a3v
2
1v

2
2 − 2aa2v1v2 − aa3v

2
2 − ab2v

2
1 − aa1v2 − ab1v1 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−aa1 = 0
−2aa2 = 0
−aa3 = 0
−ab1 = 0
−ab2 = 0
−a2a3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y
dy

Which results in

S = ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = axy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 0

Sy =
1
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ax (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= aR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
aR dR

S(R) = aR2

2 + c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (y) = a x2

2 + c2

Which gives

y = ea x2
2 +c2

Summary of solutions found

y = ea x2
2 +c2
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Maple step by step solution

Let’s solve
d
dx
y(x) = xay(x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = xay(x)

• Separate variables
d
dx

y(x)
y(x) = xa

• Integrate both sides with respect to x∫ d
dx

y(x)
y(x) dx =

∫
xadx+ C1

• Evaluate integral
ln (y(x)) = x2a

2 + C1
• Solve for y(x)

y(x) = ex2a
2 +C1

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 13� �
dsolve(diff(y(x),x) = a*x*y(x),

y(x),singsol=all)� �
y = c1e

a x2
2
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Mathematica DSolve solution

Solving time : 0.027 (sec)
Leaf size : 23� �
DSolve[{D[y[x],x]==a*x*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

ax2
2

y(x) → 0
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2.1.7 problem 7

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 59
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 60
Solved using Lie symmetry for first order ode . . . . . . . . . . 64
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 67
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 68
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 69

Internal problem ID [8667]
Book : First order enumerated odes
Section : section 1
Problem number : 7
Date solved : Tuesday, December 17, 2024 at 12:57:18 PM
CAS classification : [[_linear, ‘class A‘]]

Solve

y′ = ax+ y

Solved as first order linear ode

Time used: 0.105 (sec)

In canonical form a linear first order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) = −1
p(x) = ax

The integrating factor µ is

µ = e
∫
q dx

= e
∫
(−1)dx

= e−x
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The ode becomes
d
dx(µy) = µp

d
dx(µy) = (µ) (ax)

d
dx
(
y e−x

)
=
(
e−x
)
(ax)

d
(
y e−x

)
=
(
ax e−x

)
dx

Integrating gives

y e−x =
∫

ax e−x dx

= −(x+ 1) a e−x + c1

Dividing throughout by the integrating factor e−x gives the final solution

y = c1 ex − a(x+ 1)

Summary of solutions found

y = c1 ex − a(x+ 1)

Solved as first order Exact ode

Time used: 0.105 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy = (ax+ y) dx
(−ax− y) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ax− y

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−ax− y)

= −1

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−1)− (0))
= −1
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−1 dx

The result of integrating gives

µ = e−x

= e−x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−x(−ax− y)
= −(ax+ y) e−x

And

N = µN

= e−x(1)
= e−x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−(ax+ y) e−x
)
+
(
e−x
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (2) w.r.t. y gives ∫
∂φ

∂y
dy =

∫
N dy∫

∂φ

∂y
dy =

∫
e−x dy

(3)φ = y e−x + f(x)
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Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= −y e−x + f ′(x)

But equation (1) says that ∂φ
∂x

= −(ax+ y) e−x. Therefore equation (4) becomes

(5)−(ax+ y) e−x = −y e−x + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = −ax e−x

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫ (
−ax e−x

)
dx

f(x) = (x+ 1) a e−x + c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = y e−x + (x+ 1) a e−x + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = y e−x + (x+ 1) a e−x

Solving for y gives
y = −

(
ax e−x + a e−x − c1

)
ex

Summary of solutions found

y = −
(
ax e−x + a e−x − c1

)
ex
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Solved using Lie symmetry for first order ode

Time used: 0.347 (sec)

Writing the ode as

y′ = ax+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + (ax+ y) (b3 − a2)− (ax+ y)2 a3 − a(xa2 + ya3 + a1)− xb2 − yb3 − b1 = 0

Putting the above in normal form gives

−a2x2a3 − 2axya3 − 2axa2 + axb3 − aya3 − y2a3 − aa1 − xb2 − ya2 − b1 + b2 = 0

Setting the numerator to zero gives

(6E)−a2x2a3 − 2axya3 − 2axa2 + axb3 − aya3 − y2a3 − aa1 − xb2 − ya2 − b1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)−a2a3v
2
1−2aa3v1v2−2aa2v1−aa3v2+ab3v1−a3v

2
2−aa1−a2v2−b2v1−b1+b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

−a2a3v
2
1 − 2aa3v1v2 + (−2aa2 + ab3 − b2) v1 − a3v

2
2 + (−aa3 − a2) v2 − aa1 − b1 + b2 = 0

(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

−a3 = 0
−2aa3 = 0
−a2a3 = 0

−aa3 − a2 = 0
−aa1 − b1 + b2 = 0

−2aa2 + ab3 − b2 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = −aa1 + ab3

b2 = ab3

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η = ax+ a+ y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ax+ a+ y
dy

Which results in

S = ln (ax+ a+ y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ax+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = a

ax+ a+ y

Sy =
1

ax+ a+ y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
1 dR

S(R) = R + c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (ax+ a+ y) = x+ c2

Which gives

y = ex+c2 − ax− a

Summary of solutions found

y = ex+c2 − ax− a

Maple step by step solution

Let’s solve
d
dx
y(x) = xa+ y(x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = xa+ y(x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
d
dx
y(x)− y(x) = xa

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
d
dx
y(x)− y(x)

)
= µ(x)xa
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• Assume the lhs of the ODE is the total derivative d
dx
(y(x)µ(x))

µ(x)
(

d
dx
y(x)− y(x)

)
=
(

d
dx
y(x)

)
µ(x) + y(x)

(
d
dx
µ(x)

)
• Isolate d

dx
µ(x)

d
dx
µ(x) = −µ(x)

• Solve to find the integrating factor
µ(x) = e−x

• Integrate both sides with respect to x∫ (
d
dx
(y(x)µ(x))

)
dx =

∫
µ(x)xadx+ C1

• Evaluate the integral on the lhs
y(x)µ(x) =

∫
µ(x)xadx+ C1

• Solve for y(x)

y(x) =
∫
µ(x)xadx+C1

µ(x)

• Substitute µ(x) = e−x

y(x) =
∫
e−xxadx+C1

e−x

• Evaluate the integrals on the rhs
y(x) = −(x+1)e−xa+C1

e−x

• Simplify
y(x) = C1 ex − a(x+ 1)

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 15� �
dsolve(diff(y(x),x) = a*x+y(x),

y(x),singsol=all)� �
y = exc1 − a(x+ 1)
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Mathematica DSolve solution

Solving time : 0.027 (sec)
Leaf size : 18� �
DSolve[{D[y[x],x]==a*x+y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −a(x+ 1) + c1e

x
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2.1.8 problem 8
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Internal problem ID [8668]
Book : First order enumerated odes
Section : section 1
Problem number : 8
Date solved : Tuesday, December 17, 2024 at 12:57:19 PM
CAS classification : [[_linear, ‘class A‘]]

Solve

y′ = ax+ by

Solved as first order linear ode

Time used: 0.124 (sec)

In canonical form a linear first order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) = −b

p(x) = ax

The integrating factor µ is

µ = e
∫
q dx

= e
∫
−bdx

= e−bx
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The ode becomes
d
dx(µy) = µp

d
dx(µy) = (µ) (ax)

d
dx
(
y e−bx

)
=
(
e−bx

)
(ax)

d
(
y e−bx

)
=
(
ax e−bx

)
dx

Integrating gives

y e−bx =
∫

ax e−bx dx

= −(bx+ 1) a e−bx

b2
+ c1

Dividing throughout by the integrating factor e−bx gives the final solution

y = c1 ebxb2 − abx− a

b2

Summary of solutions found

y = c1 ebxb2 − abx− a

b2

Solved as first order Exact ode

Time used: 0.123 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (ax+ by) dx
(−ax− by) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ax− by

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−ax− by)

= −b

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−b)− (0))
= −b

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−b dx

The result of integrating gives

µ = e−bx

= e−bx

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−bx(−ax− by)
= −(ax+ by) e−bx

And

N = µN

= e−bx(1)
= e−bx

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−(ax+ by) e−bx
)
+
(
e−bx

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (2) w.r.t. y gives ∫
∂φ

∂y
dy =

∫
N dy∫

∂φ

∂y
dy =

∫
e−bx dy

(3)φ = y e−bx + f(x)

Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= −yb e−bx + f ′(x)

But equation (1) says that ∂φ
∂x

= −(ax+ by) e−bx. Therefore equation (4) becomes

(5)−(ax+ by) e−bx = −yb e−bx + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = −ax e−bx

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫ (
−ax e−bx

)
dx

f(x) = (bx+ 1) a e−bx

b2
+ c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = y e−bx + (bx+ 1) a e−bx

b2
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = y e−bx + (bx+ 1) a e−bx

b2
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Solving for y gives

y = −
(
axb e−bx − c1 b

2 + a e−bx
)
ebx

b2

Summary of solutions found

y = −
(
axb e−bx − c1 b

2 + a e−bx
)
ebx

b2

Solved using Lie symmetry for first order ode

Time used: 0.415 (sec)

Writing the ode as

y′ = ax+ by

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +(ax+ by) (b3− a2)− (ax+ by)2 a3− a(xa2 + ya3 + a1)− b(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−a2x2a3 − 2abxya3 − b2y2a3 − 2axa2 + axb3 − aya3 − bxb2 − bya2 − aa1 − bb1 + b2 = 0
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Setting the numerator to zero gives

−a2x2a3 − 2abxya3 − b2y2a3 − 2axa2 + axb3 − aya3 − bxb2 − bya2 − aa1 − bb1 + b2 = 0
(6E)

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2a3v
2
1 − 2aba3v1v2 − b2a3v

2
2 − 2aa2v1 − aa3v2

+ ab3v1 − ba2v2 − bb2v1 − aa1 − bb1 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−a2a3v
2
1 − 2aba3v1v2 + (−2aa2 + ab3 − bb2) v1

− b2a3v
2
2 + (−aa3 − ba2) v2 − aa1 − bb1 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a2a3 = 0
−b2a3 = 0

−2aba3 = 0
−aa3 − ba2 = 0

−aa1 − bb1 + b2 = 0
−2aa2 + ab3 − bb2 = 0



chapter 2. book solved problems 77

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = b1

b2 = aa1 + bb1

b3 =
b(aa1 + bb1)

a

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0

η = abx+ b2y + a

a

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

abx+b2y+a
a

dy

Which results in

S = a ln (abx+ b2y + a)
b2
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Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ax+ by

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = a2

b (abx+ b2y + a)
Sy =

a

abx+ b2y + a

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a

b
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= a

b

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
a

b
dR

S(R) = aR

b
+ c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

a ln (abx+ b2y + a)
b2

= ax

b
+ c2
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Which gives

y = e
b(c2b+ax)

a − abx− a

b2

Summary of solutions found

y = e
b(c2b+ax)

a − abx− a

b2

Maple step by step solution

Let’s solve
d
dx
y(x) = xa+ by(x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = xa+ by(x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
d
dx
y(x)− by(x) = xa

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
d
dx
y(x)− by(x)

)
= µ(x)xa

• Assume the lhs of the ODE is the total derivative d
dx
(y(x)µ(x))

µ(x)
(

d
dx
y(x)− by(x)

)
=
(

d
dx
y(x)

)
µ(x) + y(x)

(
d
dx
µ(x)

)
• Isolate d

dx
µ(x)

d
dx
µ(x) = −µ(x) b

• Solve to find the integrating factor
µ(x) = e−bx

• Integrate both sides with respect to x∫ (
d
dx
(y(x)µ(x))

)
dx =

∫
µ(x)xadx+ C1

• Evaluate the integral on the lhs
y(x)µ(x) =

∫
µ(x)xadx+ C1

• Solve for y(x)

y(x) =
∫
µ(x)xadx+C1

µ(x)

• Substitute µ(x) = e−bx
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y(x) =
∫
e−bxxadx+C1

e−bx

• Evaluate the integrals on the rhs

y(x) = − (bx+1)e−bxa

b2 +C1
e−bx

• Simplify
y(x) = C1 ebxb2−bxa−a

b2

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 26� �
dsolve(diff(y(x),x) = a*x+b*y(x),

y(x),singsol=all)� �
y = ebxc1b2 − axb− a

b2

Mathematica DSolve solution

Solving time : 0.056 (sec)
Leaf size : 25� �
DSolve[{D[y[x],x]==a*x+b*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −abx+ a

b2
+ c1e

bx
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2.1.9 problem 9

Solved as first order autonomous ode . . . . . . . . . . . . . . . 81
Solved as first order homogeneous class D2 ode . . . . . . . . . 83
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 84
Solved using Lie symmetry for first order ode . . . . . . . . . . 88
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 93
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 93
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 94

Internal problem ID [8669]
Book : First order enumerated odes
Section : section 1
Problem number : 9
Date solved : Tuesday, December 17, 2024 at 12:57:20 PM
CAS classification : [_quadrature]

Solve

y′ = y

Solved as first order autonomous ode

Time used: 0.083 (sec)

Integrating gives ∫ 1
y
dy = 1

ln (y) = x+ c1

eln(y) = ex+c1

y = c1 ex
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The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

unstabley = 0.

Figure 2.9: Phase line diagram
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Figure 2.10: Slope field plot
y′ = y

Summary of solutions found
y = 0

y = c1 ex
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Solved as first order homogeneous class D2 ode

Time used: 0.139 (sec)

Applying change of variables y = u(x)x, then the ode becomes

u′(x)x+ u(x) = u(x)x

Which is now solved The ode u′(x) = u(x)(x−1)
x

is separable as it can be written as

u′(x) = u(x) (x− 1)
x

= f(x)g(u)

Where

f(x) = x− 1
x

g(u) = u

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
x− 1
x

dx

ln (u(x)) = x+ ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = x+ ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ex+c1

x
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Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = ex+c1
x

back to y gives

y = ex+c1
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Figure 2.11: Slope field plot
y′ = y

Summary of solutions found
y = 0

y = ex+c1

Solved as first order Exact ode

Time used: 0.096 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (y) dx
(−y) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−y)

= −1
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And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−1)− (0))
= −1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−1 dx

The result of integrating gives

µ = e−x

= e−x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−x(−y)
= −y e−x

And

N = µN

= e−x(1)
= e−x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−y e−x
)
+
(
e−x
) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (2) w.r.t. y gives ∫
∂φ

∂y
dy =

∫
N dy∫

∂φ

∂y
dy =

∫
e−x dy

(3)φ = y e−x + f(x)

Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= −y e−x + f ′(x)

But equation (1) says that ∂φ
∂x

= −y e−x. Therefore equation (4) becomes

(5)−y e−x = −y e−x + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = 0

Therefore
f(x) = c1

Where c1 is constant of integration. Substituting this result for f(x) into equation (3)
gives φ

φ = y e−x + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = y e−x
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Solving for y gives
y = c1 ex
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Figure 2.12: Slope field plot
y′ = y

Summary of solutions found
y = c1 ex

Solved using Lie symmetry for first order ode

Time used: 0.389 (sec)

Writing the ode as

y′ = y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + y(b3 − a2)− y2a3 − xb2 − yb3 − b1 = 0

Putting the above in normal form gives

−y2a3 − xb2 − ya2 − b1 + b2 = 0

Setting the numerator to zero gives

(6E)−y2a3 − xb2 − ya2 − b1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a3v
2
2 − a2v2 − b2v1 − b1 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−a3v
2
2 − a2v2 − b2v1 − b1 + b2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−a2 = 0
−a3 = 0
−b2 = 0

−b1 + b2 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y
dy
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Which results in

S = ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 0

Sy =
1
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
1 dR

S(R) = R + c2
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To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (y) = x+ c2

Which gives

y = ex+c2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y dS
dR

= 1

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = ln (y)

–4

–2

0

2

4

S(R)

–4 –2 2 4

R

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.13: Slope field plot
y′ = y
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Summary of solutions found

y = ex+c2

Maple step by step solution

Let’s solve
d
dx
y(x) = y(x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = y(x)

• Separate variables
d
dx

y(x)
y(x) = 1

• Integrate both sides with respect to x∫ d
dx

y(x)
y(x) dx =

∫
1dx+ C1

• Evaluate integral
ln (y(x)) = x+ C1

• Solve for y(x)
y(x) = ex+C1

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 8� �
dsolve(diff(y(x),x) = y(x),

y(x),singsol=all)� �
y = exc1
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Mathematica DSolve solution

Solving time : 0.021 (sec)
Leaf size : 16� �
DSolve[{D[y[x],x]==y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x

y(x) → 0



chapter 2. book solved problems 95

2.1.10 problem 10

Solved as first order autonomous ode . . . . . . . . . . . . . . . 95
Solved as first order homogeneous class D2 ode . . . . . . . . . 97
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 98
Solved using Lie symmetry for first order ode . . . . . . . . . . 102
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 105
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 106
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 106

Internal problem ID [8670]
Book : First order enumerated odes
Section : section 1
Problem number : 10
Date solved : Tuesday, December 17, 2024 at 12:57:21 PM
CAS classification : [_quadrature]

Solve

y′ = by

Solved as first order autonomous ode

Time used: 0.155 (sec)

Integrating gives ∫ 1
by

dy = dx

ln (y)
b

= x+ c1

Singular solutions are found by solving

by = 0

for y. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

y = 0
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The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

y = 0.

Figure 2.14: Phase line diagram
Solving for y gives

y = 0

y = ec1b+xb

Summary of solutions found
y = 0

y = ec1b+xb
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Solved as first order homogeneous class D2 ode

Time used: 0.115 (sec)

Applying change of variables y = u(x)x, then the ode becomes

u′(x)x+ u(x) = bu(x)x

Which is now solved The ode u′(x) = u(x)(xb−1)
x

is separable as it can be written as

u′(x) = u(x) (xb− 1)
x

= f(x)g(u)

Where

f(x) = xb− 1
x

g(u) = u

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
xb− 1

x
dx

ln (u(x)) = xb+ ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = xb+ ln
(
1
x

)
+ c1

u(x) = 0
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Solving for u(x) gives
u(x) = 0

u(x) = exb+c1

x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = exb+c1
x

back to y gives

y = exb+c1

Summary of solutions found
y = 0

y = exb+c1

Solved as first order Exact ode

Time used: 0.104 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy = (by) dx
(−by) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −by

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−by)

= −b

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−b)− (0))
= −b
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−b dx

The result of integrating gives

µ = e−xb

= e−xb

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−xb(−by)
= −by e−xb

And

N = µN

= e−xb(1)
= e−xb

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−by e−xb
)
+
(
e−xb

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (2) w.r.t. y gives ∫
∂φ

∂y
dy =

∫
N dy∫

∂φ

∂y
dy =

∫
e−xb dy

(3)φ = e−xby + f(x)
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Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= −by e−xb + f ′(x)

But equation (1) says that ∂φ
∂x

= −by e−xb. Therefore equation (4) becomes

(5)−by e−xb = −by e−xb + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = 0

Therefore
f(x) = c1

Where c1 is constant of integration. Substituting this result for f(x) into equation (3)
gives φ

φ = e−xby + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = e−xby

Solving for y gives
y = c1 exb

Summary of solutions found

y = c1 exb
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Solved using Lie symmetry for first order ode

Time used: 0.244 (sec)

Writing the ode as

y′ = by

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + by(b3 − a2)− b2y2a3 − b(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−b2y2a3 − bxb2 − bya2 − bb1 + b2 = 0

Setting the numerator to zero gives

(6E)−b2y2a3 − bxb2 − bya2 − bb1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)−b2a3v
2
2 − ba2v2 − bb2v1 − bb1 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−b2a3v
2
2 − ba2v2 − bb2v1 − bb1 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−ba2 = 0
−bb2 = 0
−b2a3 = 0

−bb1 + b2 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y
dy

Which results in

S = ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = by

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 0

Sy =
1
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= b (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= b
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
b dR

S(R) = bR + c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (y) = xb+ c2

Which gives

y = exb+c2

Summary of solutions found

y = exb+c2

Maple step by step solution

Let’s solve
d
dx
y(x) = by(x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = by(x)

• Separate variables
d
dx

y(x)
y(x) = b

• Integrate both sides with respect to x∫ d
dx

y(x)
y(x) dx =

∫
bdx+ C1

• Evaluate integral
ln (y(x)) = bx+ C1

• Solve for y(x)
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y(x) = ebx+C1

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 10� �
dsolve(diff(y(x),x) = b*y(x),

y(x),singsol=all)� �
y = ebxc1

Mathematica DSolve solution

Solving time : 0.024 (sec)
Leaf size : 18� �
DSolve[{D[y[x],x]==b*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

bx

y(x) → 0
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2.1.11 problem 11

Solved as first order ode of type reduced Riccati . . . . . . . . . 107
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 108
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 109
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 110

Internal problem ID [8671]
Book : First order enumerated odes
Section : section 1
Problem number : 11
Date solved : Tuesday, December 17, 2024 at 12:57:23 PM
CAS classification : [[_Riccati, _special]]

Solve

y′ = ax+ by2

Solved as first order ode of type reduced Riccati

Time used: 0.135 (sec)

This is reduced Riccati ode of the form

y′ = a xn + by2

Comparing the given ode to the above shows that

a = a

b = b

n = 1

Since n 6= −2 then the solution of the reduced Riccati ode is given by

w =
√
x

 c1 BesselJ
(

1
2k ,

1
k

√
abxk

)
+ c2 BesselY

(
1
2k ,

1
k

√
abxk

)
ab > 0

c1 BesselI
( 1
2k ,

1
k

√
−abxk

)
+ c2 BesselK

( 1
2k ,

1
k

√
−abxk

)
ab < 0

(1)

y = −1
b

w′

w

k = 1 + n

2
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EQ(1) gives

k = 3
2

w =
√
x

(
c1 BesselJ

(
1
3 ,

2
√
ab x3/2

3

)
+ c2 BesselY

(
1
3 ,

2
√
ab x3/2

3

))

Therefore the solution becomes

y = −1
b

w′

w

Substituting the value of b, w found above and simplyfing gives

y =

(
−BesselY

(
−2

3 ,
2
√
ab x3/2

3

)
c2 − BesselJ

(
−2

3 ,
2
√
ab x3/2

3

)
c1
)√

ab
√
x

b
(
c1 BesselJ

(
1
3 ,

2
√
ab x3/2

3

)
+ c2 BesselY

(
1
3 ,

2
√
ab x3/2

3

))
Letting c2 = 1 the above becomes

y =

(
−BesselY

(
−2

3 ,
2
√
ab x3/2

3

)
− BesselJ

(
−2

3 ,
2
√
ab x3/2

3

)
c1
)√

ab
√
x

b
(
c1 BesselJ

(
1
3 ,

2
√
ab x3/2

3

)
+ BesselY

(
1
3 ,

2
√
ab x3/2

3

))
Summary of solutions found

y =

(
−BesselY

(
−2

3 ,
2
√
ab x3/2

3

)
− BesselJ

(
−2

3 ,
2
√
ab x3/2

3

)
c1
)√

ab
√
x

b
(
c1 BesselJ

(
1
3 ,

2
√
ab x3/2

3

)
+ BesselY

(
1
3 ,

2
√
ab x3/2

3

))
Maple step by step solution

Let’s solve
d
dx
y(x) = xa+ by(x)2

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = xa+ by(x)2
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 59� �
dsolve(diff(y(x),x) = a*x+b*y(x)^2,

y(x),singsol=all)� �
y =

(ba)1/3
(
AiryAi

(
1,−(ba)1/3 x

)
c1 +AiryBi

(
1,−(ba)1/3 x

))
b
(
c1AiryAi

(
− (ba)1/3 x

)
+AiryBi

(
− (ba)1/3 x

))



chapter 2. book solved problems 110

Mathematica DSolve solution

Solving time : 0.156 (sec)
Leaf size : 331� �
DSolve[{D[y[x],x]==a*x+b*y[x]^2,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→

√
a
√
bx3/2

(
−2BesselJ

(
−2

3 ,
2
3
√
a
√
bx3/2

)
+ c1

(
BesselJ

(
2
3 ,

2
3
√
a
√
bx3/2

)
− BesselJ

(
−4

3 ,
2
3
√
a
√
bx3/2

)))
− c1 BesselJ

(
−1

3 ,
2
3
√
a
√
bx3/2

)
2bx

(
BesselJ

(
1
3 ,

2
3
√
a
√
bx3/2

)
+ c1 BesselJ

(
−1

3 ,
2
3
√
a
√
bx3/2

))
y(x) →

−

√
a
√
bx3/2 BesselJ

(
−4

3 ,
2
3
√
a
√
bx3/2

)
−

√
a
√
bx3/2 BesselJ

(
2
3 ,

2
3
√
a
√
bx3/2

)
+ BesselJ

(
−1

3 ,
2
3
√
a
√
bx3/2

)
2bxBesselJ

(
−1

3 ,
2
3
√
a
√
bx3/2

)
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2.1.12 problem 12

Solved as first order quadrature ode . . . . . . . . . . . . . . . 111
Solved as first order homogeneous class D2 ode . . . . . . . . . 112
Solved as first order ode of type differential . . . . . . . . . . . 114
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 115
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 116
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 116

Internal problem ID [8672]
Book : First order enumerated odes
Section : section 1
Problem number : 12
Date solved : Tuesday, December 17, 2024 at 12:57:24 PM
CAS classification : [_quadrature]

Solve

cy′ = 0

Solved as first order quadrature ode

Time used: 0.024 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1
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Figure 2.15: Slope field plot
cy′ = 0

Summary of solutions found
y = c1

Solved as first order homogeneous class D2 ode

Time used: 0.129 (sec)

Applying change of variables y = u(x)x, then the ode becomes

c(u′(x)x+ u(x)) = 0

Which is now solved The ode u′(x) = −u(x)
x

is separable as it can be written as

u′(x) = −u(x)
x

= f(x)g(u)

Where

f(x) = −1
x

g(u) = u
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Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−1
x
dx

ln (u(x)) = ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ec1
x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = ec1
x

back to y gives

y = ec1
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Figure 2.16: Slope field plot
cy′ = 0

Summary of solutions found
y = 0

y = ec1

Solved as first order ode of type differential

Time used: 0.011 (sec)

Writing the ode as

y′ = 0 (1)

Which becomes

(1) dy = (0) dx (2)

But the RHS is complete differential because

(0) dx = d(0)

Hence (2) becomes

(1) dy = d(0)

Integrating gives

y = c1
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Figure 2.17: Slope field plot
cy′ = 0

Summary of solutions found
y = c1

Maple step by step solution

Let’s solve
c
(

d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Separate variables
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 5� �
dsolve(c*diff(y(x),x) = 0,

y(x),singsol=all)� �
y = c1

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7� �
DSolve[{c*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1
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2.1.13 problem 13

Solved as first order quadrature ode . . . . . . . . . . . . . . . 117
Solved as first order homogeneous class D2 ode . . . . . . . . . 118
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 119
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 122
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 123
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 123

Internal problem ID [8673]
Book : First order enumerated odes
Section : section 1
Problem number : 13
Date solved : Tuesday, December 17, 2024 at 12:57:25 PM
CAS classification : [_quadrature]

Solve

cy′ = a

Solved as first order quadrature ode

Time used: 0.038 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
a

c
dx

y = ax

c
+ c1

Summary of solutions found

y = ax

c
+ c1
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Solved as first order homogeneous class D2 ode

Time used: 0.174 (sec)

Applying change of variables y = u(x)x, then the ode becomes

c(u′(x)x+ u(x)) = a

Which is now solved The ode u′(x) = − cu(x)−a
cx

is separable as it can be written as

u′(x) = −cu(x)− a

cx
= f(x)g(u)

Where

f(x) = − 1
xc

g(u) = cu− a

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

cu− a
du =

∫
− 1
xc

dx

ln (−cu(x) + a)
c

=
ln
( 1
x

)
c

+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or cu− a = 0 for
u(x) gives

u(x) = a

c

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (−cu(x) + a)
c

=
ln
( 1
x

)
c

+ c1

u(x) = a

c
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Solving for u(x) gives

u(x) = a

c

u(x) = (e−c1cax− 1) ec1c
cx

Converting u(x) = a
c
back to y gives

y = ax

c

Converting u(x) =
(
e−c1cax−1

)
ec1c

cx
back to y gives

y = (e−c1cax− 1) ec1c
c

Summary of solutions found

y = ax

c

y = (e−c1cax− 1) ec1c
c

Solved as first order Exact ode

Time used: 0.066 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(c) dy = (a) dx
(−a) dx+(c) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −a

N(x, y) = c

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−a)

= 0

And
∂N

∂x
= ∂

∂x
(c)

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−a dx

(3)φ = −ax+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= c. Therefore equation (4) becomes

(5)c = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = c

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(c) dy

f(y) = cy + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −ax+ cy + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −ax+ cy
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Solving for y gives

y = ax+ c1
c

Summary of solutions found

y = ax+ c1
c

Maple step by step solution

Let’s solve
c
(

d
dx
y(x)

)
= a

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Separate variables
d
dx
y(x) = a

c

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
a
c
dx+ C1

• Evaluate integral
y(x) = ax

c
+ C1

• Solve for y(x)
y(x) = C1c+xa

c

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 12� �
dsolve(c*diff(y(x),x) = a,

y(x),singsol=all)� �
y = ax

c
+ c1

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 14� �
DSolve[{c*D[y[x],x]==a,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ax

c
+ c1
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2.1.14 problem 14

Solved as first order quadrature ode . . . . . . . . . . . . . . . 124
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 125
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 127
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 128
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 128

Internal problem ID [8674]
Book : First order enumerated odes
Section : section 1
Problem number : 14
Date solved : Tuesday, December 17, 2024 at 12:57:25 PM
CAS classification : [_quadrature]

Solve

cy′ = ax

Solved as first order quadrature ode

Time used: 0.042 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
ax

c
dx

y = a x2

2c + c1

Summary of solutions found

y = a x2

2c + c1
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Solved as first order Exact ode

Time used: 0.061 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(c) dy = (ax) dx
(−ax) dx+(c) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ax

N(x, y) = c
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−ax)

= 0

And
∂N

∂x
= ∂

∂x
(c)

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−ax dx

(3)φ = −a x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= c. Therefore equation (4) becomes

(5)c = 0 + f ′(y)



chapter 2. book solved problems 127

Solving equation (5) for f ′(y) gives

f ′(y) = c

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(c) dy

f(y) = cy + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −a x2

2 + cy + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −a x2

2 + cy

Solving for y gives

y = a x2 + 2c1
2c

Summary of solutions found

y = a x2 + 2c1
2c

Maple step by step solution

Let’s solve
c
(

d
dx
y(x)

)
= xa

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Separate variables
d
dx
y(x) = ax

c
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• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
ax
c
dx+ C1

• Evaluate integral
y(x) = a x2

2c + C1
• Solve for y(x)

y(x) = x2a+2C1c
2c

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 15� �
dsolve(c*diff(y(x),x) = a*x,

y(x),singsol=all)� �
y = a x2

2c + c1

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 19� �
DSolve[{c*D[y[x],x]==a*x,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → ax2

2c + c1



chapter 2. book solved problems 129

2.1.15 problem 15

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 129
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 130
Solved using Lie symmetry for first order ode . . . . . . . . . . 134
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 138
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 139
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 139

Internal problem ID [8675]
Book : First order enumerated odes
Section : section 1
Problem number : 15
Date solved : Tuesday, December 17, 2024 at 12:57:26 PM
CAS classification : [[_linear, ‘class A‘]]

Solve

cy′ = ax+ y

Solved as first order linear ode

Time used: 0.125 (sec)

In canonical form a linear first order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) = −1
c

p(x) = ax

c

The integrating factor µ is

µ = e
∫
q dx

= e
∫
− 1

c
dx

= e−x
c
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The ode becomes
d
dx(µy) = µp

d
dx(µy) = (µ)

(ax
c

)
d
dx
(
y e−x

c

)
=
(
e−x

c

) (ax
c

)
d
(
y e−x

c

)
=
(
ax e−x

c

c

)
dx

Integrating gives

y e−x
c =

∫
ax e−x

c

c
dx

= −(c+ x) a e−x
c + c1

Dividing throughout by the integrating factor e−x
c gives the final solution

y = c1 e
x
c − a(c+ x)

Summary of solutions found

y = c1 e
x
c − a(c+ x)

Solved as first order Exact ode

Time used: 0.128 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(c) dy = (ax+ y) dx
(−ax− y) dx+(c) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ax− y

N(x, y) = c

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−ax− y)

= −1

And
∂N

∂x
= ∂

∂x
(c)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

c
((−1)− (0))

= −1
c

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− 1

c
dx

The result of integrating gives

µ = e−
x
c

= e−x
c

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−x
c (−ax− y)

= −(ax+ y) e−x
c

And

N = µN

= e−x
c (c)

= c e−x
c

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−(ax+ y) e−x
c

)
+
(
c e−x

c

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (2) w.r.t. y gives ∫
∂φ

∂y
dy =

∫
N dy∫

∂φ

∂y
dy =

∫
c e−x

c dy

(3)φ = c e−x
c y + f(x)

Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= −y e−x

c + f ′(x)

But equation (1) says that ∂φ
∂x

= −(ax+ y) e−x
c . Therefore equation (4) becomes

(5)−(ax+ y) e−x
c = −y e−x

c + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = −ax e−x
c

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫ (
−ax e−x

c

)
dx

f(x) = c(c+ x) a e−x
c + c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = c e−x
c y + c(c+ x) a e−x

c + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = c e−x
c y + c(c+ x) a e−x

c

Solving for y gives

y = −
(
a e−x

c c2 + cax e−x
c − c1

)
ex

c

c

Summary of solutions found

y = −
(
a e−x

c c2 + cax e−x
c − c1

)
ex

c

c

Solved using Lie symmetry for first order ode

Time used: 0.365 (sec)

Writing the ode as

y′ = ax+ y

c
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(ax+ y) (b3 − a2)

c
− (ax+ y)2 a3

c2
− a(xa2 + ya3 + a1)

c
− xb2 + yb3 + b1

c
= 0
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Putting the above in normal form gives

−a2x2a3 + 2acxa2 − acxb3 + acya3 + 2axya3 + aca1 − b2c
2 + cxb2 + cya2 + y2a3 + cb1

c2
= 0

Setting the numerator to zero gives

−a2x2a3− 2acxa2+acxb3−acya3− 2axya3−aca1+ b2c
2− cxb2− cya2− y2a3− cb1 = 0

(6E)

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2a3v
2
1 − 2aca2v1 − aca3v2 + acb3v1 − 2aa3v1v2

− aca1 + b2c
2 − ca2v2 − cb2v1 − a3v

2
2 − cb1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−a2a3v
2
1 − 2aa3v1v2 + (−2aca2 + acb3 − cb2) v1

− a3v
2
2 + (−aca3 − ca2) v2 − aca1 + b2c

2 − cb1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a3 = 0
−2aa3 = 0
−a2a3 = 0

−aca3 − ca2 = 0
−aca1 + b2c

2 − cb1 = 0
−2aca2 + acb3 − cb2 = 0
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Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = acb3 − aa1

b2 = ab3

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η = ac+ ax+ y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ac+ ax+ y
dy

Which results in

S = ln (ac+ ax+ y)
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Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ax+ y

c

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = a

a (c+ x) + y

Sy =
1

a (c+ x) + y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

c
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

c

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫ 1
c
dR

S(R) = R

c
+ c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (a(c+ x) + y) = x

c
+ c2
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Which gives

y = −ac− ax+ e
c2c+x

c

Summary of solutions found

y = −ac− ax+ e
c2c+x

c

Maple step by step solution

Let’s solve
c
(

d
dx
y(x)

)
= xa+ y(x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = xa+y(x)

c

• Collect w.r.t. y(x) and simplify
d
dx
y(x) = y(x)

c
+ ax

c

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
d
dx
y(x)− y(x)

c
= ax

c

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(

d
dx
y(x)− y(x)

c

)
= µ(x)ax

c

• Assume the lhs of the ODE is the total derivative d
dx
(y(x)µ(x))

µ(x)
(

d
dx
y(x)− y(x)

c

)
=
(

d
dx
y(x)

)
µ(x) + y(x)

(
d
dx
µ(x)

)
• Isolate d

dx
µ(x)

d
dx
µ(x) = −µ(x)

c

• Solve to find the integrating factor
µ(x) = e−x

c

• Integrate both sides with respect to x∫ (
d
dx
(y(x)µ(x))

)
dx =

∫ µ(x)ax
c

dx+ C1
• Evaluate the integral on the lhs

y(x)µ(x) =
∫ µ(x)ax

c
dx+ C1

• Solve for y(x)
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y(x) =
∫ µ(x)ax

c
dx+C1

µ(x)

• Substitute µ(x) = e−x
c

y(x) =
∫ e−

x
c ax
c

dx+C1
e−

x
c

• Evaluate the integrals on the rhs

y(x) = −(x+c)e−
x
c a+C1

e−
x
c

• Simplify
y(x) = C1 ex

c − a(x+ c)

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 19� �
dsolve(c*diff(y(x),x) = a*x+y(x),

y(x),singsol=all)� �
y = ex

c c1 − a(c+ x)

Mathematica DSolve solution

Solving time : 0.052 (sec)
Leaf size : 22� �
DSolve[{c*D[y[x],x]==a*x+y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −a(c+ x) + c1e

x
c
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2.1.16 problem 16

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 140
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 141
Solved using Lie symmetry for first order ode . . . . . . . . . . 145
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 149
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 151
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 151

Internal problem ID [8676]
Book : First order enumerated odes
Section : section 1
Problem number : 16
Date solved : Tuesday, December 17, 2024 at 12:57:27 PM
CAS classification : [[_linear, ‘class A‘]]

Solve

cy′ = ax+ by

Solved as first order linear ode

Time used: 0.124 (sec)

In canonical form a linear first order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) = −b

c

p(x) = ax

c

The integrating factor µ is

µ = e
∫
q dx

= e
∫
− b

c
dx

= e− bx
c
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The ode becomes
d
dx(µy) = µp

d
dx(µy) = (µ)

(ax
c

)
d
dx

(
y e− bx

c

)
=
(
e− bx

c

)(ax
c

)
d
(
y e− bx

c

)
=
(
ax e− bx

c

c

)
dx

Integrating gives

y e− bx
c =

∫
ax e− bx

c

c
dx

= −(bx+ c) a e− bx
c

b2
+ c1

Dividing throughout by the integrating factor e− bx
c gives the final solution

y = c1 e
bx
c b2 − a(bx+ c)

b2

Summary of solutions found

y = c1 e
bx
c b2 − a(bx+ c)

b2

Solved as first order Exact ode

Time used: 0.140 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(c) dy = (ax+ by) dx
(−ax− by) dx+(c) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ax− by

N(x, y) = c

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−ax− by)

= −b

And
∂N

∂x
= ∂

∂x
(c)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

c
((−b)− (0))

= −b

c

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− b

c
dx

The result of integrating gives

µ = e−
bx
c

= e− bx
c

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e− bx
c (−ax− by)

= −(ax+ by) e− bx
c

And

N = µN

= e− bx
c (c)

= c e− bx
c

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−(ax+ by) e− bx
c

)
+
(
c e− bx

c

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (2) w.r.t. y gives ∫
∂φ

∂y
dy =

∫
N dy∫

∂φ

∂y
dy =

∫
c e− bx

c dy

(3)φ = c e− bx
c y + f(x)

Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= −b e− bx

c y + f ′(x)

But equation (1) says that ∂φ
∂x

= −(ax+ by) e− bx
c . Therefore equation (4) becomes

(5)−(ax+ by) e− bx
c = −b e− bx

c y + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = −ax e− bx
c

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫ (
−ax e− bx

c

)
dx

f(x) = c(bx+ c) a e− bx
c

b2
+ c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = c e− bx
c y + c(bx+ c) a e− bx

c

b2
+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = c e− bx
c y + c(bx+ c) a e− bx

c

b2

Solving for y gives

y = −

(
e− bx

c abcx+ e− bx
c a c2 − c1 b

2
)
e bx

c

c b2

Summary of solutions found

y = −

(
e− bx

c abcx+ e− bx
c a c2 − c1 b

2
)
e bx

c

c b2

Solved using Lie symmetry for first order ode

Time used: 0.383 (sec)

Writing the ode as

y′ = ax+ by

c
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}



chapter 2. book solved problems 146

Substituting equations (1E,2E) and ω into (A) gives

b2 +
(ax+ by) (b3 − a2)

c
− (ax+ by)2 a3

c2
− a(xa2 + ya3 + a1)

c
− b(xb2 + yb3 + b1)

c
= 0
(5E)

Putting the above in normal form gives

−a2x2a3 + 2abxya3 + b2y2a3 + 2acxa2 − acxb3 + acya3 + bcxb2 + bcya2 + aca1 + bcb1 − b2c
2

c2
= 0

Setting the numerator to zero gives

(6E)−a2x2a3 − 2abxya3 − b2y2a3 − 2acxa2 + acxb3
− acya3 − bcxb2 − bcya2 − aca1 − bcb1 + b2c

2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2a3v
2
1 − 2aba3v1v2 − b2a3v

2
2 − 2aca2v1 − aca3v2

+ acb3v1 − bca2v2 − bcb2v1 − aca1 − bcb1 + b2c
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−a2a3v
2
1 − 2aba3v1v2 + (−2aca2 + acb3 − bcb2) v1

− b2a3v
2
2 + (−aca3 − bca2) v2 − aca1 − bcb1 + b2c

2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−a2a3 = 0
−b2a3 = 0

−2aba3 = 0
−aca3 − bca2 = 0

−aca1 − bcb1 + b2c
2 = 0

−2aca2 + acb3 − bcb2 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0

b1 = −a(ba1 − cb3)
b2

b2 =
ab3
b

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0

η = abx+ b2y + ac

b2

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x
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S is found from

S =
∫ 1

η
dy

=
∫ 1

abx+b2y+ac
b2

dy

Which results in

S = ln
(
abx+ b2y + ac

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ax+ by

c

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = ab

a (bx+ c) + b2y

Sy =
b2

abx+ b2y + ac

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= b

c
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= b

c

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.
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Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
b

c
dR

S(R) = bR

c
+ c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln
(
a(bx+ c) + b2y

)
= bx

c
+ c2

Which gives

y = −abx− ac+ e
c2c+bx

c

b2

Summary of solutions found

y = −abx− ac+ e
c2c+bx

c

b2

Maple step by step solution

Let’s solve
c
(

d
dx
y(x)

)
= xa+ by(x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = xa+by(x)

c

• Collect w.r.t. y(x) and simplify
d
dx
y(x) = by(x)

c
+ ax

c

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
d
dx
y(x)− by(x)

c
= ax

c

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(

d
dx
y(x)− by(x)

c

)
= µ(x)ax

c

• Assume the lhs of the ODE is the total derivative d
dx
(y(x)µ(x))
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µ(x)
(

d
dx
y(x)− by(x)

c

)
=
(

d
dx
y(x)

)
µ(x) + y(x)

(
d
dx
µ(x)

)
• Isolate d

dx
µ(x)

d
dx
µ(x) = −µ(x)b

c

• Solve to find the integrating factor
µ(x) = e−xb

c

• Integrate both sides with respect to x∫ (
d
dx
(y(x)µ(x))

)
dx =

∫ µ(x)ax
c

dx+ C1
• Evaluate the integral on the lhs

y(x)µ(x) =
∫ µ(x)ax

c
dx+ C1

• Solve for y(x)

y(x) =
∫ µ(x)ax

c
dx+C1

µ(x)

• Substitute µ(x) = e−xb
c

y(x) =
∫ e−

xb
c ax
c

dx+C1

e−
xb
c

• Evaluate the integrals on the rhs

y(x) = − (bx+c)e−
xb
c a

b2 +C1

e−
xb
c

• Simplify

y(x) = C1 e
xb
c b2−a(bx+c)

b2

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 29� �
dsolve(c*diff(y(x),x) = a*x+b*y(x),

y(x),singsol=all)� �
y = e bx

c c1b
2 − a(bx+ c)

b2

Mathematica DSolve solution

Solving time : 0.061 (sec)
Leaf size : 28� �
DSolve[{c*D[y[x],x]==a*x+b*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −a(bx+ c)

b2
+ c1e

bx
c
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2.1.17 problem 17

Solved as first order autonomous ode . . . . . . . . . . . . . . . 152
Solved as first order homogeneous class D2 ode . . . . . . . . . 154
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 155
Solved using Lie symmetry for first order ode . . . . . . . . . . 159
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 162
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 163
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 163

Internal problem ID [8677]
Book : First order enumerated odes
Section : section 1
Problem number : 17
Date solved : Tuesday, December 17, 2024 at 12:57:28 PM
CAS classification : [_quadrature]

Solve

cy′ = y

Solved as first order autonomous ode

Time used: 0.161 (sec)

Integrating gives ∫
c

y
dy = dx

c ln (y) = x+ c1

Singular solutions are found by solving
y

c
= 0

for y. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

y = 0
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The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

y = 0.

Figure 2.18: Phase line diagram
Solving for y gives

y = 0

y = e
x+c1

c

Summary of solutions found
y = 0

y = e
x+c1

c
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Solved as first order homogeneous class D2 ode

Time used: 0.184 (sec)

Applying change of variables y = u(x)x, then the ode becomes

c(u′(x)x+ u(x)) = u(x)x

Which is now solved The ode u′(x) = −u(x)(c−x)
cx

is separable as it can be written as

u′(x) = −u(x) (c− x)
cx

= f(x)g(u)

Where

f(x) = −c− x

xc
g(u) = u

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−c− x

xc
dx

ln (u(x)) = ln
(
1
x

)
+ x

c
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ x

c
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = e
ln

(
1
x

)
c+c1c+x

c
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Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = e
ln

(
1
x

)
c+c1c+x

c back to y gives

y = e
ln

(
1
x

)
c+c1c+x

c x

Summary of solutions found
y = 0

y = e
ln

(
1
x

)
c+c1c+x

c x

Solved as first order Exact ode

Time used: 0.170 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
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∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(c) dy = (y) dx
(−y) dx+(c) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y

N(x, y) = c

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−y)

= −1

And

∂N

∂x
= ∂

∂x
(c)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

c
((−1)− (0))

= −1
c
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− 1

c
dx

The result of integrating gives

µ = e−
x
c

= e−x
c

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−x
c (−y)

= −y e−x
c

And

N = µN

= e−x
c (c)

= c e−x
c

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−y e−x
c

)
+
(
c e−x

c

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (2) w.r.t. y gives ∫
∂φ

∂y
dy =

∫
N dy∫

∂φ

∂y
dy =

∫
c e−x

c dy

(3)φ = c e−x
c y + f(x)
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Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= −y e−x

c + f ′(x)

But equation (1) says that ∂φ
∂x

= −y e−x
c . Therefore equation (4) becomes

(5)−y e−x
c = −y e−x

c + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = 0

Therefore
f(x) = c1

Where c1 is constant of integration. Substituting this result for f(x) into equation (3)
gives φ

φ = c e−x
c y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = c e−x
c y

Solving for y gives

y = c1 e
x
c

c

Summary of solutions found

y = c1 e
x
c

c
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Solved using Lie symmetry for first order ode

Time used: 0.201 (sec)

Writing the ode as

y′ = y

c
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
y(b3 − a2)

c
− y2a3

c2
− xb2 + yb3 + b1

c
= 0

Putting the above in normal form gives

b2c
2 − cxb2 − yca2 − y2a3 − cb1

c2
= 0

Setting the numerator to zero gives

(6E)b2c
2 − cxb2 − yca2 − y2a3 − cb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)b2c
2 − ca2v2 − cb2v1 − a3v

2
2 − cb1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2c
2 − ca2v2 − cb2v1 − a3v

2
2 − cb1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a3 = 0
−ca2 = 0
−cb2 = 0

b2c
2 − cb1 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η = y
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y
dy

Which results in

S = ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y

c

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 0

Sy =
1
y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

c
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

c

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫ 1
c
dR

S(R) = R

c
+ c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (y) = x

c
+ c2

Which gives

y = e
c2c+x

c

Summary of solutions found

y = e
c2c+x

c

Maple step by step solution

Let’s solve
c
(

d
dx
y(x)

)
= y(x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = y(x)

c
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• Separate variables
d
dx

y(x)
y(x) = 1

c

• Integrate both sides with respect to x∫ d
dx

y(x)
y(x) dx =

∫ 1
c
dx+ C1

• Evaluate integral
ln (y(x)) = x

c
+ C1

• Solve for y(x)

y(x) = eC1c+x
c

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 12� �
dsolve(c*diff(y(x),x) = y(x),

y(x),singsol=all)� �
y = ex

c c1

Mathematica DSolve solution

Solving time : 0.024 (sec)
Leaf size : 20� �
DSolve[{c*D[y[x],x]==y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

x
c

y(x) → 0
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2.1.18 problem 18

Solved as first order autonomous ode . . . . . . . . . . . . . . . 164
Solved as first order homogeneous class D2 ode . . . . . . . . . 166
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 167
Solved using Lie symmetry for first order ode . . . . . . . . . . 171
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 174
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 175
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 175

Internal problem ID [8678]
Book : First order enumerated odes
Section : section 1
Problem number : 18
Date solved : Tuesday, December 17, 2024 at 12:57:29 PM
CAS classification : [_quadrature]

Solve

cy′ = by

Solved as first order autonomous ode

Time used: 0.173 (sec)

Integrating gives ∫
c

by
dy = dx

c ln (y)
b

= x+ c1

Singular solutions are found by solving

by

c
= 0

for y. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

y = 0
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The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

y = 0.

Figure 2.19: Phase line diagram
Solving for y gives

y = 0

y = e
b(x+c1)

c

Summary of solutions found
y = 0

y = e
b(x+c1)

c
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Solved as first order homogeneous class D2 ode

Time used: 0.202 (sec)

Applying change of variables y = u(x)x, then the ode becomes

c(u′(x)x+ u(x)) = bu(x)x

Which is now solved The ode u′(x) = u(x)(xb−c)
cx

is separable as it can be written as

u′(x) = u(x) (xb− c)
cx

= f(x)g(u)

Where

f(x) = xb− c

xc
g(u) = u

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
xb− c

xc
dx

ln (u(x)) = ln
(
1
x

)
+ xb

c
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ xb

c
+ c1

u(x) = 0
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Solving for u(x) gives
u(x) = 0

u(x) = e
ln

(
1
x

)
c+c1c+xb

c

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = e
ln

(
1
x

)
c+c1c+xb

c back to y gives

y = x e
ln

(
1
x

)
c+c1c+xb

c

Summary of solutions found
y = 0

y = x e
ln

(
1
x

)
c+c1c+xb

c

Solved as first order Exact ode

Time used: 0.170 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(c) dy = (by) dx
(−by) dx+(c) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −by

N(x, y) = c

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−by)

= −b

And
∂N

∂x
= ∂

∂x
(c)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

c
((−b)− (0))

= −b

c
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− b

c
dx

The result of integrating gives

µ = e−
xb
c

= e−xb
c

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−xb
c (−by)

= −by e−xb
c

And

N = µN

= e−xb
c (c)

= c e−xb
c

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−by e−xb
c

)
+
(
c e−xb

c

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (2) w.r.t. y gives ∫
∂φ

∂y
dy =

∫
N dy∫

∂φ

∂y
dy =

∫
c e−xb

c dy

(3)φ = c e−xb
c y + f(x)
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Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= −by e−xb

c + f ′(x)

But equation (1) says that ∂φ
∂x

= −by e−xb
c . Therefore equation (4) becomes

(5)−by e−xb
c = −by e−xb

c + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = 0

Therefore
f(x) = c1

Where c1 is constant of integration. Substituting this result for f(x) into equation (3)
gives φ

φ = c e−xb
c y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = c e−xb
c y

Solving for y gives

y = c1 e
xb
c

c

Summary of solutions found

y = c1 e
xb
c

c
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Solved using Lie symmetry for first order ode

Time used: 0.231 (sec)

Writing the ode as

y′ = by

c
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
by(b3 − a2)

c
− b2y2a3

c2
− b(xb2 + yb3 + b1)

c
= 0

Putting the above in normal form gives

−b2y2a3 + bcxb2 + byca2 + bcb1 − b2c
2

c2
= 0

Setting the numerator to zero gives

(6E)−b2y2a3 − bcxb2 − byca2 − bcb1 + b2c
2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−b2a3v
2
2 − bca2v2 − bcb2v1 − bcb1 + b2c

2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−b2a3v
2
2 − bca2v2 − bcb2v1 − bcb1 + b2c

2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−b2a3 = 0
−bca2 = 0
−bcb2 = 0

−bcb1 + b2c
2 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η = y
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y
dy

Which results in

S = ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = by

c

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 0

Sy =
1
y



chapter 2. book solved problems 174

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= b

c
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= b

c

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
b

c
dR

S(R) = bR

c
+ c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (y) = xb

c
+ c2

Which gives

y = e
c2c+xb

c

Summary of solutions found

y = e
c2c+xb

c

Maple step by step solution

Let’s solve
c
(

d
dx
y(x)

)
= by(x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = by(x)

c
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• Separate variables
d
dx

y(x)
y(x) = b

c

• Integrate both sides with respect to x∫ d
dx

y(x)
y(x) dx =

∫
b
c
dx+ C1

• Evaluate integral
ln (y(x)) = xb

c
+ C1

• Solve for y(x)

y(x) = eC1c+bx
c

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 13� �
dsolve(c*diff(y(x),x) = b*y(x),

y(x),singsol=all)� �
y = e bx

c c1

Mathematica DSolve solution

Solving time : 0.025 (sec)
Leaf size : 21� �
DSolve[{c*D[y[x],x]==b*y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

bx
c

y(x) → 0
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2.1.19 problem 19

Solved as first order ode of type reduced Riccati . . . . . . . . . 176
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 177
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 178
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 179

Internal problem ID [8679]
Book : First order enumerated odes
Section : section 1
Problem number : 19
Date solved : Tuesday, December 17, 2024 at 12:57:31 PM
CAS classification : [[_Riccati, _special]]

Solve

cy′ = ax+ by2

Solved as first order ode of type reduced Riccati

Time used: 0.151 (sec)

This is reduced Riccati ode of the form

y′ = a xn + by2

Comparing the given ode to the above shows that

a = a

c

b = b

c
n = 1

Since n 6= −2 then the solution of the reduced Riccati ode is given by

w =
√
x

 c1 BesselJ
(

1
2k ,

1
k

√
abxk

)
+ c2 BesselY

(
1
2k ,

1
k

√
abxk

)
ab > 0

c1 BesselI
( 1
2k ,

1
k

√
−abxk

)
+ c2 BesselK

( 1
2k ,

1
k

√
−abxk

)
ab < 0

(1)

y = −1
b

w′

w

k = 1 + n

2
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EQ(1) gives

k = 3
2

w =
√
x

c1 BesselJ

1
3 ,

2
√

ab
c2
x3/2

3

+ c2 BesselY

1
3 ,

2
√

ab
c2
x3/2

3


Therefore the solution becomes

y = −1
b

w′

w

Substituting the value of b, w found above and simplyfing gives

y =

(
−BesselY

(
−2

3 ,
2
√

ab
c2 x3/2

3

)
c2 − BesselJ

(
−2

3 ,
2
√

ab
c2 x3/2

3

)
c1

)
c
√

ab
c2

√
x

b

(
c1 BesselJ

(
1
3 ,

2
√

ab
c2 x3/2

3

)
+ c2 BesselY

(
1
3 ,

2
√

ab
c2 x3/2

3

))

Letting c2 = 1 the above becomes

y =

(
−BesselY

(
−2

3 ,
2
√

ab
c2 x3/2

3

)
− BesselJ

(
−2

3 ,
2
√

ab
c2 x3/2

3

)
c1

)
c
√

ab
c2

√
x

b

(
c1 BesselJ

(
1
3 ,

2
√

ab
c2 x3/2

3

)
+ BesselY

(
1
3 ,

2
√

ab
c2 x3/2

3

))

Summary of solutions found

y =

(
−BesselY

(
−2

3 ,
2
√

ab
c2 x3/2

3

)
− BesselJ

(
−2

3 ,
2
√

ab
c2 x3/2

3

)
c1

)
c
√

ab
c2

√
x

b

(
c1 BesselJ

(
1
3 ,

2
√

ab
c2 x3/2

3

)
+ BesselY

(
1
3 ,

2
√

ab
c2 x3/2

3

))

Maple step by step solution

Let’s solve
c
(

d
dx
y(x)

)
= xa+ by(x)2

• Highest derivative means the order of the ODE is 1
d
dx
y(x)
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• Solve for the highest derivative
d
dx
y(x) = xa+by(x)2

c

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 75� �
dsolve(c*diff(y(x),x) = a*x+b*y(x)^2,

y(x),singsol=all)� �
y =

(
ba
c2

)1/3 (AiryAi(1,−( ba
c2

)1/3
x
)
c1 +AiryBi

(
1,−

(
ba
c2

)1/3
x
))

c

b
(
c1AiryAi

(
−
(
ba
c2

)1/3
x
)
+AiryBi

(
−
(
ba
c2

)1/3
x
))
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Mathematica DSolve solution

Solving time : 0.186 (sec)
Leaf size : 437� �
DSolve[{c*D[y[x],x]==a*x+b*y[x]^2,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
c
(
x3/2√a

c

√
b
c

(
−2BesselJ

(
−2

3 ,
2
3
√

a
c

√
b
c
x3/2

)
+ c1

(
BesselJ

(
2
3 ,

2
3
√

a
c

√
b
c
x3/2

)
− BesselJ

(
−4

3 ,
2
3
√

a
c

√
b
c
x3/2

)))
− c1 BesselJ

(
−1

3 ,
2
3
√

a
c

√
b
c
x3/2

))
2bx

(
BesselJ

(
1
3 ,

2
3
√

a
c

√
b
c
x3/2

)
+ c1 BesselJ

(
−1

3 ,
2
3
√

a
c

√
b
c
x3/2

))
y(x) →

−
c
(
x3/2√a

c

√
b
c
BesselJ

(
−4

3 ,
2
3
√

a
c

√
b
c
x3/2

)
− x3/2√a

c

√
b
c
BesselJ

(
2
3 ,

2
3
√

a
c

√
b
c
x3/2

)
+ BesselJ

(
−1

3 ,
2
3
√

a
c

√
b
c
x3/2

))
2bxBesselJ

(
−1

3 ,
2
3
√

a
c

√
b
c
x3/2

)
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2.1.20 problem 20

Solved as first order ode of type reduced Riccati . . . . . . . . . 180
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 181
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 182
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 183

Internal problem ID [8680]
Book : First order enumerated odes
Section : section 1
Problem number : 20
Date solved : Tuesday, December 17, 2024 at 12:57:32 PM
CAS classification : [[_Riccati, _special]]

Solve

cy′ = ax+ by2

r

Solved as first order ode of type reduced Riccati

Time used: 0.155 (sec)

This is reduced Riccati ode of the form

y′ = a xn + by2

Comparing the given ode to the above shows that

a = a

rc

b = b

cr
n = 1

Since n 6= −2 then the solution of the reduced Riccati ode is given by

w =
√
x

 c1 BesselJ
(

1
2k ,

1
k

√
abxk

)
+ c2 BesselY

(
1
2k ,

1
k

√
abxk

)
ab > 0

c1 BesselI
( 1
2k ,

1
k

√
−abxk

)
+ c2 BesselK

( 1
2k ,

1
k

√
−abxk

)
ab < 0

(1)

y = −1
b

w′

w

k = 1 + n

2
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EQ(1) gives

k = 3
2

w =
√
x

c1 BesselJ

1
3 ,

2
√

ab
r2c2

x3/2

3

+ c2 BesselY

1
3 ,

2
√

ab
r2c2

x3/2

3


Therefore the solution becomes

y = −1
b

w′

w

Substituting the value of b, w found above and simplyfing gives

y =

(
−BesselY

(
−2

3 ,
2
√

ab
r2c2 x3/2

3

)
c2 − BesselJ

(
−2

3 ,
2
√

ab
r2c2 x3/2

3

)
c1

)
cr
√

ab
r2c2

√
x

b

(
c1 BesselJ

(
1
3 ,

2
√

ab
r2c2 x3/2

3

)
+ c2 BesselY

(
1
3 ,

2
√

ab
r2c2 x3/2

3

))

Letting c2 = 1 the above becomes

y =

(
−BesselY

(
−2

3 ,
2
√

ab
r2c2 x3/2

3

)
− BesselJ

(
−2

3 ,
2
√

ab
r2c2 x3/2

3

)
c1

)
cr
√

ab
r2c2

√
x

b

(
c1 BesselJ

(
1
3 ,

2
√

ab
r2c2 x3/2

3

)
+ BesselY

(
1
3 ,

2
√

ab
r2c2 x3/2

3

))

Summary of solutions found

y =

(
−BesselY

(
−2

3 ,
2
√

ab
r2c2 x3/2

3

)
− BesselJ

(
−2

3 ,
2
√

ab
r2c2 x3/2

3

)
c1

)
cr
√

ab
r2c2

√
x

b

(
c1 BesselJ

(
1
3 ,

2
√

ab
r2c2 x3/2

3

)
+ BesselY

(
1
3 ,

2
√

ab
r2c2 x3/2

3

))

Maple step by step solution

Let’s solve
c
(

d
dx
y(x)

)
= xa+by(x)2

r

• Highest derivative means the order of the ODE is 1
d
dx
y(x)
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• Solve for the highest derivative
d
dx
y(x) = xa+by(x)2

rc

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 91� �
dsolve(c*diff(y(x),x) = (a*x+b*y(x)^2)/r,

y(x),singsol=all)� �
y =

(
ba
r2c2

)1/3 (AiryAi(1,−( ba
r2c2

)1/3
x
)
c1 +AiryBi

(
1,−

(
ba
r2c2

)1/3
x
))

rc

b
(
c1AiryAi

(
−
(

ba
r2c2

)1/3
x
)
+AiryBi

(
−
(

ba
r2c2

)1/3
x
))
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Mathematica DSolve solution

Solving time : 0.21 (sec)
Leaf size : 517� �
DSolve[{c*D[y[x],x]==(a*x+b*y[x]^2)/r,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
cr
(
x3/2√ a

cr

√
b
cr

(
−2BesselJ

(
−2

3 ,
2
3
√

a
cr

√
b
cr
x3/2

)
+ c1

(
BesselJ

(
2
3 ,

2
3
√

a
cr

√
b
cr
x3/2

)
− BesselJ

(
−4

3 ,
2
3
√

a
cr

√
b
cr
x3/2

)))
− c1 BesselJ

(
−1

3 ,
2
3
√

a
cr

√
b
cr
x3/2

))
2bx

(
BesselJ

(
1
3 ,

2
3
√

a
cr

√
b
cr
x3/2

)
+ c1 BesselJ

(
−1

3 ,
2
3
√

a
cr

√
b
cr
x3/2

))
y(x) →

−
cr
(
x3/2√ a

cr

√
b
cr
BesselJ

(
−4

3 ,
2
3
√

a
cr

√
b
cr
x3/2

)
− x3/2√ a

cr

√
b
cr
BesselJ

(
2
3 ,

2
3
√

a
cr

√
b
cr
x3/2

)
+ BesselJ

(
−1

3 ,
2
3
√

a
cr

√
b
cr
x3/2

))
2bxBesselJ

(
−1

3 ,
2
3
√

a
cr

√
b
cr
x3/2

)
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2.1.21 problem 21

Solved as first order ode of type Riccati . . . . . . . . . . . . . 184
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 188
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 189
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 190

Internal problem ID [8681]
Book : First order enumerated odes
Section : section 1
Problem number : 21
Date solved : Tuesday, December 17, 2024 at 12:57:34 PM
CAS classification : [_rational, _Riccati]

Solve

cy′ = ax+ by2

rx

Solved as first order ode of type Riccati

Time used: 2.946 (sec)

In canonical form the ODE is

y′ = F (x, y)

= b y2 + ax

rxc

This is a Riccati ODE. Comparing the ODE to solve

y′ = a

rc
+ b y2

crx

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = a
rc
, f1(x) = 0 and f2(x) = b

crx
. Let

y = −u′

f2u

= −u′

ub
crx

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − b

cr x2

f1f2 = 0

f 2
2 f0 =

b2a

c3r3x2

Substituting the above terms back in equation (2) gives

bu′′(x)
crx

+ bu′(x)
cr x2 + b2au(x)

c3r3x2 = 0

In normal form the ode

b
(

d2u
dx2

)
crx

+
b
(
du
dx

)
cr x2 + b2au

c3r3x2 = 0 (1)

Becomes
d2u

dx2 + p(x)
(
du

dx

)
+ q(x)u = r(x) (2)

Where

p(x) = 1
x

q(x) = ab

r2c2x
r(x) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ −

(
ξ(x)
x

)′

+
(
abξ(x)
r2c2x

)
= 0

d2

dx2 ξ(x)−
d
dx
ξ(x)
x

+ (c2r2 + abx) ξ(x)
r2x2c2

= 0

Which is solved for ξ(x). Writing the ode as

x2ξ′′ − xξ′ +
(
1 + abx

r2c2

)
ξ = 0 (1)
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Bessel ode has the form

x2ξ′′ + xξ′ +
(
−n2 + x2) ξ = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2ξ′′ + (1− 2α)xξ′ +
(
β2γ2x2γ − n2γ2 + α2) ξ = 0 (3)

With the standard solution

ξ = xα(c5 BesselJ (n, β xγ) + c6 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 1

β = 2
√
ab

rc
n = 0

γ = 1
2

Substituting all the above into (4) gives the solution as

ξ = c5xBesselJ
(
0, 2

√
ab

√
x

rc

)
+ c6xBesselY

(
0, 2

√
ab

√
x

rc

)
Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(x)u′ − uξ′(x) + ξ(x) p(x)u =
∫

ξ(x) r(x) dx

u′ + u

(
p(x)− ξ′(x)

ξ (x)

)
=
∫
ξ(x) r(x) dx

ξ (x)

Or

u′ + u

1
x
−

c5 BesselJ
(
0, 2

√
ab

√
x

rc

)
−

c5
√
x BesselJ

(
1, 2

√
ab

√
x

rc

)√
ab

rc
+ c6 BesselY

(
0, 2

√
ab

√
x

rc

)
−

c6
√
x BesselY

(
1, 2

√
ab

√
x

rc

)√
ab

rc

c5xBesselJ
(
0, 2

√
ab

√
x

rc

)
+ c6xBesselY

(
0, 2

√
ab

√
x

rc

)
 = 0

Which is now a first order ode. This is now solved for u. In canonical form a linear first
order is

u′ + q(x)u = p(x)
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Comparing the above to the given ode shows that

q(x) =

√
ab
(
BesselJ

(
1, 2

√
ab

√
x

rc

)
c5 + BesselY

(
1, 2

√
ab

√
x

rc

)
c6
)

√
x rc

(
c5 BesselJ

(
0, 2

√
ab

√
x

rc

)
+ c6 BesselY

(
0, 2

√
ab

√
x

rc

))
p(x) = 0

The integrating factor µ is

µ = e
∫
q dx

= e

∫ √
ab

(
BesselJ

(
1, 2

√
ab

√
x

rc

)
c5+BesselY

(
1, 2

√
ab

√
x

rc

)
c6

)
√
x rc

(
c5 BesselJ

(
0, 2

√
ab

√
x

rc

)
+c6 BesselY

(
0, 2

√
ab

√
x

rc

))dx

= 1
c5 BesselJ

(
0, 2

√
ab

√
x

rc

)
+ c6 BesselY

(
0, 2

√
ab

√
x

rc

)
The ode becomes

d
dxµu = 0

d
dx

 u

c5 BesselJ
(
0, 2

√
ab

√
x

rc

)
+ c6 BesselY

(
0, 2

√
ab

√
x

rc

)
 = 0

Integrating gives

u

c5 BesselJ
(
0, 2

√
ab

√
x

rc

)
+ c6 BesselY

(
0, 2

√
ab

√
x

rc

) =
∫

0 dx+ c7

= c7

Dividing throughout by the integrating factor 1
c5 BesselJ

(
0, 2

√
ab

√
x

rc

)
+c6 BesselY

(
0, 2

√
ab

√
x

rc

) gives

the final solution

u =
(
c5 BesselJ

(
0, 2

√
ab

√
x

rc

)
+ c6 BesselY

(
0, 2

√
ab

√
x

rc

))
c7

Hence, the solution found using Lagrange adjoint equation method is

u =
(
c5 BesselJ

(
0, 2

√
ab

√
x

rc

)
+ c6 BesselY

(
0, 2

√
ab

√
x

rc

))
c7
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The constants can be merged to give

u = c5 BesselJ
(
0, 2

√
ab

√
x

rc

)
+ c6 BesselY

(
0, 2

√
ab

√
x

rc

)

Will add steps showing solving for IC soon.

Taking derivative gives

u′(x) = −
c5 BesselJ

(
1, 2

√
ab

√
x

rc

)√
ab

rc
√
x

−
c6 BesselY

(
1, 2

√
ab

√
x

rc

)√
ab

rc
√
x

Doing change of constants, the solution becomes

y = −

(
−

c8 BesselJ
(
1, 2

√
ab

√
x

rc

)√
ab

rc
√
x

−
BesselY

(
1, 2

√
ab

√
x

rc

)√
ab

rc
√
x

)
crx

b
(
c8 BesselJ

(
0, 2

√
ab

√
x

rc

)
+ BesselY

(
0, 2

√
ab

√
x

rc

))
Summary of solutions found

y = −

(
−

c8 BesselJ
(
1, 2

√
ab

√
x

rc

)√
ab

rc
√
x

−
BesselY

(
1, 2

√
ab

√
x

rc

)√
ab

rc
√
x

)
crx

b
(
c8 BesselJ

(
0, 2

√
ab

√
x

rc

)
+ BesselY

(
0, 2

√
ab

√
x

rc

))
Maple step by step solution

Let’s solve
c
(

d
dx
y(x)

)
= xa+by(x)2

rx

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = xa+by(x)2

rxc
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

<- Abel AIR successful: ODE belongs to the 0F1 1-parameter (Bessel type) class`� �
Maple dsolve solution

Solving time : 0.016 (sec)
Leaf size : 98� �
dsolve(c*diff(y(x),x) = (a*x+b*y(x)^2)/r/x,

y(x),singsol=all)� �
y =

√
xba
r2c2

cr
(
BesselY

(
1, 2
√

xba
r2c2

)
c1cr + BesselJ

(
1, 2
√

xba
r2c2

))
b
(
c1crBesselY

(
0, 2
√

xba
r2c2

)
+ BesselJ

(
0, 2
√

xba
r2c2

))
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Mathematica DSolve solution

Solving time : 0.288 (sec)
Leaf size : 207� �
DSolve[{c*D[y[x],x]==(a*x+b*y[x]^2)/(r*x),{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

√
a
√
x
(
2BesselY

(
1, 2

√
a
√
b
√
x

cr

)
+ c1 BesselJ

(
1, 2

√
a
√
b
√
x

cr

))
√
b
(
2BesselY

(
0, 2

√
a
√
b
√
x

cr

)
+ c1 BesselJ

(
0, 2

√
a
√
b
√
x

cr

))
y(x) →

√
a
√
xBesselJ

(
1, 2

√
a
√
b
√
x

cr

)
√
bBesselJ

(
0, 2

√
a
√
b
√
x

cr

)
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2.1.22 problem 22

Solved as first order ode of type Riccati . . . . . . . . . . . . . 191
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 196
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 197
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 197

Internal problem ID [8682]
Book : First order enumerated odes
Section : section 1
Problem number : 22
Date solved : Tuesday, December 17, 2024 at 12:57:38 PM
CAS classification : [_rational, _Riccati]

Solve

cy′ = ax+ by2

r x2

Solved as first order ode of type Riccati

Time used: 4.780 (sec)

In canonical form the ODE is

y′ = F (x, y)

= b y2 + ax

r x2c

This is a Riccati ODE. Comparing the ODE to solve

y′ = a

xcr
+ b y2

r x2c

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = a
xcr

, f1(x) = 0 and f2(x) = b
cr x2 . Let

y = −u′

f2u

= −u′

ub
cr x2

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2b

cr x3

f1f2 = 0

f 2
2 f0 =

b2a

c3r3x5

Substituting the above terms back in equation (2) gives

bu′′(x)
cr x2 + 2bu′(x)

cr x3 + b2au(x)
c3r3x5 = 0

In normal form the ode

b
(

d2u
dx2

)
cr x2 +

2b
(
du
dx

)
cr x3 + b2au

c3r3x5 = 0 (1)

Becomes
d2u

dx2 + p(x)
(
du

dx

)
+ q(x)u = r(x) (2)

Where

p(x) = 2
x

q(x) = ba

x3c2r2

r(x) = 0

The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ −

(
2ξ(x)
x

)′

+
(
baξ(x)
x3c2r2

)
= 0

d2

dx2 ξ(x)−
2
(

d
dx
ξ(x)

)
x

+ (2c2r2x+ ba) ξ(x)
x3c2r2

= 0

Which is solved for ξ(x). Writing the ode as

x2ξ′′ − 2xξ′ +
(
2 + ba

x c2r2

)
ξ = 0 (1)
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Bessel ode has the form

x2ξ′′ + xξ′ +
(
−n2 + x2) ξ = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2ξ′′ + (1− 2α)xξ′ +
(
β2γ2x2γ − n2γ2 + α2) ξ = 0 (3)

With the standard solution

ξ = xα(c5 BesselJ (n, β xγ) + c6 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 3
2

β = 2
√
ba

rc
n = −1

γ = −1
2

Substituting all the above into (4) gives the solution as

ξ = −c5 x
3/2 BesselJ

(
1, 2

√
ba

rc
√
x

)
− c6 x

3/2 BesselY
(
1, 2

√
ba

rc
√
x

)

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

ξ(x)u′ − uξ′(x) + ξ(x) p(x)u =
∫

ξ(x) r(x) dx

u′ + u

(
p(x)− ξ′(x)

ξ (x)

)
=
∫
ξ(x) r(x) dx

ξ (x)

Or

u′ + u


2
x
−

−
3c5

√
x BesselJ

(
1, 2

√
ba

rc
√
x

)
2 +

c5

BesselJ
(
0, 2

√
ba

rc
√
x

)
−

rc
√
x BesselJ

(
1, 2

√
ba

rc
√
x

)
2
√
ba

√
ba

rc
−

3c6
√
x BesselY

(
1, 2

√
ba

rc
√

x

)
2 +

c6

BesselY
(
0, 2

√
ba

rc
√
x

)
−

rc
√

x BesselY
(
1, 2

√
ba

rc
√
x

)
2
√

ba

√
ba

rc

−c5 x3/2 BesselJ
(
1, 2

√
ba

rc
√
x

)
− c6 x3/2 BesselY

(
1, 2

√
ba

rc
√
x

)
 = 0
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Which is now a first order ode. This is now solved for u. In canonical form a linear first
order is

u′ + q(x)u = p(x)

Comparing the above to the given ode shows that

q(x) =

√
ba
(
BesselJ

(
0, 2

√
ba

rc
√
x

)
c5 + BesselY

(
0, 2

√
ba

rc
√
x

)
c6
)

x3/2rc
(
BesselJ

(
1, 2

√
ba

rc
√
x

)
c5 + BesselY

(
1, 2

√
ba

rc
√
x

)
c6
)

p(x) = 0

The integrating factor µ is

µ = e
∫
q dx

= e
∫ √

ba

(
BesselJ

(
0, 2

√
ba

rc
√
x

)
c5+BesselY

(
0, 2

√
ba

rc
√
x

)
c6

)
x3/2rc

(
BesselJ

(
1, 2

√
ba

rc
√
x

)
c5+BesselY

(
1, 2

√
ba

rc
√
x

)
c6

)dx

= rc
√
x

√
ba
(
2BesselJ

(
1, 2

√
ba

rc
√
x

)
c5 + 2BesselY

(
1, 2

√
ba

rc
√
x

)
c6
)

The ode becomes
d
dxµu = 0

d
dx

 urc
√
x

√
ba
(
2BesselJ

(
1, 2

√
ba

rc
√
x

)
c5 + 2BesselY

(
1, 2

√
ba

rc
√
x

)
c6
)
 = 0

Integrating gives

urc
√
x

√
ba
(
2BesselJ

(
1, 2

√
ba

rc
√
x

)
c5 + 2BesselY

(
1, 2

√
ba

rc
√
x

)
c6
) =

∫
0 dx+ c7

= c7

Dividing throughout by the integrating factor rc
√
x

√
ba
(
2BesselJ

(
1, 2

√
ba

rc
√
x

)
c5+2BesselY

(
1, 2

√
ba

rc
√
x

)
c6
)

gives the final solution

u =
2
√
ba
(
BesselJ

(
1, 2

√
ba

rc
√
x

)
c5 + BesselY

(
1, 2

√
ba

rc
√
x

)
c6
)
c7

rc
√
x

Hence, the solution found using Lagrange adjoint equation method is

u =
2
√
ba
(
BesselJ

(
1, 2

√
ba

rc
√
x

)
c5 + BesselY

(
1, 2

√
ba

rc
√
x

)
c6
)
c7

rc
√
x
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The constants can be merged to give

u =
2
√
ba
(
BesselJ

(
1, 2

√
ba

rc
√
x

)
c5 + BesselY

(
1, 2

√
ba

rc
√
x

)
c6
)

rc
√
x

Will add steps showing solving for IC soon.

Taking derivative gives

u′(x)

=

2
√
ba

−

BesselJ
(
0, 2

√
ba

rc
√
x

)
−

rc
√
x BesselJ

(
1, 2

√
ba

rc
√
x

)
2
√
ba

√
ba c5

rc x3/2 −

BesselY
(
0, 2

√
ba

rc
√
x

)
−

rc
√

x BesselY
(
1, 2

√
ba

rc
√
x

)
2
√

ba

√
ba c6

rc x3/2


rc
√
x

−

√
ba
(
BesselJ

(
1, 2

√
ba

rc
√
x

)
c5 + BesselY

(
1, 2

√
ba

rc
√
x

)
c6
)

rc x3/2

Doing change of constants, the solution becomes

y =

−



2
√
ba

−

BesselJ
(
0, 2

√
ba

rc
√
x

)
−

rc
√
x BesselJ

(
1, 2

√
ba

rc
√
x

)
2
√
ba

√
ba c8

rc x3/2
−

BesselY
(
0, 2

√
ba

rc
√
x

)
−

rc
√
x BesselY

(
1, 2

√
ba

rc
√
x

)
2
√
ba

√
ba

rc x3/2


rc
√
x

−
√
ba
(
BesselJ

(
1, 2

√
ba

rc
√
x

)
c8+BesselY

(
1, 2

√
ba

rc
√
x

))
rc x3/2


c2r2x5/2

2b
√
ba
(
BesselJ

(
1, 2

√
ba

rc
√
x

)
c8 + BesselY

(
1, 2

√
ba

rc
√
x

))
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Summary of solutions found

y =

−



2
√
ba

−

BesselJ
(
0, 2

√
ba

rc
√
x

)
−

rc
√
x BesselJ

(
1, 2

√
ba

rc
√
x

)
2
√
ba

√
ba c8

rc x3/2
−

BesselY
(
0, 2

√
ba

rc
√
x

)
−

rc
√
x BesselY

(
1, 2

√
ba

rc
√
x

)
2
√
ba

√
ba

rc x3/2


rc
√
x

−
√
ba
(
BesselJ

(
1, 2

√
ba

rc
√
x

)
c8+BesselY

(
1, 2

√
ba

rc
√
x

))
rc x3/2


c2r2x5/2

2b
√
ba
(
BesselJ

(
1, 2

√
ba

rc
√
x

)
c8 + BesselY

(
1, 2

√
ba

rc
√
x

))
Maple step by step solution

Let’s solve
c
(

d
dx
y(x)

)
= xa+by(x)2

r x2

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = xa+by(x)2

r x2c

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
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-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

<- Abel AIR successful: ODE belongs to the 0F1 1-parameter (Bessel type) class`� �
Maple dsolve solution

Solving time : 0.020 (sec)
Leaf size : 110� �
dsolve(c*diff(y(x),x) = (a*x+b*y(x)^2)/r/x^2,

y(x),singsol=all)� �
y =

a
(
BesselY

(
0, 2
√

ba
c2r2x

)
c1cr + BesselJ

(
0, 2
√

ba
c2r2x

))
cr
√

ba
c2r2x

(
c1crBesselY

(
1, 2
√

ba
c2r2x

)
+ BesselJ

(
1, 2
√

ba
c2r2x

))
Mathematica DSolve solution

Solving time : 0.341 (sec)
Leaf size : 492� �
DSolve[{c*D[y[x],x]==(a*x+b*y[x]^2)/(r*x^2),{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x)

→
2
√
a
√
bBesselY

(
0,

2
√
a
√
b
√

1
x

cr

)
+

2crBesselY
(
1,

2
√
a
√
b
√

1
x

cr

)
√

1
x

− 2
√
a
√
bBesselY

(
2,

2
√
a
√
b
√

1
x

cr

)
− i

√
a
√
bc1 BesselJ

(
0,

2
√
a
√
b
√

1
x

cr

)
−

icc1rBesselJ
(
1,

2
√
a
√
b
√

1
x

cr

)
√

1
x

+ i
√
a
√
bc1 BesselJ

(
2,

2
√
a
√
b
√

1
x

cr

)
2b
√

1
x

(
2BesselY

(
1,

2
√
a
√
b
√

1
x

cr

)
− ic1 BesselJ

(
1,

2
√
a
√
b
√

1
x

cr

))
y(x)

→
x

(
√
a
√
b
√

1
x
BesselJ

(
0,

2
√
a
√
b
√

1
x

cr

)
+ crBesselJ

(
1,

2
√
a
√
b
√

1
x

cr

)
−
√
a
√
b
√

1
x
BesselJ

(
2,

2
√
a
√
b
√

1
x

cr

))
2bBesselJ

(
1,

2
√
a
√
b
√

1
x

cr

)
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2.1.23 problem 23

Solved as first order Bernoulli ode . . . . . . . . . . . . . . . . . 198
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 201
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 205
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 206
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 206

Internal problem ID [8683]
Book : First order enumerated odes
Section : section 1
Problem number : 23
Date solved : Tuesday, December 17, 2024 at 12:57:44 PM
CAS classification : [_rational, _Bernoulli]

Solve

cy′ = ax+ by2

y

Solved as first order Bernoulli ode

Time used: 0.301 (sec)

In canonical form, the ODE is

y′ = F (x, y)

= b y2 + ax

yc

This is a Bernoulli ODE.
y′ =

(
b

c

)
y +

(ax
c

) 1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

Comparing this to (1) shows that

f0 =
b

c

f1 =
ax

c
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution v = y1−n in equation (3) which generates a new
ODE in v(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
b

c

f1(x) =
ax

c
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = b y2

c
+ ax

c
(4)

Let

v = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

v′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

v′(x)
2 = bv(x)

c
+ ax

c

v′ = 2bv
c

+ 2ax
c

(7)

The above now is a linear ODE in v(x) which is now solved.

In canonical form a linear first order is

v′(x) + q(x)v(x) = p(x)
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Comparing the above to the given ode shows that

q(x) = −2b
c

p(x) = 2ax
c

The integrating factor µ is

µ = e
∫
q dx

= e
∫
− 2b

c
dx

= e− 2bx
c

The ode becomes
d
dx(µv) = µp

d
dx(µv) = (µ)

(
2ax
c

)
d
dx

(
v e− 2bx

c

)
=
(
e− 2bx

c

)(2ax
c

)

d
(
v e− 2bx

c

)
=
(
2ax e− 2bx

c

c

)
dx

Integrating gives

v e− 2bx
c =

∫ 2ax e− 2bx
c

c
dx

= −(2bx+ c) a e− 2bx
c

2b2 + c1

Dividing throughout by the integrating factor e− 2bx
c gives the final solution

v(x) =
c1 e

2bx
c b2 −

(
bx+ c

2

)
a

b2

The substitution v = y1−n is now used to convert the above solution back to y which
results in

y2 =
c1 e

2bx
c b2 −

(
bx+ c

2

)
a

b2
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Solving for y gives

y = −

√
4c1 e

2bx
c b2 − 4axb− 2ac

2b

y =

√
4c1 e

2bx
c b2 − 4axb− 2ac

2b

Summary of solutions found

y = −

√
4c1 e

2bx
c b2 − 4axb− 2ac

2b

y =

√
4c1 e

2bx
c b2 − 4axb− 2ac

2b

Solved as first order Exact ode

Time used: 0.322 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x



chapter 2. book solved problems 202

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(yc) dy =
(
b y2 + ax

)
dx(

−b y2 − ax
)
dx+(yc) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −b y2 − ax

N(x, y) = yc

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−b y2 − ax

)
= −2by

And
∂N

∂x
= ∂

∂x
(yc)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

yc
((−2by)− (0))

= −2b
c
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− 2b

c
dx

The result of integrating gives

µ = e−
2bx
c

= e− 2bx
c

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e− 2bx
c

(
−b y2 − ax

)
= −

(
b y2 + ax

)
e− 2bx

c

And

N = µN

= e− 2bx
c (yc)

= yc e− 2bx
c

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−
(
b y2 + ax

)
e− 2bx

c

)
+
(
yc e− 2bx

c

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−
(
b y2 + ax

)
e− 2bx

c dx

(3)φ = c(2b2y2 + 2axb+ ac) e− 2bx
c

4b2 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= yc e− 2bx

c + f ′(y)

But equation (2) says that ∂φ
∂y

= yc e− 2bx
c . Therefore equation (4) becomes

(5)yc e− 2bx
c = yc e− 2bx

c + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = c(2b2y2 + 2axb+ ac) e− 2bx
c

4b2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 =
c(2b2y2 + 2axb+ ac) e− 2bx

c

4b2

Solving for y gives

y = −
e 2bx

c

√
−2 e− 2bx

c c
(
2 e− 2bx

c abcx+ e− 2bx
c a c2 − 4c1 b2

)
2cb

y =
e 2bx

c

√
−2 e− 2bx

c c
(
2 e− 2bx

c abcx+ e− 2bx
c a c2 − 4c1 b2

)
2cb
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Summary of solutions found

y = −
e 2bx

c

√
−2 e− 2bx

c c
(
2 e− 2bx

c abcx+ e− 2bx
c a c2 − 4c1 b2

)
2cb

y =
e 2bx

c

√
−2 e− 2bx

c c
(
2 e− 2bx

c abcx+ e− 2bx
c a c2 − 4c1 b2

)
2cb

Maple step by step solution

Let’s solve
c
(

d
dx
y(x)

)
= xa+by(x)2

y(x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = xa+by(x)2

y(x)c

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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Maple dsolve solution

Solving time : 0.017 (sec)
Leaf size : 69� �
dsolve(c*diff(y(x),x) = (a*x+b*y(x)^2)/y(x),

y(x),singsol=all)� �
y = −

√
4 e 2bx

c c1b2 − 4axb− 2ac
2b

y =

√
4 e 2bx

c c1b2 − 4axb− 2ac
2b

Mathematica DSolve solution

Solving time : 5.76 (sec)
Leaf size : 85� �
DSolve[{c*D[y[x],x]==(a*x+b*y[x]^2)/y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �

y(x) → −
i

√
abx+ ac

2 + b2c1
(
−e

2bx
c

)
b

y(x) →
i

√
abx+ ac

2 + b2c1
(
−e

2bx
c

)
b
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2.1.24 problem 24

Solved as first order quadrature ode . . . . . . . . . . . . . . . 208
Solved as first order homogeneous class D2 ode . . . . . . . . . 208
Solved as first order ode of type differential . . . . . . . . . . . 210
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 211
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 212
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 212

Internal problem ID [8684]
Book : First order enumerated odes
Section : section 1
Problem number : 24
Date solved : Tuesday, December 17, 2024 at 12:57:46 PM
CAS classification : [_quadrature]

Solve

a sin (x) yxy′ = 0

Factoring the ode gives these factors

(1)y = 0

(2)y′ = 0

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

y = 0

Solving gives y = 0

Solving equation (2)
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Solved as first order quadrature ode

Time used: 0.013 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.20: Slope field plot
y′ = 0

Summary of solutions found
y = c1

Solved as first order homogeneous class D2 ode

Time used: 0.152 (sec)

Applying change of variables y = u(x)x, then the ode becomes

u′(x)x+ u(x) = 0

Which is now solved The ode u′(x) = −u(x)
x

is separable as it can be written as

u′(x) = −u(x)
x

= f(x)g(u)
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Where

f(x) = −1
x

g(u) = u

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−1
x
dx

ln (u(x)) = ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ec1
x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = ec1
x

back to y gives

y = ec1
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Figure 2.21: Slope field plot
y′ = 0

Summary of solutions found
y = 0

y = ec1

Solved as first order ode of type differential

Time used: 0.012 (sec)

Writing the ode as

y′ = 0 (1)

Which becomes

(1) dy = (0) dx (2)

But the RHS is complete differential because

(0) dx = d(0)

Hence (2) becomes

(1) dy = d(0)

Integrating gives

y = c1



chapter 2. book solved problems 211

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.22: Slope field plot
y′ = 0

Summary of solutions found
y = c1

Maple step by step solution

Let’s solve
a sin (x) y(x)x

(
d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 9� �
dsolve(a*sin(x)*y(x)*x*diff(y(x),x) = 0,

y(x),singsol=all)� �
y = 0
y = c1

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 12� �
DSolve[{a*Sin[x]*y[x]*x*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 0
y(x) → c1
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2.1.25 problem 25

Solved as first order quadrature ode . . . . . . . . . . . . . . . 214
Solved as first order homogeneous class D2 ode . . . . . . . . . 214
Solved as first order ode of type differential . . . . . . . . . . . 216
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 217
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 218
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 218

Internal problem ID [8685]
Book : First order enumerated odes
Section : section 1
Problem number : 25
Date solved : Tuesday, December 17, 2024 at 12:57:47 PM
CAS classification : [_quadrature]

Solve

f(x) sin (x) yxy′π = 0

Factoring the ode gives these factors

(1)y = 0

(2)y′ = 0

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

y = 0

Solving gives y = 0

Solving equation (2)
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Solved as first order quadrature ode

Time used: 0.013 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1
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0
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y(x)

–4 –2 0 2 4

x

Figure 2.23: Slope field plot
y′ = 0

Summary of solutions found
y = c1

Solved as first order homogeneous class D2 ode

Time used: 0.158 (sec)

Applying change of variables y = u(x)x, then the ode becomes

u′(x)x+ u(x) = 0

Which is now solved The ode u′(x) = −u(x)
x

is separable as it can be written as

u′(x) = −u(x)
x

= f(x)g(u)
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Where

f(x) = −1
x

g(u) = u

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−1
x
dx

ln (u(x)) = ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ec1
x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = ec1
x

back to y gives

y = ec1
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Figure 2.24: Slope field plot
y′ = 0

Summary of solutions found
y = 0

y = ec1

Solved as first order ode of type differential

Time used: 0.012 (sec)

Writing the ode as

y′ = 0 (1)

Which becomes

(1) dy = (0) dx (2)

But the RHS is complete differential because

(0) dx = d(0)

Hence (2) becomes

(1) dy = d(0)

Integrating gives

y = c1
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Figure 2.25: Slope field plot
y′ = 0

Summary of solutions found
y = c1

Maple step by step solution

Let’s solve
f(x) sin (x) y(x)x

(
d
dx
y(x)

)
π = 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 9� �
dsolve(f(x)*sin(x)*y(x)*x*diff(y(x),x)*Pi = 0,

y(x),singsol=all)� �
y = 0
y = c1

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 12� �
DSolve[{f(x)*Sin[x]*y[x]*x*D[y[x],x]*Pi==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 0
y(x) → c1
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2.1.26 problem 26

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 219
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 221
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 225
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 226
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 226

Internal problem ID [8686]
Book : First order enumerated odes
Section : section 1
Problem number : 26
Date solved : Tuesday, December 17, 2024 at 12:57:48 PM
CAS classification : [[_linear, ‘class A‘]]

Solve

y′ = sin (x) + y

Solved as first order linear ode

Time used: 0.148 (sec)

In canonical form a linear first order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) = −1
p(x) = sin (x)

The integrating factor µ is

µ = e
∫
q dx

= e
∫
(−1)dx

= e−x
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The ode becomes
d
dx(µy) = µp

d
dx(µy) = (µ) (sin (x))

d
dx
(
y e−x

)
=
(
e−x
)
(sin (x))

d
(
y e−x

)
=
(
sin (x) e−x

)
dx

Integrating gives

y e−x =
∫

sin (x) e−x dx

= −cos (x) e−x

2 − sin (x) e−x

2 + c1

Dividing throughout by the integrating factor e−x gives the final solution

y = c1 ex −
cos (x)

2 − sin (x)
2
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Figure 2.26: Slope field plot
y′ = sin (x) + y

Summary of solutions found

y = c1 ex −
cos (x)

2 − sin (x)
2
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Solved as first order Exact ode

Time used: 0.120 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (sin (x) + y) dx
(− sin (x)− y) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (x)− y

N(x, y) = 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− sin (x)− y)

= −1

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−1)− (0))
= −1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−1 dx

The result of integrating gives

µ = e−x

= e−x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−x(− sin (x)− y)
= −(sin (x) + y) e−x
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And

N = µN

= e−x(1)
= e−x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−(sin (x) + y) e−x
)
+
(
e−x
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (2) w.r.t. y gives ∫
∂φ

∂y
dy =

∫
N dy∫

∂φ

∂y
dy =

∫
e−x dy

(3)φ = y e−x + f(x)

Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= −y e−x + f ′(x)

But equation (1) says that ∂φ
∂x

= −(sin (x) + y) e−x. Therefore equation (4) becomes

(5)−(sin (x) + y) e−x = −y e−x + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = − sin (x) e−x
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Integrating the above w.r.t x gives∫
f ′(x) dx =

∫ (
− sin (x) e−x

)
dx

f(x) = cos (x) e−x

2 + sin (x) e−x

2 + c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = y e−x + cos (x) e−x

2 + sin (x) e−x

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = y e−x + cos (x) e−x

2 + sin (x) e−x

2

Solving for y gives

y = −(sin (x) e−x + cos (x) e−x − 2c1) ex
2
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Figure 2.27: Slope field plot
y′ = sin (x) + y

Summary of solutions found

y = −(sin (x) e−x + cos (x) e−x − 2c1) ex
2
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Maple step by step solution

Let’s solve
d
dx
y(x) = y(x) + sin (x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = y(x) + sin (x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
d
dx
y(x)− y(x) = sin (x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
d
dx
y(x)− y(x)

)
= µ(x) sin (x)

• Assume the lhs of the ODE is the total derivative d
dx
(y(x)µ(x))

µ(x)
(

d
dx
y(x)− y(x)

)
=
(

d
dx
y(x)

)
µ(x) + y(x)

(
d
dx
µ(x)

)
• Isolate d

dx
µ(x)

d
dx
µ(x) = −µ(x)

• Solve to find the integrating factor
µ(x) = e−x

• Integrate both sides with respect to x∫ (
d
dx
(y(x)µ(x))

)
dx =

∫
µ(x) sin (x) dx+ C1

• Evaluate the integral on the lhs
y(x)µ(x) =

∫
µ(x) sin (x) dx+ C1

• Solve for y(x)

y(x) =
∫
µ(x) sin(x)dx+C1

µ(x)

• Substitute µ(x) = e−x

y(x) =
∫
e−x sin(x)dx+C1

e−x

• Evaluate the integrals on the rhs

y(x) = − e−x cos(x)
2 − e−x sin(x)

2 +C1
e−x

• Simplify
y(x) = C1 ex − cos(x)

2 − sin(x)
2
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 17� �
dsolve(diff(y(x),x) = sin(x)+y(x),

y(x),singsol=all)� �
y = −cos (x)

2 − sin (x)
2 + exc1

Mathematica DSolve solution

Solving time : 0.037 (sec)
Leaf size : 24� �
DSolve[{D[y[x],x]==Sin[x]+y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −sin(x)

2 − cos(x)
2 + c1e

x
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2.1.27 problem 27

Solved as first order ode of type Riccati . . . . . . . . . . . . . 227
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 229
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 231
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 231

Internal problem ID [8687]
Book : First order enumerated odes
Section : section 1
Problem number : 27
Date solved : Tuesday, December 17, 2024 at 12:57:49 PM
CAS classification : [_Riccati]

Solve

y′ = sin (x) + y2

Solved as first order ode of type Riccati

Time used: 0.641 (sec)

In canonical form the ODE is

y′ = F (x, y)
= sin (x) + y2

This is a Riccati ODE. Comparing the ODE to solve

y′ = sin (x) + y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = sin (x), f1(x) = 0 and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0
f 2
2 f0 = sin (x)

Substituting the above terms back in equation (2) gives

u′′(x) + sin (x)u(x) = 0

Unable to solve. Will ask Maple to solve this ode now.

Solution obtained is

u(x) = c1MathieuC
(
0,−2,−π

4 + x

2

)
+ c2MathieuS

(
0,−2,−π

4 + x

2

)
Taking derivative gives

u′(x) =
c1MathieuCPrime

(
0,−2,−π

4 + x
2

)
2 +

c2MathieuSPrime
(
0,−2,−π

4 + x
2

)
2

Doing change of constants, the solution becomes

y = −
c1 MathieuCPrime

(
0,−2,−π

4+
x
2
)

2 + MathieuSPrime
(
0,−2,−π

4+
x
2
)

2
c1MathieuC

(
0,−2,−π

4 + x
2

)
+MathieuS

(
0,−2,−π

4 + x
2

)
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Figure 2.28: Slope field plot
y′ = sin (x) + y2
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Summary of solutions found

y = −
c1 MathieuCPrime

(
0,−2,−π

4+
x
2
)

2 + MathieuSPrime
(
0,−2,−π

4+
x
2
)

2
c1MathieuC

(
0,−2,−π

4 + x
2

)
+MathieuS

(
0,−2,−π

4 + x
2

)
Maple step by step solution

Let’s solve
d
dx
y(x) = sin (x) + y(x)2

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = sin (x) + y(x)2

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -y(x)*sin(x), y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
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-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
Equivalence transformation and function parameters: {t = 1/2*t+1/2}, {kappa = -20, mu = -32}
<- Equivalence to the rational form of Mathieu ODE successful

<- Mathieu successful
<- special function solution successful
Change of variables used:

[x = arccos(t)]
Linear ODE actually solved:

(-t^2+1)^(1/2)*u(t)-t*diff(u(t),t)+(-t^2+1)*diff(diff(u(t),t),t) = 0
<- change of variables successful

<- Riccati to 2nd Order successful`� �
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Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 59� �
dsolve(diff(y(x),x) = sin(x)+y(x)^2,

y(x),singsol=all)� �
y =

−c1MathieuSPrime
(
0,−2,−π

4 + x
2

)
−MathieuCPrime

(
0,−2,−π

4 + x
2

)
2c1MathieuS

(
0,−2,−π

4 + x
2

)
+ 2MathieuC

(
0,−2,−π

4 + x
2

)
Mathematica DSolve solution

Solving time : 0.174 (sec)
Leaf size : 105� �
DSolve[{D[y[x],x]==Sin[x]+y[x]^2,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

−MathieuSPrime
[
0,−2, 14(π − 2x)

]
+ c1MathieuCPrime

[
0,−2, 14(π − 2x)

]
2
(
MathieuS

[
0,−2, 14(2x− π)

]
+ c1MathieuC

[
0,−2, 14(π − 2x)

])
y(x) →

MathieuCPrime
[
0,−2, 14(π − 2x)

]
2MathieuC

[
0,−2, 14(π − 2x)

]
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2.1.28 problem 28

Solved as first order linear ode . . . . . . . . . . . . . . . . . . 232
Solved as first order homogeneous class D2 ode . . . . . . . . . 234
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 235
Solved using Lie symmetry for first order ode . . . . . . . . . . 239
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 244
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 245
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 246

Internal problem ID [8688]
Book : First order enumerated odes
Section : section 1
Problem number : 28
Date solved : Tuesday, December 17, 2024 at 12:57:52 PM
CAS classification : [_linear]

Solve

y′ = cos (x) + y

x

Solved as first order linear ode

Time used: 0.105 (sec)

In canonical form a linear first order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) = −1
x

p(x) = cos (x)

The integrating factor µ is

µ = e
∫
q dx

= e
∫
− 1

x
dx

= 1
x
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The ode becomes
d
dx(µy) = µp

d
dx(µy) = (µ) (cos (x))

d
dx

(y
x

)
=
(
1
x

)
(cos (x))

d
(y
x

)
=
(
cos (x)

x

)
dx

Integrating gives

y

x
=
∫ cos (x)

x
dx

= Ci (x) + c1

Dividing throughout by the integrating factor 1
x
gives the final solution

y = x(Ci (x) + c1)

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.29: Slope field plot
y′ = cos (x) + y

x

Summary of solutions found

y = x(Ci (x) + c1)
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Solved as first order homogeneous class D2 ode

Time used: 0.030 (sec)

Applying change of variables y = u(x)x, then the ode becomes

u′(x)x+ u(x) = cos (x) + u(x)

Which is now solved Since the ode has the form u′(x) = f(x), then we only need to
integrate f(x). ∫

du =
∫ cos (x)

x
dx

u(x) = Ci (x) + c1

Converting u(x) = Ci (x) + c1 back to y gives

y = x(Ci (x) + c1)

–3

–2

–1

0
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3

y(x)
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x

Figure 2.30: Slope field plot
y′ = cos (x) + y

x

Summary of solutions found

y = x(Ci (x) + c1)
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Solved as first order Exact ode

Time used: 0.109 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy =
(y
x
+ cos (x)

)
dx(

− cos (x)− y

x

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − cos (x)− y

x
N(x, y) = 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− cos (x)− y

x

)
= −1

x

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

−1
x

)
− (0)

)
= −1

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 1

x
dx

The result of integrating gives

µ = e− ln(x)

= 1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x

(
− cos (x)− y

x

)
= − cos (x)x− y

x2
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And

N = µN

= 1
x
(1)

= 1
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

− cos (x)x− y

x2

)
+
(
1
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (2) w.r.t. y gives ∫
∂φ

∂y
dy =

∫
N dy∫

∂φ

∂y
dy =

∫ 1
x
dy

(3)φ = y

x
+ f(x)

Where f(x) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= − y

x2 + f ′(x)

But equation (1) says that ∂φ
∂x

= − cos(x)x−y
x2 . Therefore equation (4) becomes

(5)− cos (x)x− y

x2 = − y

x2 + f ′(x)
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Solving equation (5) for f ′(x) gives

f ′(x) = −cos (x)
x

Integrating the above w.r.t x gives∫
f ′(x) dx =

∫ (
−cos (x)

x

)
dx

f(x) = −Ci (x) + c1

Where c1 is constant of integration. Substituting result found above for f(x) into
equation (3) gives φ

φ = y

x
− Ci (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 =
y

x
− Ci (x)

Solving for y gives
y = x(Ci (x) + c1)

–3
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–1

0
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2

3

y(x)

–4 –2 0 2 4

x

Figure 2.31: Slope field plot
y′ = cos (x) + y

x
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Summary of solutions found

y = x(Ci (x) + c1)

Solved using Lie symmetry for first order ode

Time used: 0.398 (sec)

Writing the ode as

y′ = cos (x)x+ y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(cos (x)x+ y) (b3 − a2)

x
− (cos (x)x+ y)2 a3

x2

−
(
− sin (x)x+ cos (x)

x
− cos (x)x+ y

x2

)
(xa2 + ya3 + a1)

− xb2 + yb3 + b1
x

= 0

Putting the above in normal form gives

−cos (x)2 x2a3 − sin (x)x3a2 − sin (x)x2ya3 + cos (x)x2a2 − cos (x)x2b3 + 2 cos (x)xya3 − sin (x)x2a1 + xb1 − ya1
x2

= 0
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Setting the numerator to zero gives

(6E)− cos (x)2 x2a3 + sin (x)x3a2 + sin (x)x2ya3 − cos (x)x2a2
+ cos (x)x2b3 − 2 cos (x)xya3 + sin (x)x2a1 − xb1 + ya1 = 0

Simplifying the above gives

(6E)−xb1 + ya1 −
x2a3
2 − x2a3 cos (2x)

2 + sin (x)x3a2 + sin (x)x2ya3

− cos (x)x2a2 + cos (x)x2b3 − 2 cos (x)xya3 + sin (x)x2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, cos (x) , cos (2x) , sin (x)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, cos (x) = v3, cos (2x) = v4, sin (x) = v5}

The above PDE (6E) now becomes

(7E)−v1b1 + v2a1 −
1
2v

2
1a3 −

1
2v

2
1a3v4 + v5v

3
1a2 + v5v

2
1v2a3

− v3v
2
1a2 + v3v

2
1b3 − 2v3v1v2a3 + v5v

2
1a1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)−v21a3v4
2 + v5v

3
1a2 + (b3 − a2) v21v3 + v5v

2
1a1 −

v21a3
2

− v1b1 + v2a1 + v5v
2
1v2a3 − 2v3v1v2a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a2 = 0
a3 = 0

−2a3 = 0

−a3
2 = 0

−b1 = 0
b3 − a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
b1 = 0
b2 = b2

b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η = x

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x
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S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = cos (x)x+ y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cos (x)

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cos (R)

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.
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Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫ cos (R)
R

dR

S(R) = Ci (R) + c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

y

x
= Ci (x) + c2

Which gives

y = (Ci (x) + c2)x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= cos(x)x+y
x

dS
dR

= cos(R)
R

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = y

x

–4

–2

0

2

4

S(R)

–4 –2 2 4

R
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Figure 2.32: Slope field plot
y′ = cos (x) + y

x

Summary of solutions found

y = (Ci (x) + c2)x

Maple step by step solution

Let’s solve
d
dx
y(x) = y(x)

x
+ cos (x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = y(x)

x
+ cos (x)

• Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
d
dx
y(x)− y(x)

x
= cos (x)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(

d
dx
y(x)− y(x)

x

)
= µ(x) cos (x)

• Assume the lhs of the ODE is the total derivative d
dx
(y(x)µ(x))

µ(x)
(

d
dx
y(x)− y(x)

x

)
=
(

d
dx
y(x)

)
µ(x) + y(x)

(
d
dx
µ(x)

)
• Isolate d

dx
µ(x)

d
dx
µ(x) = −µ(x)

x
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• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(y(x)µ(x))

)
dx =

∫
µ(x) cos (x) dx+ C1

• Evaluate the integral on the lhs
y(x)µ(x) =

∫
µ(x) cos (x) dx+ C1

• Solve for y(x)

y(x) =
∫
µ(x) cos(x)dx+C1

µ(x)

• Substitute µ(x) = 1
x

y(x) = x
(∫ cos(x)

x
dx+ C1

)
• Evaluate the integrals on the rhs

y(x) = x(Ci(x) + C1 )

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 10� �
dsolve(diff(y(x),x) = cos(x)+y(x)/x,

y(x),singsol=all)� �
y = (Ci (x) + c1)x
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Mathematica DSolve solution

Solving time : 0.034 (sec)
Leaf size : 12� �
DSolve[{D[y[x],x]==Cos[x]+y[x]/x,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → x(CosIntegral(x) + c1)
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2.1.29 problem 29

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 247
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 250
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 250

Internal problem ID [8689]
Book : First order enumerated odes
Section : section 1
Problem number : 29
Date solved : Tuesday, December 17, 2024 at 12:57:54 PM
CAS classification : [_Riccati]

Solve

y′ = cos (x) + y2

x

Unknown ode type.

Maple step by step solution

Let’s solve
d
dx
y(x) = cos (x) + y(x)2

x

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = cos (x) + y(x)2

x

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
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trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(diff(y(x), x))/x-cos(x)*y(x)/x, y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients

<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
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trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients

<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]

trying to convert to an ODE of Bessel type
-> trying with_periodic_functions in the coefficients

-> Trying a change of variables to reduce to Bernoulli
-> Calling odsolve with the ODE`, diff(y(x), x)-(y(x)^2/x+y(x)+x^2*cos(x))/x, y(x), explicit` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
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Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation

-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6`� �
Maple dsolve solution

Solving time : 0.543 (sec)
Leaf size : maple_leaf_size� �
dsolve(diff(y(x),x) = cos(x)+y(x)^2/x,

y(x),singsol=all)� �
No solution found

Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0� �
DSolve[{D[y[x],x]==Cos[x]+y[x]^2/x,{}},

y[x],x,IncludeSingularSolutions->True]� �
Not solved
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2.1.30 problem 30

Solved as first order ode of type Riccati . . . . . . . . . . . . . 251
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 253
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 254
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 254

Internal problem ID [8690]
Book : First order enumerated odes
Section : section 1
Problem number : 30
Date solved : Tuesday, December 17, 2024 at 12:57:58 PM
CAS classification : [_Riccati]

Solve

y′ = x+ y + by2

Solved as first order ode of type Riccati

Time used: 0.185 (sec)

In canonical form the ODE is

y′ = F (x, y)
= b y2 + x+ y

This is a Riccati ODE. Comparing the ODE to solve

y′ = b y2 + x+ y

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x, f1(x) = 1 and f2(x) = b. Let

y = −u′

f2u

= −u′

ub
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = b

f 2
2 f0 = b2x

Substituting the above terms back in equation (2) gives

bu′′(x)− bu′(x) + b2xu(x) = 0

This is Airy ODE. It has the general form

a
d2u

dx2 + b
du

dx
+ cux = F (x)

Where in this case

a = b

b = −b

c = b2

F = 0

Therefore the solution to the homogeneous Airy ODE becomes

u = c1 e
x
2 AiryAi

(
−
b3x− 1

4b
2

b8/3

)
+ c2 e

x
2 AiryBi

(
−
b3x− 1

4b
2

b8/3

)

Will add steps showing solving for IC soon.

Taking derivative gives

u′(x) =
c1 e

x
2 AiryAi

(
− b3x− 1

4 b
2

b8/3

)
2

−c1 e
x
2 b1/3AiryAi

(
1,−

b3x− 1
4b

2

b8/3

)
+
c2 e

x
2 AiryBi

(
− b3x− 1

4 b
2

b8/3

)
2 −c2 e

x
2 b1/3AiryBi

(
1,−

b3x− 1
4b

2

b8/3

)
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Doing change of constants, the solution becomes

y =

−

c3 e
x
2 AiryAi

(
− b3x− 1

4 b2

b8/3

)
2 − c3 e

x
2 b1/3AiryAi

(
1,− b3x− 1

4 b
2

b8/3

)
+

e
x
2 AiryBi

(
− b3x− 1

4 b2

b8/3

)
2 − ex

2 b1/3AiryBi
(
1,− b3x− 1

4 b
2

b8/3

)
b
(
c3 e

x
2 AiryAi

(
− b3x− 1

4 b
2

b8/3

)
+ ex

2 AiryBi
(
− b3x− 1

4 b
2

b8/3

))
Summary of solutions found

y =

−

c3 e
x
2 AiryAi

(
− b3x− 1

4 b2

b8/3

)
2 − c3 e

x
2 b1/3AiryAi

(
1,− b3x− 1

4 b
2

b8/3

)
+

e
x
2 AiryBi

(
− b3x− 1

4 b2

b8/3

)
2 − ex

2 b1/3AiryBi
(
1,− b3x− 1

4 b
2

b8/3

)
b
(
c3 e

x
2 AiryAi

(
− b3x− 1

4 b
2

b8/3

)
+ ex

2 AiryBi
(
− b3x− 1

4 b
2

b8/3

))
Maple step by step solution

Let’s solve
d
dx
y(x) = x+ y(x) + by(x)2

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = x+ y(x) + by(x)2

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
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trying Riccati sub-methods:
<- Abel AIR successful: ODE belongs to the 0F1 0-parameter (Airy type) class`� �

Maple dsolve solution

Solving time : 0.022 (sec)
Leaf size : 105� �
dsolve(diff(y(x),x) = x+y(x)+b*y(x)^2,

y(x),singsol=all)� �
y

=
2AiryAi

(
1,−4bx−1

4b2/3
)
b1/3c1 − AiryAi

(
−4bx−1

4b2/3
)
c1 + 2AiryBi

(
1,−4bx−1

4b2/3
)
b1/3 − AiryBi

(
−4bx−1

4b2/3
)

2b
(
AiryAi

(
−4bx−1

4b2/3
)
c1 +AiryBi

(
−4bx−1

4b2/3
))

Mathematica DSolve solution

Solving time : 0.201 (sec)
Leaf size : 211� �
DSolve[{D[y[x],x]==x+y[x]+b*y[x]^2,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

−
−(−b)2/3AiryBi

( 1
4−bx

(−b)2/3

)
+ 2bAiryBiPrime

( 1
4−bx

(−b)2/3

)
+ c1

(
2bAiryAiPrime

( 1
4−bx

(−b)2/3

)
− (−b)2/3AiryAi

( 1
4−bx

(−b)2/3

))
2(−b)5/3

(
AiryBi

( 1
4−bx

(−b)2/3

)
+ c1AiryAi

( 1
4−bx

(−b)2/3

))

y(x) → −

2
3
√
−bAiryAiPrime

( 1
4−bx

(−b)2/3

)
AiryAi

( 1
4−bx

(−b)2/3

) + 1

2b
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2.1.31 problem 31

Solved as first order quadrature ode . . . . . . . . . . . . . . . 255
Solved as first order homogeneous class D2 ode . . . . . . . . . 256
Solved as first order ode of type differential . . . . . . . . . . . 258
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 259
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 260
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 260

Internal problem ID [8691]
Book : First order enumerated odes
Section : section 1
Problem number : 31
Date solved : Tuesday, December 17, 2024 at 12:58:00 PM
CAS classification : [_quadrature]

Solve

xy′ = 0

Solved as first order quadrature ode

Time used: 0.026 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1
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Figure 2.33: Slope field plot
xy′ = 0

Summary of solutions found
y = c1

Solved as first order homogeneous class D2 ode

Time used: 0.132 (sec)

Applying change of variables y = u(x)x, then the ode becomes

x(u′(x)x+ u(x)) = 0

Which is now solved The ode u′(x) = −u(x)
x

is separable as it can be written as

u′(x) = −u(x)
x

= f(x)g(u)

Where

f(x) = −1
x

g(u) = u
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Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−1
x
dx

ln (u(x)) = ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ec1
x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = ec1
x

back to y gives

y = ec1
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Figure 2.34: Slope field plot
xy′ = 0

Summary of solutions found
y = 0

y = ec1

Solved as first order ode of type differential

Time used: 0.010 (sec)

Writing the ode as

y′ = 0 (1)

Which becomes

(1) dy = (0) dx (2)

But the RHS is complete differential because

(0) dx = d(0)

Hence (2) becomes

(1) dy = d(0)

Integrating gives

y = c1
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Figure 2.35: Slope field plot
xy′ = 0

Summary of solutions found
y = c1

Maple step by step solution

Let’s solve
x
(

d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 5� �
dsolve(diff(y(x),x)*x = 0,

y(x),singsol=all)� �
y = c1

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7� �
DSolve[{x*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1
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2.1.32 problem 32

Solved as first order quadrature ode . . . . . . . . . . . . . . . 261
Solved as first order homogeneous class D2 ode . . . . . . . . . 262
Solved as first order ode of type differential . . . . . . . . . . . 264
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 265
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 266
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 266

Internal problem ID [8692]
Book : First order enumerated odes
Section : section 1
Problem number : 32
Date solved : Tuesday, December 17, 2024 at 12:58:01 PM
CAS classification : [_quadrature]

Solve

5y′ = 0

Solved as first order quadrature ode

Time used: 0.025 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1
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Figure 2.36: Slope field plot
5y′ = 0

Summary of solutions found
y = c1

Solved as first order homogeneous class D2 ode

Time used: 0.130 (sec)

Applying change of variables y = u(x)x, then the ode becomes

5u′(x)x+ 5u(x) = 0

Which is now solved The ode u′(x) = −u(x)
x

is separable as it can be written as

u′(x) = −u(x)
x

= f(x)g(u)

Where

f(x) = −1
x

g(u) = u
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Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−1
x
dx

ln (u(x)) = ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ec1
x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = ec1
x

back to y gives

y = ec1
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Figure 2.37: Slope field plot
5y′ = 0

Summary of solutions found
y = 0

y = ec1

Solved as first order ode of type differential

Time used: 0.010 (sec)

Writing the ode as

y′ = 0 (1)

Which becomes

(1) dy = (0) dx (2)

But the RHS is complete differential because

(0) dx = d(0)

Hence (2) becomes

(1) dy = d(0)

Integrating gives

y = c1
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Figure 2.38: Slope field plot
5y′ = 0

Summary of solutions found
y = c1

Maple step by step solution

Let’s solve
5 d
dx
y(x) = 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Separate variables
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 5� �
dsolve(5*diff(y(x),x) = 0,

y(x),singsol=all)� �
y = c1

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7� �
DSolve[{5*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1
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2.1.33 problem 33

Solved as first order quadrature ode . . . . . . . . . . . . . . . 267
Solved as first order homogeneous class D2 ode . . . . . . . . . 268
Solved as first order ode of type differential . . . . . . . . . . . 270
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 271
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 272
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 272

Internal problem ID [8693]
Book : First order enumerated odes
Section : section 1
Problem number : 33
Date solved : Tuesday, December 17, 2024 at 12:58:02 PM
CAS classification : [_quadrature]

Solve

ey′ = 0

Solved as first order quadrature ode

Time used: 0.023 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1
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Figure 2.39: Slope field plot
ey′ = 0

Summary of solutions found
y = c1

Solved as first order homogeneous class D2 ode

Time used: 0.132 (sec)

Applying change of variables y = u(x)x, then the ode becomes

e(u′(x)x+ u(x)) = 0

Which is now solved The ode u′(x) = −u(x)
x

is separable as it can be written as

u′(x) = −u(x)
x

= f(x)g(u)

Where

f(x) = −1
x

g(u) = u
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Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−1
x
dx

ln (u(x)) = ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ec1
x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = ec1
x

back to y gives

y = ec1
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Figure 2.40: Slope field plot
ey′ = 0

Summary of solutions found
y = 0

y = ec1

Solved as first order ode of type differential

Time used: 0.010 (sec)

Writing the ode as

y′ = 0 (1)

Which becomes

(1) dy = (0) dx (2)

But the RHS is complete differential because

(0) dx = d(0)

Hence (2) becomes

(1) dy = d(0)

Integrating gives

y = c1



chapter 2. book solved problems 271

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.41: Slope field plot
ey′ = 0

Summary of solutions found
y = c1

Maple step by step solution

Let’s solve
e
(

d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Separate variables
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 5� �
dsolve(exp(1)*diff(y(x),x) = 0,

y(x),singsol=all)� �
y = c1

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7� �
DSolve[{Exp[1]*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1
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2.1.34 problem 34

Solved as first order quadrature ode . . . . . . . . . . . . . . . 273
Solved as first order homogeneous class D2 ode . . . . . . . . . 274
Solved as first order ode of type differential . . . . . . . . . . . 276
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 277
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 278
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 278

Internal problem ID [8694]
Book : First order enumerated odes
Section : section 1
Problem number : 34
Date solved : Tuesday, December 17, 2024 at 12:58:02 PM
CAS classification : [_quadrature]

Solve

πy′ = 0

Solved as first order quadrature ode

Time used: 0.023 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1
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Figure 2.42: Slope field plot
πy′ = 0

Summary of solutions found
y = c1

Solved as first order homogeneous class D2 ode

Time used: 0.132 (sec)

Applying change of variables y = u(x)x, then the ode becomes

π(u′(x)x+ u(x)) = 0

Which is now solved The ode u′(x) = −u(x)
x

is separable as it can be written as

u′(x) = −u(x)
x

= f(x)g(u)

Where

f(x) = −1
x

g(u) = u
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Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−1
x
dx

ln (u(x)) = ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ec1
x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = ec1
x

back to y gives

y = ec1
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Figure 2.43: Slope field plot
πy′ = 0

Summary of solutions found
y = 0

y = ec1

Solved as first order ode of type differential

Time used: 0.010 (sec)

Writing the ode as

y′ = 0 (1)

Which becomes

(1) dy = (0) dx (2)

But the RHS is complete differential because

(0) dx = d(0)

Hence (2) becomes

(1) dy = d(0)

Integrating gives

y = c1
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Figure 2.44: Slope field plot
πy′ = 0

Summary of solutions found
y = c1

Maple step by step solution

Let’s solve
π
(

d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Separate variables
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 5� �
dsolve(Pi*diff(y(x),x) = 0,

y(x),singsol=all)� �
y = c1

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7� �
DSolve[{Pi*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1
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2.1.35 problem 35

Solved as first order quadrature ode . . . . . . . . . . . . . . . 279
Solved as first order homogeneous class D2 ode . . . . . . . . . 280
Solved as first order ode of type differential . . . . . . . . . . . 282
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 283
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 284
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 284

Internal problem ID [8695]
Book : First order enumerated odes
Section : section 1
Problem number : 35
Date solved : Tuesday, December 17, 2024 at 12:58:03 PM
CAS classification : [_quadrature]

Solve

sin (x) y′ = 0

Solved as first order quadrature ode

Time used: 0.026 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1
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Figure 2.45: Slope field plot
sin (x) y′ = 0

Summary of solutions found
y = c1

Solved as first order homogeneous class D2 ode

Time used: 0.156 (sec)

Applying change of variables y = u(x)x, then the ode becomes

sin (x) (u′(x)x+ u(x)) = 0

Which is now solved The ode u′(x) = −u(x)
x

is separable as it can be written as

u′(x) = −u(x)
x

= f(x)g(u)

Where

f(x) = −1
x

g(u) = u
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Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−1
x
dx

ln (u(x)) = ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ec1
x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = ec1
x

back to y gives

y = ec1
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Figure 2.46: Slope field plot
sin (x) y′ = 0

Summary of solutions found
y = 0

y = ec1

Solved as first order ode of type differential

Time used: 0.012 (sec)

Writing the ode as

y′ = 0 (1)

Which becomes

(1) dy = (0) dx (2)

But the RHS is complete differential because

(0) dx = d(0)

Hence (2) becomes

(1) dy = d(0)

Integrating gives

y = c1
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Figure 2.47: Slope field plot
sin (x) y′ = 0

Summary of solutions found
y = c1

Maple step by step solution

Let’s solve
sin (x)

(
d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 5� �
dsolve(sin(x)*diff(y(x),x) = 0,

y(x),singsol=all)� �
y = c1

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7� �
DSolve[{Sin[x]*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1
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2.1.36 problem 36

Solved as first order quadrature ode . . . . . . . . . . . . . . . 285
Solved as first order homogeneous class D2 ode . . . . . . . . . 286
Solved as first order ode of type differential . . . . . . . . . . . 288
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 289
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 290
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 290

Internal problem ID [8696]
Book : First order enumerated odes
Section : section 1
Problem number : 36
Date solved : Tuesday, December 17, 2024 at 12:58:04 PM
CAS classification : [_quadrature]

Solve

f(x) y′ = 0

Solved as first order quadrature ode

Time used: 0.026 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1
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Figure 2.48: Slope field plot
f(x) y′ = 0

Summary of solutions found
y = c1

Solved as first order homogeneous class D2 ode

Time used: 0.145 (sec)

Applying change of variables y = u(x)x, then the ode becomes

f(x) (u′(x)x+ u(x)) = 0

Which is now solved The ode u′(x) = −u(x)
x

is separable as it can be written as

u′(x) = −u(x)
x

= f(x)g(u)

Where

f(x) = −1
x

g(u) = u
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Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−1
x
dx

ln (u(x)) = ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ec1
x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = ec1
x

back to y gives

y = ec1



chapter 2. book solved problems 288

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.49: Slope field plot
f(x) y′ = 0

Summary of solutions found
y = 0

y = ec1

Solved as first order ode of type differential

Time used: 0.012 (sec)

Writing the ode as

y′ = 0 (1)

Which becomes

(1) dy = (0) dx (2)

But the RHS is complete differential because

(0) dx = d(0)

Hence (2) becomes

(1) dy = d(0)

Integrating gives

y = c1
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Figure 2.50: Slope field plot
f(x) y′ = 0

Summary of solutions found
y = c1

Maple step by step solution

Let’s solve
f(x)

(
d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 5� �
dsolve(f(x)*diff(y(x),x) = 0,

y(x),singsol=all)� �
y = c1

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7� �
DSolve[{f[x]*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1
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2.1.37 problem 37

Solved as first order quadrature ode . . . . . . . . . . . . . . . 291
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 292
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 296
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 297
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 297

Internal problem ID [8697]
Book : First order enumerated odes
Section : section 1
Problem number : 37
Date solved : Tuesday, December 17, 2024 at 12:58:05 PM
CAS classification : [_quadrature]

Solve

xy′ = 1

Solved as first order quadrature ode

Time used: 0.036 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫ 1
x
dx

y = ln (x) + c1
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Figure 2.51: Slope field plot
xy′ = 1

Summary of solutions found

y = ln (x) + c1

Solved as first order Exact ode

Time used: 0.075 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x) dy = dx
− dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−1)

= 0

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((0)− (1))

= −1
x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 1

x
dx

The result of integrating gives

µ = e− ln(x)

= 1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x
(−1)

= −1
x

And

N = µN

= 1
x
(x)

= 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−1
x

)
+ (1) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1. Therefore equation (4) becomes

(5)1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = − ln (x) + y
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Solving for y gives
y = ln (x) + c1
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Figure 2.52: Slope field plot
xy′ = 1

Summary of solutions found

y = ln (x) + c1

Maple step by step solution

Let’s solve
x
(

d
dx
y(x)

)
= 1

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫ 1
x
dx+ C1

• Evaluate integral
y(x) = ln (x) + C1

• Solve for y(x)
y(x) = ln (x) + C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
Maple dsolve solution

Solving time : 0.000 (sec)
Leaf size : 8� �
dsolve(diff(y(x),x)*x = 1,

y(x),singsol=all)� �
y = ln (x) + c1

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 10� �
DSolve[{x*D[y[x],x]==1,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → log(x) + c1
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2.1.38 problem 38

Solved as first order quadrature ode . . . . . . . . . . . . . . . 298
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 299
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 303
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 304
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 304

Internal problem ID [8698]
Book : First order enumerated odes
Section : section 1
Problem number : 38
Date solved : Tuesday, December 17, 2024 at 12:58:05 PM
CAS classification : [_quadrature]

Solve

xy′ = sin (x)

Solved as first order quadrature ode

Time used: 0.086 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫ sin (x)
x

dx

y = Si (x) + c1
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Figure 2.53: Slope field plot
xy′ = sin (x)

Summary of solutions found

y = Si (x) + c1

Solved as first order Exact ode

Time used: 0.085 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x) dy = (sin (x)) dx
(− sin (x)) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (x)
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− sin (x))

= 0

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((0)− (1))

= −1
x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 1

x
dx

The result of integrating gives

µ = e− ln(x)

= 1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x
(− sin (x))

= −sin (x)
x

And

N = µN

= 1
x
(x)

= 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−sin (x)
x

)
+ (1) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−sin (x)

x
dx

(3)φ = − Si (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1. Therefore equation (4) becomes

(5)1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − Si (x) + y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = − Si (x) + y
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Solving for y gives
y = Si (x) + c1
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Figure 2.54: Slope field plot
xy′ = sin (x)

Summary of solutions found

y = Si (x) + c1

Maple step by step solution

Let’s solve
x
(

d
dx
y(x)

)
= sin (x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = sin(x)

x

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫ sin(x)
x

dx+ C1
• Evaluate integral

y(x) = Si(x) + C1
• Solve for y(x)

y(x) = Si(x) + C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 8� �
dsolve(diff(y(x),x)*x = sin(x),

y(x),singsol=all)� �
y = Si (x) + c1

Mathematica DSolve solution

Solving time : 0.006 (sec)
Leaf size : 10� �
DSolve[{x*D[y[x],x]==Sin[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → Si(x) + c1
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2.1.39 problem 39

Solved as first order quadrature ode . . . . . . . . . . . . . . . 305
Solved as first order homogeneous class D2 ode . . . . . . . . . 306
Solved as first order ode of type differential . . . . . . . . . . . 308
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 309
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 310
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 310

Internal problem ID [8699]
Book : First order enumerated odes
Section : section 1
Problem number : 39
Date solved : Tuesday, December 17, 2024 at 12:58:06 PM
CAS classification : [_quadrature]

Solve

(x− 1) y′ = 0

Solved as first order quadrature ode

Time used: 0.024 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1
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Figure 2.55: Slope field plot
(x− 1) y′ = 0

Summary of solutions found
y = c1

Solved as first order homogeneous class D2 ode

Time used: 0.130 (sec)

Applying change of variables y = u(x)x, then the ode becomes

(x− 1) (u′(x)x+ u(x)) = 0

Which is now solved The ode u′(x) = −u(x)
x

is separable as it can be written as

u′(x) = −u(x)
x

= f(x)g(u)

Where

f(x) = −1
x

g(u) = u
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Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−1
x
dx

ln (u(x)) = ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ec1
x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = ec1
x

back to y gives

y = ec1
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Figure 2.56: Slope field plot
(x− 1) y′ = 0

Summary of solutions found
y = 0

y = ec1

Solved as first order ode of type differential

Time used: 0.010 (sec)

Writing the ode as

y′ = 0 (1)

Which becomes

(1) dy = (0) dx (2)

But the RHS is complete differential because

(0) dx = d(0)

Hence (2) becomes

(1) dy = d(0)

Integrating gives

y = c1
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Figure 2.57: Slope field plot
(x− 1) y′ = 0

Summary of solutions found
y = c1

Maple step by step solution

Let’s solve
(x− 1)

(
d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 5� �
dsolve((x-1)*diff(y(x),x) = 0,

y(x),singsol=all)� �
y = c1

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7� �
DSolve[{(x-1)*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1
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2.1.40 problem 40

Solved as first order quadrature ode . . . . . . . . . . . . . . . 312
Solved as first order homogeneous class D2 ode . . . . . . . . . 312
Solved as first order ode of type differential . . . . . . . . . . . 314
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 315
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 316
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 316

Internal problem ID [8700]
Book : First order enumerated odes
Section : section 1
Problem number : 40
Date solved : Tuesday, December 17, 2024 at 12:58:07 PM
CAS classification : [_quadrature]

Solve

yy′ = 0

Factoring the ode gives these factors

(1)y = 0

(2)y′ = 0

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

y = 0

Solving gives y = 0

Solving equation (2)



chapter 2. book solved problems 312

Solved as first order quadrature ode

Time used: 0.013 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.58: Slope field plot
y′ = 0

Summary of solutions found
y = c1

Solved as first order homogeneous class D2 ode

Time used: 0.154 (sec)

Applying change of variables y = u(x)x, then the ode becomes

u′(x)x+ u(x) = 0

Which is now solved The ode u′(x) = −u(x)
x

is separable as it can be written as

u′(x) = −u(x)
x

= f(x)g(u)
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Where

f(x) = −1
x

g(u) = u

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−1
x
dx

ln (u(x)) = ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ec1
x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = ec1
x

back to y gives

y = ec1
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Figure 2.59: Slope field plot
y′ = 0

Summary of solutions found
y = 0

y = ec1

Solved as first order ode of type differential

Time used: 0.009 (sec)

Writing the ode as

y′ = 0 (1)

Which becomes

(1) dy = (0) dx (2)

But the RHS is complete differential because

(0) dx = d(0)

Hence (2) becomes

(1) dy = d(0)

Integrating gives

y = c1
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Figure 2.60: Slope field plot
y′ = 0

Summary of solutions found
y = c1

Maple step by step solution

Let’s solve
y(x)

(
d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Separate variables
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1
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Maple trace� �
`Classification methods on request
Methods to be used are: [exact]
----------------------------
* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact
<- exact successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 11� �
dsolve(y(x)*diff(y(x),x) = 0,

y(x),singsol=all)� �
y = 0
y = −c1

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 12� �
DSolve[{y[x]*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 0
y(x) → c1
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2.1.41 problem 41

Solved as first order quadrature ode . . . . . . . . . . . . . . . 318
Solved as first order homogeneous class D2 ode . . . . . . . . . 318
Solved as first order ode of type differential . . . . . . . . . . . 320
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 321
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 322
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 322

Internal problem ID [8701]
Book : First order enumerated odes
Section : section 1
Problem number : 41
Date solved : Tuesday, December 17, 2024 at 12:58:07 PM
CAS classification : [_quadrature]

Solve

xyy′ = 0

Factoring the ode gives these factors

(1)y = 0

(2)y′ = 0

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

y = 0

Solving gives y = 0

Solving equation (2)
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Solved as first order quadrature ode

Time used: 0.013 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1
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Figure 2.61: Slope field plot
y′ = 0

Summary of solutions found
y = c1

Solved as first order homogeneous class D2 ode

Time used: 0.152 (sec)

Applying change of variables y = u(x)x, then the ode becomes

u′(x)x+ u(x) = 0

Which is now solved The ode u′(x) = −u(x)
x

is separable as it can be written as

u′(x) = −u(x)
x

= f(x)g(u)
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Where

f(x) = −1
x

g(u) = u

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−1
x
dx

ln (u(x)) = ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ec1
x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = ec1
x

back to y gives

y = ec1
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Figure 2.62: Slope field plot
y′ = 0

Summary of solutions found
y = 0

y = ec1

Solved as first order ode of type differential

Time used: 0.009 (sec)

Writing the ode as

y′ = 0 (1)

Which becomes

(1) dy = (0) dx (2)

But the RHS is complete differential because

(0) dx = d(0)

Hence (2) becomes

(1) dy = d(0)

Integrating gives

y = c1
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Figure 2.63: Slope field plot
y′ = 0

Summary of solutions found
y = c1

Maple step by step solution

Let’s solve
xy(x)

(
d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 9� �
dsolve(x*y(x)*diff(y(x),x) = 0,

y(x),singsol=all)� �
y = 0
y = c1

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 12� �
DSolve[{x*y[x]*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 0
y(x) → c1
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2.1.42 problem 42

Solved as first order quadrature ode . . . . . . . . . . . . . . . 324
Solved as first order homogeneous class D2 ode . . . . . . . . . 324
Solved as first order ode of type differential . . . . . . . . . . . 326
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 327
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 328
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 328

Internal problem ID [8702]
Book : First order enumerated odes
Section : section 1
Problem number : 42
Date solved : Tuesday, December 17, 2024 at 12:58:08 PM
CAS classification : [_quadrature]

Solve

xy sin (x) y′ = 0

Factoring the ode gives these factors

(1)y = 0

(2)y′ = 0

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

y = 0

Solving gives y = 0

Solving equation (2)
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Solved as first order quadrature ode

Time used: 0.013 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1
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Figure 2.64: Slope field plot
y′ = 0

Summary of solutions found
y = c1

Solved as first order homogeneous class D2 ode

Time used: 0.153 (sec)

Applying change of variables y = u(x)x, then the ode becomes

u′(x)x+ u(x) = 0

Which is now solved The ode u′(x) = −u(x)
x

is separable as it can be written as

u′(x) = −u(x)
x

= f(x)g(u)
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Where

f(x) = −1
x

g(u) = u

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−1
x
dx

ln (u(x)) = ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ec1
x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = ec1
x

back to y gives

y = ec1
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Figure 2.65: Slope field plot
y′ = 0

Summary of solutions found
y = 0

y = ec1

Solved as first order ode of type differential

Time used: 0.009 (sec)

Writing the ode as

y′ = 0 (1)

Which becomes

(1) dy = (0) dx (2)

But the RHS is complete differential because

(0) dx = d(0)

Hence (2) becomes

(1) dy = d(0)

Integrating gives

y = c1
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Figure 2.66: Slope field plot
y′ = 0

Summary of solutions found
y = c1

Maple step by step solution

Let’s solve
xy(x) sin (x)

(
d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 9� �
dsolve(x*y(x)*sin(x)*diff(y(x),x) = 0,

y(x),singsol=all)� �
y = 0
y = c1

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 12� �
DSolve[{x*y[x]*Sin[x]*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 0
y(x) → c1
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2.1.43 problem 43

Solved as first order quadrature ode . . . . . . . . . . . . . . . 330
Solved as first order homogeneous class D2 ode . . . . . . . . . 330
Solved as first order ode of type differential . . . . . . . . . . . 332
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 333
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 334
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 334

Internal problem ID [8703]
Book : First order enumerated odes
Section : section 1
Problem number : 43
Date solved : Tuesday, December 17, 2024 at 12:58:09 PM
CAS classification : [_quadrature]

Solve

πy sin (x) y′ = 0

Factoring the ode gives these factors

(1)y = 0

(2)y′ = 0

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

y = 0

Solving gives y = 0

Solving equation (2)
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Solved as first order quadrature ode

Time used: 0.014 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1
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Figure 2.67: Slope field plot
y′ = 0

Summary of solutions found
y = c1

Solved as first order homogeneous class D2 ode

Time used: 0.153 (sec)

Applying change of variables y = u(x)x, then the ode becomes

u′(x)x+ u(x) = 0

Which is now solved The ode u′(x) = −u(x)
x

is separable as it can be written as

u′(x) = −u(x)
x

= f(x)g(u)
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Where

f(x) = −1
x

g(u) = u

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−1
x
dx

ln (u(x)) = ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ec1
x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = ec1
x

back to y gives

y = ec1
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Figure 2.68: Slope field plot
y′ = 0

Summary of solutions found
y = 0

y = ec1

Solved as first order ode of type differential

Time used: 0.010 (sec)

Writing the ode as

y′ = 0 (1)

Which becomes

(1) dy = (0) dx (2)

But the RHS is complete differential because

(0) dx = d(0)

Hence (2) becomes

(1) dy = d(0)

Integrating gives

y = c1
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Figure 2.69: Slope field plot
y′ = 0

Summary of solutions found
y = c1

Maple step by step solution

Let’s solve
πy(x) sin (x)

(
d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1



chapter 2. book solved problems 334

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 9� �
dsolve(Pi*y(x)*sin(x)*diff(y(x),x) = 0,

y(x),singsol=all)� �
y = 0
y = c1

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 12� �
DSolve[{Pi*y[x]*Sin[x]*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 0
y(x) → c1
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2.1.44 problem 44

Solved as first order quadrature ode . . . . . . . . . . . . . . . 335
Solved as first order homogeneous class D2 ode . . . . . . . . . 336
Solved as first order ode of type differential . . . . . . . . . . . 338
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 339
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 340
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 340

Internal problem ID [8704]
Book : First order enumerated odes
Section : section 1
Problem number : 44
Date solved : Tuesday, December 17, 2024 at 12:58:10 PM
CAS classification : [_quadrature]

Solve

x sin (x) y′ = 0

Solved as first order quadrature ode

Time used: 0.026 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1
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Figure 2.70: Slope field plot
x sin (x) y′ = 0

Summary of solutions found
y = c1

Solved as first order homogeneous class D2 ode

Time used: 0.158 (sec)

Applying change of variables y = u(x)x, then the ode becomes

x sin (x) (u′(x)x+ u(x)) = 0

Which is now solved The ode u′(x) = −u(x)
x

is separable as it can be written as

u′(x) = −u(x)
x

= f(x)g(u)

Where

f(x) = −1
x

g(u) = u
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Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−1
x
dx

ln (u(x)) = ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ec1
x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = ec1
x

back to y gives

y = ec1
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Figure 2.71: Slope field plot
x sin (x) y′ = 0

Summary of solutions found
y = 0

y = ec1

Solved as first order ode of type differential

Time used: 0.012 (sec)

Writing the ode as

y′ = 0 (1)

Which becomes

(1) dy = (0) dx (2)

But the RHS is complete differential because

(0) dx = d(0)

Hence (2) becomes

(1) dy = d(0)

Integrating gives

y = c1
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Figure 2.72: Slope field plot
x sin (x) y′ = 0

Summary of solutions found
y = c1

Maple step by step solution

Let’s solve
x sin (x)

(
d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 5� �
dsolve(x*sin(x)*diff(y(x),x) = 0,

y(x),singsol=all)� �
y = c1

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 7� �
DSolve[{x*Sin[x]*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1
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2.1.45 problem 45

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 342
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 342
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 343

Internal problem ID [8705]
Book : First order enumerated odes
Section : section 1
Problem number : 45
Date solved : Tuesday, December 17, 2024 at 12:58:10 PM
CAS classification : [_quadrature]

Solve

x sin (x) y′2 = 0

Solving for the derivative gives these ODE’s to solve

(1)y′ = 0

(2)y′ = 0

Now each of the above is solved separately.

Solving Eq. (1)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1

Solving Eq. (2)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c2

y = c2
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Maple step by step solution

Let’s solve
x sin (x)

(
d
dx
y(x)

)2 = 0
• Highest derivative means the order of the ODE is 1

d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1

Maple trace� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
Maple dsolve solution

Solving time : 0.029 (sec)
Leaf size : 5� �
dsolve(x*sin(x)*diff(y(x),x)^2 = 0,

y(x),singsol=all)� �
y = c1
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Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 7� �
DSolve[{x*Sin[x]*D[y[x],x]^2==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1
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2.1.46 problem 46

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 345
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 346
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 346

Internal problem ID [8706]
Book : First order enumerated odes
Section : section 1
Problem number : 46
Date solved : Tuesday, December 17, 2024 at 12:58:11 PM
CAS classification : [_quadrature]

Solve

yy′
2 = 0

Factoring the ode gives these factors

(1)y = 0

(2)y′
2 = 0

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for y from

y = 0

Solving gives y = 0

Solving equation (2)

Solving for the derivative gives these ODE’s to solve

(1)y′ = 0

(2)y′ = 0

Now each of the above is solved separately.

Solving Eq. (1)
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Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1

Solving Eq. (2)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c2

y = c2

Maple step by step solution

Let’s solve
y(x)

(
d
dx
y(x)

)2 = 0
• Highest derivative means the order of the ODE is 1

d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 9� �
dsolve(y(x)*diff(y(x),x)^2 = 0,

y(x),singsol=all)� �
y = 0
y = c1

Mathematica DSolve solution

Solving time : 0.002 (sec)
Leaf size : 12� �
DSolve[{y[x]*(D[y[x],x])^2==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 0
y(x) → c1
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2.1.47 problem 47

Solved as first order quadrature ode . . . . . . . . . . . . . . . 347
Solved as first order homogeneous class D2 ode . . . . . . . . . 348
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 350
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 350
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 351

Internal problem ID [8707]
Book : First order enumerated odes
Section : section 1
Problem number : 47
Date solved : Tuesday, December 17, 2024 at 12:58:11 PM
CAS classification : [_quadrature]

Solve

y′
n = 0

Solved as first order quadrature ode

Time used: 0.043 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1
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Figure 2.73: Slope field plot
y′n = 0

Summary of solutions found
y = c1

Solved as first order homogeneous class D2 ode

Time used: 0.228 (sec)

Applying change of variables y = u(x)x, then the ode becomes

(u′(x)x+ u(x))n = 0

Which is now solved The ode u′(x) = −u(x)
x

is separable as it can be written as

u′(x) = −u(x)
x

= f(x)g(u)

Where

f(x) = −1
x

g(u) = u
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Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−1
x
dx

ln (u(x)) = ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Solving for u(x) gives

u(x) = ec1
x

Converting u(x) = ec1
x

back to y gives

y = ec1
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Figure 2.74: Slope field plot
y′n = 0

Summary of solutions found
y = ec1
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Maple step by step solution

Let’s solve(
d
dx
y(x)

)n = 0
• Highest derivative means the order of the ODE is 1

d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1

Maple trace� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 5� �
dsolve(diff(y(x),x)^n = 0,

y(x),singsol=all)� �
y = c1
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Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 15� �
DSolve[{(D[y[x],x])^n==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 0 1

nx+ c1
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2.1.48 problem 48

Solved as first order quadrature ode . . . . . . . . . . . . . . . 352
Solved as first order homogeneous class D2 ode . . . . . . . . . 353
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 355
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 356
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 356

Internal problem ID [8708]
Book : First order enumerated odes
Section : section 1
Problem number : 48
Date solved : Tuesday, December 17, 2024 at 12:58:12 PM
CAS classification : [_quadrature]

Solve

xy′
n = 0

Solved as first order quadrature ode

Time used: 0.026 (sec)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
0 dx+ c1

y = c1
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Figure 2.75: Slope field plot
xy′n = 0

Summary of solutions found
y = c1

Solved as first order homogeneous class D2 ode

Time used: 0.155 (sec)

Applying change of variables y = u(x)x, then the ode becomes

x(u′(x)x+ u(x))n = 0

Which is now solved The ode u′(x) = −u(x)
x

is separable as it can be written as

u′(x) = −u(x)
x

= f(x)g(u)

Where

f(x) = −1
x

g(u) = u
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Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

u
du =

∫
−1
x
dx

ln (u(x)) = ln
(
1
x

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(x)
gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln (u(x)) = ln
(
1
x

)
+ c1

u(x) = 0

Solving for u(x) gives
u(x) = 0

u(x) = ec1
x

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = ec1
x

back to y gives

y = ec1
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Figure 2.76: Slope field plot
xy′n = 0

Summary of solutions found
y = 0

y = ec1

Maple step by step solution

Let’s solve
x
(

d
dx
y(x)

)n = 0
• Highest derivative means the order of the ODE is 1

d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = 0

• Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
0dx+ C1

• Evaluate integral
y(x) = C1

• Solve for y(x)
y(x) = C1
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Maple trace� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 5� �
dsolve(x*diff(y(x),x)^n = 0,

y(x),singsol=all)� �
y = c1

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 15� �
DSolve[{x*(D[y[x],x])^n==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 0 1

nx+ c1
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2.1.49 problem 49

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 358
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 359
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 359

Internal problem ID [8709]
Book : First order enumerated odes
Section : section 1
Problem number : 49
Date solved : Tuesday, December 17, 2024 at 12:58:13 PM
CAS classification : [_quadrature]

Solve

y′
2 = x

Solving for the derivative gives these ODE’s to solve

(1)y′ =
√
x

(2)y′ = −
√
x

Now each of the above is solved separately.

Solving Eq. (1)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫ √
x dx

y = 2x3/2

3 + c1

Solving Eq. (2)

Since the ode has the form y′ = f(x), then we only need to integrate f(x).∫
dy =

∫
−
√
x dx

y = −2x3/2

3 + c2
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Maple step by step solution

Let’s solve(
d
dx
y(x)

)2 = x

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative[
d
dx
y(x) =

√
x, d

dx
y(x) = −

√
x
]

� Solve the equation d
dx
y(x) =

√
x

◦ Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫ √
xdx+ _C1

◦ Evaluate integral
y(x) = 2x3/2

3 + _C1
◦ Solve for y(x)

y(x) = 2x3/2

3 + _C1
� Solve the equation d

dx
y(x) = −

√
x

◦ Integrate both sides with respect to x∫ (
d
dx
y(x)

)
dx =

∫
−
√
xdx+ _C1

◦ Evaluate integral
y(x) = −2x3/2

3 + _C1
◦ Solve for y(x)

y(x) = −2x3/2

3 + _C1
• Set of solutions{

y(x) = −2x3/2

3 + C1 , y(x) = 2x3/2

3 + C1
}

Maple trace� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`
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� �
Maple dsolve solution

Solving time : 0.040 (sec)
Leaf size : 21� �
dsolve(diff(y(x),x)^2 = x,

y(x),singsol=all)� �
y = 2x3/2

3 + c1

y = −2x3/2

3 + c1

Mathematica DSolve solution

Solving time : 0.004 (sec)
Leaf size : 33� �
DSolve[{(D[y[x],x])^2==x,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −2x3/2

3 + c1

y(x) → 2x3/2

3 + c1
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2.1.50 problem 50

Solved as first order ode of type dAlembert . . . . . . . . . . . 360
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 362
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 363
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 363

Internal problem ID [8710]
Book : First order enumerated odes
Section : section 1
Problem number : 50
Date solved : Tuesday, December 17, 2024 at 12:58:14 PM
CAS classification : [[_homogeneous, ‘class C‘], _dAlembert]

Solve

y′
2 = x+ y

Solved as first order ode of type dAlembert

Time used: 0.226 (sec)

Let p = y′ the ode becomes

p2 = x+ y

Solving for y from the above results in

(1)y = p2 − x

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved.

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −1
g = p2

Hence (2) becomes

p+ 1 = 2pp′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 1 = 0

Solving the above for p results in

p1 = −1

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y = 1− x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x) + 1
2p (x) (3)

This ODE is now solved for p(x). No inversion is needed. Integrating gives∫ 2p
p+ 1dp = dx

2p− 2 ln (p+ 1) = x+ c1

Singular solutions are found by solving
p+ 1
2p = 0

for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = −1

Solving for p(x) gives

p(x) = −1

p(x) = −LambertW
(
−e−1−x

2−
c1
2

)
− 1
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Substituing the above solution for p in (2A) gives

y = 1− x

y =
(
−LambertW

(
−e−1−x

2−
c1
2

)
− 1
)2

− x

Summary of solutions found

y = 1− x

y =
(
−LambertW

(
−e−1−x

2−
c1
2

)
− 1
)2

− x

Maple step by step solution

Let’s solve(
d
dx
y(x)

)2 = x+ y(x)
• Highest derivative means the order of the ODE is 1

d
dx
y(x)

• Solve for the highest derivative[
d
dx
y(x) =

√
x+ y (x), d

dx
y(x) = −

√
x+ y (x)

]
• Solve the equation d

dx
y(x) =

√
x+ y (x)

• Solve the equation d
dx
y(x) = −

√
x+ y (x)

• Set of solutions
{workingODE ,workingODE}

Maple trace� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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Maple dsolve solution

Solving time : 0.048 (sec)
Leaf size : 33� �
dsolve(diff(y(x),x)^2 = x+y(x),

y(x),singsol=all)� �
y = LambertW

(
−c1e−

x
2−1)2 + 2LambertW

(
−c1e−

x
2−1)− x+ 1

Mathematica DSolve solution

Solving time : 14.92 (sec)
Leaf size : 100� �
DSolve[{(D[y[x],x])^2==x+y[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → W

(
−e−

x
2−1− c1

2

)
2 + 2W

(
−e−

x
2−1− c1

2

)
− x+ 1

y(x) → W
(
e

1
2 (−x−2+c1)

)
2 + 2W

(
e

1
2 (−x−2+c1)

)
− x+ 1

y(x) → 1− x
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2.1.51 problem 51

Solved as first order homogeneous class A ode . . . . . . . . . . 364
Solved as first order ode of type nonlinear p but separable . . . 369
Solved as first order ode of type dAlembert . . . . . . . . . . . 370
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 373
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 374
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 374

Internal problem ID [8711]
Book : First order enumerated odes
Section : section 1
Problem number : 51
Date solved : Tuesday, December 17, 2024 at 12:58:14 PM
CAS classification : [[_homogeneous, ‘class A‘], _rational, _dAlembert]

Solve

y′
2 = y

x

Solved as first order homogeneous class A ode

Time used: 0.832 (sec)

Solving for y′ gives

y′ =
√
xy

x
(1)

y′ = −
√
xy

x
(2)

In canonical form, the ODE is

y′ = F (x, y)

=
√
xy

x
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)
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In this case, it can be seen that both M = √
xy and N = x are both homogeneous

and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives
du
dxx+ u =

√
u

du
dx =

√
u (x)− u(x)

x

Or
u′(x)−

√
u (x)− u(x)

x
= 0

Or
u′(x)x−

√
u (x) + u(x) = 0

Which is now solved as separable in u(x).

The ode u′(x) =
√

u(x)−u(x)
x

is separable as it can be written as

u′(x) =
√
u (x)− u(x)

x
= f(x)g(u)

Where

f(x) = 1
x

g(u) =
√
u− u

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1√

u− u
du =

∫ 1
x
dx

−2 ln
(√

u (x)− 1
)
= ln (x) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or

√
u− u = 0 for

u(x) gives

u(x) = 0
u(x) = 1
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Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

−2 ln
(√

u (x)− 1
)
= ln (x) + c1

u(x) = 0
u(x) = 1

Converting −2 ln
(√

u (x)− 1
)
= ln (x) + c1 back to y gives

−2 ln
(√

y

x
− 1
)

= ln (x) + c1

Converting u(x) = 0 back to y gives

y = 0

Converting u(x) = 1 back to y gives

y = x

In canonical form, the ODE is

y′ = F (x, y)

= −
√
xy

x
(1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = −√
xy and N = x are both homogeneous

and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u

Applying the transformation y = ux to the above ODE in (1) gives
du
dxx+ u = −

√
u

du
dx = −

√
u (x)− u(x)

x
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Or
u′(x)− −

√
u (x)− u(x)

x
= 0

Or
u′(x)x+

√
u (x) + u(x) = 0

Which is now solved as separable in u(x).

The ode u′(x) = −
√

u(x)+u(x)
x

is separable as it can be written as

u′(x) = −
√
u (x) + u(x)

x
= f(x)g(u)

Where

f(x) = 1
x

g(u) = −
√
u− u

Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 1

−
√
u− u

du =
∫ 1

x
dx

ln

 1(√
u (x) + 1

)2
 = ln (x) + c2

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or −

√
u − u = 0

for u(x) gives

u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln

 1(√
u (x) + 1

)2
 = ln (x) + c2

u(x) = 0
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Converting ln
(

1(√
u(x)+1

)2
)

= ln (x) + c2 back to y gives

ln
(

1(√
y
x
+ 1
)2
)

= ln (x) + c2

Converting u(x) = 0 back to y gives

y = 0

Solving for y gives

y = 0
y = x

y =
(
2x ec1

(√
x ec1 − 1

)
√
x ec1

− x ec1 + 1
)
e−c1

y =
(
2x ec1

(√
x ec1 + 1

)
√
x ec1

− x ec1 + 1
)
e−c1

y = −

(
−
2x ec2

(√
x ec2 − 1

)
√
x ec2

+ x ec2 − 1
)
e−c2

y = −

(
−
2x ec2

(√
x ec2 + 1

)
√
x ec2

+ x ec2 − 1
)
e−c2

Summary of solutions found

y = 0
y = x

y =
(
2x ec1

(√
x ec1 − 1

)
√
x ec1

− x ec1 + 1
)
e−c1

y =
(
2x ec1

(√
x ec1 + 1

)
√
x ec1

− x ec1 + 1
)
e−c1

y = −

(
−
2x ec2

(√
x ec2 − 1

)
√
x ec2

+ x ec2 − 1
)
e−c2

y = −

(
−
2x ec2

(√
x ec2 + 1

)
√
x ec2

+ x ec2 − 1
)
e−c2
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Solved as first order ode of type nonlinear p but separable

Time used: 0.242 (sec)

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x
, g = y. Hence the ode is

(y′)2 = y

x

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

1
x
> 0

y > 0

Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1
√
y
dy =

(√
1
x

)
dx

− 1
√
y
dy =

(√
1
x

)
dx
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Integrating now gives the following solutions∫ 1
√
y
dy =

∫ √1
x
dx+ c1

2√y = 2x
√

1
x∫

− 1
√
y
dy =

∫ √1
x
dx+ c1

−2√y = 2x
√

1
x

Therefore

y = x

√
1
x
c1 +

c21
4 + x

y = x

√
1
x
c1 +

c21
4 + x

Summary of solutions found

y = x

√
1
x
c1 +

c21
4 + x

Solved as first order ode of type dAlembert

Time used: 0.071 (sec)

Let p = y′ the ode becomes

p2 = y

x

Solving for y from the above results in

(1)y = p2x

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved.
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Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = p2

g = 0

Hence (2) becomes

−p2 + p = 2xpp′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p2 + p = 0

Solving the above for p results in

p1 = 0
p2 = 1

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y = 0
y = x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −p(x)2 + p(x)
2xp (x) (3)

This ODE is now solved for p(x). No inversion is needed. In canonical form a linear
first order is

p′(x) + q(x)p(x) = p(x)

Comparing the above to the given ode shows that

q(x) = 1
2x

p(x) = 1
2x
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The integrating factor µ is

µ = e
∫
q dx

= e
∫ 1

2xdx

=
√
x

The ode becomes
d
dx(µp) = µp

d
dx(µp) = (µ)

(
1
2x

)
d
dx
(
p
√
x
)
=
(√

x
)( 1

2x

)
d
(
p
√
x
)
=
(

1
2
√
x

)
dx

Integrating gives

p
√
x =

∫ 1
2
√
x
dx

=
√
x+ c1

Dividing throughout by the integrating factor
√
x gives the final solution

p(x) =
√
x+ c1√

x

Substituing the above solution for p in (2A) gives

y =
(√

x+ c1
)2

Summary of solutions found
y = 0
y = x

y =
(√

x+ c1
)2
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Maple step by step solution

Let’s solve(
d
dx
y(x)

)2 = y(x)
x

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative[
d
dx
y(x) =

√
xy(x)
x

, d
dx
y(x) = −

√
xy(x)
x

]
• Solve the equation d

dx
y(x) =

√
xy(x)
x

• Solve the equation d
dx
y(x) = −

√
xy(x)
x

• Set of solutions
{workingODE ,workingODE}

Maple trace� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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Maple dsolve solution

Solving time : 0.048 (sec)
Leaf size : 39� �
dsolve(diff(y(x),x)^2 = y(x)/x,

y(x),singsol=all)� �
y = 0

y =
(
x+√

c1x
)2

x

y =
(
−x+√

c1x
)2

x

Mathematica DSolve solution

Solving time : 0.047 (sec)
Leaf size : 46� �
DSolve[{(D[y[x],x])^2==y[x]/x,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

4
(
−2

√
x+ c1

) 2

y(x) → 1
4
(
2
√
x+ c1

) 2

y(x) → 0
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2.1.52 problem 52

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 377
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 379
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 379

Internal problem ID [8712]
Book : First order enumerated odes
Section : section 1
Problem number : 52
Date solved : Tuesday, December 17, 2024 at 12:58:16 PM
CAS classification : [_separable]

Solve

y′
2 = y2

x

Solving for the derivative gives these ODE’s to solve

(1)y′ = y√
x

(2)y′ = − y√
x

Now each of the above is solved separately.

Solving Eq. (1)

In canonical form a linear first order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) = − 1√
x

p(x) = 0

The integrating factor µ is

µ = e
∫
q dx

= e
∫
− 1√

x
dx

= e−2
√
x
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The ode becomes

d
dxµy = 0

d
dx

(
y e−2

√
x
)
= 0

Integrating gives

y e−2
√
x =

∫
0 dx+ c2

= c2

Dividing throughout by the integrating factor e−2
√
x gives the final solution

y = e2
√
xc2

We now need to find the singular solutions, these are found by finding for what values
( y√

x
) is zero. These give

y = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution y = 0 satisfies the ode and initial conditions.

Solving Eq. (2)

In canonical form a linear first order is

y′ + q(x)y = p(x)

Comparing the above to the given ode shows that

q(x) = 1√
x

p(x) = 0

The integrating factor µ is

µ = e
∫
q dx

= e
∫ 1√

x
dx

= e2
√
x
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The ode becomes

d
dxµy = 0

d
dx

(
y e2

√
x
)
= 0

Integrating gives

y e2
√
x =

∫
0 dx+ c3

= c3

Dividing throughout by the integrating factor e2
√
x gives the final solution

y = e−2
√
xc3

We now need to find the singular solutions, these are found by finding for what values
(− y√

x
) is zero. These give

y = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution y = 0 satisfies the ode and initial conditions.

Maple step by step solution

Let’s solve(
d
dx
y(x)

)2 = y(x)2
x

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative[
d
dx
y(x) = y(x)√

x
, d
dx
y(x) = −y(x)√

x

]
� Solve the equation d

dx
y(x) = y(x)√

x

◦ Separate variables
d
dx

y(x)
y(x) = 1√

x

◦ Integrate both sides with respect to x∫ d
dx

y(x)
y(x) dx =

∫ 1√
x
dx+ _C1
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◦ Evaluate integral
ln (y(x)) = 2

√
x+ _C1

◦ Solve for y(x)
y(x) = e2

√
x+_C1

� Solve the equation d
dx
y(x) = −y(x)√

x

◦ Separate variables
d
dx

y(x)
y(x) = − 1√

x

◦ Integrate both sides with respect to x∫ d
dx

y(x)
y(x) dx =

∫
− 1√

x
dx+ _C1

◦ Evaluate integral
ln (y(x)) = −2

√
x+ _C1

◦ Solve for y(x)
y(x) = e−2

√
x+_C1

• Set of solutions{
y(x) = e−2

√
x+C1 , y(x) = e2

√
x+C1}

Maple trace� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �
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Maple dsolve solution

Solving time : 0.061 (sec)
Leaf size : 27� �
dsolve(diff(y(x),x)^2 = y(x)^2/x,

y(x),singsol=all)� �
y = 0
y = c1e−2

√
x

y = c1e2
√
x

Mathematica DSolve solution

Solving time : 0.067 (sec)
Leaf size : 38� �
DSolve[{(D[y[x],x])^2==y[x]^2/x,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → c1e

−2
√
x

y(x) → c1e
2
√
x

y(x) → 0
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2.1.53 problem 53

Solved as first order ode of type nonlinear p but separable . . . 380
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 382
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 382
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 383

Internal problem ID [8713]
Book : First order enumerated odes
Section : section 1
Problem number : 53
Date solved : Tuesday, December 17, 2024 at 12:58:18 PM
CAS classification : [[_homogeneous, ‘class G‘]]

Solve

y′
2 = y3

x

Solved as first order ode of type nonlinear p but separable

Time used: 0.425 (sec)

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x
, g = y3. Hence the ode is

(y′)2 = y3

x

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

1
x
> 0

y3 > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
y3

dy =
(√

1
x

)
dx

− 1√
y3

dy =
(√

1
x

)
dx

Integrating now gives the following solutions∫ 1√
y3

dy =
∫ √1

x
dx+ c1

−2
√
y3

y2
= 2x

√
1
x∫

− 1√
y3

dy =
∫ √1

x
dx+ c1

2
√
y3

y2
= 2x

√
1
x

Therefore

y = 4

4x
√

1
x
c1 + c21 + 4x

y = 4

4x
√

1
x
c1 + c21 + 4x

Summary of solutions found

y = 4

4x
√

1
x
c1 + c21 + 4x



chapter 2. book solved problems 382

Maple step by step solution

Let’s solve(
d
dx
y(x)

)2 = y(x)3
x

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative[
d
dx
y(x) =

√
xy(x) y(x)

x
, d
dx
y(x) = −

√
xy(x) y(x)

x

]
• Solve the equation d

dx
y(x) =

√
xy(x) y(x)

x

• Solve the equation d
dx
y(x) = −

√
xy(x) y(x)

x

• Set of solutions
{workingODE ,workingODE}

Maple trace� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
<- 1st_order WeierstrassP successful`� �
Maple dsolve solution

Solving time : 0.045 (sec)
Leaf size : 27� �
dsolve(diff(y(x),x)^2 = y(x)^3/x,

y(x),singsol=all)� �
y = 0

y = WeierstrassP (1, 0, 0) 22/3(√
x 21/3 + c1

)2
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Mathematica DSolve solution

Solving time : 0.071 (sec)
Leaf size : 42� �
DSolve[{(D[y[x],x])^2==y[x]^3/x,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 4(

−2
√
x+ c1

)
2

y(x) → 4(
2
√
x+ c1

)
2

y(x) → 0



chapter 2. book solved problems 384

2.1.54 problem 54

Solved as first order ode of type nonlinear p but separable . . . 384
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 386
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 388
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 389

Internal problem ID [8714]
Book : First order enumerated odes
Section : section 1
Problem number : 54
Date solved : Tuesday, December 17, 2024 at 12:58:19 PM
CAS classification : [[_homogeneous, ‘class G‘], _rational]

Solve

y′
3 = y2

x

Solved as first order ode of type nonlinear p but separable

Time used: 0.947 (sec)

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 3,m = 1, f = 1
x
, g = y2. Hence the ode is

(y′)3 = y2

x

Solving for y′ from (1) gives

y′ = (fg)1/3

y′ = −(fg)1/3

2 + i
√
3 (fg)1/3

2

y′ = −(fg)1/3

2 − i
√
3 (fg)1/3

2
To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

1
x
> 0

y2 > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ = f 1/3g1/3

y′ =
f 1/3g1/3

(
−1 + i

√
3
)

2

y′ = −
f 1/3g1/3

(
1 + i

√
3
)

2
Therefore

1
g1/3

dy =
(
f 1/3) dx

2
g1/3

(
−1 + i

√
3
) dy =

(
f 1/3) dx

− 2
g1/3

(
1 + i

√
3
) dy =

(
f 1/3) dx

Replacing f(x), g(y) by their values gives

1
(y2)1/3

dy =
((

1
x

)1/3
)

dx

2
(y2)1/3

(
−1 + i

√
3
) dy =

((
1
x

)1/3
)

dx

− 2
(y2)1/3

(
1 + i

√
3
) dy =

((
1
x

)1/3
)

dx

Integrating now gives the following solutions∫ 1
(y2)1/3

dy =
∫ (1

x

)1/3

dx+ c1

3(y2)2/3

y
=

3x
( 1
x

)1/3
2∫ 2

(y2)1/3
(
−1 + i

√
3
)dy =

∫ (1
x

)1/3

dx+ c1

−
3(y2)2/3

(
1 + i

√
3
)

2y =
3x
( 1
x

)1/3
2∫

− 2
(y2)1/3

(
1 + i

√
3
)dy =

∫ (1
x

)1/3

dx+ c1

3(y2)2/3
(
−1 + i

√
3
)

2y =
3x
( 1
x

)1/3
2
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Therefore

3(y2)2/3

y
=

3x
( 1
x

)1/3
2 + c1

y = x2

8 +
( 1
x

)2/3
c1 x

2

4 +
( 1
x

)1/3
c21x

6 + c31
27

y = x2

8 +
( 1
x

)2/3
c1 x

2

4 +
( 1
x

)1/3
c21x

6 + c31
27

Summary of solutions found

3(y2)2/3

y
=

3x
( 1
x

)1/3
2 + c1

y = x2

8 +
( 1
x

)2/3
c1 x

2

4 +
( 1
x

)1/3
c21x

6 + c31
27

Maple step by step solution

Let’s solve(
d
dx
y(x)

)3 = y(x)2
x

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative[
d
dx
y(x) =

(
x2y(x)2

)1/3
x

, d
dx
y(x) = −

(
x2y(x)2

)1/3
2x −

I
√
3
(
x2y(x)2

)1/3
2x , d

dx
y(x) = −

(
x2y(x)2

)1/3
2x +

I
√
3
(
x2y(x)2

)1/3
2x

]

• Solve the equation d
dx
y(x) =

(
x2y(x)2

)1/3
x

• Solve the equation d
dx
y(x) = −

(
x2y(x)2

)1/3
2x −

I
√
3
(
x2y(x)2

)1/3
2x

• Solve the equation d
dx
y(x) = −

(
x2y(x)2

)1/3
2x +

I
√
3
(
x2y(x)2

)1/3
2x

• Set of solutions
{workingODE ,workingODE ,workingODE}



chapter 2. book solved problems 387

Maple trace� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
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<- integrating factor successful
<- homogeneous successful`� �

Maple dsolve solution

Solving time : 0.104 (sec)
Leaf size : 341� �
dsolve(diff(y(x),x)^3 = y(x)^2/x,

y(x),singsol=all)� �
y = 0

y = −3x4/3c1
8 + 3x2/3c21

8 − c31
8 + x2

8

y =
3
(
−i

√
3− 1

)
c21x

2/3

16 +
3c1
(
1− i

√
3
)
x4/3

16 − c31
8 + x2

8

y =
3c21
(
i
√
3− 1

)
x2/3

16 +
3c1
(
1 + i

√
3
)
x4/3

16 − c31
8 + x2

8

y = 3x4/3c1
16 + 3x2/3c21

32 + c31
64 + x2

8

y =
3
(
−i

√
3− 1

)
c21x

2/3

64 +
3c1
(
i
√
3− 1

)
x4/3

32 + c31
64 + x2

8

y =
3c21
(
i
√
3− 1

)
x2/3

64 +
3c1
(
−i

√
3− 1

)
x4/3

32 + c31
64 + x2

8

y = −3x4/3c1
16 + 3x2/3c21

32 − c31
64 + x2

8

y =
3
(
−i

√
3− 1

)
c21x

2/3

64 +
3c1
(
1− i

√
3
)
x4/3

32 − c31
64 + x2

8

y =
3c21
(
i
√
3− 1

)
x2/3

64 +
3c1
(
1 + i

√
3
)
x4/3

32 − c31
64 + x2

8
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Mathematica DSolve solution

Solving time : 0.084 (sec)
Leaf size : 152� �
DSolve[{(D[y[x],x])^3==y[x]^2/x,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

216
(
3x2/3 + 2c1

) 3

y(x) → 1
216

(
18i
(√

3 + i
)
c1

2x2/3 − 27i
(√

3− i
)
c1x

4/3 + 27x2 + 8c13
)

y(x) → 1
216

(
−18i

(√
3− i

)
c1

2x2/3 + 27i
(√

3 + i
)
c1x

4/3 + 27x2 + 8c13
)

y(x) → 0
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2.1.55 problem 55

Solved as first order ode of type nonlinear p but separable . . . 390
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 393
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 395
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 395

Internal problem ID [8715]
Book : First order enumerated odes
Section : section 1
Problem number : 55
Date solved : Tuesday, December 17, 2024 at 12:58:21 PM
CAS classification : [[_homogeneous, ‘class G‘]]

Solve

y′
2 = 1

yx

Solved as first order ode of type nonlinear p but separable

Time used: 0.305 (sec)

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x
, g = 1

y
. Hence the ode is

(y′)2 = 1
yx

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

1
x
> 0

1
y
> 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
1
y

dy =
(√

1
x

)
dx

− 1√
1
y

dy =
(√

1
x

)
dx

Integrating now gives the following solutions∫ 1√
1
y

dy =
∫ √1

x
dx+ c1

2y2
√

1
y

3 = 2x
√

1
x∫

− 1√
1
y

dy =
∫ √1

x
dx+ c1

−
2y2
√

1
y

3 = 2x
√

1
x

Therefore

2y2
√

1
y

3 = 2x
√

1
x
+ c1

−
2y2
√

1
y

3 = 2x
√

1
x
+ c1
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Solving for y gives

y = 1−

(
−18

(
2x
√

1
x
+c1

)2)1/3

6
(
2x
√

1
x
+c1

) −
i
√
3
(
−18

(
2x
√

1
x
+c1

)2)1/3

6
(
2x
√

1
x
+c1

)
2

y = 1−

(
−18

(
2x
√

1
x
+c1

)2)1/3

6
(
2x
√

1
x
+c1

) +
i
√
3
(
−18

(
2x
√

1
x
+c1

)2)1/3

12x
√

1
x
+6c1

2

y = 1−
181/3

((
2x
√

1
x
+c1

)2)1/3

6
(
2x
√

1
x
+c1

) −
i
√
3 181/3

((
2x
√

1
x
+c1

)2)1/3

6
(
2x
√

1
x
+c1

)
2

y = 1−
181/3

((
2x
√

1
x
+c1

)2)1/3

6
(
2x
√

1
x
+c1

) +
i
√
3 181/3

((
2x
√

1
x
+c1

)2)1/3

12x
√

1
x
+6c1

2

y =
9
(
2x
√

1
x
+ c1

)2
(
−18

(
2x
√

1
x
+ c1

)2)2/3

y =

(
2x
√

1
x
+ c1

)2
181/3

2
((

2x
√

1
x
+ c1

)2)2/3

Summary of solutions found

y = 1−

(
−18

(
2x
√

1
x
+c1

)2)1/3

6
(
2x
√

1
x
+c1

) −
i
√
3
(
−18

(
2x
√

1
x
+c1

)2)1/3

6
(
2x
√

1
x
+c1

)
2

y = 1−

(
−18

(
2x
√

1
x
+c1

)2)1/3

6
(
2x
√

1
x
+c1

) +
i
√
3
(
−18

(
2x
√

1
x
+c1

)2)1/3

12x
√

1
x
+6c1

2
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y = 1−
181/3

((
2x
√

1
x
+c1

)2)1/3

6
(
2x
√

1
x
+c1

) −
i
√
3 181/3

((
2x
√

1
x
+c1

)2)1/3

6
(
2x
√

1
x
+c1

)
2

y = 1−
181/3

((
2x
√

1
x
+c1

)2)1/3

6
(
2x
√

1
x
+c1

) +
i
√
3 181/3

((
2x
√

1
x
+c1

)2)1/3

12x
√

1
x
+6c1

2

y =
9
(
2x
√

1
x
+ c1

)2
(
−18

(
2x
√

1
x
+ c1

)2)2/3

y =

(
2x
√

1
x
+ c1

)2
181/3

2
((

2x
√

1
x
+ c1

)2)2/3

Maple step by step solution

Let’s solve(
d
dx
y(x)

)2 = 1
xy(x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative[
d
dx
y(x) = 1√

xy(x) ,
d
dx
y(x) = − 1√

xy(x)

]
• Solve the equation d

dx
y(x) = 1√

xy(x)

• Solve the equation d
dx
y(x) = − 1√

xy(x)

• Set of solutions
{workingODE ,workingODE}
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Maple trace� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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Maple dsolve solution

Solving time : 0.085 (sec)
Leaf size : 51� �
dsolve(diff(y(x),x)^2 = 1/x/y(x),

y(x),singsol=all)� �
y
√
xy − c1

√
x− 3x

√
x

= 0

y
√
xy − c1

√
x+ 3x

√
x

= 0

Mathematica DSolve solution

Solving time : 3.342 (sec)
Leaf size : 53� �
DSolve[{(D[y[x],x])^2==1/(y[x]*x),{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

(
3
2

)2/3 (
−2

√
x+ c1

) 2/3

y(x) →
(
3
2

)2/3 (
2
√
x+ c1

) 2/3
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2.1.56 problem 56

Solved as first order ode of type nonlinear p but separable . . . 396
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 398
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 399
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 400

Internal problem ID [8716]
Book : First order enumerated odes
Section : section 1
Problem number : 56
Date solved : Tuesday, December 17, 2024 at 12:58:22 PM
CAS classification : [[_homogeneous, ‘class G‘]]

Solve

y′
2 = 1

xy3

Solved as first order ode of type nonlinear p but separable

Time used: 0.294 (sec)

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x
, g = 1

y3
. Hence the ode is

(y′)2 = 1
x y3

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

1
x
> 0

1
y3

> 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
1
y3

dy =
(√

1
x

)
dx

− 1√
1
y3

dy =
(√

1
x

)
dx

Integrating now gives the following solutions∫ 1√
1
y3

dy =
∫ √1

x
dx+ c1

2y4
√

1
y3

5 = 2x
√

1
x∫

− 1√
1
y3

dy =
∫ √1

x
dx+ c1

−
2y4
√

1
y3

5 = 2x
√

1
x

Therefore

2y4
√

1
y3

5 = 2x
√

1
x
+ c1

−
2y4
√

1
y3

5 = 2x
√

1
x
+ c1
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Summary of solutions found

−
2y4
√

1
y3

5 = 2x
√

1
x
+ c1

2y4
√

1
y3

5 = 2x
√

1
x
+ c1

Maple step by step solution

Let’s solve(
d
dx
y(x)

)2 = 1
xy(x)3

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative[
d
dx
y(x) = 1√

xy(x) y(x) ,
d
dx
y(x) = − 1√

xy(x) y(x)

]
• Solve the equation d

dx
y(x) = 1√

xy(x) y(x)

• Solve the equation d
dx
y(x) = − 1√

xy(x) y(x)

• Set of solutions
{workingODE ,workingODE}

Maple trace� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
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trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �

Maple dsolve solution

Solving time : 0.109 (sec)
Leaf size : 55� �
dsolve(diff(y(x),x)^2 = 1/x/y(x)^3,

y(x),singsol=all)� �
√
xy y2 − c1

√
x− 5x

√
x

= 0
√
xy y2 − c1

√
x+ 5x

√
x

= 0
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Mathematica DSolve solution

Solving time : 0.109 (sec)
Leaf size : 53� �
DSolve[{(D[y[x],x])^2==1/(x*y[x]^3),{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

(
5
2

)2/5 (
−2

√
x+ c1

) 2/5

y(x) →
(
5
2

)2/5 (
2
√
x+ c1

) 2/5
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2.1.57 problem 57

Solved as first order ode of type nonlinear p but separable . . . 401
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 403
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 404
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 405

Internal problem ID [8717]
Book : First order enumerated odes
Section : section 1
Problem number : 57
Date solved : Tuesday, December 17, 2024 at 12:58:23 PM
CAS classification : [_separable]

Solve

y′
2 = 1

x2y3

Solved as first order ode of type nonlinear p but separable

Time used: 0.325 (sec)

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x2 , g = 1

y3
. Hence the ode is

(y′)2 = 1
x2y3

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

1
x2 > 0
1
y3

> 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
1
y3

dy =
(√

1
x2

)
dx

− 1√
1
y3

dy =
(√

1
x2

)
dx

Integrating now gives the following solutions∫ 1√
1
y3

dy =
∫ √ 1

x2dx+ c1

2y4
√

1
y3

5 =
√

1
x2 x ln (x)∫

− 1√
1
y3

dy =
∫ √ 1

x2dx+ c1

−
2y4
√

1
y3

5 =
√

1
x2 x ln (x)

Therefore

2y4
√

1
y3

5 =
√

1
x2 x ln (x) + c1

−
2y4
√

1
y3

5 =
√

1
x2 x ln (x) + c1
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Summary of solutions found

−
2y4
√

1
y3

5 =
√

1
x2 x ln (x) + c1

2y4
√

1
y3

5 =
√

1
x2 x ln (x) + c1

Maple step by step solution

Let’s solve(
d
dx
y(x)

)2 = 1
x2y(x)3

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative[
d
dx
y(x) = 1

y(x)3/2x
, d
dx
y(x) = − 1

y(x)3/2x

]
� Solve the equation d

dx
y(x) = 1

y(x)3/2x

◦ Separate variables(
d
dx
y(x)

)
y(x)3/2 = 1

x

◦ Integrate both sides with respect to x∫ (
d
dx
y(x)

)
y(x)3/2 dx =

∫ 1
x
dx+ _C1

◦ Evaluate integral
2y(x)5/2

5 = ln (x) + _C1
◦ Solve for y(x)

y(x) =
(
80 ln(x)+80_C1

)2/5
4

� Solve the equation d
dx
y(x) = − 1

y(x)3/2x

◦ Separate variables(
d
dx
y(x)

)
y(x)3/2 = − 1

x

◦ Integrate both sides with respect to x∫ (
d
dx
y(x)

)
y(x)3/2 dx =

∫
− 1

x
dx+ _C1

◦ Evaluate integral
2y(x)5/2

5 = − ln (x) + _C1
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◦ Solve for y(x)

y(x) =
(
−80 ln(x)+80_C1

)2/5
4

• Set of solutions{
y(x) = (−80 ln(x)+80C1 )2/5

4 , y(x) = (80 ln(x)+80C1 )2/5
4

}
Maple trace� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �
Maple dsolve solution

Solving time : 0.158 (sec)
Leaf size : 29� �
dsolve(diff(y(x),x)^2 = 1/x^2/y(x)^3,

y(x),singsol=all)� �
ln (x)− 2y5/2

5 − c1 = 0

ln (x) + 2y5/2
5 − c1 = 0
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Mathematica DSolve solution

Solving time : 0.132 (sec)
Leaf size : 45� �
DSolve[{(D[y[x],x])^2==1/(x^2*y[x]^3),{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

(
5
2

)2/5

(− log(x) + c1)2/5

y(x) →
(
5
2

)2/5

(log(x) + c1)2/5
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2.1.58 problem 58

Solved as first order ode of type nonlinear p but separable . . . 406
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 409
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 411
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 412

Internal problem ID [8718]
Book : First order enumerated odes
Section : section 1
Problem number : 58
Date solved : Tuesday, December 17, 2024 at 12:58:24 PM
CAS classification : [[_homogeneous, ‘class G‘], _rational]

Solve

y′
4 = 1

xy3

Solved as first order ode of type nonlinear p but separable

Time used: 0.720 (sec)

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 4,m = 1, f = 1
x
, g = 1

y3
. Hence the ode is

(y′)4 = 1
x y3

Solving for y′ from (1) gives

y′ = (fg)1/4

y′ = i(fg)1/4

y′ = −(fg)1/4

y′ = −i(fg)1/4

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.
1
x
> 0

1
y3

> 0
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Under the above assumption the differential equations become separable and can be
written as

y′ = f 1/4g1/4

y′ = if 1/4g1/4

y′ = −f 1/4g1/4

y′ = −if 1/4g1/4

Therefore
1

g1/4
dy =

(
f 1/4) dx

− i

g1/4
dy =

(
f 1/4) dx

− 1
g1/4

dy =
(
f 1/4) dx

i

g1/4
dy =

(
f 1/4) dx

Replacing f(x), g(y) by their values gives

1(
1
y3

)1/4 dy =
((

1
x

)1/4
)

dx

− i(
1
y3

)1/4 dy =
((

1
x

)1/4
)

dx

− 1(
1
y3

)1/4 dy =
((

1
x

)1/4
)

dx

i(
1
y3

)1/4 dy =
((

1
x

)1/4
)

dx
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Integrating now gives the following solutions∫ 1(
1
y3

)1/4dy =
∫ (1

x

)1/4

dx+ c1

4y4
(

1
y3

)3/4
7 =

4x
( 1
x

)1/4
3∫

− i(
1
y3

)1/4dy =
∫ (1

x

)1/4

dx+ c1

−
4iy4

(
1
y3

)3/4
7 =

4x
( 1
x

)1/4
3∫

− 1(
1
y3

)1/4dy =
∫ (1

x

)1/4

dx+ c1

−
4y4
(

1
y3

)3/4
7 =

4x
( 1
x

)1/4
3∫

i(
1
y3

)1/4dy =
∫ (1

x

)1/4

dx+ c1

4iy4
(

1
y3

)3/4
7 =

4x
( 1
x

)1/4
3

Therefore

4y4
(

1
y3

)3/4
7 =

4x
( 1
x

)1/4
3 + c1

−
4iy4

(
1
y3

)3/4
7 =

4x
( 1
x

)1/4
3 + c1

−
4y4
(

1
y3

)3/4
7 =

4x
( 1
x

)1/4
3 + c1

4iy4
(

1
y3

)3/4
7 =

4x
( 1
x

)1/4
3 + c1
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Summary of solutions found

−
4iy4

(
1
y3

)3/4
7 =

4x
( 1
x

)1/4
3 + c1

4iy4
(

1
y3

)3/4
7 =

4x
( 1
x

)1/4
3 + c1

−
4y4
(

1
y3

)3/4
7 =

4x
( 1
x

)1/4
3 + c1

4y4
(

1
y3

)3/4
7 =

4x
( 1
x

)1/4
3 + c1

Maple step by step solution

Let’s solve(
d
dx
y(x)

)4 = 1
xy(x)3

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative[
d
dx
y(x) =

(
x3y(x)

)1/4
xy(x) , d

dx
y(x) = −

(
x3y(x)

)1/4
xy(x) , d

dx
y(x) = −I

(
x3y(x)

)1/4
xy(x) , d

dx
y(x) = I

(
x3y(x)

)1/4
xy(x)

]
• Solve the equation d

dx
y(x) =

(
x3y(x)

)1/4
xy(x)

• Solve the equation d
dx
y(x) = −

(
x3y(x)

)1/4
xy(x)

• Solve the equation d
dx
y(x) = −I

(
x3y(x)

)1/4
xy(x)

• Solve the equation d
dx
y(x) = I

(
x3y(x)

)1/4
xy(x)

• Set of solutions
{workingODE ,workingODE ,workingODE ,workingODE}



chapter 2. book solved problems 410

Maple trace� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 4 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful
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-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �

Maple dsolve solution

Solving time : 0.223 (sec)
Leaf size : 121� �
dsolve(diff(y(x),x)^4 = 1/x/y(x)^3,

y(x),singsol=all)� �
−7x3 − 3(yx3)3/4 y + c1x

9/4

x9/4 = 0

−7x3 + 3i(yx3)3/4 y − c1x
9/4

x9/4 = 0

7x3 + 3i(yx3)3/4 y − c1x
9/4

x9/4 = 0

7x3 + 3(yx3)3/4 y − c1x
9/4

x9/4 = 0
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Mathematica DSolve solution

Solving time : 6.693 (sec)
Leaf size : 129� �
DSolve[{(D[y[x],x])^4==1/(x*y[x]^3),{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) →

(
−28x3/4

3 + 7c1
)

4/7

2 7
√
2

y(x) →
(
7c1 − 28

3 ix
3/4) 4/7

2 7
√
2

y(x) →
(28

3 ix
3/4 + 7c1

) 4/7

2 7
√
2

y(x) →

(
28x3/4

3 + 7c1
)

4/7

2 7
√
2
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2.1.59 problem 59

Solved as first order ode of type nonlinear p but separable . . . 413
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 415
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 417
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 418

Internal problem ID [8719]
Book : First order enumerated odes
Section : section 1
Problem number : 59
Date solved : Tuesday, December 17, 2024 at 12:58:25 PM
CAS classification : [_separable]

Solve

y′
2 = 1

x3y4

Solved as first order ode of type nonlinear p but separable

Time used: 0.469 (sec)

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x3 , g = 1

y4
. Hence the ode is

(y′)2 = 1
x3y4

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

1
x3 > 0
1
y4

> 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
1
y4

dy =
(√

1
x3

)
dx

− 1√
1
y4

dy =
(√

1
x3

)
dx

Integrating now gives the following solutions∫ 1√
1
y4

dy =
∫ √ 1

x3dx+ c1

y5
√

1
y4

3 = −2x
√

1
x3∫

− 1√
1
y4

dy =
∫ √ 1

x3dx+ c1

−
y5
√

1
y4

3 = −2x
√

1
x3

Therefore

y5
√

1
y4

3 = −2x
√

1
x3 + c1

−
y5
√

1
y4

3 = −2x
√

1
x3 + c1
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Summary of solutions found

−
y5
√

1
y4

3 = −2x
√

1
x3 + c1

y5
√

1
y4

3 = −2x
√

1
x3 + c1

Maple step by step solution

Let’s solve(
d
dx
y(x)

)2 = 1
y(x)4x3

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative[
d
dx
y(x) = 1

x3/2y(x)2 ,
d
dx
y(x) = − 1

x3/2y(x)2

]
� Solve the equation d

dx
y(x) = 1

x3/2y(x)2

◦ Separate variables
y(x)2

(
d
dx
y(x)

)
= 1

x3/2

◦ Integrate both sides with respect to x∫
y(x)2

(
d
dx
y(x)

)
dx =

∫ 1
x3/2dx+ _C1

◦ Evaluate integral
y(x)3
3 = − 2√

x
+ _C1

◦ Solve for y(x)

y(x) =
(

3
√
x_C1−6√

x

)1/3
� Solve the equation d

dx
y(x) = − 1

x3/2y(x)2

◦ Separate variables
y(x)2

(
d
dx
y(x)

)
= − 1

x3/2

◦ Integrate both sides with respect to x∫
y(x)2

(
d
dx
y(x)

)
dx =

∫
− 1

x3/2dx+ _C1
◦ Evaluate integral

y(x)3
3 = 2√

x
+ _C1
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◦ Solve for y(x)

y(x) =
(

3
√
x_C1+6√

x

)1/3
• Set of solutions{

y(x) =
(

3
√
xC1−6√

x

)1/3
, y(x) =

(
3
√
xC1+6√

x

)1/3}

Maple trace� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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Maple dsolve solution

Solving time : 0.070 (sec)
Leaf size : 133� �
dsolve(diff(y(x),x)^2 = 1/x^3/y(x)^4,

y(x),singsol=all)� �
y =

(
c1
√
x− 6√
x

)1/3

y = −

(
c1
√
x−6√
x

)1/3 (
1 + i

√
3
)

2

y =

(
c1
√
x−6√
x

)1/3 (
i
√
3− 1

)
2

y =
(
c1
√
x+ 6√
x

)1/3

y = −

(
c1
√
x+6√
x

)1/3 (
1 + i

√
3
)

2

y =

(
c1
√
x+6√
x

)1/3 (
i
√
3− 1

)
2
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Mathematica DSolve solution

Solving time : 3.383 (sec)
Leaf size : 157� �
DSolve[{(D[y[x],x])^2==1/(x^3*y[x]^4),{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → − 3

√
−3 3

√
− 2√

x
+ c1

y(x) → 3
√
3 3

√
− 2√

x
+ c1

y(x) → (−1)2/3 3
√
3 3

√
− 2√

x
+ c1

y(x) → − 3
√
−3 3

√
2√
x
+ c1

y(x) → 3
√
3 3

√
2√
x
+ c1

y(x) → (−1)2/3 3
√
3 3

√
2√
x
+ c1
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2.1.60 problem 60

Solved as first order homogeneous class C ode . . . . . . . . . . 419
Solved using Lie symmetry for first order ode . . . . . . . . . . 420
Solved as first order ode of type dAlembert . . . . . . . . . . . 426
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 428
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 429
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 429

Internal problem ID [8720]
Book : First order enumerated odes
Section : section 1
Problem number : 60
Date solved : Tuesday, December 17, 2024 at 12:58:26 PM
CAS classification : [[_homogeneous, ‘class C‘], _dAlembert]

Solve

y′ =
√
1 + 6x+ y

Solved as first order homogeneous class C ode

Time used: 0.536 (sec)

Let

z = 1 + 6x+ y (1)

Then

z′(x) = 6 + y′

Therefore

y′ = z′(x)− 6

Hence the given ode can now be written as

z′(x)− 6 =
√
z

This is separable first order ode. Integrating∫
dx =

∫ 1√
z + 6

dz

x+ c1 = 2
√
z − 6 ln

(√
z + 6

)
+ 6 ln

(
−6 +

√
z
)
− 6 ln (−36 + z)
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Replacing z back by its value from (1) then the above gives the solution as Solving for
y gives

y = e
−2LambertW

(
− e−1− x

12− c1
12

6

)
−2−x

6−
c1
6 − 12 e

−LambertW
(
− e−1− x

12− c1
12

6

)
−1− x

12−
c1
12 − 6x+ 35

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.77: Slope field plot
y′ =

√
1 + 6x+ y

Summary of solutions found

y = e
−2LambertW

(
− e−1− x

12− c1
12

6

)
−2−x

6−
c1
6 − 12 e

−LambertW
(
− e−1− x

12− c1
12

6

)
−1− x

12−
c1
12 − 6x+ 35

Solved using Lie symmetry for first order ode

Time used: 1.181 (sec)

Writing the ode as

y′ =
√
1 + 6x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

b2 +
√
1 + 6x+ y (b3 − a2)− (1 + 6x+ y) a3 −

3(xa2 + ya3 + a1)√
1 + 6x+ y

− xb2 + yb3 + b1
2
√
1 + 6x+ y

= 0

(5E)

Putting the above in normal form gives

−12a3
√
1 + 6x+ y x+ 2a3

√
1 + 6x+ y y + 2a3

√
1 + 6x+ y − 2b2

√
1 + 6x+ y + 18xa2 + xb2 − 12b3x+ 2a2y + 6ya3 − yb3 + 6a1 + 2a2 + b1 − 2b3
2
√
1 + 6x+ y

= 0

Setting the numerator to zero gives

(6E)−12a3
√

1 + 6x+ y x− 2a3
√

1 + 6x+ y y − 2a3
√
1 + 6x+ y

+ 2b2
√

1 + 6x+ y − 18xa2 − xb2 + 12b3x
− 2a2y − 6ya3 + yb3 − 6a1 − 2a2 − b1 + 2b3 = 0

Simplifying the above gives

(6E)−2(1+6x+y) a2+2(1+6x+y) b3−12a3
√
1 + 6x+ y x−2a3

√
1 + 6x+ y y

−2a3
√

1 + 6x+ y+2b2
√

1 + 6x+ y−6xa2−xb2−6ya3−yb3−6a1−b1 = 0

Since the PDE has radicals, simplifying gives

−12a3
√

1 + 6x+ y x− 2a3
√
1 + 6x+ y y − 2a3

√
1 + 6x+ y + 2b2

√
1 + 6x+ y

− 18xa2 − xb2 + 12b3x− 2a2y − 6ya3 + yb3 − 6a1 − 2a2 − b1 + 2b3 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
1 + 6x+ y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

1 + 6x+ y = v3
}

The above PDE (6E) now becomes

(7E)−12a3v3v1 − 2a3v3v2 − 18v1a2 − 2a2v2 − 6v2a3 − 2a3v3
− v1b2 + 2b2v3 + 12b3v1 + v2b3 − 6a1 − 2a2 − b1 + 2b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−12a3v3v1 + (−18a2 − b2 + 12b3) v1 − 2a3v3v2 + (−2a2 − 6a3 + b3) v2
+ (−2a3 + 2b2) v3 − 6a1 − 2a2 − b1 + 2b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−12a3 = 0
−2a3 = 0

−2a3 + 2b2 = 0
−18a2 − b2 + 12b3 = 0
−2a2 − 6a3 + b3 = 0

−6a1 − 2a2 − b1 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = −6a1
b2 = 0
b3 = 0
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = −6

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −6−
(√

1 + 6x+ y
)
(1)

= −
√
1 + 6x+ y − 6

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√
1 + 6x+ y − 6

dy

Which results in

S = −2
√
1 + 6x+ y + 6 ln

(√
1 + 6x+ y + 6

)
− 6 ln

(
−6 +

√
1 + 6x+ y

)
+ 6 ln (−35 + 6x+ y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√

1 + 6x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 6√
1 + 6x+ y + 6

Sy =
1

−
√
1 + 6x+ y − 6

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
−1 dR

S(R) = −R + c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

−2
√
1 + 6x+ y + 6 ln

(√
1 + 6x+ y + 6

)
− 6 ln

(
−6 +

√
1 + 6x+ y

)
+ 6 ln (−35 + 6x+ y) = −x+ c2

Which gives

y = e
−2LambertW

(
− e−1− x

12+ c2
12

6

)
−2−x

6+
c2
6 − 12 e

−LambertW
(
− e−1− x

12+ c2
12

6

)
−1− x

12+
c2
12 − 6x+ 35
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
√
1 + 6x+ y dS

dR
= −1

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = −2
√
1 + 6x+ y + 6 ln

(√
1 + 6x+ y + 6

)
− 6 ln

(
−6 +

√
1 + 6x+ y

)
+ 6 ln (−35 + 6x+ y)

–4

–2

0

2

4

S(R)

–4 –2 2 4

R

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.78: Slope field plot
y′ =

√
1 + 6x+ y

Summary of solutions found

y = e
−2LambertW

(
− e−1− x

12+ c2
12

6

)
−2−x

6+
c2
6 − 12 e

−LambertW
(
− e−1− x

12+ c2
12

6

)
−1− x

12+
c2
12 − 6x+ 35
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Solved as first order ode of type dAlembert

Time used: 0.268 (sec)

Let p = y′ the ode becomes

p =
√
1 + 6x+ y

Solving for y from the above results in

(1)y = p2 − 6x− 1

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved.

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −6
g = p2 − 1

Hence (2) becomes

p+ 6 = 2pp′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 6 = 0

No valid singular solutions found.

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x) + 6
2p (x) (3)
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This ODE is now solved for p(x). No inversion is needed. Integrating gives∫ 2p
p+ 6dp = dx

2p− 12 ln (p+ 6) = x+ c1

Singular solutions are found by solving

p+ 6
2p = 0

for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = −6

Solving for p(x) gives

p(x) = −6

p(x) = −6 LambertW
(
−e−1− x

12−
c1
12

6

)
− 6

Substituing the above solution for p in (2A) gives

y = −6x+ 35

y =
(
−6 LambertW

(
−e−1− x

12−
c1
12

6

)
− 6
)2

− 6x− 1

The solution
y = −6x+ 35

was found not to satisfy the ode or the IC. Hence it is removed.
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Figure 2.79: Slope field plot
y′ =

√
1 + 6x+ y

Summary of solutions found

y =
(
−6 LambertW

(
−e−1− x

12−
c1
12

6

)
− 6
)2

− 6x− 1

Maple step by step solution

Let’s solve
d
dx
y(x) =

√
1 + 6x+ y (x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) =

√
1 + 6x+ y (x)

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -6, y(x)` *** Sublevel 2 ***
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Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.029 (sec)
Leaf size : 57� �
dsolve(diff(y(x),x) = (1+6*x+y(x))^(1/2),

y(x),singsol=all)� �
x− 2

√
1 + 6x+ y + 6 ln

(
6 +

√
1 + 6x+ y

)
− 6 ln

(
−6 +

√
1 + 6x+ y

)
+ 6 ln (−35 + y + 6x)− c1 = 0

Mathematica DSolve solution

Solving time : 10.898 (sec)
Leaf size : 112� �
DSolve[{D[y[x],x]==(1+6*x+y[x])^(1/2),{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 36W

(
−1
6e

1
72 (−6x−73+6c1)

)
2 + 72W

(
−1
6e

1
72 (−6x−73+6c1)

)
− 6x+ 35

y(x) → 35− 6x

y(x) → 36W
(
−1
6e

1
72 (−6x−73)

)2

+ 72W
(
−1
6e

1
72 (−6x−73)

)
− 6x+ 35
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2.1.61 problem 61

Solved as first order homogeneous class C ode . . . . . . . . . . 430
Solved using Lie symmetry for first order ode . . . . . . . . . . 431
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 437
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 437
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 438

Internal problem ID [8721]
Book : First order enumerated odes
Section : section 1
Problem number : 61
Date solved : Tuesday, December 17, 2024 at 12:58:29 PM
CAS classification : [[_homogeneous, ‘class C‘], _dAlembert]

Solve

y′ = (1 + 6x+ y)1/3

Solved as first order homogeneous class C ode

Time used: 0.240 (sec)

Let

z = 1 + 6x+ y (1)

Then

z′(x) = 6 + y′

Therefore

y′ = z′(x)− 6

Hence the given ode can now be written as

z′(x)− 6 = z1/3

This is separable first order ode. Integrating∫
dx =

∫ 1
z1/3 + 6dz

x+ c1 =
3z2/3
2 − 36 ln

(
z2/3 − 6z1/3 + 36

)
+ 72 ln

(
z1/3 + 6

)
+ 36 ln (216 + z)− 18z1/3
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Replacing z back by its value from (1) then the above gives the solution as
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Figure 2.80: Slope field plot
y′ = (1 + 6x+ y)1/3

Summary of solutions found

3(1 + 6x+ y)2/3

2 − 36 ln
(
(1 + 6x+ y)2/3

−6(1+6x+y)1/3+36
)
+72 ln

(
(1+6x+y)1/3+6

)
+36 ln (217+6x+y)−18(1+6x+y)1/3 =x+c1

Solved using Lie symmetry for first order ode

Time used: 0.928 (sec)

Writing the ode as

y′ = (1 + 6x+ y)1/3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + (1 + 6x+ y)1/3 (b3 − a2)− (1 + 6x+ y)2/3 a3

− 2(xa2 + ya3 + a1)
(1 + 6x+ y)2/3

− xb2 + yb3 + b1

3 (1 + 6x+ y)2/3
= 0

Putting the above in normal form gives

−3(1 + 6x+ y)4/3 a3 − 3b2(1 + 6x+ y)2/3 + 24xa2 + xb2 − 18b3x+ 3a2y + 6ya3 − 2yb3 + 6a1 + 3a2 + b1 − 3b3
3 (1 + 6x+ y)2/3

=0

Setting the numerator to zero gives

(6E)−3(1 + 6x+ y)4/3 a3 + 3b2(1 + 6x+ y)2/3 − 24xa2 − xb2
+ 18b3x− 3a2y − 6ya3 + 2yb3 − 6a1 − 3a2 − b1 + 3b3 = 0

Simplifying the above gives

(6E)−3(1 + 6x+ y)4/3 a3 − 3(1 + 6x+ y) a2 + 3(1 + 6x+ y) b3
+ 3b2(1 + 6x+ y)2/3 − 6xa2 − xb2 − 6ya3 − yb3 − 6a1 − b1 = 0

Since the PDE has radicals, simplifying gives

−18(1 + 6x+ y)1/3 a3x+ 3b2(1 + 6x+ y)2/3 − 3(1 + 6x+ y)1/3 a3y − 24xa2 − xb2

+ 18b3x− 3(1 + 6x+ y)1/3 a3 − 3a2y − 6ya3 + 2yb3 − 6a1 − 3a2 − b1 + 3b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y, (1 + 6x+ y)1/3 , (1 + 6x+ y)2/3

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2, (1 + 6x+ y)1/3 = v3, (1 + 6x+ y)2/3 = v4
}



chapter 2. book solved problems 433

The above PDE (6E) now becomes

(7E)−18v3a3v1 − 3v3a3v2 − 24v1a2 − 3a2v2 − 6v2a3 − 3v3a3
− v1b2 + 3b2v4 + 18b3v1 + 2v2b3 − 6a1 − 3a2 − b1 + 3b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)−18v3a3v1 + (−24a2 − b2 + 18b3) v1 − 3v3a3v2
+ (−3a2 − 6a3 + 2b3) v2 − 3v3a3 + 3b2v4 − 6a1 − 3a2 − b1 + 3b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−18a3 = 0
−3a3 = 0
3b2 = 0

−24a2 − b2 + 18b3 = 0
−3a2 − 6a3 + 2b3 = 0

−6a1 − 3a2 − b1 + 3b3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = −6a1
b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = −6
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −6−
(
(1 + 6x+ y)1/3

)
(1)

= −(1 + 6x+ y)1/3 − 6
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− (1 + 6x+ y)1/3 − 6
dy

Which results in

S = −3(1 + 6x+ y)2/3

2 + 36 ln
(
(1 + 6x+ y)2/3 − 6(1 + 6x+ y)1/3 + 36

)
− 72 ln

(
(1 + 6x+ y)1/3 + 6

)
− 36 ln (217 + 6x+ y) + 18(1 + 6x+ y)1/3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (1 + 6x+ y)1/3
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 6
(1 + 6x+ y)1/3 + 6

Sy =
1

− (1 + 6x+ y)1/3 − 6

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
−1 dR

S(R) = −R + c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

−3(1 + 6x+ y)2/3

2 + 36 ln
(
(1 + 6x+ y)2/3 − 6(1 + 6x+ y)1/3 + 36

)
− 72 ln

(
(1 + 6x+ y)1/3 + 6

)
− 36 ln (217 + 6x+ y) + 18(1 + 6x+ y)1/3 = −x+ c2



chapter 2. book solved problems 436

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (1 + 6x+ y)1/3 dS
dR

= −1

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = −3(1 + 6x+ y)2/3

2 + 36 ln
(
(1 + 6x+ y)2/3 − 6(1 + 6x+ y)1/3 + 36

)
− 72 ln

(
(1 + 6x+ y)1/3 + 6

)
− 36 ln (217 + 6x+ y) + 18(1 + 6x+ y)1/3

–4

–2

0

2

4

S(R)
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R
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0
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y(x)
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x

Figure 2.81: Slope field plot
y′ = (1 + 6x+ y)1/3

Summary of solutions found

−3(1 + 6x+ y)2/3

2 + 36 ln
(
(1 + 6x+ y)2/3

−6(1+6x+y)1/3+36
)
−72 ln

(
(1+6x+y)1/3+6

)
−36 ln (217+6x+y)+18(1+6x+y)1/3 =−x+c2
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Maple step by step solution

Let’s solve
d
dx
y(x) = (1 + 6x+ y(x))1/3

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = (1 + 6x+ y(x))1/3

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.029 (sec)
Leaf size : 79� �
dsolve(diff(y(x),x) = (1+6*x+y(x))^(1/3),

y(x),singsol=all)� �
x− 3(1 + 6x+ y)2/3

2 − 72 ln
(
6 + (1 + 6x+ y)1/3

)
+36 ln

(
(1+6x+y)2/3−6(1+6x+y)1/3+36

)
−36 ln (217+y+6x)+18(1+6x+y)1/3−c1 =0
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Mathematica DSolve solution

Solving time : 0.229 (sec)
Leaf size : 66� �
DSolve[{D[y[x],x]==(1+6*x+y[x])^(1/3),{}},

y[x],x,IncludeSingularSolutions->True]� �
Solve

[
1
6

(
y(x)− 9(y(x) + 6x+ 1)2/3 + 108 3

√
y(x) + 6x+ 1

− 648 log
(

3
√

y(x) + 6x+ 1 + 6
)
+ 6x+ 1

)
− y(x)

6 = c1, y(x)
]
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2.1.62 problem 62

Solved as first order homogeneous class C ode . . . . . . . . . . 439
Solved using Lie symmetry for first order ode . . . . . . . . . . 440
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 446
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 446
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 447

Internal problem ID [8722]
Book : First order enumerated odes
Section : section 1
Problem number : 62
Date solved : Tuesday, December 17, 2024 at 12:58:31 PM
CAS classification : [[_homogeneous, ‘class C‘], _dAlembert]

Solve

y′ = (1 + 6x+ y)1/4

Solved as first order homogeneous class C ode

Time used: 0.237 (sec)

Let

z = 1 + 6x+ y (1)

Then

z′(x) = 6 + y′

Therefore

y′ = z′(x)− 6

Hence the given ode can now be written as

z′(x)− 6 = z1/4

This is separable first order ode. Integrating∫
dx =

∫ 1
z1/4 + 6dz

x+ c1 = −216 ln (−z + 1296)− 12
√
z + 216 ln

(√
z + 36

)
− 216 ln

(√
z − 36

)
+ 144z1/4 − 432 ln

(
z1/4 + 6

)
+ 432 ln

(
z1/4 − 6

)
+ 4z3/4

3
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Replacing z back by its value from (1) then the above gives the solution as
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Figure 2.82: Slope field plot
y′ = (1 + 6x+ y)1/4

Summary of solutions found

−216 ln (1295− 6x− y)− 12
√

1 + 6x+ y + 216 ln
(√

1 + 6x+ y + 36
)

− 216 ln
(√

1 + 6x+ y − 36
)
+ 144(1 + 6x+ y)1/4 − 432 ln

(
(1 + 6x+ y)1/4

+ 6
)
+ 432 ln

(
(1 + 6x+ y)1/4 − 6

)
+ 4(1 + 6x+ y)3/4

3 = x+ c1

Solved using Lie symmetry for first order ode

Time used: 0.756 (sec)

Writing the ode as

y′ = (1 + 6x+ y)1/4

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + (1 + 6x+ y)1/4 (b3 − a2)−
√
1 + 6x+ y a3

− 3(xa2 + ya3 + a1)
2 (1 + 6x+ y)3/4

− xb2 + yb3 + b1

4 (1 + 6x+ y)3/4
= 0

Putting the above in normal form gives

−4(1 + 6x+ y)5/4 a3 − 4b2(1 + 6x+ y)3/4 + 30xa2 + xb2 − 24b3x+ 4a2y + 6ya3 − 3yb3 + 6a1 + 4a2 + b1 − 4b3
4 (1 + 6x+ y)3/4

=0

Setting the numerator to zero gives

(6E)−4(1 + 6x+ y)5/4 a3 + 4b2(1 + 6x+ y)3/4 − 30xa2 − xb2
+ 24b3x− 4a2y − 6ya3 + 3yb3 − 6a1 − 4a2 − b1 + 4b3 = 0

Simplifying the above gives

(6E)−4(1 + 6x+ y) a2 + 4(1 + 6x+ y) b3 − 4(1 + 6x+ y)5/4 a3
+ 4b2(1 + 6x+ y)3/4 − 6xa2 − xb2 − 6ya3 − yb3 − 6a1 − b1 = 0

Since the PDE has radicals, simplifying gives

4b2(1 + 6x+ y)3/4 − 24(1 + 6x+ y)1/4 a3x− 4(1 + 6x+ y)1/4 a3y − 30xa2 − xb2

+ 24b3x− 4(1 + 6x+ y)1/4 a3 − 4a2y − 6ya3 + 3yb3 − 6a1 − 4a2 − b1 + 4b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y, (1 + 6x+ y)1/4 , (1 + 6x+ y)3/4

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2, (1 + 6x+ y)1/4 = v3, (1 + 6x+ y)3/4 = v4
}
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The above PDE (6E) now becomes

(7E)−24v3a3v1 − 4v3a3v2 − 30v1a2 − 4a2v2 − 6v2a3 − 4v3a3
− v1b2 + 4b2v4 + 24b3v1 + 3v2b3 − 6a1 − 4a2 − b1 + 4b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)−24v3a3v1 + (−30a2 − b2 + 24b3) v1 − 4v3a3v2
+ (−4a2 − 6a3 + 3b3) v2 − 4v3a3 + 4b2v4 − 6a1 − 4a2 − b1 + 4b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−24a3 = 0
−4a3 = 0
4b2 = 0

−30a2 − b2 + 24b3 = 0
−4a2 − 6a3 + 3b3 = 0

−6a1 − 4a2 − b1 + 4b3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = −6a1
b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = −6
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= −6
1

= −6

This is easily solved to give

y = −6x+ c1

Where now the coordinate R is taken as the constant of integration. Hence

R = 6x+ y

And S is found from

dS = dx

ξ

= dx

1
Integrating gives

S =
∫

dx

T

= x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (1 + 6x+ y)1/4

Evaluating all the partial derivatives gives

Rx = 6
Ry = 1
Sx = 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

(1 + 6x+ y)1/4 + 6
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(1 +R)1/4 + 6

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫ 1
(1 +R)1/4 + 6

dR

S(R) = 4(1 +R)3/4

3 − 12
√
1 +R + 144(1 +R)1/4 − 864 ln

(
(1 +R)1/4 + 6

)
+ c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

x = 4(1 + 6x+ y)3/4

3 − 12
√

1 + 6x+ y + 144(1 + 6x+ y)1/4 − 864 ln
(
(1 + 6x+ y)1/4 + 6

)
+ c2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (1 + 6x+ y)1/4 dS
dR

= 1
(1+R)1/4+6

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = 6x+ y

S = x

–4

–2

0

2

4

S(R)

–4 –2 2 4

R

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.83: Slope field plot
y′ = (1 + 6x+ y)1/4

Summary of solutions found

x = 4(1 + 6x+ y)3/4

3 − 12
√

1 + 6x+ y

+ 144(1 + 6x+ y)1/4 − 864 ln
(
(1 + 6x+ y)1/4 + 6

)
+ c2
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Maple step by step solution

Let’s solve
d
dx
y(x) = (1 + 6x+ y(x))1/4

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = (1 + 6x+ y(x))1/4

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.030 (sec)
Leaf size : 109� �
dsolve(diff(y(x),x) = (1+6*x+y(x))^(1/4),

y(x),singsol=all)� �
x+ 216 ln (−y − 6x+ 1295) + 12

√
1 + 6x+ y − 216 ln

(√
1 + 6x+ y + 36

)
+ 216 ln

(√
1 + 6x+ y − 36

)
− 144(1 + 6x+ y)1/4 + 432 ln

(
6

+ (1 + 6x+ y)1/4
)
− 432 ln

(
(1 + 6x+ y)1/4 − 6

)
− 4(1 + 6x+ y)3/4

3 − c1 = 0
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Mathematica DSolve solution

Solving time : 0.325 (sec)
Leaf size : 79� �
DSolve[{D[y[x],x]==(1+6*x+y[x])^(1/4),{}},

y[x],x,IncludeSingularSolutions->True]� �
Solve

[
1
6

(
y(x)− 8(y(x) + 6x+ 1)3/4 + 72

√
y(x) + 6x+ 1− 864 4

√
y(x) + 6x+ 1

+ 5184 log
(

4
√

y(x) + 6x+ 1 + 6
)
+ 6x+ 1

)
− y(x)

6 = c1, y(x)
]
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2.1.63 problem 63

Solved as first order homogeneous class C ode . . . . . . . . . . 448
Solved using Lie symmetry for first order ode . . . . . . . . . . 449
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 455
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 456
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 456

Internal problem ID [8723]
Book : First order enumerated odes
Section : section 1
Problem number : 63
Date solved : Tuesday, December 17, 2024 at 12:58:33 PM
CAS classification : [[_homogeneous, ‘class C‘], _dAlembert]

Solve

y′ = (a+ bx+ y)4

Solved as first order homogeneous class C ode

Time used: 0.510 (sec)

Let

z = a+ bx+ y (1)

Then

z′(x) = b+ y′

Therefore

y′ = z′(x)− b

Hence the given ode can now be written as

z′(x)− b = z4

This is separable first order ode. Integrating∫
dx =

∫ 1
z4 + b

dz

x+ c1 =

√
2
(
ln
(

z2+b1/4z
√
2+

√
b

z2−b1/4z
√
2+

√
b

)
+ 2arctan

(√
2 z

b1/4
+ 1
)
+ 2arctan

(√
2 z

b1/4
− 1
))

8b3/4
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Replacing z back by its value from (1) then the above gives the solution as

Summary of solutions found

√
2
(
ln
(

(a+bx+y)2+b1/4(a+bx+y)
√
2+

√
b

(a+bx+y)2−b1/4(a+bx+y)
√
2+

√
b

)
+ 2arctan

(√
2 (a+bx+y)

b1/4
+ 1
)
+ 2arctan

(√
2 (a+bx+y)

b1/4
− 1
))

8b3/4 =x

+ c1

Solved using Lie symmetry for first order ode

Time used: 0.961 (sec)

Writing the ode as

y′ = (bx+ a+ y)4

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + (bx+ a+ y)4 (b3 − a2)− (bx+ a+ y)8 a3
− 4(bx+ a+ y)3 b(xa2 + ya3 + a1)− 4(bx+ a+ y)3 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

Expression too large to display
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Setting the numerator to zero gives

(6E)Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)

−56a b6a3v61v2 − 168a2b5a3v51v2 − 168a b5a3v51v22
− 280a3b4a3v41v2 − 420a2b4a3v41v22 − 280a b4a3v41v32
− 560a3b3a3v31v22 − 560a2b3a3v31v32 − 280a b3a3v31v42
− 560a3b2a3v21v32 − 420a2b2a3v21v42 − 168a b2a3v21v52
− 280a3ba3v1v42 − 168a2ba3v1v52 − 56aba3v1v62
+
(
−280a4b3a3 − 4b4a3 − 16b3a2 − 12b2b2

)
v31v2

+
(
−420a4b2a3 − 12b3a3 − 18b2a2 − 6b2b3 − 12bb2

)
v21v

2
2

+
(
−168a5b2a3 − 12a b3a3 − 36a b2a2

− 12b3a1 − 24abb2 − 12b2b1
)
v21v2

+
(
−280a4ba3 − 12b2a3 − 8ba2 − 8bb3 − 4b2

)
v1v

3
2

+
(
−168a5ba3 − 24a b2a3 − 24aba2 − 12abb3 − 12b2a1

− 12ab2 − 12bb1
)
v1v

2
2 +

(
−56a6ba3 − 12a2b2a3

− 24a2ba2 − 24a b2a1 − 12a2b2 − 24abb1
)
v1v2

− 28b2a3v21v62 − 8ba3v1v72 − 8a b7a3v71 − 8b7a3v71v2
− 28a2b6a3v61 − 28b6a3v61v22 − 56a3b5a3v51 − 56b5a3v51v32
− 70b4a3v41v42 − 56b3a3v31v52 + b2 − 4a3ba1
+
(
−70a4b4a3 − 5b4a2 + b4b3 − 4b3b2

)
v41 +

(
−56a5b3a3

− 16a b3a2 + 4a b3b3 − 4b4a1 − 12a b2b2 − 4b3b1
)
v31

+
(
−28a6b2a3−18a2b2a2+6a2b2b3−12a b3a1−12a2bb2

−12a b2b1
)
v21 +

(
−8a7ba3−8a3ba2+4a3bb3−12a2b2a1

− 4a3b2− 12a2bb1
)
v1+

(
−70a4a3− 4ba3−a2− 3b3

)
v42

+
(
−56a5a3 − 12aba3 − 4aa2 − 8ab3 − 4ba1 − 4b1

)
v32

+
(
−28a6a3 − 12a2ba3 − 6a2a2

− 6a2b3 − 12aba1 − 12ab1
)
v22

+
(
−8a7a3 − 4a3ba3 − 4a3a2 − 12a2ba1 − 12a2b1

)
v2

− b8a3v
8
1 − 56a3a3v52 − 28a2a3v62 − 8aa3v72

− a4a2 + a4b3 − a8a3 − 4a3b1 − a3v
8
2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−a3 = 0

−8aa3 = 0
−28a2a3 = 0
−56a3a3 = 0
−8ba3 = 0

−28b2a3 = 0
−56b3a3 = 0
−70b4a3 = 0
−56b5a3 = 0
−28b6a3 = 0
−8b7a3 = 0
−b8a3 = 0

−56aba3 = 0
−168a b2a3 = 0
−280a b3a3 = 0
−280a b4a3 = 0
−168a b5a3 = 0
−56a b6a3 = 0
−8a b7a3 = 0

−168a2ba3 = 0
−420a2b2a3 = 0
−560a2b3a3 = 0
−420a2b4a3 = 0
−168a2b5a3 = 0
−28a2b6a3 = 0
−280a3ba3 = 0
−560a3b2a3 = 0
−560a3b3a3 = 0
−280a3b4a3 = 0
−56a3b5a3 = 0

−280a4b3a3 − 4b4a3 − 16b3a2 − 12b2b2 = 0
−70a4a3 − 4ba3 − a2 − 3b3 = 0

−70a4b4a3 − 5b4a2 + b4b3 − 4b3b2 = 0
−8a7a3 − 4a3ba3 − 4a3a2 − 12a2ba1 − 12a2b1 = 0

−280a4ba3 − 12b2a3 − 8ba2 − 8bb3 − 4b2 = 0
−420a4b2a3 − 12b3a3 − 18b2a2 − 6b2b3 − 12bb2 = 0

−168a5b2a3 − 12a b3a3 − 36a b2a2 − 12b3a1 − 24abb2 − 12b2b1 = 0
−56a6ba3 − 12a2b2a3 − 24a2ba2 − 24a b2a1 − 12a2b2 − 24abb1 = 0

−56a5a3 − 12aba3 − 4aa2 − 8ab3 − 4ba1 − 4b1 = 0
−28a6a3 − 12a2ba3 − 6a2a2 − 6a2b3 − 12aba1 − 12ab1 = 0

−56a5b3a3 − 16a b3a2 + 4a b3b3 − 4b4a1 − 12a b2b2 − 4b3b1 = 0
−28a6b2a3 − 18a2b2a2 + 6a2b2b3 − 12a b3a1 − 12a2bb2 − 12a b2b1 = 0

−8a7ba3 − 8a3ba2 + 4a3bb3 − 12a2b2a1 − 4a3b2 − 12a2bb1 = 0
−a8a3 − a4a2 + a4b3 − 4a3ba1 − 4a3b1 + b2 = 0

−168a5ba3 − 24a b2a3 − 24aba2 − 12abb3 − 12b2a1 − 12ab2 − 12bb1 = 0
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Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = −ba1

b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = −b

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= −b

1
= −b

This is easily solved to give

y = −bx+ c1

Where now the coordinate R is taken as the constant of integration. Hence

R = bx+ y
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And S is found from

dS = dx

ξ

= dx

1
Integrating gives

S =
∫

dx

T

= x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (bx+ a+ y)4

Evaluating all the partial derivatives gives

Rx = b

Ry = 1
Sx = 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

b+ (bx+ a+ y)4
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

b+ (R + a)4

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.
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Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫ 1
R4 + 4R3a+ 6R2a2 + 4Ra3 + a4 + b

dR

S(R) =

( ∑
_R=RootOf

(
_Z4+4_Z3a+6_Z2a2+4a3_Z+a4+b

) ln
(
R−_R

)
_R3

+3_R2
a+3_R a2+a3

)
4 + c2

S(R) =
∫ 1

R4 + 4R3a+ 6R2a2 + 4Ra3 + a4 + b
dR + c2

This results in

x =
∫ y 1

(bx+ _a)4 + 4 (bx+ _a)3 a+ 6 (bx+ _a)2 a2 + 4 (bx+ _a) a3 + a4 + b
d_a+ c2

Summary of solutions found

x=
∫ y 1

(bx+ _a)4 + 4 (bx+ _a)3 a+ 6 (bx+ _a)2 a2 + 4 (bx+ _a) a3 + a4 + b
d_a+c2

Maple step by step solution

Let’s solve
d
dx
y(x) = (a+ bx+ y(x))4

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = (a+ bx+ y(x))4

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
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trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -b, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.040 (sec)
Leaf size : 49� �
dsolve(diff(y(x),x) = (a+b*x+y(x))^4,

y(x),singsol=all)� �
y = −bx+RootOf

(
−x+

∫ _Z 1
_a4 + 4_a3a+ 6_a2a2 + 4_a a3 + a4 + b

d_a+ c1

)

Mathematica DSolve solution

Solving time : 0.413 (sec)
Leaf size : 163� �
DSolve[{D[y[x],x]==(a+b*x+y[x])^(4),{}},

y[x],x,IncludeSingularSolutions->True]� �

Solve

2
√
2 arctan

(
1−

√
2(a+bx+y(x))

4√
b

)
− 2

√
2 arctan

(√
2(a+bx+y(x))

4√
b

+ 1
)
+
√
2 log

(
(a+ bx+ y(x))2 −

√
2 4√

b(a+ bx+ y(x)) +
√
b
)
−

√
2 log

(
(a+ bx+ y(x))2 +

√
2 4√

b(a+ bx+ y(x)) +
√
b
)
+ 8b3/4x

8b3/4 = c1, y(x)


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2.1.64 problem 64

Solved as first order homogeneous class C ode . . . . . . . . . . 457
Solved using Lie symmetry for first order ode . . . . . . . . . . 459
Solved as first order ode of type dAlembert . . . . . . . . . . . 468
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 481
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 481
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 482

Internal problem ID [8724]
Book : First order enumerated odes
Section : section 1
Problem number : 64
Date solved : Tuesday, December 17, 2024 at 01:01:14 PM
CAS classification : [[_homogeneous, ‘class C‘], _dAlembert]

Solve

y′ = (π + x+ 7y)7/2

Solved as first order homogeneous class C ode

Time used: 0.861 (sec)

Let

z = π + x+ 7y (1)

Then

z′(x) = 1 + 7y′

Therefore

y′ = z′(x)
7 − 1

7

Hence the given ode can now be written as

z′(x)
7 − 1

7 = z7/2
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This is separable first order ode. Integrating∫
dx =

∫ 1
7z7/2 + 1dz

x+ c1 = −

( ∑
_R=RootOf

(
49_Z7−1

) ln
(
z−_R

)
_R6

)
343 +

( ∑
_R=RootOf

(
7_Z7+1

) ln
(√

z−_R
)

_R5

)
49

+

( ∑
_R=RootOf

(
7_Z7−1

) ln
(√

z−_R
)

_R5

)
49

Replacing z back by its value from (1) then the above gives the solution as
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Figure 2.84: Slope field plot
y′ = (π + x+ 7y)7/2

Summary of solutions found

−

( ∑
_R=RootOf

(
49_Z7−1

) ln
(
π+x+7y−_R

)
_R6

)
343 +

( ∑
_R=RootOf

(
7_Z7+1

) ln
(√

π+x+7y−_R
)

_R5

)
49

+

( ∑
_R=RootOf

(
7_Z7−1

) ln
(√

π+x+7y−_R
)

_R5

)
49 = x+ c1
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Solved using Lie symmetry for first order ode

Time used: 2.738 (sec)

Writing the ode as

y′ = (π + x+ 7y)7/2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + (π + x+ 7y)7/2 (b3 − a2)− (π + x+ 7y)7 a3

− 7(π + x+ 7y)5/2 (xa2 + ya3 + a1)
2

− 49(π + x+ 7y)5/2 (xb2 + yb3 + b1)
2 = 0
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Putting the above in normal form gives

−x7a3 − 823543y7a3 + (π + x+ 7y)7/2 b3

− (π+x+7y)7/2 a2−π7a3−
7(π + x+ 7y)5/2 a1

2 − 49(π + x+ 7y)5/2 b1
2

+ b2 −
7(π + x+ 7y)5/2 xa2

2 − 7(π + x+ 7y)5/2 ya3
2

− 49(π + x+ 7y)5/2 xb2
2 − 49(π + x+ 7y)5/2 yb3

2 − 7π6xa3 − 49π6ya3

− 21π5x2a3 − 1029π5y2a3 − 35π4x3a3 − 12005π4y3a3 − 35π3x4a3
− 84035π3y4a3 − 21π2x5a3 − 352947π2y5a3 − 7π x6a3 − 823543π y6a3
− 49x6ya3 − 1029x5y2a3 − 12005x4y3a3 − 84035x3y4a3 − 352947x2y5a3
− 823543x y6a3 − 735π4x2ya3 − 5145π4x y2a3 − 980π3x3ya3
− 10290π3x2y2a3 − 48020π3x y3a3 − 735π2x4ya3 − 10290π2x3y2a3
− 72030π2x2y3a3 − 252105π2x y4a3 − 294π x5ya3 − 5145π x4y2a3
− 48020π x3y3a3 − 252105π x2y4a3 − 705894πx y5a3 − 294π5xya3 = 0

Setting the numerator to zero gives

(6E)−2x7a3−1647086y7a3+2(π+x+7y)7/2 b3−2(π+x+7y)7/2 a2−2π7a3−7(π+x+7y)5/2 a1
−49(π+x+7y)5/2 b1+2b2−7(π+x+7y)5/2 xa2−7(π+x+7y)5/2 ya3−49(π+x+7y)5/2 xb2−49(π+x+7y)5/2 yb3−14π6xa3−98π6ya3−42π5x2a3−2058π5y2a3−70π4x3a3−24010π4y3a3−70π3x4a3−168070π3y4a3−42π2x5a3−705894π2y5a3−14π x6a3−1647086π y6a3−98x6ya3−2058x5y2a3−24010x4y3a3−168070x3y4a3−705894x2y5a3−1647086x y6a3−1470π4x2ya3−10290π4x y2a3−1960π3x3ya3−20580π3x2y2a3−96040π3x y3a3−1470π2x4ya3−20580π2x3y2a3−144060π2x2y3a3−504210π2x y4a3−588π x5ya3−10290π x4y2a3−96040π x3y3a3−504210π x2y4a3−1411788πx y5a3−588π5xya3 =0
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Since the PDE has radicals, simplifying gives

−2x7a3 − 1647086y7a3 − 2π7a3 + 2b2
− 14πx

√
π + x+ 7y yb3 − 2π3√π + x+ 7y a2

+ 2π3√π + x+ 7y b3 − 9x3√π + x+ 7y a2
− 49x3√π + x+ 7y b2 + 2x3√π + x+ 7y b3
− 686

√
π + x+ 7y y3a2 − 343

√
π + x+ 7y y3a3

− 1715
√

π + x+ 7y y3b3 − 7π2√π + x+ 7y a1
− 49π2√π + x+ 7y b1 − 7x2√π + x+ 7y a1
− 49x2√π + x+ 7y b1 − 343

√
π + x+ 7y y2a1

− 2401
√

π + x+ 7y y2b1 − 182πx
√

π + x+ 7y ya2
− 14πx

√
π + x+ 7y ya3 − 686πx

√
π + x+ 7y yb2

− 14π6xa3 − 98π6ya3 − 42π5x2a3 − 2058π5y2a3
− 70π4x3a3− 24010π4y3a3− 70π3x4a3− 168070π3y4a3
−42π2x5a3−705894π2y5a3−14π x6a3−1647086π y6a3
− 98x6ya3 − 2058x5y2a3 − 24010x4y3a3
− 168070x3y4a3 − 705894x2y5a3 − 1647086x y6a3
− 13π2x

√
π + x+ 7y a2 − 49π2x

√
π + x+ 7y b2

+ 6π2x
√

π + x+ 7y b3 − 42π2√π + x+ 7y ya2
− 7π2√π + x+ 7y ya3 − 7π2√π + x+ 7y yb3
− 20π x2√π + x+ 7y a2 − 98π x2√π + x+ 7y b2
+ 6π x2√π + x+ 7y b3 − 294π

√
π + x+ 7y y2a2

− 98π
√
π + x+ 7y y2a3 − 392π

√
π + x+ 7y y2b3

− 140x2√π + x+ 7y ya2 − 7x2√π + x+ 7y ya3
− 686x2√π + x+ 7y yb2 − 7x2√π + x+ 7y yb3
− 637x

√
π + x+ 7y y2a2 − 98x

√
π + x+ 7y y2a3

− 2401x
√

π + x+ 7y y2b2 − 392x
√

π + x+ 7y y2b3
− 14πx

√
π + x+ 7y a1 − 98πx

√
π + x+ 7y b1

− 98π
√
π + x+ 7y ya1 − 686π

√
π + x+ 7y yb1

− 98x
√

π + x+ 7y ya1 − 686x
√
π + x+ 7y yb1

− 1470π4x2ya3 − 10290π4x y2a3 − 1960π3x3ya3
− 20580π3x2y2a3 − 96040π3x y3a3 − 1470π2x4ya3
− 20580π2x3y2a3 − 144060π2x2y3a3 − 504210π2x y4a3
− 588π x5ya3 − 10290π x4y2a3 − 96040π x3y3a3
− 504210π x2y4a3 − 1411788πx y5a3 − 588π5xya3 = 0



chapter 2. book solved problems 462

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
π + x+ 7y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
π + x+ 7y = v3

}
The above PDE (6E) now becomes

(7E)

−2π7a3 − 14π6v1a3 − 98π6v2a3 − 42π5v21a3
− 588π5v1v2a3 − 2058π5v22a3 − 70π4v31a3 − 1470π4v21v2a3
− 10290π4v1v

2
2a3 − 24010π4v32a3 − 70π3v41a3

− 1960π3v31v2a3 − 20580π3v21v
2
2a3 − 96040π3v1v

3
2a3

− 168070π3v42a3 − 42π2v51a3 − 1470π2v41v2a3
− 20580π2v31v

2
2a3 − 144060π2v21v

3
2a3 − 504210π2v1v

4
2a3

− 705894π2v52a3 − 14πv61a3 − 588πv51v2a3 − 10290πv41v22a3
− 96040πv31v32a3 − 504210πv21v42a3 − 1411788πv1v52a3
− 1647086πv62a3 − 2v71a3 − 98v61v2a3 − 2058v51v22a3
− 24010v41v32a3 − 168070v31v42a3 − 705894v21v52a3
− 1647086v1v62a3 − 1647086v72a3 − 2π3v3a2
+ 2π3v3b3 − 13π2v1v3a2 − 42π2v3v2a2 − 7π2v3v2a3
− 49π2v1v3b2 + 6π2v1v3b3 − 7π2v3v2b3 − 20πv21v3a2
− 182πv1v3v2a2 − 294πv3v22a2 − 14πv1v3v2a3 − 98πv3v22a3
− 98πv21v3b2 − 686πv1v3v2b2 + 6πv21v3b3 − 14πv1v3v2b3
− 392πv3v22b3 − 9v31v3a2 − 140v21v3v2a2 − 637v1v3v22a2
− 686v3v32a2 − 7v21v3v2a3 − 98v1v3v22a3 − 343v3v32a3
− 49v31v3b2 − 686v21v3v2b2 − 2401v1v3v22b2 + 2v31v3b3
− 7v21v3v2b3 − 392v1v3v22b3 − 1715v3v32b3 − 7π2v3a1
− 49π2v3b1 − 14πv1v3a1 − 98πv3v2a1 − 98πv1v3b1
− 686πv3v2b1 − 7v21v3a1 − 98v1v3v2a1 − 343v3v22a1
− 49v21v3b1 − 686v1v3v2b1 − 2401v3v22b1 + 2b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)

−2π7a3 − 1470π4v21v2a3 − 10290π4v1v
2
2a3

− 1960π3v31v2a3 − 20580π3v21v
2
2a3 − 96040π3v1v

3
2a3

− 1470π2v41v2a3 − 20580π2v31v
2
2a3 − 144060π2v21v

3
2a3

− 504210π2v1v
4
2a3 − 588πv51v2a3 − 10290πv41v22a3

− 96040πv31v32a3 − 504210πv21v42a3 − 1411788πv1v52a3
− 588π5v1v2a3 + (−9a2 − 49b2 + 2b3) v31v3
+ (−20πa2 − 98πb2 + 6πb3 − 7a1 − 49b1) v21v3
+
(
−13π2a2 − 49π2b2 + 6π2b3 − 14πa1 − 98πb1

)
v1v3

+ (−686a2 − 343a3 − 1715b3) v32v3
+ (−294πa2 − 98πa3 − 392πb3 − 343a1 − 2401b1) v22v3
+
(
−42π2a2 − 7π2a3 − 7π2b3 − 98πa1 − 686πb1

)
v2v3

+ 2b2 +
(
−2π3a2 + 2π3b3 − 7π2a1 − 49π2b1

)
v3

− 2v71a3 − 1647086v72a3 − 14π6v1a3 − 98π6v2a3
− 42π5v21a3 − 2058π5v22a3 − 70π4v31a3 − 24010π4v32a3
− 70π3v41a3 − 168070π3v42a3 − 42π2v51a3 − 705894π2v52a3
− 14πv61a3 − 1647086πv62a3 − 98v61v2a3 − 2058v51v22a3
− 24010v41v32a3 − 168070v31v42a3 − 705894v21v52a3
− 1647086v1v62a3 + (−140a2 − 7a3 − 686b2 − 7b3) v21v2v3
+ (−637a2 − 98a3 − 2401b2 − 392b3) v1v22v3 + (−182πa2
− 14πa3 − 686πb2 − 14πb3 − 98a1 − 686b1) v1v2v3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−1647086a3 = 0
−705894a3 = 0
−168070a3 = 0
−24010a3 = 0
−2058a3 = 0
−98a3 = 0
−2a3 = 0

−1647086πa3 = 0
−1411788πa3 = 0
−504210πa3 = 0
−96040πa3 = 0
−10290πa3 = 0
−588πa3 = 0
−14πa3 = 0

−705894π2a3 = 0
−504210π2a3 = 0
−144060π2a3 = 0
−20580π2a3 = 0
−1470π2a3 = 0
−42π2a3 = 0

−168070π3a3 = 0
−96040π3a3 = 0
−20580π3a3 = 0
−1960π3a3 = 0
−70π3a3 = 0

−24010π4a3 = 0
−10290π4a3 = 0
−1470π4a3 = 0
−70π4a3 = 0

−2058π5a3 = 0
−588π5a3 = 0
−42π5a3 = 0
−98π6a3 = 0
−14π6a3 = 0

−686a2 − 343a3 − 1715b3 = 0
−9a2 − 49b2 + 2b3 = 0

−637a2 − 98a3 − 2401b2 − 392b3 = 0
−140a2 − 7a3 − 686b2 − 7b3 = 0

−2π7a3 + 2b2 = 0
−2π3a2 + 2π3b3 − 7π2a1 − 49π2b1 = 0

−294πa2 − 98πa3 − 392πb3 − 343a1 − 2401b1 = 0
−42π2a2 − 7π2a3 − 7π2b3 − 98πa1 − 686πb1 = 0

−20πa2 − 98πb2 + 6πb3 − 7a1 − 49b1 = 0
−13π2a2 − 49π2b2 + 6π2b3 − 14πa1 − 98πb1 = 0

−182πa2 − 14πa3 − 686πb2 − 14πb3 − 98a1 − 686b1 = 0
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Solving the above equations for the unknowns gives

a1 = −7b1
a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −7
η = 1

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= 1
−7

= −1
7

This is easily solved to give

y = −x

7 + c1

Where now the coordinate R is taken as the constant of integration. Hence

R = x

7 + y
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And S is found from

dS = dx

ξ

= dx

−7

Integrating gives

S =
∫

dx

T

= −x

7

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (π + x+ 7y)7/2

Evaluating all the partial derivatives gives

Rx = 1
7

Ry = 1

Sx = −1
7

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

1 + 7 (π + x+ 7y)7/2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

1 + 7 (π + 7R)7/2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
− 1
1 + 7 (π + 7R)7/2

dR

S(R) = −

2
( ∑

_R=RootOf
(
7_Z7+1

) ln
(√

π+7R−_R
)

_R5

)
343 + c2

S(R) =
∫

− 1
1 + 7 (π + 7R)7/2

dR + c2

This results in

−x

7 =
∫ y

− 1
1 + 7 (π + x+ 7_a)7/2

d_a+ c2

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.85: Slope field plot
y′ = (π + x+ 7y)7/2

Summary of solutions found

−x

7 =
∫ y

− 1
1 + 7 (π + x+ 7_a)7/2

d_a+ c2
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Solved as first order ode of type dAlembert

Time used: 12.446 (sec)

Let p = y′ the ode becomes

p = (π + x+ 7y)7/2

Solving for y from the above results in

(1)y = p2/7

7 − π

7 − x

7

(2)y =
(
cos
(2π

7

)
+ i cos

(3π
14

))2
p2/7

7 − π

7 − x

7

(3)y =
(
− cos

(3π
7

)
+ i cos

(
π
14

))2
p2/7

7 − π

7 − x

7

(4)y =
(
− cos

(
π
7

)
+ i cos

(5π
14

))2
p2/7

7 − π

7 − x

7

(5)y =
(
− cos

(
π
7

)
− i cos

(5π
14

))2
p2/7

7 − π

7 − x

7

(6)y =
(
− cos

(3π
7

)
− i cos

(
π
14

))2
p2/7

7 − π

7 − x

7

(7)y =
(
cos
(2π

7

)
− i cos

(3π
14

))2
p2/7

7 − π

7 − x

7

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved.

Solving ode 1A

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −1
7

g = p2/7

7 − π

7
Hence (2) becomes

p+ 1
7 = 2p′(x)

49p5/7 (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 1
7 = 0

Solving the above for p results in

p1 = −1
7

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y = (−1)2/7 75/7
49 − π

7 − x

7

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
49
(
p(x) + 1

7

)
p(x)5/7

2 (3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or
intergal too complicated), and since no initial conditions are given, then the result can
be written as ∫ p(x) 2

7 (7τ + 1) τ 5/7dτ = x+ c1

Singular solutions are found by solving

7(7p+ 1) p5/7
2 = 0

for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = 0

p(x) = −1
7
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Substituing the above solution for p in (2A) gives

y =
RootOf

(
−
∫ _Z 2

7(7τ+1)τ5/7dτ + x+ c1
)2/7

7 − π

7 − x

7
y = −π

7 − x

7

y = (−1)2/7 75/7
49 − π

7 − x

7

Solving ode 2A

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −1
7

g =
p2/7

(
− cos

(3π
7

)
+ i sin

(3π
7

))
7 − π

7

Hence (2) becomes

p+ 1
7 =

(
−
2 cos

(3π
7

)
49p5/7 +

2i sin
(3π

7

)
49p5/7

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 1
7 = 0

Solving the above for p results in

p1 = −1
7

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y = 75/7(−1)6/7

49 − π

7 − x

7
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The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + 1

7

− 2 cos
( 3π

7
)

49p(x)5/7
+ 2i sin

( 3π
7
)

49p(x)5/7

(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or
intergal too complicated), and since no initial conditions are given, then the result can
be written as ∫ p(x) 2(−1)4/7

7 (7τ + 1) τ 5/7dτ = x+ c2

Singular solutions are found by solving

−7(−1)3/7 (7p+ 1) p5/7
2 = 0

for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = 0

p(x) = −1
7

Substituing the above solution for p in (2A) gives

y = −x

7 +
RootOf

(
−
∫ _Z 2(−1)4/7

7(7τ+1)τ5/7dτ + x+ c2
)2/7 (

− cos
(3π

7

)
+ i sin

(3π
7

))
7 − π

7
y = −π

7 − x

7

y = −x

7 +
(−1)2/7 75/7

(
− cos

(3π
7

)
+ i sin

(3π
7

))
49 − π

7

Solving ode 3A

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −1
7

g =
p2/7

(
−i sin

(
π
7

)
− cos

(
π
7

))
7 − π

7
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Hence (2) becomes

p+ 1
7 =

(
−
2i sin

(
π
7

)
49p5/7 −

2 cos
(
π
7

)
49p5/7

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 1
7 = 0

No valid singular solutions found.

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + 1

7

− 2i sin
(
π
7
)

49p(x)5/7
− 2 cos

(
π
7
)

49p(x)5/7

(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or
intergal too complicated), and since no initial conditions are given, then the result can
be written as ∫ p(x)

− 2(−1)1/7

7 (7τ + 1) τ 5/7dτ = x+ c3

Singular solutions are found by solving

7(−1)6/7 (7p+ 1) p5/7
2 = 0

for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = 0

p(x) = −1
7

Substituing the above solution for p in (2A) gives

y = −x

7 +
RootOf

(
−
∫ _Z − 2(−1)1/7

7(7τ+1)τ5/7dτ + x+ c3
)2/7 (

−i sin
(
π
7

)
− cos

(
π
7

))
7 − π

7
y = −π

7 − x

7

y = −x

7 +
(−1)2/7 75/7

(
−i sin

(
π
7

)
− cos

(
π
7

))
49 − π

7
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Solving ode 4A

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −1
7

g = −π

7 +
p2/7

(
−i sin

(2π
7

)
+ cos

(2π
7

))
7

Hence (2) becomes

p+ 1
7 =

(
−
2i sin

(2π
7

)
49p5/7 +

2 cos
(2π

7

)
49p5/7

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 1
7 = 0

No valid singular solutions found.

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + 1

7

−2i sin
( 2π

7
)

49p(x)5/7
+ 2 cos

( 2π
7
)

49p(x)5/7

(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or
intergal too complicated), and since no initial conditions are given, then the result can
be written as ∫ p(x)

− 2(−1)5/7

7 (7τ + 1) τ 5/7dτ = x+ c4

Singular solutions are found by solving

7(−1)2/7 (7p+ 1) p5/7
2 = 0

for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = 0

p(x) = −1
7
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Substituing the above solution for p in (2A) gives

y = −x

7 − π

7 +
RootOf

(
−
∫ _Z − 2(−1)5/7

7(7τ+1)τ5/7dτ + x+ c4
)2/7 (

−i sin
(2π

7

)
+ cos

(2π
7

))
7

y = −π

7 − x

7

y = −x

7 − π

7 +
(−1)2/7 75/7

(
−i sin

(2π
7

)
+ cos

(2π
7

))
49

Solving ode 5A

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −1
7

g = −π

7 +
p2/7

(
i sin

(2π
7

)
+ cos

(2π
7

))
7

Hence (2) becomes

p+ 1
7 =

(
2i sin

(2π
7

)
49p5/7 +

2 cos
(2π

7

)
49p5/7

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 1
7 = 0

No valid singular solutions found.

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + 1

7
2i sin

( 2π
7
)

49p(x)5/7
+ 2 cos

( 2π
7
)

49p(x)5/7

(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or
intergal too complicated), and since no initial conditions are given, then the result can
be written as ∫ p(x) 2(−1)2/7

7 (7τ + 1) τ 5/7dτ = x+ c5
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Singular solutions are found by solving

−7(−1)5/7 (7p+ 1) p5/7
2 = 0

for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = 0

p(x) = −1
7

Substituing the above solution for p in (2A) gives

y = −x

7 − π

7 +
RootOf

(
−
∫ _Z 2(−1)2/7

7(7τ+1)τ5/7dτ + x+ c5
)2/7 (

i sin
(2π

7

)
+ cos

(2π
7

))
7

y = −π

7 − x

7

y = −x

7 − π

7 +
(−1)2/7 75/7

(
i sin

(2π
7

)
+ cos

(2π
7

))
49

Solving ode 6A

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −1
7

g =
p2/7

(
i sin

(
π
7

)
− cos

(
π
7

))
7 − π

7
Hence (2) becomes

p+ 1
7 =

(
2i sin

(
π
7

)
49p5/7 −

2 cos
(
π
7

)
49p5/7

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 1
7 = 0
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Solving the above for p results in

p1 = −1
7

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y = −75/7(−1)1/7

49 − π

7 − x

7

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + 1

7
2i sin

(
π
7
)

49p(x)5/7
− 2 cos

(
π
7
)

49p(x)5/7

(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or
intergal too complicated), and since no initial conditions are given, then the result can
be written as ∫ p(x) 2(−1)6/7

7 (7τ + 1) τ 5/7dτ = x+ c6

Singular solutions are found by solving

−7(−1)1/7 (7p+ 1) p5/7
2 = 0

for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = 0

p(x) = −1
7

Substituing the above solution for p in (2A) gives

y = −x

7 +
RootOf

(
−
∫ _Z 2(−1)6/7

7(7τ+1)τ5/7dτ + x+ c6
)2/7 (

i sin
(
π
7

)
− cos

(
π
7

))
7 − π

7
y = −π

7 − x

7

y = −x

7 +
(−1)2/7 75/7

(
i sin

(
π
7

)
− cos

(
π
7

))
49 − π

7

Solving ode 7A
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Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −1
7

g =
p2/7

(
− cos

(3π
7

)
− i sin

(3π
7

))
7 − π

7

Hence (2) becomes

p+ 1
7 =

(
−
2 cos

(3π
7

)
49p5/7 −

2i sin
(3π

7

)
49p5/7

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 1
7 = 0

Solving the above for p results in

p1 = −1
7

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y = −(−7)5/7

49 − π

7 − x

7

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + 1

7

− 2 cos
( 3π

7
)

49p(x)5/7
− 2i sin

( 3π
7
)

49p(x)5/7

(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or
intergal too complicated), and since no initial conditions are given, then the result can
be written as ∫ p(x)

− 2(−1)3/7

7 (7τ + 1) τ 5/7dτ = x+ c7
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Singular solutions are found by solving

7(−1)4/7 (7p+ 1) p5/7
2 = 0

for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = 0

p(x) = −1
7

Substituing the above solution for p in (2A) gives

y = −x

7 +
RootOf

(
−
∫ _Z− 2(−1)3/7

7(7τ+1)τ5/7dτ + x+ c7
)2/7 (

− cos
(3π

7

)
− i sin

(3π
7

))
7 − π

7
y = −π

7 − x

7

y = −x

7 +
(−1)2/7 75/7

(
− cos

(3π
7

)
− i sin

(3π
7

))
49 − π

7

The solution
y = −π

7 − x

7

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y = −x

7 − π

7 +
RootOf

(
−
∫ _Z 2(−1)2/7

7(7τ+1)τ5/7dτ + x+ c5
)2/7 (

i sin
(2π

7

)
+ cos

(2π
7

))
7

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y = −x

7 − π

7 +
RootOf

(
−
∫ _Z − 2(−1)5/7

7(7τ+1)τ5/7dτ + x+ c4
)2/7 (

−i sin
(2π

7

)
+ cos

(2π
7

))
7

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y = −x

7 − π

7 +
(−1)2/7 75/7

(
−i sin

(2π
7

)
+ cos

(2π
7

))
49
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was found not to satisfy the ode or the IC. Hence it is removed. The solution

y = −x

7 − π

7 +
(−1)2/7 75/7

(
i sin

(2π
7

)
+ cos

(2π
7

))
49

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y = −x

7 +
RootOf

(
−
∫ _Z − 2(−1)1/7

7(7τ+1)τ5/7dτ + x+ c3
)2/7 (

−i sin
(
π
7

)
− cos

(
π
7

))
7 − π

7

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y = −x

7 +
RootOf

(
−
∫ _Z− 2(−1)3/7

7(7τ+1)τ5/7dτ + x+ c7
)2/7 (

− cos
(3π

7

)
− i sin

(3π
7

))
7 − π

7

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y = −x

7 +
RootOf

(
−
∫ _Z 2(−1)4/7

7(7τ+1)τ5/7dτ + x+ c2
)2/7 (

− cos
(3π

7

)
+ i sin

(3π
7

))
7 − π

7

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y = −x

7 +
RootOf

(
−
∫ _Z 2(−1)6/7

7(7τ+1)τ5/7dτ + x+ c6
)2/7 (

i sin
(
π
7

)
− cos

(
π
7

))
7 − π

7

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y = −x

7 +
(−1)2/7 75/7

(
−i sin

(
π
7

)
− cos

(
π
7

))
49 − π

7

was found not to satisfy the ode or the IC. Hence it is removed.
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Figure 2.86: Slope field plot
y′ = (π + x+ 7y)7/2

Summary of solutions found

y = −x

7 +
(−1)2/7 75/7

(
i sin

(
π
7

)
− cos

(
π
7

))
49 − π

7

y = −x

7 +
(−1)2/7 75/7

(
− cos

(3π
7

)
− i sin

(3π
7

))
49 − π

7

y = −x

7 +
(−1)2/7 75/7

(
− cos

(3π
7

)
+ i sin

(3π
7

))
49 − π

7

y = −(−7)5/7

49 − π

7 − x

7

y =
RootOf

(
−
∫ _Z 2

7(7τ+1)τ5/7dτ + x+ c1
)2/7

7 − π

7 − x

7

y = (−1)2/7 75/7
49 − π

7 − x

7

y = −75/7(−1)1/7

49 − π

7 − x

7

y = 75/7(−1)6/7

49 − π

7 − x

7



chapter 2. book solved problems 481

Maple step by step solution

Let’s solve
d
dx
y(x) = (π + x+ 7y(x))7/2

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = (π + x+ 7y(x))7/2

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -1/7, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.061 (sec)
Leaf size : 33� �
dsolve(diff(y(x),x) = (Pi+x+7*y(x))^(7/2),

y(x),singsol=all)� �
y = −x

7 + RootOf
(
−x+ 7

(∫ _Z 1
1 + 7 (π + 7_a)7/2

d_a
)

+ c1

)
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Mathematica DSolve solution

Solving time : 30.453 (sec)
Leaf size : 43� �
DSolve[{D[y[x],x]==(Pi+x+7*y[x])^(7/2),{}},

y[x],x,IncludeSingularSolutions->True]� �
Solve

[
−(7y(x)+x+π)

(
Hypergeometric2F1

(
2
7 , 1,

9
7 ,−7(x+7y(x)+π)7/2

)
−1
)

− 7y(x) = c1, y(x)
]
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2.1.65 problem 65

Solved as first order homogeneous class C ode . . . . . . . . . . 483
Solved using Lie symmetry for first order ode . . . . . . . . . . 484
Solved as first order ode of type dAlembert . . . . . . . . . . . 490
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 502
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 503
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 503

Internal problem ID [8725]
Book : First order enumerated odes
Section : section 1
Problem number : 65
Date solved : Tuesday, December 17, 2024 at 01:01:31 PM
CAS classification : [[_homogeneous, ‘class C‘], _dAlembert]

Solve

y′ = (a+ bx+ cy)6

Solved as first order homogeneous class C ode

Time used: 1.395 (sec)

Let

z = a+ bx+ cy (1)

Then

z′(x) = b+ cy′

Therefore

y′ = z′(x)− b

c

Hence the given ode can now be written as

z′(x)− b

c
= z6
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This is separable first order ode. Integrating∫
dx =

∫ 1
c z6 + b

dz

x+ c1 =

√
3
(
b
c

)1/6 ln(z2 +√
3
(
b
c

)1/6
z +

(
b
c

)1/3)
12b +

(
b
c

)1/6 arctan( 2z(
b
c

)1/6 +√
3
)

6b

−

√
3
(
b
c

)1/6 ln(z2 −√
3
(
b
c

)1/6
z +

(
b
c

)1/3)
12b

+

(
b
c

)1/6 arctan( 2z(
b
c

)1/6 −√
3
)

6b +

(
b
c

)1/6 arctan( z(
b
c

)1/6
)

3b

Replacing z back by its value from (1) then the above gives the solution as

Summary of solutions found

√
3
(
b
c

)1/6 ln((a+ bx+ cy)2 +
√
3
(
b
c

)1/6 (a+ bx+ cy) +
(
b
c

)1/3)
12b

+

(
b
c

)1/6 arctan(2cy+2bx+2a(
b
c

)1/6 +
√
3
)

6b

−

√
3
(
b
c

)1/6 ln((a+ bx+ cy)2 −
√
3
(
b
c

)1/6 (a+ bx+ cy) +
(
b
c

)1/3)
12b

+

(
b
c

)1/6 arctan(2cy+2bx+2a(
b
c

)1/6 −
√
3
)

6b +

(
b
c

)1/6 arctan(a+bx+cy(
b
c

)1/6
)

3b = x+ c1

Solved using Lie symmetry for first order ode

Time used: 1.539 (sec)

Writing the ode as

y′ = (bx+ cy + a)6

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + (bx+ cy + a)6 (b3 − a2)− (bx+ cy + a)12 a3
− 6(bx+ cy + a)5 b(xa2 + ya3 + a1)− 6(bx+ cy + a)5 c(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)Expression too large to display
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Setting each coefficients in (8E) to zero gives the following equations to solve
−b12a3 = 0
−c12a3 = 0

−12a b11a3 = 0
−12a c11a3 = 0
−66a2b10a3 = 0
−66a2c10a3 = 0
−220a3b9a3 = 0
−220a3c9a3 = 0
−495a4b8a3 = 0
−495a4c8a3 = 0
−792a5b7a3 = 0
−792a5c7a3 = 0
−12b c11a3 = 0
−66b2c10a3 = 0
−220b3c9a3 = 0
−495b4c8a3 = 0
−792b5c7a3 = 0
−924b6c6a3 = 0
−792b7c5a3 = 0
−495b8c4a3 = 0
−220b9c3a3 = 0
−66b10c2a3 = 0
−12b11ca3 = 0

−132ab c10a3 = 0
−660a b2c9a3 = 0
−1980a b3c8a3 = 0
−3960a b4c7a3 = 0
−5544a b5c6a3 = 0
−5544a b6c5a3 = 0
−3960a b7c4a3 = 0
−1980a b8c3a3 = 0
−660a b9c2a3 = 0
−132a b10ca3 = 0
−660a2b c9a3 = 0

−2970a2b2c8a3 = 0
−7920a2b3c7a3 = 0
−13860a2b4c6a3 = 0
−16632a2b5c5a3 = 0
−13860a2b6c4a3 = 0
−7920a2b7c3a3 = 0
−2970a2b8c2a3 = 0
−660a2b9ca3 = 0

−1980a3b c8a3 = 0
−7920a3b2c7a3 = 0
−18480a3b3c6a3 = 0
−27720a3b4c5a3 = 0
−27720a3b5c4a3 = 0
−18480a3b6c3a3 = 0
−7920a3b7c2a3 = 0
−1980a3b8ca3 = 0
−3960a4b c7a3 = 0

−13860a4b2c6a3 = 0
−27720a4b3c5a3 = 0
−34650a4b4c4a3 = 0
−27720a4b5c3a3 = 0
−13860a4b6c2a3 = 0
−3960a4b7ca3 = 0
−5544a5b c6a3 = 0

−16632a5b2c5a3 = 0
−27720a5b3c4a3 = 0
−27720a5b4c3a3 = 0
−16632a5b5c2a3 = 0
−5544a5b6ca3 = 0

−5544a6b5ca3 − 6b6a3 − 36b5ca2 − 30b4c2b2 = 0
−924a6c6a3 − 6b c5a3 − c6a2 − 5c6b3 = 0
−924a6b6a3 − 7b6a2 + b6b3 − 6b5cb2 = 0

−12a11ca3 − 6a5ba3 − 6a5ca2 − 30a4bca1 − 30a4c2b1 = 0
−5544a6b c5a3 − 30b2c4a3 − 12b c5a2 − 24b c5b3 − 6c6b2 = 0

−13860a6b2c4a3 − 60b3c3a3 − 45b2c4a2 − 45b2c4b3 − 30b c5b2 = 0
−18480a6b3c3a3 − 60b4c2a3 − 80b3c3a2 − 40b3c3b3 − 60b2c4b2 = 0
−13860a6b4c2a3 − 30b5ca3 − 75b4c2a2 − 15b4c2b3 − 60b3c3b2 = 0

−3960a7b4ca3 − 30a b5a3 − 150a b4ca2 − 120a b3c2b2 − 30b5ca1 − 30b4c2b1 = 0
−1980a8b3ca3 − 60a2b4a3 − 240a2b3ca2 − 180a2b2c2b2 − 120a b4ca1 − 120a b3c2b1 = 0
−660a9b2ca3 − 60a3b3a3 − 180a3b2ca2 − 120a3b c2b2 − 180a2b3ca1 − 180a2b2c2b1 = 0

−132a10bca3 − 30a4b2a3 − 60a4bca2 − 30a4c2b2 − 120a3b2ca1 − 120a3b c2b1 = 0
−792a7c5a3 − 30ab c4a3 − 6a c5a2 − 24a c5b3 − 6b c5a1 − 6c6b1 = 0

−495a8c4a3 − 60a2b c3a3 − 15a2c4a2 − 45a2c4b3 − 30ab c4a1 − 30a c5b1 = 0
−220a9c3a3 − 60a3b c2a3 − 20a3c3a2 − 40a3c3b3 − 60a2b c3a1 − 60a2c4b1 = 0
−66a10c2a3 − 30a4bca3 − 15a4c2a2 − 15a4c2b3 − 60a3b c2a1 − 60a3c3b1 = 0

−792a7b5a3 − 36a b5a2 + 6a b5b3 − 30a b4cb2 − 6b6a1 − 6b5cb1 = 0
−495a8b4a3 − 75a2b4a2 + 15a2b4b3 − 60a2b3cb2 − 30a b5a1 − 30a b4cb1 = 0
−220a9b3a3 − 80a3b3a2 + 20a3b3b3 − 60a3b2cb2 − 60a2b4a1 − 60a2b3cb1 = 0
−66a10b2a3 − 45a4b2a2 + 15a4b2b3 − 30a4bcb2 − 60a3b3a1 − 60a3b2cb1 = 0

−12a11ba3 − 12a5ba2 + 6a5bb3 − 6a5cb2 − 30a4b2a1 − 30a4bcb1 = 0
−a12a3 − a6a2 + a6b3 − 6a5ba1 − 6a5cb1 + b2 = 0

−3960a7b c4a3 − 120a b2c3a3 − 60ab c4a2 − 90ab c4b3 − 30a c5b2 − 30b2c4a1 − 30b c5b1 = 0
−7920a7b2c3a3 − 180a b3c2a3 − 180a b2c3a2 − 120a b2c3b3 − 120ab c4b2 − 60b3c3a1 − 60b2c4b1 = 0
−7920a7b3c2a3 − 120a b4ca3 − 240a b3c2a2 − 60a b3c2b3 − 180a b2c3b2 − 60b4c2a1 − 60b3c3b1 = 0

−1980a8b c3a3 − 180a2b2c2a3 − 120a2b c3a2 − 120a2b c3b3 − 60a2c4b2 − 120a b2c3a1 − 120ab c4b1 = 0
−2970a8b2c2a3 − 180a2b3ca3 − 270a2b2c2a2 − 90a2b2c2b3 − 180a2b c3b2 − 180a b3c2a1 − 180a b2c3b1 = 0

−660a9b c2a3 − 120a3b2ca3 − 120a3b c2a2 − 60a3b c2b3 − 60a3c3b2 − 180a2b2c2a1 − 180a2b c3b1 = 0
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Solving the above equations for the unknowns gives

a1 = −cb1
b

a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −c

b

η = 1

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= 1
− c

b

= −b

c

This is easily solved to give

y = −bx

c
+ c1

Where now the coordinate R is taken as the constant of integration. Hence

R = bx+ cy

c
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And S is found from

dS = dx

ξ

= dx

− c
b

Integrating gives

S =
∫

dx

T

= −bx

c

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (bx+ cy + a)6

Evaluating all the partial derivatives gives

Rx = b

c
Ry = 1

Sx = −b

c
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − b

c
(
b
c
+ (bx+ cy + a)6

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − b

R6c7 + 6R5a c6 + 15R4a2c5 + 20R3a3c4 + 15R2a4c3 + 6Ra5c2 + a6c+ b
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
− b

R6c7 + 6R5a c6 + 15R4a2c5 + 20R3a3c4 + 15R2a4c3 + 6Ra5c2 + a6c+ b
dR

S(R) = −

b

( ∑
_R=RootOf

(
c7_Z6+6_Z5a c6+15_Z4a2c5+20_Z3a3c4+15_Z2a4c3+6a5c2_Z+a6c+b

) ln
(
R−_R

)
_R5

c5+5_R4
a c4+10_R3

a2c3+10_R2
a3c2+5_R a4c+a5

)
6c2 + c2

S(R) =
∫

− b

R6c7 + 6R5a c6 + 15R4a2c5 + 20R3a3c4 + 15R2a4c3 + 6Ra5c2 + a6c+ b
dR + c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

−bx

c
=
∫ cy+bx

c

− b

_a6c7 + 6_a5a c6 + 15_a4a2c5 + 20_a3a3c4 + 15_a2a4c3 + 6_a a5c2 + a6c+ b
d_a+ c2

Summary of solutions found

−bx

c
=
∫ cy+bx

c

− b

_a6c7 + 6_a5a c6 + 15_a4a2c5 + 20_a3a3c4 + 15_a2a4c3 + 6_a a5c2 + a6c+ b
d_a

+ c2

Solved as first order ode of type dAlembert

Time used: 2.337 (sec)

Let p = y′ the ode becomes

p = (bx+ cy + a)6
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Solving for y from the above results in

(1)y = −bx

c
+ p1/6 − a

c

(2)y = −bx

c
+

(
1
2 +

i
√
3

2

)
p1/6 − a

c

(3)y = −bx

c
+

(
−1

2 +
i
√
3

2

)
p1/6 − a

c

(4)y = −bx

c
+ −p1/6 − a

c

(5)y = −bx

c
+

(
−1

2 −
i
√
3

2

)
p1/6 − a

c

(6)y = −bx

c
+

(
1
2 −

i
√
3

2

)
p1/6 − a

c

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved.

Solving ode 1A

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −b

c

g = p1/6 − a

c

Hence (2) becomes

p+ b

c
= p′(x)

6p5/6c (2A)
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The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ b

c
= 0

Solving the above for p results in

p1 = −b

c

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y =
−bx+

(
− b

c

)1/6 − a

c

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = 6
(
p(x) + b

c

)
p(x)5/6 c (3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or
intergal too complicated), and since no initial conditions are given, then the result can
be written as ∫ p(x) 1

6 (cτ + b) τ 5/6dτ = x+ c1

Singular solutions are found by solving

6(pc+ b) p5/6 = 0

for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = 0

p(x) = −b

c

Substituing the above solution for p in (2A) gives

y = −bx

c
+

RootOf
(
−
∫ _Z 1

6(cτ+b)τ5/6dτ + x+ c1
)1/6

− a

c

y = −bx

c
− a

c

y = −bx

c
+
(
− b

c

)1/6 − a

c
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Solving ode 2A

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −b

c

g = ip1/6
√
3 + p1/6 − 2a
2c

Hence (2) becomes

p+ b

c
=
(

i
√
3

12c p5/6 + 1
12p5/6c

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ b

c
= 0

Solving the above for p results in

p1 = −b

c

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y =
i
(
− b

c

)1/6√3− 2bx+
(
− b

c

)1/6 − 2a
2c

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + b

c

i
√
3

12cp(x)5/6
+ 1

12p(x)5/6c

(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or
intergal too complicated), and since no initial conditions are given, then the result can
be written as ∫ p(x) 1 + i

√
3

12 (cτ + b) τ 5/6dτ = x+ c2
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Singular solutions are found by solving

12(pc+ b) p5/6

1 + i
√
3

= 0

for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = 0

p(x) = −b

c

Substituing the above solution for p in (2A) gives

y = −bx

c
+

iRootOf
(
−
∫ _Z 1+i

√
3

12(cτ+b)τ5/6dτ + x+ c2
)1/6√

3 + RootOf
(
−
∫ _Z 1+i

√
3

12(cτ+b)τ5/6dτ + x+ c2
)1/6

− 2a
2c

y = −bx

c
− a

c

y = −bx

c
+

i
(
− b

c

)1/6√3 +
(
− b

c

)1/6 − 2a
2c

Solving ode 3A

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −b

c

g = ip1/6
√
3− p1/6 − 2a
2c

Hence (2) becomes

p+ b

c
=
(

i
√
3

12c p5/6 − 1
12p5/6c

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ b

c
= 0
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Solving the above for p results in

p1 = −b

c

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y =
i
(
− b

c

)1/6√3− 2bx−
(
− b

c

)1/6 − 2a
2c

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + b

c

i
√
3

12cp(x)5/6
− 1

12p(x)5/6c

(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or
intergal too complicated), and since no initial conditions are given, then the result can
be written as ∫ p(x) i

√
3− 1

12 (cτ + b) τ 5/6dτ = x+ c3

Singular solutions are found by solving

12(pc+ b) p5/6

i
√
3− 1

= 0

for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = 0

p(x) = −b

c

Substituing the above solution for p in (2A) gives

y = −bx

c
+

iRootOf
(
−
∫ _Z i

√
3−1

12(cτ+b)τ5/6dτ + x+ c3
)1/6√

3− RootOf
(
−
∫ _Z i

√
3−1

12(cτ+b)τ5/6dτ + x+ c3
)1/6

− 2a
2c

y = −bx

c
− a

c

y = −bx

c
+

i
(
− b

c

)1/6√3−
(
− b

c

)1/6 − 2a
2c

Solving ode 4A
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Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −b

c

g = −p1/6 − a

c

Hence (2) becomes

p+ b

c
= − p′(x)

6p5/6c (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ b

c
= 0

Solving the above for p results in

p1 = −b

c

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y =
−bx−

(
− b

c

)1/6 − a

c

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −6
(
p(x) + b

c

)
p(x)5/6 c (3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or
intergal too complicated), and since no initial conditions are given, then the result can
be written as ∫ p(x)

− 1
6 (cτ + b) τ 5/6dτ = x+ c4

Singular solutions are found by solving

−6(pc+ b) p5/6 = 0
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for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = 0

p(x) = −b

c

Substituing the above solution for p in (2A) gives

y = −bx

c
+

−RootOf
(
−
∫ _Z − 1

6(cτ+b)τ5/6dτ + x+ c4
)1/6

− a

c

y = −bx

c
− a

c

y = −bx

c
+

−
(
− b

c

)1/6 − a

c

Solving ode 5A

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −b

c

g = −ip1/6
√
3− p1/6 − 2a
2c

Hence (2) becomes

p+ b

c
=
(
− i

√
3

12c p5/6 − 1
12p5/6c

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ b

c
= 0

Solving the above for p results in

p1 = −b

c



chapter 2. book solved problems 498

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y =
−i
(
− b

c

)1/6√3− 2bx−
(
− b

c

)1/6 − 2a
2c

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + b

c

− i
√
3

12cp(x)5/6
− 1

12p(x)5/6c

(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or
intergal too complicated), and since no initial conditions are given, then the result can
be written as ∫ p(x)

− 1 + i
√
3

12 (cτ + b) τ 5/6dτ = x+ c5

Singular solutions are found by solving

−12(pc+ b) p5/6

1 + i
√
3

= 0

for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = 0

p(x) = −b

c

Substituing the above solution for p in (2A) gives

y = −bx

c
+

−iRootOf
(
−
∫ _Z − 1+i

√
3

12(cτ+b)τ5/6dτ + x+ c5
)1/6√

3− RootOf
(
−
∫ _Z − 1+i

√
3

12(cτ+b)τ5/6dτ + x+ c5
)1/6

− 2a
2c

y = −bx

c
− a

c

y = −bx

c
+

−i
(
− b

c

)1/6√3−
(
− b

c

)1/6 − 2a
2c

Solving ode 6A

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −b

c

g = −ip1/6
√
3 + p1/6 − 2a
2c

Hence (2) becomes

p+ b

c
=
(
− i

√
3

12c p5/6 + 1
12p5/6c

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ b

c
= 0

Solving the above for p results in

p1 = −b

c

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y =
−i
(
− b

c

)1/6√3− 2bx+
(
− b

c

)1/6 − 2a
2c

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + b

c

− i
√
3

12cp(x)5/6
+ 1

12p(x)5/6c

(3)

This ODE is now solved for p(x). No inversion is needed. Unable to integrate (or
intergal too complicated), and since no initial conditions are given, then the result can
be written as ∫ p(x)

− i
√
3− 1

12 (cτ + b) τ 5/6dτ = x+ c6

Singular solutions are found by solving

−12(pc+ b) p5/6

i
√
3− 1

= 0

for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = 0

p(x) = −b

c
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Substituing the above solution for p in (2A) gives

y = −bx

c
+

−iRootOf
(
−
∫ _Z − i

√
3−1

12(cτ+b)τ5/6dτ + x+ c6
)1/6√

3 + RootOf
(
−
∫ _Z − i

√
3−1

12(cτ+b)τ5/6dτ + x+ c6
)1/6

− 2a
2c

y = −bx

c
− a

c

y = −bx

c
+

−i
(
− b

c

)1/6√3 +
(
− b

c

)1/6 − 2a
2c

The solution

y = −bx

c
− a

c

was found not to satisfy the ode or the IC. Hence it is removed.

Summary of solutions found

y =
−bx−

(
− b

c

)1/6 − a

c

y =
−bx+

(
− b

c

)1/6 − a

c

y =
−i
(
− b

c

)1/6√3− 2bx−
(
− b

c

)1/6 − 2a
2c

y =
−i
(
− b

c

)1/6√3− 2bx+
(
− b

c

)1/6 − 2a
2c

y =
i
(
− b

c

)1/6√3− 2bx−
(
− b

c

)1/6 − 2a
2c

y =
i
(
− b

c

)1/6√3− 2bx+
(
− b

c

)1/6 − 2a
2c

y = −bx

c
+

−
(
− b

c

)1/6 − a

c

y = −bx

c
+
(
− b

c

)1/6 − a

c

y = −bx

c
+

−RootOf
(
−
∫ _Z − 1

6(cτ+b)τ5/6dτ + x+ c4
)1/6

− a

c
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y = −bx

c
+

RootOf
(
−
∫ _Z 1

6(cτ+b)τ5/6dτ + x+ c1
)1/6

− a

c

y = −bx

c
+

−i
(
− b

c

)1/6√3−
(
− b

c

)1/6 − 2a
2c

y = −bx

c
+

−i
(
− b

c

)1/6√3 +
(
− b

c

)1/6 − 2a
2c

y = −bx

c

+
−iRootOf

(
−
∫ _Z − i

√
3−1

12(cτ+b)τ5/6dτ + x+ c6
)1/6√

3 + RootOf
(
−
∫ _Z − i

√
3−1

12(cτ+b)τ5/6dτ + x+ c6
)1/6

− 2a
2c

y = −bx

c

+
−iRootOf

(
−
∫ _Z − 1+i

√
3

12(cτ+b)τ5/6dτ + x+ c5
)1/6√

3− RootOf
(
−
∫ _Z − 1+i

√
3

12(cτ+b)τ5/6dτ + x+ c5
)1/6

− 2a
2c

y = −bx

c
+

i
(
− b

c

)1/6√3−
(
− b

c

)1/6 − 2a
2c

y = −bx

c
+

i
(
− b

c

)1/6√3 +
(
− b

c

)1/6 − 2a
2c

y = −bx

c

+
iRootOf

(
−
∫ _Z 1+i

√
3

12(cτ+b)τ5/6dτ + x+ c2
)1/6√

3 + RootOf
(
−
∫ _Z 1+i

√
3

12(cτ+b)τ5/6dτ + x+ c2
)1/6

− 2a
2c

y = −bx

c

+
iRootOf

(
−
∫ _Z i

√
3−1

12(cτ+b)τ5/6dτ + x+ c3
)1/6√

3− RootOf
(
−
∫ _Z i

√
3−1

12(cτ+b)τ5/6dτ + x+ c3
)1/6

− 2a
2c
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Maple step by step solution

Let’s solve
d
dx
y(x) = (a+ bx+ cy(x))6

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = (a+ bx+ cy(x))6

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -b/c, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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Maple dsolve solution

Solving time : 0.045 (sec)
Leaf size : 94� �
dsolve(diff(y(x),x) = (a+b*x+c*y(x))^6,

y(x),singsol=all)� �
y

=
RootOf

((∫ _Z 1
c7_a6+6_a5a c6+15_a4a2c5+20_a3a3c4+15_a2a4c3+6_a a5c2+a6c+b

d_a
)
c− x+ c1

)
c− bx

c

Mathematica DSolve solution

Solving time : 1.783 (sec)
Leaf size : 274� �
DSolve[{D[y[x],x]==(a+b*x+c*y[x])^6,{}},

y[x],x,IncludeSingularSolutions->True]� �

Solve

−4 6√
b arctan

(
6
√
c(a+bx+cy(x))

6√
b

)
+ 2 6√

b arctan
(√

3− 2 6
√
c(a+bx+cy(x))

6√
b

)
− 2 6√

b arctan
(

2 6
√
c(a+bx+cy(x))

6√
b

+
√
3
)
+
√
3 6√

b log
(

3
√
c(a+ bx+ cy(x))2 −

√
3 6√

b 6
√
c(a+ bx+ cy(x)) + 3√

b
)
−
√
3 6√

b log
(

3
√
c(a+ bx+ cy(x))2 +

√
3 6√

b 6
√
c(a+ bx+ cy(x)) + 3√

b
)
+ 12a 6

√
c+ 12b 6

√
cx+ 12c7/6y(x)

12b 6
√
c

− cy(x)
b

= c1, y(x)


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2.1.66 problem 66

Solved as first order form A1 ode . . . . . . . . . . . . . . . . . 504
Solved as first order separable ode . . . . . . . . . . . . . . . . 506
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 507
Solved using Lie symmetry for first order ode . . . . . . . . . . 512
Solved as first order ode of type ID 1 . . . . . . . . . . . . . . . 517
Solved as first order ode of type dAlembert . . . . . . . . . . . 518
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 521
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 521
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 522

Internal problem ID [8726]
Book : First order enumerated odes
Section : section 1
Problem number : 66
Date solved : Tuesday, December 17, 2024 at 01:01:37 PM
CAS classification : [_separable]

Solve

y′ = ex+y

Solved as first order form A1 ode

Time used: 0.232 (sec)

The given ode has the general form

y′ = B + Cf(ax+ by + c) (1)

Comparing (1) to the ode given shows the parameters in the ODE have these values

B = 0
C = 1
a = 1
b = 1
c = 0

This form of ode can be solved by change of variables u = ax+ by+ c which makes the
ode separable.

u′(x) = a+ by′
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Or

y′ = u′(x)− a

b

The ode becomes

u′ − a

b
= B + Cf(u)

u′ = bB + bCf(u) + a

du

bB + bCf (u) + a
= dx

Integrating gives ∫
du

bB + bCf(u) + a
= x+ c1∫ u dτ

bB + bCf(τ) + a
= x+ c1

Replacing back u = ax+ by + c the above becomes∫ ax+by+c dτ

bB + bCf (τ) + a
= x+ c1 (2)

If initial conditions are given as y(x0) = y0, the above becomes∫ ax0+by0+c

0

dτ

bB + bCf (τ) + a
= x0 + c1

c1 =
∫ ax+by0+c

0

dτ

bB + bCf (τ) + a
− x0

Substituting this into (2) gives∫ ax+by+c dτ

bB + bCf (τ) + a
= x+

∫ ax+by0+c

0

dτ

bB + bCf (τ) + a
− x0 (3)

Since no initial conditions are given, then using (2) and replacing the values of the
parameters into (2) gives the solution as

∫ x+y 1
1 + eτ dτ = x+ c1

Which simplifies to
− ln

(
1 + ex+y

)
+ ln

(
ex+y

)
= x+ c1
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Solving for y gives

y = ln
(
− 1
−1 + ex+c1

)
+ c1

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.87: Slope field plot
y′ = ex+y

Summary of solutions found

y = ln
(
− 1
−1 + ex+c1

)
+ c1

Solved as first order separable ode

Time used: 0.044 (sec)

The ode y′ = ex+y is separable as it can be written as

y′ = ex+y

= f(x)g(y)

Where

f(x) = ex

g(y) = ey
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Integrating gives ∫ 1
g(y) dy =

∫
f(x) dx∫

e−y dy =
∫

ex dx

−e−y = ex + c1

Solving for y gives
y = − ln (−ex − c1)

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.88: Slope field plot
y′ = ex+y

Summary of solutions found

y = − ln (−ex − c1)

Solved as first order Exact ode

Time used: 0.164 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0



chapter 2. book solved problems 508

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
ex+y

)
dx(

−ex+y
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ex+y

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−ex+y

)
= −ex+y



chapter 2. book solved problems 509

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((
−ex+y

)
− (0)

)
= −ex+y

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= −e−x−y

(
(0)−

(
−ex+y

))
= −1

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
−1 dy

The result of integrating gives

µ = e−y

= e−y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= e−y
(
−ex+y

)
= −ex

And

N = µN

= e−y(1)
= e−y
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

(−ex) +
(
e−y
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−ex dx

(3)φ = −ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= e−y. Therefore equation (4) becomes

(5)e−y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = e−y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
e−y
)
dy

f(y) = −e−y + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −ex − e−y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −ex − e−y

Solving for y gives
y = − ln (−ex − c1)

–3
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–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.89: Slope field plot
y′ = ex+y

Summary of solutions found

y = − ln (−ex − c1)
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Solved using Lie symmetry for first order ode

Time used: 0.805 (sec)

Writing the ode as

y′ = ex+y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + ex+y(b3 − a2)− e2x+2ya3 − ex+y(xa2 + ya3 + a1)− ex+y(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−e2x+2ya3 − ex+yxa2 − ex+yxb2 − ex+yya3 − ex+yyb3
− ex+ya1 − ex+ya2 − ex+yb1 + ex+yb3 + b2 = 0

Setting the numerator to zero gives

(6E)−e2x+2ya3 − ex+yxa2 − ex+yxb2 − ex+yya3 − ex+yyb3
− ex+ya1 − ex+ya2 − ex+yb1 + ex+yb3 + b2 = 0

Simplifying the above gives

(6E)−e2x+2ya3 − ex+yxa2 − ex+yxb2 − ex+yya3 − ex+yyb3
− ex+ya1 − ex+ya2 − ex+yb1 + ex+yb3 + b2 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, ex+y, e2x+2y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, ex+y = v3, e2x+2y = v4}

The above PDE (6E) now becomes

(7E)−v3v1a2 − v3v2a3 − v3v1b2 − v3v2b3 − v3a1 − v3a2 − v4a3 − v3b1 + v3b3 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)(−a2 − b2) v1v3 + (−a3 − b3) v2v3 + (−a1 − a2 − b1 + b3) v3 − v4a3 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−a3 = 0

−a2 − b2 = 0
−a3 − b3 = 0

−a1 − a2 − b1 + b3 = 0

Solving the above equations for the unknowns gives

a1 = −b1

a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −1
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= 1−

(
ex+y

)
(−1)

= 1 + exey

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1 + exey dy

Which results in

S = ln (ey)− ln (1 + exey)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ex+y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − ex+y

1 + ex+y

Sy =
1

1 + ex+y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
0 dR + c2

S(R) = c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

y − ln
(
1 + ex+y

)
= c2

Which gives

y = ln
(
− 1
−1 + ex+c2

)
+ c2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= ex+y dS
dR

= 0

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = y − ln
(
1 + ex+y

)
–4

–2

0

2

4

S(R)

–4 –2 2 4

R

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.90: Slope field plot
y′ = ex+y

Summary of solutions found

y = ln
(
− 1
−1 + ex+c2

)
+ c2
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Solved as first order ode of type ID 1

Time used: 0.106 (sec)

Writing the ode as

y′ = ex+y (1)

And using the substitution u = e−y then

u′ = −y′e−y

The above shows that

y′ = −u′(x) ey

= −u′(x)
u

Substituting this in (1) gives

−u′(x)
u

= ex
u

The above simplifies to

u′(x) = −ex (2)

Now ode (2) is solved for u(x).

Since the ode has the form u′(x) = f(x), then we only need to integrate f(x).∫
du =

∫
−ex dx

u(x) = −ex + c1

Substituting the solution found for u(x) in u = e−y gives

y = − ln (u(x))
= − ln (− ln (−ex + c1))
= − ln (−ex + c1)
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–3
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Figure 2.91: Slope field plot
y′ = ex+y

Summary of solutions found

y = − ln (−ex + c1)

Solved as first order ode of type dAlembert

Time used: 0.109 (sec)

Let p = y′ the ode becomes

p = ex+y

Solving for y from the above results in

(1)y = −x+ ln (p)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved.

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −1
g = ln (p)

Hence (2) becomes

p+ 1 = p′(x)
p

(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 1 = 0

Solving the above for p results in

p1 = −1

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y = iπ − x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = (p(x) + 1) p(x) (3)

This ODE is now solved for p(x). No inversion is needed. Integrating gives∫ 1
(p+ 1) pdp = dx

− ln (p+ 1) + ln (p) = x+ c1

Singular solutions are found by solving

(p+ 1) p = 0

for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = −1
p(x) = 0
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Solving for p(x) gives
p(x) = −1

p(x) = 0

p(x) = − ex+c1

−1 + ex+c1

Substituing the above solution for p in (2A) gives

y = iπ − x

y = −x+ ln
(
− ex+c1

−1 + ex+c1

)
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Figure 2.92: Slope field plot
y′ = ex+y

Summary of solutions found

y = iπ − x

y = −x+ ln
(
− ex+c1

−1 + ex+c1

)
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Maple step by step solution

Let’s solve
d
dx
y(x) = ex+y(x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = ex+y(x)

• Separate variables
d
dx

y(x)
ey(x) = ex

• Integrate both sides with respect to x∫ d
dx

y(x)
ey(x) dx =

∫
exdx+ C1

• Evaluate integral
− 1

ey(x) = ex + C1
• Solve for y(x)

y(x) = ln
(
− 1

ex+C1

)
Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
Maple dsolve solution

Solving time : 0.006 (sec)
Leaf size : 13� �
dsolve(diff(y(x),x) = exp(x+y(x)),

y(x),singsol=all)� �
y = ln

(
− 1
c1 + ex

)
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Mathematica DSolve solution

Solving time : 0.822 (sec)
Leaf size : 18� �
DSolve[{D[y[x],x]==Exp[x+y[x]],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → − log (−ex − c1)
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2.1.67 problem 67
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Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 536

Internal problem ID [8727]
Book : First order enumerated odes
Section : section 1
Problem number : 67
Date solved : Tuesday, December 17, 2024 at 01:01:39 PM
CAS classification : [[_homogeneous, ‘class C‘], _dAlembert]

Solve

y′ = 10 + ex+y

Solved as first order form A1 ode

Time used: 0.241 (sec)

The given ode has the general form

y′ = B + Cf(ax+ by + c) (1)

Comparing (1) to the ode given shows the parameters in the ODE have these values

B = 10
C = 1
a = 1
b = 1
c = 0

This form of ode can be solved by change of variables u = ax+ by+ c which makes the
ode separable.

u′(x) = a+ by′
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Or

y′ = u′(x)− a

b

The ode becomes
u′ − a

b
= B + Cf(u)

u′ = bB + bCf(u) + a

du

bB + bCf (u) + a
= dx

Integrating gives ∫
du

bB + bCf(u) + a
= x+ c1∫ u dτ

bB + bCf(τ) + a
= x+ c1

Replacing back u = ax+ by + c the above becomes∫ ax+by+c dτ

bB + bCf (τ) + a
= x+ c1 (2)

If initial conditions are given as y(x0) = y0, the above becomes∫ ax0+by0+c

0

dτ

bB + bCf (τ) + a
= x0 + c1

c1 =
∫ ax+by0+c

0

dτ

bB + bCf (τ) + a
− x0

Substituting this into (2) gives∫ ax+by+c dτ

bB + bCf (τ) + a
= x+

∫ ax+by0+c

0

dτ

bB + bCf (τ) + a
− x0 (3)

Since no initial conditions are given, then using (2) and replacing the values of the
parameters into (2) gives the solution as

∫ x+y 1
11 + eτ dτ = x+ c1

Which simplifies to

− ln (11 + ex+y)
11 + ln (ex+y)

11 = x+ c1
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Solving for y gives

y = 10x+ ln
(
− 11
−1 + e11x+11c1

)
+ 11c1
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x

Figure 2.93: Slope field plot
y′ = 10 + ex+y

Summary of solutions found

y = 10x+ ln
(
− 11
−1 + e11x+11c1

)
+ 11c1

Solved using Lie symmetry for first order ode

Time used: 0.963 (sec)

Writing the ode as

y′ = 10 + ex+y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
10 + ex+y

)
(b3 − a2)−

(
10 + ex+y

)2
a3

− ex+y(xa2 + ya3 + a1)− ex+y(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−e2x+2ya3 − ex+yxa2 − ex+yxb2 − ex+yya3 − ex+yyb3 − ex+ya1 − ex+ya2
− 20 ex+ya3 − ex+yb1 + ex+yb3 − 10a2 − 100a3 + b2 + 10b3 = 0

Setting the numerator to zero gives

(6E)−e2x+2ya3 − ex+yxa2 − ex+yxb2 − ex+yya3 − ex+yyb3 − ex+ya1 − ex+ya2
− 20 ex+ya3 − ex+yb1 + ex+yb3 − 10a2 − 100a3 + b2 + 10b3 = 0

Simplifying the above gives

(6E)−e2x+2ya3 − ex+yxa2 − ex+yxb2 − ex+yya3 − ex+yyb3 − ex+ya1 − ex+ya2
− 20 ex+ya3 − ex+yb1 + ex+yb3 − 10a2 − 100a3 + b2 + 10b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, ex+y, e2x+2y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, ex+y = v3, e2x+2y = v4}

The above PDE (6E) now becomes

(7E)−v3v1a2 − v3v2a3 − v3v1b2 − v3v2b3 − v3a1 − v3a2 − 20v3a3
− v4a3 − v3b1 + v3b3 − 10a2 − 100a3 + b2 + 10b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)(−a2 − b2) v1v3 + (−a3 − b3) v2v3 + (−a1 − a2 − 20a3 − b1 + b3) v3
− v4a3 − 10a2 − 100a3 + b2 + 10b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a3 = 0
−a2 − b2 = 0
−a3 − b3 = 0

−10a2 − 100a3 + b2 + 10b3 = 0
−a1 − a2 − 20a3 − b1 + b3 = 0

Solving the above equations for the unknowns gives

a1 = −b1

a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −1
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= 1−

(
10 + ex+y

)
(−1)

= 11 + exey

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

11 + exey dy

Which results in

S = − ln (11 + exey)
11 + ln (ey)

11
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 10 + ex+y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − ex+y

121 + 11 ex+y

Sy =
1

11 + ex+y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 10

11 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 10

11

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫ 10
11 dR

S(R) = 10R
11 + c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

− ln (11 + ex+y)
11 + y

11 = 10x
11 + c2

Which gives

y = 10x+ ln
(
− 11
−1 + e11x+11c2

)
+ 11c2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 10 + ex+y dS
dR

= 10
11

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = − ln (11 + ex+y)
11 + y

11
–4

–2

0

2

4

S(R)

–4 –2 2 4

R
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Figure 2.94: Slope field plot
y′ = 10 + ex+y

Summary of solutions found

y = 10x+ ln
(
− 11
−1 + e11x+11c2

)
+ 11c2

Solved as first order ode of type ID 1

Time used: 0.121 (sec)

Writing the ode as

y′ = 10 + ex+y (1)

And using the substitution u = e−y then

u′ = −y′e−y

The above shows that

y′ = −u′(x) ey

= −u′(x)
u

Substituting this in (1) gives

−u′(x)
u

= ex
u

+ 10
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The above simplifies to

−u′(x) = ex + 10u(x)
u′(x) + 10u(x) = −ex (2)

Now ode (2) is solved for u(x).

In canonical form a linear first order is

u′(x) + q(x)u(x) = p(x)

Comparing the above to the given ode shows that

q(x) = 10
p(x) = −ex

The integrating factor µ is

µ = e
∫
q dx

= e
∫
10dx

= e10x

The ode becomes
d
dx(µu) = µp

d
dx(µu) = (µ) (−ex)

d
dx
(
u e10x

)
=
(
e10x

)
(−ex)

d
(
u e10x

)
=
(
−exe10x

)
dx

Integrating gives

u e10x =
∫

−exe10x dx

= −e11x
11 + c1

Dividing throughout by the integrating factor e10x gives the final solution

u(x) = −(e11x − 11c1) e−10x

11
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Substituting the solution found for u(x) in u = e−y gives

y = − ln (u(x))
= − ln

(
ln (11)− ln

((
−e11x + 11c1

)
e−10x))

= ln (11)− ln
((
−e11x + 11c1

)
e−10x)
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Figure 2.95: Slope field plot
y′ = 10 + ex+y

Summary of solutions found

y = ln (11)− ln
((
−e11x + 11c1

)
e−10x)

Solved as first order ode of type dAlembert

Time used: 0.155 (sec)

Let p = y′ the ode becomes

p = 10 + ex+y

Solving for y from the above results in

(1)y = −x+ ln (p− 10)

This has the form

y = xf(p) + g(p) (*)
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Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved.

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −1
g = ln (p− 10)

Hence (2) becomes

p+ 1 = p′(x)
p− 10 (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 1 = 0

Solving the above for p results in

p1 = −1

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y = −x+ ln (11) + iπ

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = (p(x) + 1) (p(x)− 10) (3)

This ODE is now solved for p(x). No inversion is needed. Integrating gives∫ 1
(p+ 1) (p− 10)dp = dx

ln (p− 10)
11 − ln (p+ 1)

11 = x+ c1

Singular solutions are found by solving

(p+ 1) (p− 10) = 0
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for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = −1
p(x) = 10

Solving for p(x) gives
p(x) = −1

p(x) = 10

p(x) = − 10 + e11x+11c1

−1 + e11x+11c1

Substituing the above solution for p in (2A) gives

y = −x+ ln (11) + iπ

y = −x+ ln
(
− 10 + e11x+11c1

−1 + e11x+11c1
− 10

)
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Figure 2.96: Slope field plot
y′ = 10 + ex+y

Summary of solutions found

y = −x+ ln
(
− 10 + e11x+11c1

−1 + e11x+11c1
− 10

)
y = −x+ ln (11) + iπ
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Maple step by step solution

Let’s solve
d
dx
y(x) = 10 + ex+y(x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = 10 + ex+y(x)

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.072 (sec)
Leaf size : 26� �
dsolve(diff(y(x),x) = 10+exp(x+y(x)),

y(x),singsol=all)� �
y = −x+ ln (11) + ln

(
e11x

−e11x + c1

)
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Mathematica DSolve solution

Solving time : 3.188 (sec)
Leaf size : 42� �
DSolve[{D[y[x],x]==10+Exp[x+y[x]],{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → log

(
− 11e10x+11c1

−1 + e11(x+c1)

)
y(x) → log

(
−11e−x

)
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2.1.68 problem 68

Solved as first order ode of type ID 1 . . . . . . . . . . . . . . . 537
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 539
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 540
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 541

Internal problem ID [8728]
Book : First order enumerated odes
Section : section 1
Problem number : 68
Date solved : Tuesday, December 17, 2024 at 01:01:42 PM
CAS classification : [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

Solve

y′ = 10 ex+y + x2

Solved as first order ode of type ID 1

Time used: 0.491 (sec)

Writing the ode as

y′ = 10 ex+y + x2 (1)

And using the substitution u = e−y then

u′ = −y′e−y

The above shows that

y′ = −u′(x) ey

= −u′(x)
u

Substituting this in (1) gives

−u′(x)
u

= 10 ex
u

+ x2

The above simplifies to

−u′(x) = 10 ex + x2u(x)
u′(x) + x2u(x) = −10 ex (2)
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Now ode (2) is solved for u(x).

In canonical form a linear first order is

u′(x) + q(x)u(x) = p(x)

Comparing the above to the given ode shows that

q(x) = x2

p(x) = −10 ex

The integrating factor µ is

µ = e
∫
q dx

= e
∫
x2dx

= ex3
3

The ode becomes
d
dx(µu) = µp

d
dx(µu) = (µ) (−10 ex)

d
dx

(
u ex3

3

)
=
(
ex3

3

)
(−10 ex)

d
(
u ex3

3

)
=
(
−10 exex3

3

)
dx

Integrating gives

u ex3
3 =

∫
−10 exex3

3 dx

=
∫

−10 exex3
3 dx+ c1

Dividing throughout by the integrating factor ex3
3 gives the final solution

u(x) = e−x3
3

(∫
−10 exex3

3 dx+ c1

)
Substituting the solution found for u(x) in u = e−y gives

y = − ln (u(x))

= − ln
(
− ln

((
−10

(∫
e

x
(
x2+3

)
3 dx

)
+ c1

)
e−x3

3

))
= − ln

((
−10

(∫
e

x
(
x2+3

)
3 dx

)
+ c1

)
e−x3

3

)
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Figure 2.97: Slope field plot
y′ = 10 ex+y + x2

Summary of solutions found

y = − ln
((

−10
(∫

e
x
(
x2+3

)
3 dx

)
+ c1

)
e−x3

3

)

Maple step by step solution

Let’s solve
d
dx
y(x) = 10 ex+y(x) + x2

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = 10 ex+y(x) + x2

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
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trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
<- symmetry pattern of the form [0, F(x)*G(y)] successful`� �
Maple dsolve solution

Solving time : 0.019 (sec)
Leaf size : 30� �
dsolve(diff(y(x),x) = 10*exp(x+y(x))+x^2,

y(x),singsol=all)� �
y = x3

3 − ln
(
−c1 − 10

(∫
e

x
(
x2+3

)
3 dx

))
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Mathematica DSolve solution

Solving time : 0.413 (sec)
Leaf size : 115� �
DSolve[{D[y[x],x]==10*Exp[x+y[x]]+x^2,{}},

y[x],x,IncludeSingularSolutions->True]� �
Solve

[∫ y(x)

1
− 1
10e

−K[2]
(
10eK[2]

∫ x

1
− 1
10e

K[1]3
3 −K[2]K[1]2dK[1] + e

x3
3

)
dK[2]

+
∫ x

1

(
1
10e

K[1]3
3 −y(x)K[1]2 + e

K[1]3
3 +K[1]

)
dK[1] = c1, y(x)

]
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2.1.69 problem 69

Solved as first order ode of type ID 1 . . . . . . . . . . . . . . . 542
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 544
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 545
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 546

Internal problem ID [8729]
Book : First order enumerated odes
Section : section 1
Problem number : 69
Date solved : Tuesday, December 17, 2024 at 01:01:44 PM
CAS classification : [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

Solve

y′ = x ex+y + sin (x)

Solved as first order ode of type ID 1

Time used: 0.654 (sec)

Writing the ode as

y′ = x ex+y + sin (x) (1)

And using the substitution u = e−y then

u′ = −y′e−y

The above shows that

y′ = −u′(x) ey

= −u′(x)
u

Substituting this in (1) gives

−u′(x)
u

= x ex
u

+ sin (x)

The above simplifies to

−u′(x) = x ex + sin (x)u(x)
u′(x) + sin (x)u(x) = −x ex (2)
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Now ode (2) is solved for u(x).

In canonical form a linear first order is

u′(x) + q(x)u(x) = p(x)

Comparing the above to the given ode shows that

q(x) = sin (x)
p(x) = −x ex

The integrating factor µ is

µ = e
∫
q dx

= e
∫
sin(x)dx

= e− cos(x)

The ode becomes
d
dx(µu) = µp

d
dx(µu) = (µ) (−x ex)

d
dx
(
u e− cos(x)) = (e− cos(x)) (−x ex)

d
(
u e− cos(x)) = (−x exe− cos(x)) dx

Integrating gives

u e− cos(x) =
∫

−x exe− cos(x) dx

=
∫

−x exe− cos(x)dx+ c1

Dividing throughout by the integrating factor e− cos(x) gives the final solution

u(x) = ecos(x)
(∫

−x exe− cos(x)dx+ c1

)
Substituting the solution found for u(x) in u = e−y gives

y = − ln (u(x))

= − ln
(
− ln

((
−
∫

x ex−cos(x)dx+ c1

)
ecos(x)

))
= − ln

((
−
∫

x ex−cos(x)dx+ c1

)
ecos(x)

)
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Figure 2.98: Slope field plot
y′ = x ex+y + sin (x)

Summary of solutions found

y = − ln
((

−
∫

x ex−cos(x)dx+ c1

)
ecos(x)

)

Maple step by step solution

Let’s solve
d
dx
y(x) = x ex+y(x) + sin (x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = x ex+y(x) + sin (x)

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear



chapter 2. book solved problems 545

trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
<- symmetry pattern of the form [0, F(x)*G(y)] successful`� �
Maple dsolve solution

Solving time : 0.020 (sec)
Leaf size : 29� �
dsolve(diff(y(x),x) = x*exp(x+y(x))+sin(x),

y(x),singsol=all)� �
y = − cos (x)− ln

(
−c1 −

(∫
x ex−cos(x)dx

))
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Mathematica DSolve solution

Solving time : 3.151 (sec)
Leaf size : 100� �
DSolve[{D[y[x],x]==x*Exp[x+y[x]]+Sin[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
Solve

[∫ x

1

(
−eK[1]−cos(K[1])K[1]− e− cos(K[1])−y(x) sin(K[1])

)
dK[1] +

∫ y(x)

1

−e− cos(x)−K[2]
(
ecos(x)+K[2]

∫ x

1
e− cos(K[1])−K[2] sin(K[1])dK[1]−1

)
dK[2] = c1, y(x)

]
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2.1.70 problem 70

Solved as first order ode of type ID 1 . . . . . . . . . . . . . . . 547
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 549
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 551
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 551

Internal problem ID [8730]
Book : First order enumerated odes
Section : section 1
Problem number : 70
Date solved : Tuesday, December 17, 2024 at 01:01:46 PM
CAS classification : [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

Solve

y′ = 5 ex2+20y + sin (x)

Solved as first order ode of type ID 1

Time used: 0.685 (sec)

Writing the ode as

y′ = 5 ex2+20y + sin (x) (1)

And using the substitution u = e−20y then

u′ = −20y′e−20y

The above shows that

y′ = −u′(x) e20y
20

= −u′(x)
20u

Substituting this in (1) gives

−u′(x)
20u = 5 ex2

u
+ sin (x)

The above simplifies to

−u′(x)
20 = 5 ex2 + sin (x)u(x)

u′(x) + 20 sin (x)u(x) = −100 ex2 (2)
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Now ode (2) is solved for u(x).

In canonical form a linear first order is

u′(x) + q(x)u(x) = p(x)

Comparing the above to the given ode shows that

q(x) = 20 sin (x)
p(x) = −100 ex2

The integrating factor µ is

µ = e
∫
q dx

= e
∫
20 sin(x)dx

= e−20 cos(x)

The ode becomes
d
dx(µu) = µp

d
dx(µu) = (µ)

(
−100 ex2

)
d
dx
(
u e−20 cos(x)) = (e−20 cos(x)) (−100 ex2

)
d
(
u e−20 cos(x)) = (−100 ex2e−20 cos(x)

)
dx

Integrating gives

u e−20 cos(x) =
∫

−100 ex2e−20 cos(x) dx

=
∫

−100 ex2e−20 cos(x)dx+ c1

Dividing throughout by the integrating factor e−20 cos(x) gives the final solution

u(x) = e20 cos(x)
(∫

−100 ex2e−20 cos(x)dx+ c1

)
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Substituting the solution found for u(x) in u = e−20y gives

y = − ln (u(x))
20

= −
ln
(
−

ln
((

−100
(∫

ex2−20 cos(x)dx
)
+c1

)
e20 cos(x)

)
20

)
20

= −
ln
((

−100
(∫

ex2−20 cos(x)dx
)
+ c1

)
e20 cos(x)

)
20

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.99: Slope field plot
y′ = 5 ex2+20y + sin (x)

Summary of solutions found

y = −
ln
((

−100
(∫

ex2−20 cos(x)dx
)
+ c1

)
e20 cos(x)

)
20

Maple step by step solution

Let’s solve
d
dx
y(x) = 5 ex2+20y(x) + sin (x)

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative



chapter 2. book solved problems 550

d
dx
y(x) = 5 ex2+20y(x) + sin (x)

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
<- symmetry pattern of the form [0, F(x)*G(y)] successful`� �
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Maple dsolve solution

Solving time : 0.023 (sec)
Leaf size : 33� �
dsolve(diff(y(x),x) = 5*exp(x^2+20*y(x))+sin(x),

y(x),singsol=all)� �
y = − cos (x)− ln (20)

20 −
ln
(
−c1 − 5

(∫
ex2−20 cos(x)dx

))
20

Mathematica DSolve solution

Solving time : 7.542 (sec)
Leaf size : 140� �
DSolve[{D[y[x],x]==5*Exp[x^2+20*y[x]]+Sin[x],{}},

y[x],x,IncludeSingularSolutions->True]� �
Solve

[∫ x

1
− 1
100e

−20 cos(K[1])−20y(x)
(
sin(K[1]) + 5eK[1]2+20y(x)

)
dK[1] +

∫ y(x)

1

− 1
100e

−20 cos(x)−20K[2]
(
100e20 cos(x)+20K[2]

∫ x

1

(
1
5e

−20 cos(K[1])−20K[2]
(
sin(K[1])+5eK[1]2+20K[2]

)
−eK[1]2−20 cos(K[1])

)
dK[1]

− 1
)
dK[2] = c1, y(x)

]
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2.2 section 2 (system of first order odes)
2.2.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
2.2.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
2.2.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
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2.2.1 problem 1

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 555
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 555
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 555

Internal problem ID [8731]
Book : First order enumerated odes
Section : section 2 (system of first order odes)
Problem number : 1
Date solved : Thursday, December 12, 2024 at 09:42:36 AM
CAS classification : system_of_ODEs

x′ + y′ − x = y + t

x′ + y′ = 2x+ 3y + et

In canonical form a linear first order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = −1
p(t) = 3t− 1

The integrating factor µ is

µ = e
∫
q dt

= e
∫
(−1)dt

= e−t

The ode becomes
d
dt(µx) = µp

d
dt(µx) = (µ) (3t− 1)

d
dt
(
x e−t

)
=
(
e−t
)
(3t− 1)

d
(
x e−t

)
=
(
(3t− 1) e−t

)
dt
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Integrating gives

x e−t =
∫

(3t− 1) e−t dt

= −(3t+ 2) e−t + _C

Dividing throughout by the integrating factor e−t gives the final solution

x = _C et − 3t− 2

The system is

x′ + y′ = x+ y + t (1)
x′ + y′ = 2x+ 3y + et (2)

Since the left side is the same, this implies

x+ y + t = 2x+ 3y + et

y = −x

2 − et
2 + t

2 (3)

Taking derivative of the above w.r.t. t gives

y′ = −x′

2 − et
2 + 1

2 (4)

Substituting (3,4) in (1) to eliminate y, y′ gives

x′

2 − et
2 + 1

2 = x

2 − et
2 + 3t

2
x′ = x+ 3t− 1 (5)

Which is now solved for x. Given now that we have the solution

x = _C et − 3t− 2 (6)

Then substituting (6) into (3) gives

y = −_C et
2 + 2t+ 1− et

2 (7)



chapter 2. book solved problems 555

Maple step by step solution

Maple dsolve solution

Solving time : 0.044 (sec)
Leaf size : 30� �
dsolve([diff(x(t),t)+diff(y(t),t)-x(t) = y(t)+t, diff(x(t),t)+diff(y(t),t) = 2*x(t)+3*y(t)+exp(t)]

,{op([x(t), y(t)])})� �
x(t) = −3t− 2 + c1et

y(t) = 2t+ 1− c1et
2 − et

2

Mathematica DSolve solution

Solving time : 0.026 (sec)
Leaf size : 37� �
DSolve[{{D[x[t],t]+D[y[t],t]-x[t]==y[t]+t,D[x[t],t]+D[y[t],t]==2*x[t]+3*y[t]+Exp[t]},{}},

{x[t],y[t]},t,IncludeSingularSolutions->True]� �
x(t) → −3t+ (1 + 2c1)et − 2
y(t) → 2t− (1 + c1)et + 1



chapter 2. book solved problems 556

2.2.2 problem 2

Solution using Matrix exponential method . . . . . . . . . . . . 556
Solution using explicit Eigenvalue and Eigenvector method . . . 558
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 564
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 564
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 564

Internal problem ID [8732]
Book : First order enumerated odes
Section : section 2 (system of first order odes)
Problem number : 2
Date solved : Thursday, December 12, 2024 at 09:42:36 AM
CAS classification : system_of_ODEs

2x′ + y′ − x = y + t

x′ + y′ = 2x+ 3y + et

Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or [
x′

y′

]
=
[
−1 −2
3 5

] [
x

y

]
+
[

t− et

−t+ 2 et

]

Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the



chapter 2. book solved problems 557

matrix exponential can be found to be

eAt =


(
1+

√
3
)
e−

(
−2+

√
3
)
t

2 −
e
(
2+

√
3
)
t
(√

3−1
)

2

(
−e

(
2+

√
3
)
t+e−

(
−2+

√
3
)
t
)√

3

3

−

(
−e

(
2+

√
3
)
t+e−

(
−2+

√
3
)
t
)√

3

2

(
−
√
3+1

)
e−

(
−2+

√
3
)
t

2 +
e
(
2+

√
3
)
t
(
1+

√
3
)

2


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


(
1+

√
3
)
e−

(
−2+

√
3
)
t

2 −
e
(
2+

√
3
)
t
(√

3−1
)

2

(
−e

(
2+

√
3
)
t+e−

(
−2+

√
3
)
t
)√

3

3

−

(
−e

(
2+

√
3
)
t+e−

(
−2+

√
3
)
t
)√

3

2

(
−
√
3+1

)
e−

(
−2+

√
3
)
t

2 +
e
(
2+

√
3
)
t
(
1+

√
3
)

2


[
c1
c2

]

=



((
1+

√
3
)
e−

(
−2+

√
3
)
t

2 −
e
(
2+

√
3
)
t
(√

3−1
)

2

)
c1 +

(
−e

(
2+

√
3
)
t+e−

(
−2+

√
3
)
t
)√

3 c2

3

−

(
−e

(
2+

√
3
)
t+e−

(
−2+

√
3
)
t
)√

3 c1

2 +
((

−
√
3+1

)
e−

(
−2+

√
3
)
t

2 +
e
(
2+

√
3
)
t
(
1+

√
3
)

2

)
c2



=


(
(3c1+2c2)

√
3+3c1

)
e−

(
−2+

√
3
)
t

6 −
e
(
2+

√
3
)
t
((

c1+ 2c2
3

)√
3−c1

)
2(

(−c1−c2)
√
3+c2

)
e−

(
−2+

√
3
)
t

2 +
(
(c1+c2)

√
3+c2

)
e
(
2+

√
3
)
t

2


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=


e−4t

((
−
√
3+1

)
e−

(
−2+

√
3
)
t+e

(
2+

√
3
)
t
(
1+

√
3
))

2 −
√
3 e−4t

(
−e

(
2+

√
3
)
t+e−

(
−2+

√
3
)
t
)

3
√
3 e−4t

(
−e

(
2+

√
3
)
t+e−

(
−2+

√
3
)
t
)

2

e−4t
(√

3 e−
(
−2+

√
3
)
t−

√
3 e

(
2+

√
3
)
t+e−

(
−2+

√
3
)
t+e

(
2+

√
3
)
t
)

2


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Hence

~xp(t) =


(
1+

√
3
)
e−

(
−2+

√
3
)
t

2 −
e
(
2+

√
3
)
t
(√

3−1
)

2

(
−e

(
2+

√
3
)
t+e−

(
−2+

√
3
)
t
)√

3

3

−

(
−e

(
2+

√
3
)
t+e−

(
−2+

√
3
)
t
)√

3

2

(
−
√
3+1

)
e−

(
−2+

√
3
)
t

2 +
e
(
2+

√
3
)
t
(
1+

√
3
)

2


∫ 

e−4t
((

−
√
3+1

)
e−

(
−2+

√
3
)
t+e

(
2+

√
3
)
t
(
1+

√
3
))

2 −
√
3 e−4t

(
−e

(
2+

√
3
)
t+e−

(
−2+

√
3
)
t
)

3
√
3 e−4t

(
−e

(
2+

√
3
)
t+e−

(
−2+

√
3
)
t
)

2

e−4t
(√

3 e−
(
−2+

√
3
)
t−

√
3 e

(
2+

√
3
)
t+e−

(
−2+

√
3
)
t+e

(
2+

√
3
)
t
)

2


[

t− et

−t+ 2 et

]
dt

=


(
1+

√
3
)
e−

(
−2+

√
3
)
t

2 −
e
(
2+

√
3
)
t
(√

3−1
)

2

(
−e

(
2+

√
3
)
t+e−

(
−2+

√
3
)
t
)√

3

3

−

(
−e

(
2+

√
3
)
t+e−

(
−2+

√
3
)
t
)√

3

2

(
−
√
3+1

)
e−

(
−2+

√
3
)
t

2 +
e
(
2+

√
3
)
t
(
1+

√
3
)

2




(
(5t+19)

√
3−9t−33

)
e−

(
2+

√
3
)
t

6 +
√
3 e−t

(
1+

√
3
)

6 +
(
(−5t−19)

√
3−9t−33

)
e
(
−2+

√
3
)
t

6 −
√
3 et

(√
3−1

)
6(

7+(−4−t)
√
3+2t

)
e−

(
2+

√
3
)
t

2 +
(
−1−

√
3
)
e−t

(
1+

√
3
)

4 +
(
7+(4+t)

√
3+2t

)
e
(
−2+

√
3
)
t

2 +
et

(√
3−1

)(√
3−1

)
4


=
[

−3t− 11
2t+ 7− et

2

]
Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=


(
(3c1+2c2)

√
3+3c1

)
e−

(
−2+

√
3
)
t

6 +
(
(−3c1−2c2)

√
3+3c1

)
e
(
2+

√
3
)
t

6 − 3t− 11(
(−c1−c2)

√
3+c2

)
e−

(
−2+

√
3
)
t

2 +
(
(c1+c2)

√
3+c2

)
e
(
2+

√
3
)
t

2 + 2t+ 7− et
2


Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or [
x′

y′

]
=
[
−1 −2
3 5

] [
x

y

]
+
[

t− et

−t+ 2 et

]
Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det
([

−1 −2
3 5

]
− λ

[
1 0
0 1

])
= 0

Therefore

det
([

−1− λ −2
3 5− λ

])
= 0

Which gives the characteristic equation

λ2 − 4λ+ 1 = 0

The roots of the above are the eigenvalues.

λ1 = 2 +
√
3

λ2 = 2−
√
3

This table summarises the above result
eigenvalue algebraic multiplicity type of eigenvalue
2−

√
3 1 real eigenvalue

2 +
√
3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2−
√
3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes([
−1 −2
3 5

]
−
(
2−

√
3
)[ 1 0

0 1

])[
v1
v2

]
=
[
0
0

]
[
−3 +

√
3 −2

3 3 +
√
3

] [
v1
v2

]
=
[
0
0

]
Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is [

−3 +
√
3 −2 0

3 3 +
√
3 0

]

R2 = R2 −
3R1

−3 +
√
3
=⇒

[
−3 +

√
3 −2 0

0 0 0

]



chapter 2. book solved problems 560

Therefore the system in Echelon form is[
−3 +

√
3 −2

0 0

] [
v1
v2

]
=
[
0
0

]
The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 2t

−3+
√
3

}
Hence the solution is [

v1
t

]
=
[

2t
−3+

√
3

t

]
Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as[

v1
t

]
= t

[
2

−3+
√
3

1

]

Let t = 1 the eigenvector becomes[
v1
t

]
=
[

2
−3+

√
3

1

]

Which is normalized to [
v1
t

]
=
[

2
−3+

√
3

1

]
Considering the eigenvalue λ2 = 2 +

√
3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes([
−1 −2
3 5

]
−
(
2 +

√
3
)[ 1 0

0 1

])[
v1
v2

]
=
[
0
0

]
[

−3−
√
3 −2

3 3−
√
3

] [
v1
v2

]
=
[
0
0

]
Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is [

−3−
√
3 −2 0

3 3−
√
3 0

]
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R2 = R2 −
3R1

−3−
√
3
=⇒

[
−3−

√
3 −2 0

0 0 0

]

Therefore the system in Echelon form is[
−3−

√
3 −2

0 0

] [
v1
v2

]
=
[
0
0

]
The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = − 2t

3+
√
3

}
Hence the solution is [

v1
t

]
=
[

− 2t
3+

√
3

t

]
Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as[

v1
t

]
= t

[
− 2

3+
√
3

1

]

Let t = 1 the eigenvector becomes[
v1
t

]
=
[

− 2
3+

√
3

1

]

Which is normalized to [
v1
t

]
=
[

− 2
3+

√
3

1

]
The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity
eigenvalue algebraic m geometric k defective? eigenvectors

2 +
√
3 1 1 No

 − 2
3+

√
3

1



2−
√
3 1 1 No

 − 2
3−

√
3

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Since eigenvalue 2 +

√
3 is real and distinct then the

corresponding eigenvector solution is

~x1(t) = ~v1e

(
2+

√
3
)
t

=
[

− 2
3+

√
3

1

]
e

(
2+

√
3
)
t

Since eigenvalue 2−
√
3 is real and distinct then the corresponding eigenvector solution

is

~x2(t) = ~v2e

(
2−

√
3
)
t

=
[

− 2
3−

√
3

1

]
e

(
2−

√
3
)
t

Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as [
x

y

]
= c1

 −2 e
(
2+

√
3
)
t

3+
√
3

e
(
2+

√
3
)
t

+ c2

 −2 e
(
2−

√
3
)
t

3−
√
3

e
(
2−

√
3
)
t


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
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Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =

 −2 e
(
2+

√
3
)
t

3+
√
3 −2 e

(
2−

√
3
)
t

3−
√
3

e
(
2+

√
3
)
t e

(
2−

√
3
)
t


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =


√
3 e−

(
2+

√
3
)
t

2

√
3
(
3+

√
3
)
e−

(
2+

√
3
)
t

6

−
√
3 e

(
−2+

√
3
)
t

2
e
(
−2+

√
3
)
t√3

(
−3+

√
3
)

6


Hence

~xp(t) =

 −2 e
(
2+

√
3
)
t

3+
√
3 −2 e

(
2−

√
3
)
t

3−
√
3

e
(
2+

√
3
)
t e

(
2−

√
3
)
t

∫


√
3 e−

(
2+

√
3
)
t

2

√
3
(
3+

√
3
)
e−

(
2+

√
3
)
t

6

−
√
3 e

(
−2+

√
3
)
t

2
e
(
−2+

√
3
)
t√3

(
−3+

√
3
)

6


[

t− et

−t+ 2 et

]
dt

=

 −2 e
(
2+

√
3
)
t

3+
√
3 −2 e

(
2−

√
3
)
t

3−
√
3

e
(
2+

√
3
)
t e

(
2−

√
3
)
t

∫


√
3 e−t

(
1+

√
3
)

2 + e−t
(
1+

√
3
)
− e−

(
2+

√
3
)
t
t

2

−
√
3 et

(√
3−1

)
2 + et

(√
3−1

)
− e

(
−2+

√
3
)
t
t

2

 dt

=

 −2 e
(
2+

√
3
)
t

3+
√
3 −2 e

(
2−

√
3
)
t

3−
√
3

e
(
2+

√
3
)
t e

(
2−

√
3
)
t




5
(((

t+ 1
5
)√

3+ 9t
5 + 3

5

)
e−

(
2+

√
3
)
t+e−t

(
1+

√
3
)(

− 26
√
3

5 −9
))√

3

6
(
1+

√
3
)(

2+
√
3
)2

−
5
(((

t+ 1
5
)√

3− 9t
5 − 3

5

)
e
(
−2+

√
3
)
t+et

(√
3−1

)(
− 26

√
3

5 +9
))√

3

6
(√

3−1
)(

−2+
√
3
)2


=
[

−3t− 11
2t+ 7− et

2

]
Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t)[
x

y

]
=

 −2c1 e
(
2+

√
3
)
t

3+
√
3

c1 e
(
2+

√
3
)
t

+

 −2c2 e
(
2−

√
3
)
t

3−
√
3

c2 e
(
2−

√
3
)
t

+
[

−3t− 11
2t+ 7− et

2

]
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Which becomes

[
x

y

]
=

 −
c2
(
3+

√
3
)
e−

(
−2+

√
3
)
t

3 +
c1
(
−3+

√
3
)
e
(
2+

√
3
)
t

3 − 3t− 11

c1 e
(
2+

√
3
)
t + c2 e−

(
−2+

√
3
)
t + 2t+ 7− et

2


Maple step by step solution

Maple dsolve solution

Solving time : 0.070 (sec)
Leaf size : 94� �
dsolve([2*diff(x(t),t)+diff(y(t),t)-x(t) = y(t)+t, diff(x(t),t)+diff(y(t),t) = 2*x(t)+3*y(t)+exp(t)]

,{op([x(t), y(t)])})� �
x(t) = e

(
2+

√
3
)
t
c2 + e−

(
−2+

√
3
)
t
c1 − 3t− 11

y(t) = −e
(
2+

√
3
)
t
c2
√
3

2 + e−
(
−2+

√
3
)
t
c1
√
3

2 − 3 e
(
2+

√
3
)
t
c2

2 − 3 e−
(
−2+

√
3
)
t
c1

2 − et
2 + 2t+ 7

Mathematica DSolve solution

Solving time : 6.59 (sec)
Leaf size : 174� �
DSolve[{{2*D[x[t],t]+D[y[t],t]-x[t]==y[t]+t,D[x[t],t]+D[y[t],t]==2*x[t]+3*y[t]+Exp[t]},{}},

{x[t],y[t]},t,IncludeSingularSolutions->True]� �
x(t) → 1

6e
−
((√

3−2
)
t
)(

−6e
(√

3−2
)
t(3t+ 11) +

(
−3
(√

3− 1
)
c1 − 2

√
3c2
)
e2

√
3t

+ 3
(
1 +

√
3
)
c1 + 2

√
3c2
)

y(t)→ 1
2

(
4t− et+

(
−
√
3c1−

√
3c2+ c2

)
e
−
((√

3−2
)
t
)
+
(√

3c1+
(
1+

√
3
)
c2
)
e

(
2+

√
3
)
t

+ 14
)
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2.2.3 problem 3

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 567
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 567
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 567

Internal problem ID [8733]
Book : First order enumerated odes
Section : section 2 (system of first order odes)
Problem number : 3
Date solved : Thursday, December 12, 2024 at 09:42:37 AM
CAS classification : system_of_ODEs

x′ + y′ − x = y + t+ sin (t) + cos (t)
x′ + y′ = 2x+ 3y + et

In canonical form a linear first order is

x′ + q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = −1
p(t) = 3t+ 4 sin (t) + 2 cos (t)− 1

The integrating factor µ is

µ = e
∫
q dt

= e
∫
(−1)dt

= e−t

The ode becomes

d
dt(µx) = µp

d
dt(µx) = (µ) (3t+ 4 sin (t) + 2 cos (t)− 1)

d
dt
(
x e−t

)
=
(
e−t
)
(3t+ 4 sin (t) + 2 cos (t)− 1)

d
(
x e−t

)
=
(
(3t+ 4 sin (t) + 2 cos (t)− 1) e−t

)
dt
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Integrating gives

x e−t =
∫

(3t+ 4 sin (t) + 2 cos (t)− 1) e−t dt

= −3 e−tt− 2 e−t − 3 e−t cos (t)− e−t sin (t) + _C

Dividing throughout by the integrating factor e−t gives the final solution

x = _C et − sin (t)− 3 cos (t)− 3t− 2

The system is

x′ + y′ = x+ y + t+ sin (t) + cos (t) (1)
x′ + y′ = 2x+ 3y + et (2)

Since the left side is the same, this implies

x+ y + t+ sin (t) + cos (t) = 2x+ 3y + et

y = −x

2 − et
2 + t

2 + sin (t)
2 + cos (t)

2 (3)

Taking derivative of the above w.r.t. t gives

y′ = −x′

2 − et
2 + 1

2 + cos (t)
2 − sin (t)

2 (4)

Substituting (3,4) in (1) to eliminate y, y′ gives

x′

2 − et
2 + 1

2 + cos (t)
2 − sin (t)

2 = x

2 − et
2 + 3t

2 + 3 sin (t)
2 + 3 cos (t)

2
x′ = x+ 3t+ 4 sin (t) + 2 cos (t)− 1 (5)

Which is now solved for x. Given now that we have the solution

x = _C et − sin (t)− 3 cos (t)− 3t− 2 (6)

Then substituting (6) into (3) gives

y = −_C et
2 + sin (t) + 2 cos (t) + 2t+ 1− et

2 (7)
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Maple step by step solution

Maple dsolve solution

Solving time : 0.198 (sec)
Leaf size : 44� �
dsolve([diff(x(t),t)+diff(y(t),t)-x(t) = y(t)+t+sin(t)+cos(t), diff(x(t),t)+diff(y(t),t) = 2*x(t)+3*y(t)+exp(t)]

,{op([x(t), y(t)])})� �
x(t) = − sin (t)− 3 cos (t) + c1et − 3t− 2

y(t) = sin (t) + 2 cos (t)− c1et
2 + 2t+ 1− et

2

Mathematica DSolve solution

Solving time : 0.038 (sec)
Leaf size : 54� �
DSolve[{{D[x[t],t]+D[y[t],t]-x[t]==y[t]+t+Sin[t]+Cos[t],D[x[t],t]+D[y[t],t]==2*x[t]+3*y[t]+Exp[t]},{}},

{x[t],y[t]},t,IncludeSingularSolutions->True]� �
x(t) → −3t+ et − sin(t)− 3 cos(t) + 2c1et − 2
y(t) → 2t− et + sin(t) + 2 cos(t)− c1e

t + 1
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2.3 section 3. First order odes solved using
Laplace method

2.3.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
2.3.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
2.3.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
2.3.4 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
2.3.5 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
2.3.6 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
2.3.7 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
2.3.8 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
2.3.9 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
2.3.10 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
2.3.11 problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
2.3.12 problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
2.3.13 problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
2.3.14 problem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
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2.3.1 problem 1

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 571
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 572
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 572

Internal problem ID [8734]
Book : First order enumerated odes
Section : section 3. First order odes solved using Laplace method
Problem number : 1
Date solved : Tuesday, December 17, 2024 at 01:01:49 PM
CAS classification : [_linear]

Solve

ty′ + y = t

With initial conditions

y(0) = 5

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

tnf(t) L−→ (−1)n dn

dsn
F (s)

Where in the above F (s) is the laplace transform of f(t). Applying the above property
to each term of the ode gives

y
L−→ Y (s)

ty′
L−→ −Y (s)− s

(
d

ds
Y (s)

)
t

L−→ 1
s2

Collecting all the terms above, the ode in Laplace domain becomes

−sY ′ = 1
s2

The above ode in Y(s) is now solved.
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Since the ode has the form Y ′ = f(s), then we only need to integrate f(s).∫
dY =

∫
− 1
s3

ds

Y = 1
2s2 + c1

Applying inverse Laplace transform on the above gives.

y = t

2 + c1δ(t) (1)

Substituting initial conditions y(0) = 5 and y′(0) = 5 into the above solution Gives

5 = c1δ(0)

Solving for the constant c1 from the above equation gives

c1 =
5

δ (0)

Substituting the above back into the solution (1) gives

y = t

2 + 5δ(t)
δ (0)

–1

–0.5

0

0.5

1

y(t)

–8 –6 –4 –2 0 2 4 6 8 10

t

Figure 2.100: Solution plot
y = t

2 +
5δ(t)
δ(0)
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Maple step by step solution

Let’s solve
[ty′ + y = t, y(0) = 5]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 1− y

t

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

t
= 1

• The ODE is linear; multiply by an integrating factor µ(t)
µ(t)

(
y′ + y

t

)
= µ(t)

• Assume the lhs of the ODE is the total derivative d
dt
(yµ(t))

µ(t)
(
y′ + y

t

)
= y′µ(t) + yµ′(t)

• Isolate µ′(t)
µ′(t) = µ(t)

t

• Solve to find the integrating factor
µ(t) = t

• Integrate both sides with respect to t∫ (
d
dt
(yµ(t))

)
dt =

∫
µ(t) dt+ C1

• Evaluate the integral on the lhs
yµ(t) =

∫
µ(t) dt+ C1

• Solve for y
y =

∫
µ(t)dt+C1

µ(t)

• Substitute µ(t) = t

y =
∫
tdt+C1

t

• Evaluate the integrals on the rhs

y =
t2
2 +C1

t

• Simplify
y = t2+2C1

2t

• Solution does not satisfy initial condition
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.033 (sec)
Leaf size : 16� �
dsolve([t*diff(y(t),t)+y(t) = t,

op([y(0) = 5])],
y(t),method=laplace)� �

y = t

2 + 5δ(t)
δ (0)

Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0� �
DSolve[{t*D[y[t],t]+y[t]==t,{y[0]==5}},

y[t],t,IncludeSingularSolutions->True]� �
Not solved
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2.3.2 problem 2

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 575
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 576
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 576

Internal problem ID [8735]
Book : First order enumerated odes
Section : section 3. First order odes solved using Laplace method
Problem number : 2
Date solved : Tuesday, December 17, 2024 at 01:01:49 PM
CAS classification : [_separable]

Solve

y′ − ty = 0

With initial conditions

y(0) = 0

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

tnf(t) L−→ (−1)n dn

dsn
F (s)

Where in the above F (s) is the laplace transform of f(t). Applying the above property
to each term of the ode gives

−ty
L−→ d

ds
Y (s)

y′
L−→ sY (s)− y(0)

Collecting all the terms above, the ode in Laplace domain becomes

sY − y(0) + Y ′ = 0

Replacing y(0) = 0 in the above results in

sY + Y ′ = 0
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The above ode in Y(s) is now solved.

In canonical form a linear first order is

Y ′ + q(s)Y = p(s)

Comparing the above to the given ode shows that

q(s) = s

p(s) = 0

The integrating factor µ is
µ = e

∫
sds

Therefore the solution is
Y = c1 e−

∫
sds

Expanding and simplifying Y (s) found above gives

Y = c1 e−
s2
2

Applying inverse Laplace transform on the above gives.

y = c1L−1
(
e− s2

2 , s, t
)

(1)

Substituting initial conditions y(0) = 0 and y′(0) = 0 into the above solution Gives

0 = c1L−1
(
e− s2

2 , s, t
)

Solving for the constant c1 from the above equation gives

c1 = 0

Substituting the above back into the solution (1) gives

y = 0
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–1

–0.5

0

0.5

1

y(t)

–8 –6 –4 –2 0 2 4 6 8 10

t

(a) Solution plot
y = 0

–1

–0.5

0

0.5

1

y(t)

–10 –5 0 5 10

t

(b) Slope field plot
y′ − ty = 0

Maple step by step solution

Let’s solve
[y′ − yt = 0, y(0) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = yt

• Separate variables
y′

y
= t

• Integrate both sides with respect to t∫
y′

y
dt =

∫
tdt+ C1

• Evaluate integral
ln (y) = t2

2 + C1
• Solve for y

y = e t2
2 +C1

• Use initial condition y(0) = 0
0 = eC1

• Solve for _C1
C1 = ()

• Solution does not satisfy initial condition
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.032 (sec)
Leaf size : 5� �
dsolve([diff(y(t),t)-y(t)*t = 0,

op([y(0) = 0])],
y(t),method=laplace)� �

y = 0

Mathematica DSolve solution

Solving time : 0.001 (sec)
Leaf size : 6� �
DSolve[{D[y[t],t]-t*y[t]==0,y[0]==0},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 0
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2.3.3 problem 3

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 578
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 579
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 579

Internal problem ID [8736]
Book : First order enumerated odes
Section : section 3. First order odes solved using Laplace method
Problem number : 3
Date solved : Tuesday, December 17, 2024 at 01:01:50 PM
CAS classification : [_separable]

Solve

ty′ + y = 0

With initial conditions

y(0) = 0

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

tnf(t) L−→ (−1)n dn

dsn
F (s)

Where in the above F (s) is the laplace transform of f(t). Applying the above property
to each term of the ode gives

y
L−→ Y (s)

ty′
L−→ −Y (s)− s

(
d

ds
Y (s)

)
Collecting all the terms above, the ode in Laplace domain becomes

−sY ′ = 0

The above ode in Y(s) is now solved.

Since the ode has the form Y ′ = f(s), then we only need to integrate f(s).∫
dY =

∫
0 ds+ c1

Y = c1
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Applying inverse Laplace transform on the above gives.

y = c1δ(t) (1)

Substituting initial conditions y(0) = 0 and y′(0) = 0 into the above solution Gives

0 = c1δ(0)

Solving for the constant c1 from the above equation gives

c1 = 0

Substituting the above back into the solution (1) gives

y = 0

–1

–0.5

0

0.5

1

y(t)

–8 –6 –4 –2 0 2 4 6 8 10

t

(a) Solution plot
y = 0

–1

–0.5

0

0.5

1

y(t)

–10 –5 0 5 10

t

(b) Slope field plot
ty′ + y = 0

Maple step by step solution

Let’s solve
[ty′ + y = 0, y(0) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= −1

t

• Integrate both sides with respect to t
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∫
y′

y
dt =

∫
−1

t
dt+ C1

• Evaluate integral
ln (y) = − ln (t) + C1

• Solve for y
y = eC1

t

• Solution does not satisfy initial condition

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.020 (sec)
Leaf size : 5� �
dsolve([t*diff(y(t),t)+y(t) = 0,

op([y(0) = 0])],
y(t),method=laplace)� �

y = 0

Mathematica DSolve solution

Solving time : 0.001 (sec)
Leaf size : 6� �
DSolve[{t*D[y[t],t]+y[t]==0,y[0]==0},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 0
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2.3.4 problem 4

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 581
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 582
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 582

Internal problem ID [8737]
Book : First order enumerated odes
Section : section 3. First order odes solved using Laplace method
Problem number : 4
Date solved : Tuesday, December 17, 2024 at 01:01:51 PM
CAS classification : [_separable]

Solve

ty′ + y = 0

With initial conditions

y(0) = y0

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

tnf(t) L−→ (−1)n dn

dsn
F (s)

Where in the above F (s) is the laplace transform of f(t). Applying the above property
to each term of the ode gives

y
L−→ Y (s)

ty′
L−→ −Y (s)− s

(
d

ds
Y (s)

)
Collecting all the terms above, the ode in Laplace domain becomes

−sY ′ = 0

The above ode in Y(s) is now solved.

Since the ode has the form Y ′ = f(s), then we only need to integrate f(s).∫
dY =

∫
0 ds+ c1

Y = c1
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Applying inverse Laplace transform on the above gives.

y = c1δ(t) (1)

Substituting initial conditions y(0) = y0 and y′(0) = y0 into the above solution Gives

y0 = c1δ(0)

Solving for the constant c1 from the above equation gives

c1 =
y0

δ (0)

Substituting the above back into the solution (1) gives

y = y0δ(t)
δ (0)

–3

–2

–1

0

1

2

3

y(t)

–4 –2 0 2 4

t

Figure 2.103: Slope field plot
ty′ + y = 0

Maple step by step solution

Let’s solve
[ty′ + y = 0, y(0) = y0]

• Highest derivative means the order of the ODE is 1
y′
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• Separate variables
y′

y
= −1

t

• Integrate both sides with respect to t∫
y′

y
dt =

∫
−1

t
dt+ C1

• Evaluate integral
ln (y) = − ln (t) + C1

• Solve for y
y = eC1

t

• Solution does not satisfy initial condition

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.020 (sec)
Leaf size : 12� �
dsolve([t*diff(y(t),t)+y(t) = 0,

op([y(0) = y__0])],
y(t),method=laplace)� �

y = y0δ(t)
δ (0)

Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0� �
DSolve[{t*D[y[t],t]+y[t]==0,y[0]==y0},

y[t],t,IncludeSingularSolutions->True]� �
Not solved
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2.3.5 problem 5

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 586
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 587
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 587

Internal problem ID [8738]
Book : First order enumerated odes
Section : section 3. First order odes solved using Laplace method
Problem number : 5
Date solved : Tuesday, December 17, 2024 at 01:01:52 PM
CAS classification : [_separable]

Solve

ty′ + y = 0

With initial conditions

y(x0) = y0

Since initial condition is not at zero, then change of variable is used to transform the
ode so that initial condition is at zero.

τ = t− x0

Solve

(τ + x0) y′ + y = 0

With initial conditions

y(0) = y0

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

τnf(τ) L−→ (−1)n dn

dsn
F (s)

Where in the above F (s) is the laplace transform of f(τ). Applying the above property
to each term of the ode gives

y(τ) L−→ Y (s)

(τ + x0)
(

d

dτ
y(τ)

)
L−→ −Y (s)− s

(
d

ds
Y (s)

)
+ x0(sY (s)− y(0))
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Collecting all the terms above, the ode in Laplace domain becomes

−sY ′ + x0(sY − y(0)) = 0

Replacing y(0) = y0 in the above results in

−sY ′ + x0(sY − y0) = 0

The above ode in Y(s) is now solved.

In canonical form a linear first order is

Y ′ + q(s)Y = p(s)

Comparing the above to the given ode shows that

q(s) = −x0

p(s) = −x0y0
s

The integrating factor µ is

µ = e
∫
q ds

= e
∫
−x0ds

= e−x0s

The ode becomes
d
ds(µY ) = µp

d
ds(µY ) = (µ)

(
−x0y0

s

)
d
ds
(
Y e−x0s

)
=
(
e−x0s

) (
−x0y0

s

)
d
(
Y e−x0s

)
=
(
−x0y0e−x0s

s

)
ds

Integrating gives

Y e−x0s =
∫

−x0y0e−x0s

s
ds

= x0y0 Ei1 (x0s) + c1
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Dividing throughout by the integrating factor e−x0s gives the final solution

Y = ex0s(x0y0 Ei1 (x0s) + c1)

Applying inverse Laplace transform on the above gives.

y = x0y0
τ + x0

+ c1L−1(ex0s, s, τ) (1)

Substituting initial conditions y(0) = y0 and y′(0) = y0 into the above solution Gives

y0 = c1L−1(ex0s, s, τ) + y0

Solving for the constant c1 from the above equation gives

c1 = 0

Substituting the above back into the solution (1) gives

y = x0y0
τ + x0

Changing back the solution from τ to t using

τ = t− x0

the solution becomes

y(t) = x0y0
t

–3

–2

–1

0

1

2

3

y(t)

–4 –2 0 2 4

t

Figure 2.104: Slope field plot
t
(

d
dt
y(t)

)
+ y(t) = 0
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Maple step by step solution

Let’s solve
[ty′ + y = 0, y(x0) = y0]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= −1

t

• Integrate both sides with respect to t∫
y′

y
dt =

∫
−1

t
dt+ C1

• Evaluate integral
ln (y) = − ln (t) + C1

• Solve for y
y = eC1

t

• Use initial condition y(x0) = y0

y0 = eC1

x0

• Solve for _C1
C1 = ln (x0y0)

• Substitute _C1 = ln (x0y0) into general solution and simplify
y = x0y0

t

• Solution to the IVP
y = x0y0

t

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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Maple dsolve solution

Solving time : 0.028 (sec)
Leaf size : 10� �
dsolve([t*diff(y(t),t)+y(t) = 0,

op([y(x__0) = y__0])],
y(t),method=laplace)� �

y = x0y0
t

Mathematica DSolve solution

Solving time : 1.702 (sec)
Leaf size : 11� �
DSolve[{t*D[y[t],t]+y[t]==0,y[x0]==y0},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → x0y0

t
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2.3.6 problem 6

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 589
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 590
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 590

Internal problem ID [8739]
Book : First order enumerated odes
Section : section 3. First order odes solved using Laplace method
Problem number : 6
Date solved : Tuesday, December 17, 2024 at 01:01:52 PM
CAS classification : [_separable]

Solve

ty′ + y = 0

Since no initial condition is explicitly given, then let

y(0) = c1

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

tnf(t) L−→ (−1)n dn

dsn
F (s)

Where in the above F (s) is the laplace transform of f(t). Applying the above property
to each term of the ode gives

y
L−→ Y (s)

ty′
L−→ −Y (s)− s

(
d

ds
Y (s)

)
Collecting all the terms above, the ode in Laplace domain becomes

−sY ′ = 0

The above ode in Y(s) is now solved.

Since the ode has the form Y ′ = f(s), then we only need to integrate f(s).∫
dY =

∫
0 ds+ c2

Y = c2
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Applying inverse Laplace transform on the above gives.

y = c2δ(t) (1)

Substituting initial conditions y(0) = c1 and y′(0) = c1 into the above solution Gives

c1 = c2δ(0)

Solving for the constant c2 from the above equation gives

c2 =
c1

δ (0)

Substituting the above back into the solution (1) gives

y = c1δ(t)
δ (0)

–3

–2

–1

0
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y(t)

–4 –2 0 2 4

t

Figure 2.105: Slope field plot
ty′ + y = 0

Maple step by step solution

Let’s solve
ty′ + y = 0

• Highest derivative means the order of the ODE is 1
y′
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• Separate variables
y′

y
= −1

t

• Integrate both sides with respect to t∫
y′

y
dt =

∫
−1

t
dt+ C1

• Evaluate integral
ln (y) = − ln (t) + C1

• Solve for y
y = eC1

t

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.027 (sec)
Leaf size : 8� �
dsolve(t*diff(y(t),t)+y(t) = 0,

y(t),method=laplace)� �
y = c1δ(t)

Mathematica DSolve solution

Solving time : 0.02 (sec)
Leaf size : 16� �
DSolve[{t*D[y[t],t]+y[t]==0,{}},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → c1

t
y(t) → 0
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2.3.7 problem 7

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 594
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 595
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 595

Internal problem ID [8740]
Book : First order enumerated odes
Section : section 3. First order odes solved using Laplace method
Problem number : 7
Date solved : Tuesday, December 17, 2024 at 01:01:53 PM
CAS classification : [_separable]

Solve

ty′ + y = 0

With initial conditions

y(1) = 5

Since initial condition is not at zero, then change of variable is used to transform the
ode so that initial condition is at zero.

τ = t− 1

Solve

(τ + 1) y′ + y = 0

With initial conditions

y(0) = 5

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

τnf(τ) L−→ (−1)n dn

dsn
F (s)

Where in the above F (s) is the laplace transform of f(τ). Applying the above property
to each term of the ode gives

y(τ) L−→ Y (s)

(τ + 1)
(

d

dτ
y(τ)

)
L−→ −Y (s)− s

(
d

ds
Y (s)

)
+ sY (s)− y(0)
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Collecting all the terms above, the ode in Laplace domain becomes

−sY ′ + sY − y(0) = 0

Replacing y(0) = 5 in the above results in

−sY ′ + sY − 5 = 0

The above ode in Y(s) is now solved.

In canonical form a linear first order is

Y ′ + q(s)Y = p(s)

Comparing the above to the given ode shows that

q(s) = −1

p(s) = −5
s

The integrating factor µ is

µ = e
∫
q ds

= e
∫
(−1)ds

= e−s

The ode becomes
d
ds(µY ) = µp

d
ds(µY ) = (µ)

(
−5
s

)
d
ds
(
Y e−s

)
=
(
e−s
)(

−5
s

)
d
(
Y e−s

)
=
(
−5 e−s

s

)
ds

Integrating gives

Y e−s =
∫

−5 e−s

s
ds

= 5 Ei1 (s) + c1
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Dividing throughout by the integrating factor e−s gives the final solution

Y = es(5 Ei1 (s) + c1)

Applying inverse Laplace transform on the above gives.

y = 5
τ + 1 + c1L−1(es, s, τ) (1)

Substituting initial conditions y(0) = 5 and y′(0) = 5 into the above solution Gives

5 = c1L−1(es, s, τ) + 5

Solving for the constant c1 from the above equation gives

c1 = 0

Substituting the above back into the solution (1) gives

y = 5
τ + 1

Changing back the solution from τ to t using

τ = t− 1

the solution becomes

y(t) = 5
t
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(a) Solution plot
y(t) = 5

t
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(b) Slope field plot
t
(
d
dty(t)

)
+ y(t) = 0
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Maple step by step solution

Let’s solve
[ty′ + y = 0, y(1) = 5]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= −1

t

• Integrate both sides with respect to t∫
y′

y
dt =

∫
−1

t
dt+ C1

• Evaluate integral
ln (y) = − ln (t) + C1

• Solve for y
y = eC1

t

• Use initial condition y(1) = 5
5 = eC1

• Solve for _C1
C1 = ln (5)

• Substitute _C1 = ln (5) into general solution and simplify
y = 5

t

• Solution to the IVP
y = 5

t

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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Maple dsolve solution

Solving time : 0.046 (sec)
Leaf size : 9� �
dsolve([t*diff(y(t),t)+y(t) = 0,

op([y(1) = 5])],
y(t),method=laplace)� �

y = 5
t

Mathematica DSolve solution

Solving time : 0.019 (sec)
Leaf size : 10� �
DSolve[{t*D[y[t],t]+y[t]==0,y[1]==5},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 5

t
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2.3.8 problem 8

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 598
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 600
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 600

Internal problem ID [8741]
Book : First order enumerated odes
Section : section 3. First order odes solved using Laplace method
Problem number : 8
Date solved : Tuesday, December 17, 2024 at 01:01:54 PM
CAS classification : [_linear]

Solve

ty′ + y = sin (t)

With initial conditions

y(1) = 0

Since initial condition is not at zero, then change of variable is used to transform the
ode so that initial condition is at zero.

τ = t− 1

Solve

(τ + 1) y′ + y = sin (τ + 1)

With initial conditions

y(0) = 0

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

τnf(τ) L−→ (−1)n dn

dsn
F (s)

Where in the above F (s) is the laplace transform of f(τ). Applying the above property
to each term of the ode gives

y(τ) L−→ Y (s)

(τ + 1)
(

d

dτ
y(τ)

)
L−→ −Y (s)− s

(
d

ds
Y (s)

)
+ sY (s)− y(0)

sin (τ + 1) L−→ sin (1) s+ cos (1)
s2 + 1
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Collecting all the terms above, the ode in Laplace domain becomes

−sY ′ + sY − y(0) = sin (1) s+ cos (1)
s2 + 1

Replacing y(0) = 0 in the above results in

−sY ′ + sY = sin (1) s+ cos (1)
s2 + 1

The above ode in Y(s) is now solved.

In canonical form a linear first order is

Y ′ + q(s)Y = p(s)

Comparing the above to the given ode shows that

q(s) = −1

p(s) = − sin (1) s− cos (1)
(s2 + 1) s

The integrating factor µ is

µ = e
∫
q ds

= e
∫
(−1)ds

= e−s

The ode becomes
d
ds(µY ) = µp

d
ds(µY ) = (µ)

(
− sin (1) s− cos (1)

(s2 + 1) s

)
d
ds
(
Y e−s

)
=
(
e−s
)(− sin (1) s− cos (1)

(s2 + 1) s

)
d
(
Y e−s

)
=
(
(− sin (1) s− cos (1)) e−s

(s2 + 1) s

)
ds

Integrating gives

Y e−s =
∫ (− sin (1) s− cos (1)) e−s

(s2 + 1) s ds

= − cos (1)
(
ei Ei1 (s+ i)

2 + e−i Ei1 (s− i)
2 − Ei1 (s)

)
+ sin (1)

(
iei Ei1 (s+ i)

2 − ie−i Ei1 (s− i)
2

)
+ c1
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Dividing throughout by the integrating factor e−s gives the final solution

Y = −(−2 cos (1) Ei1 (s) + Ei1 (s+ i) + Ei1 (s− i)− 2c1) es
2

Applying inverse Laplace transform on the above gives.

y = cos (1)
τ + 1 + c1L−1(es, s, τ)− cos (τ + 1)

τ + 2 (1)

Substituting initial conditions y(0) = 0 and y′(0) = 0 into the above solution Gives

0 = c1L−1(es, s, τ) + cos (1)
2

Solving for the constant c1 from the above equation gives

c1 = − cos (1)
2L−1 (es, s, τ)

Substituting the above back into the solution (1) gives

y = cos (1)
τ + 1 − cos (1)

2 − cos (τ + 1)
τ + 2

Changing back the solution from τ to t using

τ = t− 1

the solution becomes

y(t) = cos (1)
t

− cos (1)
2 − cos (t)

t+ 1

The solution was found not to satisfy the ode or the IC. Hence it is removed.

Maple step by step solution

Let’s solve
[ty′ + y = sin (t) , y(1) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = −y
t
+ sin(t)

t

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

t
= sin(t)

t

• The ODE is linear; multiply by an integrating factor µ(t)
µ(t)

(
y′ + y

t

)
= µ(t) sin(t)

t

• Assume the lhs of the ODE is the total derivative d
dt
(yµ(t))

µ(t)
(
y′ + y

t

)
= y′µ(t) + yµ′(t)

• Isolate µ′(t)
µ′(t) = µ(t)

t

• Solve to find the integrating factor
µ(t) = t

• Integrate both sides with respect to t∫ (
d
dt
(yµ(t))

)
dt =

∫ µ(t) sin(t)
t

dt+ C1
• Evaluate the integral on the lhs

yµ(t) =
∫ µ(t) sin(t)

t
dt+ C1

• Solve for y

y =
∫ µ(t) sin(t)

t
dt+C1

µ(t)

• Substitute µ(t) = t

y =
∫
sin(t)dt+C1

t

• Evaluate the integrals on the rhs
y = − cos(t)+C1

t

• Use initial condition y(1) = 0
0 = − cos (1) + C1

• Solve for _C1
C1 = cos (1)

• Substitute _C1 = cos (1) into general solution and simplify
y = − cos(t)+cos(1)

t

• Solution to the IVP
y = − cos(t)+cos(1)

t
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.237 (sec)
Leaf size : maple_leaf_size� �
dsolve([t*diff(y(t),t)+y(t) = sin(t),

op([y(1) = 0])],
y(t),method=laplace)� �

No solution found

Mathematica DSolve solution

Solving time : 0.09 (sec)
Leaf size : 16� �
DSolve[{t*D[y[t],t]+y[t]==Sin[t],y[1]==0},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → cos(1)− cos(t)

t
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2.3.9 problem 9

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 604
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 605
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 605

Internal problem ID [8742]
Book : First order enumerated odes
Section : section 3. First order odes solved using Laplace method
Problem number : 9
Date solved : Tuesday, December 17, 2024 at 01:01:54 PM
CAS classification : [_linear]

Solve

ty′ + y = t

With initial conditions

y(1) = 0

Since initial condition is not at zero, then change of variable is used to transform the
ode so that initial condition is at zero.

τ = t− 1

Solve

(τ + 1) y′ + y = τ + 1

With initial conditions

y(0) = 0

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

τnf(τ) L−→ (−1)n dn

dsn
F (s)

Where in the above F (s) is the laplace transform of f(τ). Applying the above property
to each term of the ode gives

y(τ) L−→ Y (s)

(τ + 1)
(

d

dτ
y(τ)

)
L−→ −Y (s)− s

(
d

ds
Y (s)

)
+ sY (s)− y(0)

τ + 1 L−→ 1 + s

s2
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Collecting all the terms above, the ode in Laplace domain becomes

−sY ′ + sY − y(0) = 1 + s

s2

Replacing y(0) = 0 in the above results in

−sY ′ + sY = 1 + s

s2

The above ode in Y(s) is now solved.

In canonical form a linear first order is

Y ′ + q(s)Y = p(s)

Comparing the above to the given ode shows that

q(s) = −1

p(s) = −s− 1
s3

The integrating factor µ is

µ = e
∫
q ds

= e
∫
(−1)ds

= e−s

The ode becomes
d
ds(µY ) = µp

d
ds(µY ) = (µ)

(
−s− 1

s3

)
d
ds
(
Y e−s

)
=
(
e−s
)(−s− 1

s3

)
d
(
Y e−s

)
=
(
(−s− 1) e−s

s3

)
ds

Integrating gives

Y e−s =
∫ (−s− 1) e−s

s3
ds

= e−s

2s2 + e−s

2s − Ei1 (s)
2 + c1
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Dividing throughout by the integrating factor e−s gives the final solution

Y = 2c1 ess2 − Ei1 (s) ess2 + s+ 1
2s2

Applying inverse Laplace transform on the above gives.

y = c1L−1(es, s, τ)− 1
2 (τ + 1) +

1
2 + τ

2 (1)

Substituting initial conditions y(0) = 0 and y′(0) = 0 into the above solution Gives

0 = c1L−1(es, s, τ)

Solving for the constant c1 from the above equation gives

c1 = 0

Substituting the above back into the solution (1) gives

y = 1
2 − 1

2 (τ + 1) +
τ

2

Changing back the solution from τ to t using

τ = t− 1

the solution becomes

y(t) = − 1
2t +

t

2

–2

–1

0

1

2

y(t)

–1 0 1 2

t

(a) Solution plot
y(t) = − 1

2t +
t
2

–2

–1

0

1

2

y(t)

–2 –1 0 1 2

t

(b) Slope field plot
t
(
d
dty(t)

)
+ y(t) = t
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Maple step by step solution

Let’s solve
[ty′ + y = t, y(1) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 1− y

t

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

t
= 1

• The ODE is linear; multiply by an integrating factor µ(t)
µ(t)

(
y′ + y

t

)
= µ(t)

• Assume the lhs of the ODE is the total derivative d
dt
(yµ(t))

µ(t)
(
y′ + y

t

)
= y′µ(t) + yµ′(t)

• Isolate µ′(t)
µ′(t) = µ(t)

t

• Solve to find the integrating factor
µ(t) = t

• Integrate both sides with respect to t∫ (
d
dt
(yµ(t))

)
dt =

∫
µ(t) dt+ C1

• Evaluate the integral on the lhs
yµ(t) =

∫
µ(t) dt+ C1

• Solve for y
y =

∫
µ(t)dt+C1

µ(t)

• Substitute µ(t) = t

y =
∫
tdt+C1

t

• Evaluate the integrals on the rhs

y =
t2
2 +C1

t

• Simplify
y = t2+2C1

2t

• Use initial condition y(1) = 0
0 = C1 + 1

2

• Solve for _C1
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C1 = −1
2

• Substitute _C1 = −1
2 into general solution and simplify

y = t2−1
2t

• Solution to the IVP
y = t2−1

2t

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.058 (sec)
Leaf size : 13� �
dsolve([t*diff(y(t),t)+y(t) = t,

op([y(1) = 0])],
y(t),method=laplace)� �

y = − 1
2t +

t

2

Mathematica DSolve solution

Solving time : 0.022 (sec)
Leaf size : 17� �
DSolve[{t*D[y[t],t]+y[t]==t,y[1]==0},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → t2 − 1

2t



chapter 2. book solved problems 606

2.3.10 problem 10

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 609
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 610
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 610

Internal problem ID [8743]
Book : First order enumerated odes
Section : section 3. First order odes solved using Laplace method
Problem number : 10
Date solved : Tuesday, December 17, 2024 at 01:01:55 PM
CAS classification : [_linear]

Solve

ty′ + y = t

With initial conditions

y(1) = 1

Since initial condition is not at zero, then change of variable is used to transform the
ode so that initial condition is at zero.

τ = t− 1

Solve

(τ + 1) y′ + y = τ + 1

With initial conditions

y(0) = 1

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

τnf(τ) L−→ (−1)n dn

dsn
F (s)

Where in the above F (s) is the laplace transform of f(τ). Applying the above property
to each term of the ode gives

y(τ) L−→ Y (s)

(τ + 1)
(

d

dτ
y(τ)

)
L−→ −Y (s)− s

(
d

ds
Y (s)

)
+ sY (s)− y(0)

τ + 1 L−→ 1 + s

s2
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Collecting all the terms above, the ode in Laplace domain becomes

−sY ′ + sY − y(0) = 1 + s

s2

Replacing y(0) = 1 in the above results in

−sY ′ + sY − 1 = 1 + s

s2

The above ode in Y(s) is now solved.

In canonical form a linear first order is

Y ′ + q(s)Y = p(s)

Comparing the above to the given ode shows that

q(s) = −1

p(s) = −s2 − s− 1
s3

The integrating factor µ is

µ = e
∫
q ds

= e
∫
(−1)ds

= e−s

The ode becomes
d
ds(µY ) = µp

d
ds(µY ) = (µ)

(
−s2 − s− 1

s3

)
d
ds
(
Y e−s

)
=
(
e−s
)(−s2 − s− 1

s3

)

d
(
Y e−s

)
=
(
(−s2 − s− 1) e−s

s3

)
ds

Integrating gives

Y e−s =
∫ (−s2 − s− 1) e−s

s3
ds

= e−s

2s2 + e−s

2s + Ei1 (s)
2 + c1
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Dividing throughout by the integrating factor e−s gives the final solution

Y = 2c1 ess2 + Ei1 (s) ess2 + s+ 1
2s2

Applying inverse Laplace transform on the above gives.

y = c1L−1(es, s, τ) + 1
2τ + 2 + 1

2 + τ

2 (1)

Substituting initial conditions y(0) = 1 and y′(0) = 1 into the above solution Gives

1 = c1L−1(es, s, τ) + 1

Solving for the constant c1 from the above equation gives

c1 = 0

Substituting the above back into the solution (1) gives

y = 1
2 + 1

2τ + 2 + τ

2

Changing back the solution from τ to t using

τ = t− 1

the solution becomes

y(t) = 1
2t +

t

2

–2

–1

0

1

2

y(t)

–1 0 1 2

t

(a) Solution plot
y(t) = 1

2t +
t
2

–2

–1

0

1

2

y(t)

–2 –1 0 1 2

t

(b) Slope field plot
t
(
d
dty(t)

)
+ y(t) = t
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Maple step by step solution

Let’s solve
[ty′ + y = t, y(1) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 1− y

t

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

t
= 1

• The ODE is linear; multiply by an integrating factor µ(t)
µ(t)

(
y′ + y

t

)
= µ(t)

• Assume the lhs of the ODE is the total derivative d
dt
(yµ(t))

µ(t)
(
y′ + y

t

)
= y′µ(t) + yµ′(t)

• Isolate µ′(t)
µ′(t) = µ(t)

t

• Solve to find the integrating factor
µ(t) = t

• Integrate both sides with respect to t∫ (
d
dt
(yµ(t))

)
dt =

∫
µ(t) dt+ C1

• Evaluate the integral on the lhs
yµ(t) =

∫
µ(t) dt+ C1

• Solve for y
y =

∫
µ(t)dt+C1

µ(t)

• Substitute µ(t) = t

y =
∫
tdt+C1

t

• Evaluate the integrals on the rhs

y =
t2
2 +C1

t

• Simplify
y = t2+2C1

2t

• Use initial condition y(1) = 1
1 = C1 + 1

2

• Solve for _C1
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C1 = 1
2

• Substitute _C1 = 1
2 into general solution and simplify

y = t2+1
2t

• Solution to the IVP
y = t2+1

2t

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.053 (sec)
Leaf size : 13� �
dsolve([t*diff(y(t),t)+y(t) = t,

op([y(1) = 1])],
y(t),method=laplace)� �

y = 1
2t +

t

2

Mathematica DSolve solution

Solving time : 0.022 (sec)
Leaf size : 17� �
DSolve[{t*D[y[t],t]+y[t]==t,y[1]==1},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → t2 + 1

2t
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2.3.11 problem 11

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 613
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 614
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 614

Internal problem ID [8744]
Book : First order enumerated odes
Section : section 3. First order odes solved using Laplace method
Problem number : 11
Date solved : Tuesday, December 17, 2024 at 01:01:56 PM
CAS classification : [_separable]

Solve

y′ + t2y = 0

With initial conditions

y(0) = 0

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

tnf(t) L−→ (−1)n dn

dsn
F (s)

Where in the above F (s) is the laplace transform of f(t). Applying the above property
to each term of the ode gives

t2y
L−→ d2

ds2
Y (s)

y′
L−→ sY (s)− y(0)

Collecting all the terms above, the ode in Laplace domain becomes

sY − y(0) + Y ′′ = 0

Replacing y(0) = 0 in the above results in

sY + Y ′′ = 0
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The above ode in Y(s) is now solved.

This is Airy ODE. It has the general form

aY ′′ + bY ′ + csY = F (s)

Where in this case

a = 1
b = 0
c = 1
F = 0

Therefore the solution to the homogeneous Airy ODE becomes

Y = c1AiryAi (−s) + c2AiryBi (−s)

Will add steps showing solving for IC soon.

Applying inverse Laplace transform on the above gives.

y = c1L−1(AiryAi (−s) , s, t) + c2L−1(AiryBi (−s) , s, t) (1)

Substituting initial conditions y(0) = 0 and y′(0) = 0 into the above solution Gives

0 = c1L−1(AiryAi (−s) , s, t) + c2L−1(AiryBi (−s) , s, t)

Solving for the constant c1 from the above equation gives

c1 = −c2L−1(AiryBi (−s) , s, t)
L−1 (AiryAi (−s) , s, t)

Substituting the above back into the solution (1) gives

y = 0

–1

–0.5

0

0.5

1

y(t)

–8 –6 –4 –2 0 2 4 6 8 10

t

(a) Solution plot
y = 0

–1

–0.5

0

0.5

1

y(t)

–10 –5 0 5 10

t

(b) Slope field plot
y′ + t2y = 0
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Maple step by step solution

Let’s solve
[y′ + yt2 = 0, y(0) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = −yt2

• Separate variables
y′

y
= −t2

• Integrate both sides with respect to t∫
y′

y
dt =

∫
−t2dt+ C1

• Evaluate integral
ln (y) = − t3

3 + C1
• Solve for y

y = e− t3
3 +C1

• Use initial condition y(0) = 0
0 = eC1

• Solve for _C1
C1 = ()

• Solution does not satisfy initial condition

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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Maple dsolve solution

Solving time : 0.071 (sec)
Leaf size : 40� �
dsolve([diff(y(t),t)+y(t)*t^2 = 0,

op([y(0) = 0])],
y(t),method=laplace)� �
y = −c2L−1(AiryBi (−_s1) ,_s1, 0)L−1(AiryAi (−_s1) ,_s1, t)

L−1 (AiryAi (−_s1) ,_s1, 0)
+ c2L−1(AiryBi (−_s1) ,_s1, t)

Mathematica DSolve solution

Solving time : 0.001 (sec)
Leaf size : 6� �
DSolve[{D[y[t],t]+t^2*y[t]==0,y[0]==0},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 0
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2.3.12 problem 12

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 617
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 619
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 619

Internal problem ID [8745]
Book : First order enumerated odes
Section : section 3. First order odes solved using Laplace method
Problem number : 12
Date solved : Tuesday, December 17, 2024 at 01:01:57 PM
CAS classification : [_linear]

Solve

(at+ 1) y′ + y = t

With initial conditions

y(1) = 0

Since initial condition is not at zero, then change of variable is used to transform the
ode so that initial condition is at zero.

τ = t− 1

Solve

(a(τ + 1) + 1) y′ + y = τ + 1

With initial conditions

y(0) = 0

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

τnf(τ) L−→ (−1)n dn

dsn
F (s)

Where in the above F (s) is the laplace transform of f(τ). Applying the above property
to each term of the ode gives

y(τ) L−→ Y (s)

(aτ + a+ 1)
(

d

dτ
y(τ)

)
L−→ −a

(
Y (s) + s

(
d

ds
Y (s)

))
+ a(sY (s)− y(0)) + sY (s)− y(0)

τ + 1 L−→ 1 + s

s2
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Collecting all the terms above, the ode in Laplace domain becomes

−a(Y + sY ′) + a(sY − y(0)) + sY − y(0) + Y = 1 + s

s2

Replacing y(0) = 0 in the above results in

−a(Y + sY ′) + asY + sY + Y = 1 + s

s2

The above ode in Y(s) is now solved.

In canonical form a linear first order is

Y ′ + q(s)Y = p(s)

Comparing the above to the given ode shows that

q(s) = −(s− 1) a+ 1 + s

as

p(s) = −s− 1
s3a

The integrating factor µ is

µ = e
∫
q ds

= e
∫
− (s−1)a+1+s

as
ds

= s
a−1
a e−

s(a+1)
a

The ode becomes
d
ds(µY ) = µp

d
ds(µY ) = (µ)

(
−s− 1
s3a

)
d
ds

(
Y s

a−1
a e−

s(a+1)
a

)
=
(
s

a−1
a e−

s(a+1)
a

)(−s− 1
s3a

)

d
(
Y s

a−1
a e−

s(a+1)
a

)
=
(
(−s− 1) sa−1

a e−
s(a+1)

a

s3a

)
ds
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Integrating gives

Y s
a−1
a e−

s(a+1)
a =

∫ (−s− 1) sa−1
a e−

s(a+1)
a

s3a
ds

= s−2+a−1
a e−

s(a+1)
a

a+ 1 + c1

Dividing throughout by the integrating factor sa−1
a e−

s(a+1)
a gives the final solution

Y = 1 + c1 s
a+1
a (a+ 1) e

s(a+1)
a

s2 (a+ 1)

Applying inverse Laplace transform on the above gives.

y = τ

a+ 1 + c1L−1
(
es+ s

a s−1+ 1
a , s, τ

)
(1)

Substituting initial conditions y(0) = 0 and y′(0) = 0 into the above solution Gives

0 = c1L−1
(
es+ s

a s−1+ 1
a , s, τ

)
Solving for the constant c1 from the above equation gives

c1 = 0

Substituting the above back into the solution (1) gives

y = τ

a+ 1

Changing back the solution from τ to t using

τ = t− 1

the solution becomes

y(t) = t− 1
a+ 1

Maple step by step solution

Let’s solve
[(at+ 1) y′ + y = t, y(1) = 0]
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• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = −y+t

at+1

• Collect w.r.t. y and simplify
y′ = − y

at+1 +
t

at+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

at+1 = t
at+1

• The ODE is linear; multiply by an integrating factor µ(t)
µ(t)

(
y′ + y

at+1

)
= µ(t)t

at+1

• Assume the lhs of the ODE is the total derivative d
dt
(yµ(t))

µ(t)
(
y′ + y

at+1

)
= y′µ(t) + yµ′(t)

• Isolate µ′(t)
µ′(t) = µ(t)

at+1

• Solve to find the integrating factor

µ(t) = (at+ 1)
1
a

• Integrate both sides with respect to t∫ (
d
dt
(yµ(t))

)
dt =

∫ µ(t)t
at+1dt+ C1

• Evaluate the integral on the lhs
yµ(t) =

∫ µ(t)t
at+1dt+ C1

• Solve for y

y =
∫ µ(t)t

at+1dt+C1
µ(t)

• Substitute µ(t) = (at+ 1)
1
a

y =
∫ t(at+1)

1
a

at+1 dt+C1

(at+1)
1
a

• Evaluate the integrals on the rhs

y =
(t−1)(at+1)

1
a

a+1 +C1

(at+1)
1
a

• Simplify

y = t−1+(at+1)−
1
aC1 (a+1)

a+1

• Use initial condition y(1) = 0

0 = (a+ 1)−
1
a C1
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• Solve for _C1
C1 = 0

• Substitute _C1 = 0 into general solution and simplify
y = t−1

a+1

• Solution to the IVP
y = t−1

a+1

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.079 (sec)
Leaf size : 13� �
dsolve([(a*t+1)*diff(y(t),t)+y(t) = t,

op([y(1) = 0])],
y(t),method=laplace)� �

y = t− 1
a+ 1

Mathematica DSolve solution

Solving time : 0.897 (sec)
Leaf size : 14� �
DSolve[{(1+a*t)*D[y[t],t]+y[t]==t,y[1]==0},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → t− 1

a+ 1
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2.3.13 problem 13

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 622
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 623
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 623

Internal problem ID [8746]
Book : First order enumerated odes
Section : section 3. First order odes solved using Laplace method
Problem number : 13
Date solved : Tuesday, December 17, 2024 at 01:01:57 PM
CAS classification : [_separable]

Solve

y′ + (at+ bt) y = 0

With initial conditions

y(0) = 0

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

tnf(t) L−→ (−1)n dn

dsn
F (s)

Where in the above F (s) is the laplace transform of f(t). Applying the above property
to each term of the ode gives

(at+ bt) y L−→ −a

(
d

ds
Y (s)

)
− b

(
d

ds
Y (s)

)
y′

L−→ Y (s) s− y(0)

Collecting all the terms above, the ode in Laplace domain becomes

Y s− y(0)− aY ′ − bY ′ = 0

Replacing y(0) = 0 in the above results in

Y s− aY ′ − bY ′ = 0
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The above ode in Y(s) is now solved.

In canonical form a linear first order is

Y ′ + q(s)Y = p(s)

Comparing the above to the given ode shows that

q(s) = − s

a+ b

p(s) = 0

The integrating factor µ is

µ = e
∫
q ds

= e
∫
− s

a+b
ds

= e−
s2

2a+2b

The ode becomes

d
dsµY = 0

d
ds

(
Y e−

s2
2a+2b

)
= 0

Integrating gives

Y e−
s2

2a+2b =
∫

0 ds+ c1

= c1

Dividing throughout by the integrating factor e−
s2

2a+2b gives the final solution

Y = c1 e
s2

2a+2b

Applying inverse Laplace transform on the above gives.

y = c1L−1
(
e

s2
2a+2b , s, t

)
(1)

Substituting initial conditions y(0) = 0 and y′(0) = 0 into the above solution Gives

0 = c1L−1
(
e

s2
2a+2b , s, t

)
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Solving for the constant c1 from the above equation gives

c1 = 0

Substituting the above back into the solution (1) gives

y = 0

–1

–0.5

0

0.5

1

y(t)

–8 –6 –4 –2 0 2 4 6 8 10

t

Figure 2.110: Solution plot
y = 0

Maple step by step solution

Let’s solve
[y′ + (at+ bt) y = 0, y(0) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = −(at+ bt) y

• Separate variables
y′

y
= −at− bt

• Integrate both sides with respect to t∫
y′

y
dt =

∫
(−at− bt) dt+ C1

• Evaluate integral
ln (y) = − t2(a+b)

2 + C1
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• Solve for y
y = e− 1

2 t
2a− 1

2 t
2b+C1

• Use initial condition y(0) = 0
0 = eC1

• Solve for _C1
C1 = ()

• Solution does not satisfy initial condition

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
Maple dsolve solution

Solving time : 0.032 (sec)
Leaf size : 5� �
dsolve([diff(y(t),t)+(a*t+b*t)*y(t) = 0,

op([y(0) = 0])],
y(t),method=laplace)� �

y = 0

Mathematica DSolve solution

Solving time : 0.001 (sec)
Leaf size : 6� �
DSolve[{D[y[t],t]+(a*t+b*t)*y[t]==0,y[0]==0},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 0
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2.3.14 problem 14

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 627
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 628
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 628

Internal problem ID [8747]
Book : First order enumerated odes
Section : section 3. First order odes solved using Laplace method
Problem number : 14
Date solved : Tuesday, December 17, 2024 at 01:01:58 PM
CAS classification : [_separable]

Solve

y′ + (at+ bt) y = 0

With initial conditions

y(−3) = 0

Since initial condition is not at zero, then change of variable is used to transform the
ode so that initial condition is at zero.

τ = t+ 3

Solve

y′ + (a(τ − 3) + b(τ − 3)) y = 0

With initial conditions

y(0) = 0

We will now apply Laplace transform to each term in the ode. Since this is time varying,
the following Laplace transform property will be used

τnf(τ) L−→ (−1)n dn

dsn
F (s)

Where in the above F (s) is the laplace transform of f(τ). Applying the above property
to each term of the ode gives

(aτ + bτ − 3a− 3b) y(τ) L−→ −a

(
d

ds
Y (s)

)
− b

(
d

ds
Y (s)

)
− 3aY (s)− 3bY (s)

d

dτ
y(τ) L−→ Y (s) s− y(0)
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Collecting all the terms above, the ode in Laplace domain becomes

Y s− y(0)− aY ′ − bY ′ − 3aY − 3bY = 0

Replacing y(0) = 0 in the above results in

Y s− aY ′ − bY ′ − 3aY − 3bY = 0

The above ode in Y(s) is now solved.

In canonical form a linear first order is

Y ′ + q(s)Y = p(s)

Comparing the above to the given ode shows that

q(s) = −−3a− 3b+ s

a+ b

p(s) = 0

The integrating factor µ is

µ = e
∫
q ds

= e
∫
−−3a−3b+s

a+b
ds

= e
s(6a+6b−s)

2a+2b

The ode becomes

d
dsµY = 0

d
ds

(
Y e

s(6a+6b−s)
2a+2b

)
= 0

Integrating gives

Y e
s(6a+6b−s)

2a+2b =
∫

0 ds+ c1

= c1

Dividing throughout by the integrating factor e
s(6a+6b−s)

2a+2b gives the final solution

Y = c1 e−
s(6a+6b−s)

2a+2b
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Applying inverse Laplace transform on the above gives.

y = c1L−1
(
e−

s(6a+6b−s)
2a+2b , s, τ

)
(1)

Substituting initial conditions y(0) = 0 and y′(0) = 0 into the above solution Gives

0 = c1L−1
(
e−

s(6a+6b−s)
2a+2b , s, τ

)
Solving for the constant c1 from the above equation gives

c1 = 0

Substituting the above back into the solution (1) gives

y = 0

Changing back the solution from τ to t using

τ = t+ 3

the solution becomes

y(t) = 0

–1

–0.5

0

0.5

1

y(t)

–8 –6 –4 –2 0 2 4 6 8 10

t

Figure 2.111: Solution plot
y(t) = 0
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Maple step by step solution

Let’s solve
[y′ + (at+ bt) y = 0, y(−3) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Solve for the highest derivative
y′ = −(at+ bt) y

• Separate variables
y′

y
= −at− bt

• Integrate both sides with respect to t∫
y′

y
dt =

∫
(−at− bt) dt+ C1

• Evaluate integral
ln (y) = − t2(a+b)

2 + C1
• Solve for y

y = e− 1
2 t

2a− 1
2 t

2b+C1

• Use initial condition y(−3) = 0
0 = e− 9a

2 − 9b
2 +C1

• Solve for _C1
C1 = ()

• Solution does not satisfy initial condition

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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Maple dsolve solution

Solving time : 0.032 (sec)
Leaf size : 5� �
dsolve([diff(y(t),t)+(a*t+b*t)*y(t) = 0,

op([y(-3) = 0])],
y(t),method=laplace)� �

y = 0

Mathematica DSolve solution

Solving time : 0.001 (sec)
Leaf size : 6� �
DSolve[{D[y[t],t]+(a*t+b*t)*y[t]==0,y[-3]==0},

y[t],t,IncludeSingularSolutions->True]� �
y(t) → 0


	Lookup tables for all problems in current book
	section 1
	section 2 (system of first order odes)
	section 3. First order odes solved using Laplace method

	Book Solved Problems
	section 1
	problem 1
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order ode of type differential
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 2
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 3
	Solved as first order quadrature ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 4
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 5
	Solved as first order quadrature ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 6
	Solved as first order linear ode
	Solved as first order separable ode
	Solved as first order homogeneous class D2 ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 7
	Solved as first order linear ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 8
	Solved as first order linear ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 9
	Solved as first order autonomous ode
	Solved as first order homogeneous class D2 ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 10
	Solved as first order autonomous ode
	Solved as first order homogeneous class D2 ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 11
	Solved as first order ode of type reduced Riccati
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 12
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order ode of type differential
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 13
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 14
	Solved as first order quadrature ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 15
	Solved as first order linear ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 16
	Solved as first order linear ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 17
	Solved as first order autonomous ode
	Solved as first order homogeneous class D2 ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 18
	Solved as first order autonomous ode
	Solved as first order homogeneous class D2 ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 19
	Solved as first order ode of type reduced Riccati
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 20
	Solved as first order ode of type reduced Riccati
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 21
	Solved as first order ode of type Riccati
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 22
	Solved as first order ode of type Riccati
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 23
	Solved as first order Bernoulli ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 24
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order ode of type differential
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 25
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order ode of type differential
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 26
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 27
	Solved as first order ode of type Riccati
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 28
	Solved as first order linear ode
	Solved as first order homogeneous class D2 ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 29
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 30
	Solved as first order ode of type Riccati
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 31
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order ode of type differential
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 32
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order ode of type differential
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 33
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order ode of type differential
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 34
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order ode of type differential
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 35
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order ode of type differential
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 36
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order ode of type differential
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 37
	Solved as first order quadrature ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 38
	Solved as first order quadrature ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 39
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order ode of type differential
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 40
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order ode of type differential
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 41
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order ode of type differential
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 42
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order ode of type differential
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 43
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order ode of type differential
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 44
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Solved as first order ode of type differential
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 45
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 46
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 47
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 48
	Solved as first order quadrature ode
	Solved as first order homogeneous class D2 ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 49
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 50
	Solved as first order ode of type dAlembert
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 51
	Solved as first order homogeneous class A ode
	Solved as first order ode of type nonlinear p but separable
	Solved as first order ode of type dAlembert
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 52
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 53
	Solved as first order ode of type nonlinear p but separable
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 54
	Solved as first order ode of type nonlinear p but separable
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 55
	Solved as first order ode of type nonlinear p but separable
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 56
	Solved as first order ode of type nonlinear p but separable
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 57
	Solved as first order ode of type nonlinear p but separable
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 58
	Solved as first order ode of type nonlinear p but separable
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 59
	Solved as first order ode of type nonlinear p but separable
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 60
	Solved as first order homogeneous class C ode
	Solved using Lie symmetry for first order ode
	Solved as first order ode of type dAlembert
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 61
	Solved as first order homogeneous class C ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 62
	Solved as first order homogeneous class C ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 63
	Solved as first order homogeneous class C ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 64
	Solved as first order homogeneous class C ode
	Solved using Lie symmetry for first order ode
	Solved as first order ode of type dAlembert
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 65
	Solved as first order homogeneous class C ode
	Solved using Lie symmetry for first order ode
	Solved as first order ode of type dAlembert
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 66
	Solved as first order form A1 ode
	Solved as first order separable ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Solved as first order ode of type ID 1
	Solved as first order ode of type dAlembert
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 67
	Solved as first order form A1 ode
	Solved using Lie symmetry for first order ode
	Solved as first order ode of type ID 1
	Solved as first order ode of type dAlembert
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 68
	Solved as first order ode of type ID 1
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 69
	Solved as first order ode of type ID 1
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 70
	Solved as first order ode of type ID 1
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution


	section 2 (system of first order odes)
	problem 1
	Maple step by step solution
	Maple dsolve solution
	Mathematica DSolve solution

	problem 2
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution
	Maple dsolve solution
	Mathematica DSolve solution

	problem 3
	Maple step by step solution
	Maple dsolve solution
	Mathematica DSolve solution


	section 3. First order odes solved using Laplace method
	problem 1
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 2
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 3
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 4
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 5
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 6
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 7
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 8
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 9
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 10
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 11
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 12
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 13
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 14
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution




