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CHAPTER 1. LOOKUP TABLES FOR ALL PROBLEMS IN CURRENT BOOK

1.1 Exercises 3, page 60

Table 1.1: Lookup table for all problems in current section

S

problem ODE

d) sin (z) y' +y = sin (2z)

) Vel +1y +y =2z

b) Va2 +1y —y=2Va? +1

c) VE+a)(z+b) (2 —3)+y=0

d) ViE+a)(z+b)y+y=vVr+ta—Vz+b
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1(a) v ==
1(b) y —y=2a°
1(c) Y +ycot(z) ==z
1(d) Yy + ycot (z) = tan (z)
1(e) y' + ytan (z) = cot ()
4195 1(f) Y +yln(z)=z""
4196  2(a) oy +y=c
4197 2(b) —y+zy =x3
4198/ 2(c) zy +ny ="
2(d) zy —ny ="
%)  (P+n)yty=a
3(a) cot(z)y +y==z
3(b) cot (z)y' +y = tan (z)
3(c) tan (z)y' +y = cot (x)
4204 3(a) tan (z)y =y — cos (z)
4205 4(a) y' + ycos (z) = sin (2x)
4206/  4(b) y' cos (z) + y = sin (2z)
4207 4(c) y' + ysin (z) = sin (2x)
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Internal problem ID [4190]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 1(a)

Date solved : Tuesday, December 17, 2024 at 06:49:48 AM
CAS classification : [_separable]

Solve
yy=gz
Solved as first order separable ode

Time used: 0.178 (sec)

The ode ¢y = % is separable as it can be written as

y ==
y
= f(z)g(y)
Where
flz)==z
1
9(y) = ;

Integrating gives

/ﬁdy=/f(z)dw
/ydy=/:cdz
y* _ 2’

2 -2 t“

Solving for y gives

y=+vx%+2c
y=—\xz2+2¢
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Figure 2.1: Slope field plot
yy==z

Summary of solutions found

y=Vr2+2c
y=—vz2+2¢
Solved as first order homogeneous class A ode

Time used: 0.500 (sec)

In canonical form, the ODE is

y = F(z,9)
T
== 1
y (1)
An ode of the form y' = % is called homogeneous if the functions M (z,y) and N(z,y)

are both homogeneous functions and of the same order. Recall that a function f(z,y) is
homogeneous of order n if

[t z,t"y) =" f(z,y)

In this case, it can be seen that both M = x and N = y are both homogeneous and of the
same order n = 1. Therefore this is a homogeneous ode. Since this ode is homogeneous, it
is converted to separable ODE using the substitution u = ¥, or y = uz. Hence

dy _duo
dz dz

Applying the transformation y = uz to the above ODE in (1) gives

u 1
—rtu=—
U

dzx
du _ wm — ul@)
dz T
Or . @)
/ _m—ux
u'(x) - =0
Or

v (z) u(z) 4+ u(z)® —1=0

Which is now solved as separable in u(z).
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The ode v/(z) = —“323;1 is separable as it can be written as
2
TC
= f(2)g(u)
Where
1
fla)=—_
u?—1
gu) = —

Integrating gives

/ﬁdu:/f(x)dx
/UQZt_ldu:/—%dz
In (u(x2)2—1) I (%) tor

We now need to find the singular solutions, these are found by ﬁnding for what values g(u)
is zero, since we had to divide by this above. Solving g(u) =0 or * _1 = 0 for u(x) gives

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

M=ln(l)+cl

2
u(z) = -1
u(z) =1
Solving for u(z) gives
u(z) = -1
u(z) =1
N
u(r) = ——
z
uw(r) = ———m—
x
Converting u(x) = —1 back to y gives
y=—x

Converting u(x) = 1 back to y gives
y=z

—Ve%x“r‘”z back to y gives

Y= Vve2a +$2

Converting u(z) =
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Y gives

2cy 2
— Y=+ hack to

Converting u(z) =

6201 + .'L‘2

Yy=-
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Figure 2.2: Slope field plot

Yyy==c

Summary of solutions found

e?cl + x?
e201 + $2

8
8 | |

|
> 2> D

Solved as first order homogeneous class D2 ode

Time used: 0.283 (sec)

Applying change of variables y = u(x) z, then the ode becomes

(W (z)r +u(x))ulr)r =2

is separable as it can be written as

u(z)?-1 .

Which is now solved The ode v/(z)

Where

Integrating gives




CHAPTER 2. BOOK SOLVED PROBLEMS 13

We now need to find the singular solutions, these are found by finding for what values g(u)

is zero, since we had to divide by this above. Solving g(u) = 0 or ”2;1 = 0 for u(x) gives

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

1 -1 1
2 x
u(z) = —1
u(z) =1
Solving for u(z) gives
u(z) = -1
u(z) =1
u(r) = ———
x
uw(r) = ———-—
x
Converting u(x) = —1 back to y gives
y=—c
Converting u(xz) = 1 back to y gives
y=x

_ /e2¢1 422
- T

Converting u(x) back to y gives

Y = /e201 _|_ 1'2
. /62c1+m2
T

Converting u(z) = back to y gives
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Figure 2.3: Slope field plot
yy=a
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Summary of solutions found

Il
8

A /6201 _|_ .’)32

—Z

A /6201 + .’E2

< < <

Summary of solutions found

X

A /e201 + .’IJ2

—T

— /6201 + $2

)
Y
)
)

Solved as first order homogeneous class Maple C ode
Time used: 0.472 (sec)

Let Y =y — yo and X = x — z, then the above is transformed to new ode in Y (X)

d $0+X
—YX)=—r——
dX ( ) Y(X)+y0

Solving for possible values of zy and y, which makes the above ode a homogeneous ode
results in

$0=0

Yo =0

Using these values now it is possible to easily solve for Y (X). The above ode now becomes

d X
—Y(X)= =
dX (X) Y (X)
In canonical form, the ODE is
Y' =F(X,Y)
X
- 1
> )

An ode of the form Y’ = AJ\/;(()?}:)) is called homogeneous if the functions M (X,Y’) and
N(X,Y) are both homogeneous functions and of the same order. Recall that a function

f(X,Y) is homogeneous of order n if
fE"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = X and N =Y are both homogeneous and of
the same order n = 1. Therefore this is a homogeneous ode. Since this ode is homogeneous,
it is converted to separable ODE using the substitution u = %, or Y =uX. Hence

dY du
axX “axxte

Applying the transformation Y = uX to the above ODE in (1) gives

du 1
X S
X Tu=y

du _ am — )

dX X



CHAPTER 2. BOOK SOLVED PROBLEMS 15

Or

(%wq) w(X) X +u(X)P —1=0

Which is now solved as separable in u(X).

The ode Ju(X) = —“1%2;;(1 is separable as it can be written as
d _u(X )2
2 wX) =
XX =" ox X
= f(X)g(u)
Where
1
X)=——
FX) =%
u? —1
9(u) =

Integrating gives

/Ldu=/f(x ax
/u2_1du—/——dX

G0 -Y (1Y,

We now need to find the singular solutions, these are found by finding for what values g(u)
=1 = 0 for u(X) gives

is zero, since we had to divide by this above. Solving g(u) =

uw(X)=1

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(X)2 -1) 1
5 =In X) +Cl
w(X)=-—
uw(X) =1
Solving for u(X) gives
u(X)=-1
wX)=1
() - VI
() - VT

Converting u(X) = —1 back to Y(X) gives

Y(X)=-X
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Converting u(X) = 1 back to Y(X) gives
Y(X)=X
Converting u(X) = @ back to Y (X) gives
Y(X) =+vVverr + X2
Converting u(X) = —@ back to Y(X) gives
Y(X) = —Vex + X2
Using the solution for Y'(X)
Y(X)=X (A)
And replacing back terms in the above solution using

Y=y+y
X=z+x

Y=y
X=z

Then the solution in y becomes using EQ (A)
y=2x
Using the solution for Y (X)
Y(X) = Ve + X2 (A)
And replacing back terms in the above solution using

Y=y+y
X=xz+2x

Y=y
X==x

Then the solution in y becomes using EQ (A)
y = Ve + g2
Using the solution for Y (X)
Y(X)=-X (A)

And replacing back terms in the above solution using

Y=y+w
X =z+x
Or
Y=y
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Then the solution in y becomes using EQ (A)
y=—z
Using the solution for Y (X)
Y(X) = Ve + X2
And replacing back terms in the above solution using

Y =y+uyo
X=z+2x

Y=y
X==z

Then the solution in y becomes using EQ (A)

—A /e201 + :L-Z

y:
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Figure 2.4: Slope field plot

Yy==x
Solved as first order Bernoulli ode
Time used: 0.065 (sec)
In canonical form, the ODE is
y = F(z,y)
_Z
Yy
This is a Bernoulli ODE. 1
/A
y = ()~
()y

The standard Bernoulli ODE has the form

Y = fo(z)y + fi(z)y"

Comparing this to (1) shows that

(2)
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The first step is to divide the above equation by y™ which gives

Y _ () 3)

<

The next step is use the substitution v = y'™" in equation (3) which generates a new
ODE in v(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows
that

fo(=)
fi(z

n=-1
Dividing both sides of ODE (1) by y" = i gives
Yy=0+z (4)
Let
v = y"
=y (5)
Taking derivative of equation (5) w.r.t z gives
v =2yy (6)

Substituting equations (5) and (6) into equation (4) gives

The above now is a linear ODE in v(z) which is now solved.

Since the ode has the form v'(z) = f(z), then we only need to integrate f(x).

/dv—/Qxdx

—x +c

1-n

The substitution v = y* ™" is now used to convert the above solution back to y which

results in

V=24

Solving for y gives

y=Vzr2+c
y=—V/22+¢
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Figure 2.5: Slope field plot
Yy==x
Summary of solutions found
y=Vzr2+c
y=—V22+¢
Solved as first order Exact ode
Time used: 0.087 (sec)
To solve an ode of the form
dy
M(z,y) + N(z,y) 2 =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
Hence 96 06d
vy _
ox  Oydr (B)
Comparing (A,B) shows that
0¢ _
or
o¢ _
oy
But since % = % then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
8‘12 (ffy = aizgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or

might not exist. The first step is to write the ODE in standard form to check for exactness,

which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(y)dy = (z)dz
(—z)dz+(y)dy =0 (2A)
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Comparing (1A) and (2A) shows that

M(z,y) = —z
N(z,y) =y

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy  Ox
Using result found above gives
oM_ o
0y Oy
=0
And
ON 0
or %(y)
=0

Since %iy/[ = ‘%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

9
g—x—M (1)
¢ _

=N @)

Integrating (1) w.r.t. z gives

/%dm=/de

0¢ .
%dx— /—xdw

2

b=—5 +fW) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t y gives

9¢ :
3y =0+ f'(y) (4)

But equation (2) says that Z_Zj = y. Therefore equation (4) becomes

y=0+f(y) (5)

Solving equation (5) for f'(y) gives
F'ly) =y

Integrating the above w.r.t y gives

[rwa= [ e

2
f(y)=y§+01
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Where c¢; is constant of integration. Substituting result found above for f(y) into equation

(3) gives ¢
2 12
¢=:—§-+g%—%q

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

Solving for y gives

P A A Ay
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Figure 2.6: Slope field plot
yy=a

Summary of solutions found

y=Vr2+2c
y=—Vz2+2¢

Solved as first order isobaric ode
Time used: 0.349 (sec)
Solving for 3" gives

/

y:

(1)

x
)
Each of the above ode’s is now solved An ode y' = f(z,y) is isobaric if

fltz, t™y) =™ f(z,y) (1)

Where here
f(z,y) =

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

<R

m=1
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Since the ode is isobaric of order m = 1, then the substitution

y=uzx"

=uxr

Converts the ODE to a separable in u(z). Performing this substitution gives

u(z) + zu/'(z) = L

u (z)

The ode v/(z) = —%2);1 is separable as it can be written as

u(z)? — 1

= f(2)g(u)

' (z) = —

Where

Integrating gives

/ﬁdu=/f(w)dx
/u;ildu:/—édm
w=ln(%)+a

We now need to find the singular solutions, these are found by finding for what values g(u)
is zero, since we had to divide by this above. Solving g(u) = 0 or =1 = 0 for u(z) gives

u

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

M:ln(l)m

2
u(z) = -1
u(z) =1
Solving for u(z) gives
u(z) = -1
u(z) =1
u(r) = ——
z

ue) ===
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Converting u(xz) = 1 back to y gives

S8

Y gives

2cy 2
d z” back to

Converting u(x) =

ech + fL'2
T

y_
T

Y gives

Y 622 +22 hack to

Converting u(x) = —

e2c1 + IL'2
xr

> 8

Solving for y gives

e2c1 + .’132
eZCl + x2
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Figure 2.7: Slope field plot

Yyy==x

Summary of solutions found

e?cl +IL'2
e2cl + IE2

8
8 | |

|
2 2> >

Solved using Lie symmetry for first order ode

Time used: 0.627 (sec)

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by

0

Nz + W(ny — &) — W2fy — wz§ —wyn
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To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

£ =zaz +yas + a (1E)
n= wbz + yb3 + bl (QE)

Where the unknown coefficients are
{ala az,as, b17 b2a b3}
Substituting equations (1E,2E) and w into (A) gives

z(bs —ag) z2as _Taztyaztar N x(xbs + ybs + b1)

by + y " ” )2 =0 (5E)
Putting the above in normal form gives
_x2a3 — 22by + 2yzay — 2yxbs + y2as — boy? — xby + yaq _o
Y2
Setting the numerator to zero gives
—z%ag + 22by — 2yway + 2yrbs — y2as + byy® + by —ya; =0 (6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y} in
them

{z =v1,y = v}
The above PDE (6E) now becomes
—2a50105 — a30V? — a3vs + byv? + byv3 + 2b3v1vs — a1vs + bivy =0 (TE)
Collecting the above on the terms v; introduced, and these are
{vr,va}
Equation (7E) now becomes

(—CL3 + bg) ’U% + (—2(12 + 2b3) V1V + bl’Ul + (—a3 =+ b2) ’Ug — a1V = 0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

b1:0
—a1=0
—2a2+2b3 = 0

—a3+b2=0
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Solving the above equations for the unknowns gives

a1 =0
as = bs
as = by
by =0
by = by
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

E=x
n=y

Shifting is now applied to make £ = 0 in order to simplify the rest of the computation
n=1n-wzy)

o)

— g2 42
Y

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dr dy
&

The above comes from the requirements that (Ea% "'77(%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
Sz/—dy
7
1
=/T+yzdy

Y

S is found from

Which results in
In ( 1,}.2 y2)
- @@ J 7

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

S

ﬁ — Sx +w(x,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

T
(AJ(CL',y) = 5
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Evaluating all the partial derivatives gives

R,=1
R,=0
T
Sy = ——
22 — o2
Yy
Sy:_w2_y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dsS
> -0 2A
iR (24)
We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

as

ar ="

The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

S (R) = C
To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

In(—z+y) +1n(a:+y)
2 2

:cz

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . )
. ) ) . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ =z as __ 0
dx Y dR
EG)
R==x
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Figure 2.8: Slope field plot
Yyy==x

Summary of solutions found

In(-z+y)  In(@+y)
2 * 2

202

Maple step by step solution

Let’s solve

y(@) (Hy(2) ==

° Highest derivative means the order of the ODE is 1

()

° Integrate both sides with respect to x
[y(z) (Ly(z)) dz = [zdz + C1

° Evaluate integral

s

) Solve for y(x)

{y(2) = V2 + 201, y(x) = —v/a? +2CT}

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful”

Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 23

‘ dsolve(y(x)*diff (y(x),x) = x,
‘ y(x) ,singsol=all)

z)=Vrt+a
z)=—Val+a

y(
y(
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Mathematica DSolve solution

Solving time : 0.117 (sec)
Leaf size : 35

'DSolve[{D[y[x],xI*y[x]==x,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) > —v2? 4+ 2¢1
y(z) = V22 + 20
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2.1.2 problem 1(b)
Solved as first order linearode . . . . ... ... ... ....... 29
Solved as first order Exactode . . . . ... ... ... ....... 30
Solved using Lie symmetry for first orderode . . . . . .. ... ..
Maple step by step solution . . . . .. ... ... ... ... ... . 37
Maple trace . . . . . . . . . e e
Maple dsolve solution . . . ... ... ... ... ... .. ...,
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [4191]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 1(b)

Date solved : Tuesday, December 17, 2024 at 06:49:51 AM
CAS classification : [[_linear, ‘class A‘]]

Solve
y —y=21’

Solved as first order linear ode
Time used: 0.108 (sec)
In canonical form a linear first order is
Y +q(z)y = p(z)

Comparing the above to the given ode shows that

g(z) = —1
p(z) = 2°
The integrating factor u is
p= efqu
= e_z
The ode becomes
g (M) = 1o

Integrating gives
ye ¥ = /x3e_x dx
= —(x3+3a:2 +6x—|—6) e+
Dividing throughout by the integrating factor e™* gives the final solution

y=—a34+ce*—322—62—6
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Figure 2.9: Slope field plot
y—y=2a’
Summary of solutions found
y=—-2+c e —32>—6x—6
Solved as first order Exact ode
Time used: 0.111 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
Hence 96 04d
Yy _
Oxr  Oydr 0 (B)

Comparing (A,B) shows that

0p

9 M

0p

9 =V

But since % = % then for the above to be valid, we require that
0y yOox

oM _ ON

oy Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
(,;9; (ffy = aizg; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,
which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (2° +y) dz
(—2® —y)dz+dy=0 (2A)
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Comparing (1A) and (2A) shows that

M(xay) =—.’L'3—y
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0 3
3_3/ @ (_ - y)
=-1
And
ON
1
o ( )
= 0

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

3_M _9N
dy ox
= 1((—1) —(0))
=-1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is
b= efAd:t
— ef—l dx

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM

And

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

m+NY g

dx

_ _ dy
(3 T z\ 79 _
(@ +9)e) + () L =0
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The following equations are now set up to solve for the function ¢(z,y)

% _w (1)
0p  —
oy =" 2)

Integrating (2) w.r.t. y gives

0p . [
a—ydy—/Ndy
g—jdyz/e_””dy
p=ye "+ f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

09 _

5p = Ve f'(z) (4)

But equation (1) says that % = —(z3 + y) e7®. Therefore equation (4) becomes
—(®+y)e " =—ye " + f(x) (5)
Solving equation (5) for f'(z) gives
f(@) =~z
Integrating the above w.r.t x gives
/f'(w) dz = / (—z%¢™*) dz
f(@)=(z*+32>+62+6)e " +c1
Where c¢; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
p=ye "+ (x3+3x2+6x+6)e_x+cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

ca=ye "+ (x3 + 32% 4 62 + 6) e’ ”
Solving for y gives

y=—(2%e"+3z% " +6re " +6e " —ci)€
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Figure 2.10: Slope field plot
y —y =21

Summary of solutions found

y=—(2°e"+3z% " +6re " +6e " —ci)e

Solved using Lie symmetry for first order ode
Time used: 0.766 (sec)

Writing the ode as

y =2’ +y
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W(ny - &) — W2€y —wz§ —wyn =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
2 to use as anstaz gives

€ = 2%a4 + yzas + ylag + zas + yas + a1 (1E)
n= .’L‘2b4 + yzb5 + y2b6 + zby + yb3 +b (2E)

Where the unknown coefficients are

{ala a2, a3, a4, as, e, bl, b2, b3) b47 b5, bﬁ}

Substituting equations (1E,2E) and w into (A) gives

2xby + ybs + by + (2° +y) (—2zas + zbs — yas + 2ybs — a2 + bs)

- (ac3 + y)2 (zas + 2yag + as) — 3 (x2a4 + yzas + y2as + zas + yas + al)
— x2b4 — y.’L‘b5 - y2b6 - xb2 - yb3 - bl =0

(5E)

Putting the above in normal form gives

—x"as — 2x6ya6 — z%a5 — 2w4ya5 — 4x3y2a6 — 5ztay + b5 — 2w3ya3 — 4x3ya5
+ 223ybs — 3x%y%as — 4x3as + 2305 — 3xyas — v y%as — 2y°as — 3x2ay
— 22by — 2zyas — y2as — ylas + y2bg — xby + 2xbs — yas + ybs — by + by =0
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Setting the numerator to zero gives

7

—x'ag — 2z6ya6 — 28

as — 2x4ya5 — 4x3y2a6 —5ztay + ztbs — 2a:3ya3 — 4x3ya5 (6E)
+ 223ybg — 3x%y%ag — 4z3as + 2305 — 3xyas — v y%as — 2y°as — 33y
— z%bs — 2zyas — yPaz — yPas + y°be — Ty + 2bs — yas + ybs — by + by =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y} in
them

{z =v1,y = v}

The above PDE (6E) now becomes

—asv! — 2agv5vy — azvd — 2a5vivy — dagvivi — 2a3v3vy — Sayv] — dasvivy (7E)
2,2 4 3 3 2 2 3 3 2
— 3aguiv; + bsv] + 2bgv Ve — 4agvy — 3azvive — asv1v; — 2a6V5 + bsvy — 3a1v]
- a3’U§ — 2a4'01v2 — a5v§ - b4’l)f + bﬁ’Ug — AUy — b2U1 + 2b4'l]1 + b5’l)2 - bl + b2 =0

Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

—asv] — 2agvSvy — azvd — 2a5v1vy + (—bay + bs) vi — dagvivs
+ (—2a3 — 4as + 2bg) vivy + (—4az + bs) v} — 3agvivs (8E)
— 3a3v°vy + (—3a; — by) V2 — asv1v3 — 2440103 + (—by + 2bg) vy
— 2a61)§ + (—CL3 —as + bﬁ) ’Ug + (—az + b5) Vg — bl + b2 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—3a3 =0

—a3 =0
—2a4,=0
—2a5 =0

—a5 =0

—4a¢ =0
—3ag =0
—2ag =0
—3a; — by =0
—4ay+ b3 =0
—as+b5=0
—bas+b5=0
—by+b,=0
—by +2by, =0

—2a3—4a5+2b6 =0
—a3—a5+b6=O
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Solving the above equations for the unknowns gives

by
a1=—§
a; =0
a3 =10
ag =0
as =0
ag =0
by = 2by
by = 2b,
bs =0
by = by
bs =0
bg =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

n=x*+2z+2
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-wy)é

=x2+2x+2—(x3+y) (—%)

1 1
2 3
=2?+2r+2+ cad 4+ 2
T T + 3z + 3y
g = 0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F =, = 1)

The above comes from the requirements that (ﬁa% +n%> S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

S is found from

1
d
/w2+2x+2+%x3+%y Y

Which results in

S =3In(z°+32°+6x+y+6)
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Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

ﬁ _ Sﬂ? +w(x’y)Sy
dR R, +w(z,y)Ry

(2)

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

w(z,y) =2°+y
Evaluating all the partial derivatives gives

R, =1
R, =0
922 + 18z + 18

22 +322+6x+y+6
3

S 3 1 6s g+ 6

z:

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

as
ﬁ—?)

The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).

/dS /3dR

R)—3R+Cz

To complete the solution, we just need to transform the above back to x,y coordinates.
This results in

31ln (x3—|—3x2—|—6x—|—y+6) =3z +c
Which gives
452

y=e"t3 — 23 —-32> —62—6

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . ) ; ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
R=z

S =3In (x3+3x2+6w+
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Figure 2.11: Slope field plot
y—y=2a°

Summary of solutions found

y=e"t% — 23— 32> — 6z —6
Maple step by step solution

Let’s solve
=Y(@) —y(z) =2°
° Highest derivative means the order of the ODE is 1
=y(@)
° Solve for the highest derivative
wy(z) =y(z) +2°
° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
wy(z) —y(a) = 2°
° The ODE is linear; multiply by an integrating factor u(x)
() (y(z) — y(@)) = pz) 2°
o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
w(@) (£y(2) —y(2) = (£y(@)) u@) +y(2) ()
o Isolate 2 u(z)
k(@) = —p(z)
° Solve to find the integrating factor
(z) = e~
° Integrate both sides with respect to x
J (& W) u(2))) dz = [ p(z) z*dz + C1
° Evaluate the integral on the lhs
y(@) p(a) = [ p(z) s¥dz + C1
o Solve for y(x)

z)z3dx+C1
y(z) = L )ﬂ(z) =

o Substitute pu(z) = e~*

T

z3e~%dz+C1
y(z) = fe——w
° Evaluate the integrals on the rhs
— (234322 4-62+6)e~%+C1
y(z) = ( 6o Je

° Simplify
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y(z) = -2+ C1e® — 322 — 62 — 6

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 23

‘dsolve(diff (y(x),x)-y(x) = x73,
‘ y(x),singsol=all)

y(z) = —2° — 32° — 63 — 6 + ¢y

Mathematica DSolve solution

Solving time : 0.074 (sec)
Leaf size : 26

‘ DSolve [{D[y[x],x]-y[x]==x"3,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) = —2> — 32% — 62+ 1" — 6



CHAPTER 2. BOOK SOLVED PROBLEMS 39

2.1.3 problem 1(c)

Solved as first order linearode . . . . ... ... ... ....... 391
Solved as first order Exactode . . . . ... ... ... ....... Z10)
Maple step by step solution . . . . . . ... ... ... ... 43]
Maple trace . . . . . . . . . .. 44
Maple dsolve solution . . . . . ... .. ... L. 44
Mathematica DSolve solution . . . . ... ... ... ........ 44

Internal problem ID [4192]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 1(c)

Date solved : Tuesday, December 17, 2024 at 06:49:53 AM
CAS classification : [_linear]

Solve
Yy +ycot(z) ==
Solved as first order linear ode

Time used: 0.123 (sec)

In canonical form a linear first order is
Yy +a(z)y = p(z)
Comparing the above to the given ode shows that

q(z) = cot (z)

p(z) =z
The integrating factor u is
p=e J[qdx
—e [ cot(z)dz
= sin (z)
The ode becomes
d
. HY) = 1p

d
1z 1Y) = (1) (2)
L (ysin(2)) = (sin (2)) (2)
dx
d(ysin(z)) = (zsin (z)) dz
Integrating gives
ysin (z) = /xsin (z) dx
=sin (z) — zcos (z) + ¢
Dividing throughout by the integrating factor sin (z) gives the final solution

y=1—xzcot(z)+ ¢ csc(x)
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Figure 2.12: Slope field plot
Yy +ycot(z) ==z
Summary of solutions found
y=1—zcot(x)+cscsc(x)
Solved as first order Exact ode
Time used: 0.156 (sec)
To solve an ode of the form
dy
M(.’ﬂ,y)-i—N(.’L‘,y)—:O (A)

dz

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06 d
vy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
o
9 M
o
TN
Ay
But since 6‘12 a¢y = 8(9: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = aajgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore

dy = (—ycot (z) + z)dx
(ycot (z) —z)dx+dy =0 (2A)
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Comparing (1A) and (2A) shows that
M(z,y) =ycot (z) —
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0
En a—y(y cot (z) — z)
= cot (z)
And
ON
o (1)
= 0

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

(-2
((COta ? ) —8(0))

= cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is

p= efAd:z
— ef cot(z) dz
The result of integrating gives
b= eln(sin(m))
= sin (z)

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
= sin (z) (y cot (z) — x)

= ycos (z) — zsin (z)

And

= sin (z) (1)

= sin ()

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+N3—z =0
(ycos (z) — zsin (z)) + (sin (z)) j—z =0
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The following equations are now set up to solve for the function ¢(z,y)

- i 1)
6
oy = N (2)
Integrating (2) w.r.t. y gives

0 . [

8_y dy = /Ndy

Z—;b dy = /sin (z)dy

¢ = ysin (z) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t x gives

00 — yeos () + 1'a) @

But equation (1) says that % = ycos () — zsin (z). Therefore equation (4) becomes

ycos (z) — zsin (z) = ycos (z) + f'(x) (5)
Solving equation (5) for f'(z) gives

f'(z) = —zsin (z)

Integrating the above w.r.t = gives

/f’(m) dz = / (—zsin (z)) dz

f(z) = —sin(z) + zcos (z) + 1

Where c; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢

¢ = ysin (z) —sin (z) + z cos (z) + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢, constants into the constant c; gives the solution as

¢1 = ysin (z) — sin (z) + z cos (z)

Solving for y gives
—sin (z) + zcos (z) — ¢
sin (z)

Yy=-
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Figure 2.13: Slope field plot
Y +ycot(z) ==

Summary of solutions found

—sin (z) + zcos(z) — ¢y
sin (z)

y=-

Maple step by step solution

Let’s solve

y(z) +y(@)cot (z) =2
° Highest derivative means the order of the ODE is 1

Ly(z)

° Solve for the highest derivative
4y(z) = —y(z)cot (z) +
) Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
4y(z) +y(z) cot (z) =z
° The ODE is linear; multiply by an integrating factor u(x)
(@) (y(x) +y(z) cot (z)) = p(z)
o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
(@) (£y(@) +y(2) cot (z)) = (f£u(2)) u(z) +y(2) (@)
o Isolate - /u(x)
L 4(z) = u(z) cot (2)
° Solve to find the integrating factor
p(z) = sin ()
° Integrate both sides with respect to x
[ (&(u(@) u(@))) do = [ p(z) ada + C1
° Evaluate the integral on the lhs
y(@) u(x) = [ u(z) ada + C1
o Solve for y(x)

xz)zdz+C1
y(z) = L L(x)+
) Substitute p(z) = sin (x)
sin(z)zdz+ C1
(o) = LR
° Evaluate the integrals on the rhs

sin(x)—x cos(z)+C1
y(.’L’) = salz) sin(z)( =
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° Simplify
y(z) =1—zcot(z) + C1 csc(x)

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

N\

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 15

‘ dsolve(diff (y(x),x)+y(x)*cot(x) = x,
‘ y(x) ,singsol=all)

y(z) = —cot (x)x + 1+ csc(z)

Mathematica DSolve solution

Solving time : 0.062 (sec)
Leaf size : 17

e

DSolve [{D[y[x],x]+y[x]*Cot [x]==x,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) = —zcot(z) + ¢y cse(z) + 1
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2.1.4 problem 1(d)
Solved as first order linearode . . . . ... ... ... ....... 45]
Solved as first order Exactode . . . . ... ... ... ....... 461
Maple step by step solution . . . . . . ... ... ... ... 49]
Maple trace . . . . . . . . . . ... B0
Maple dsolve solution . . . . . ... .. ... L. B0l
Mathematica DSolve solution . . . . ... ... ... ........ B0

Internal problem ID [4193]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 1(d)

Date solved : Tuesday, December 17, 2024 at 06:49:55 AM
CAS classification : [_linear]

Solve
y' + ycot (z) = tan (z)
Solved as first order linear ode

Time used: 0.162 (sec)

In canonical form a linear first order is

Y + q(z)y = p(x)

Comparing the above to the given ode shows that

q(z) = cot (x
p(z) = tan (x)
The integrating factor u is
p=e J[qdx
—e [ cot(z)dz
= sin (z)
The ode becomes
d
g M) = kp

d
1z HY) = (1) (tan (z))
d, . .
3 vsin (z)) = (sin (z)) (tan (z))
d(ysin (z)) = (tan (z)sin (z)) dz
Integrating gives
ysin (z) = /tan (z)sin (x) dx
= —sin (z) + In (sec (z) + tan (z)) + ¢
Dividing throughout by the integrating factor sin (z) gives the final solution

y = (—sin (z) + In (sec (z) + tan (z)) + ¢1) csc (z)
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Figure 2.14: Slope field plot
y' + ycot (z) = tan (z)

Summary of solutions found

y = (—sin (z) + In (sec (z) + tan (z)) + ¢1) csc (z)

Solved as first order Exact ode
Time used: 0.125 (sec)

To solve an ode of the form

M(z,) + N(z,y) 2 =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06 d
vy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
o
9 M
o
TN
Oy
But since 6‘9; a¢y = 8(9: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = aajgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy=0 (1A)

Therefore

dy = (—ycot (z) + tan (z)) dz
(ycot (z) —tan (z))dz+dy =0 (2A)
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Comparing (1A) and (2A) shows that
M(z,y) = ycot (z) — tan (z)
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0
By B_y(y cot (z) — tan (z))
= cot (z)
And
ON
o (1)

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

(-2
((COta ? ) —8(0))

= cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is

p= efAd:z
— ef cot(z) dz
The result of integrating gives
b= eln(sin(m))
= sin (z)

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
= sin (z) (y cot (z) — tan (z))

= cos (z) y — tan (z) sin (z)

And

= sin (z) (1)

= sin ()

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+Nd—y:0
dz

(cos (z) y — tan (z) sin (z)) + (sin (z)) j—z =0
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The following equations are now set up to solve for the function ¢(z,y)

% _w (1)
0p  —
oy =" 2)

Integrating (2) w.r.t. y gives

a—(bdy=/ﬁdy
Oy

0
6—3 dy = /sin (z)dy

¢ = ysin (z) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t x gives

0 — cos(a)y + 1'a) (@

But equation (1) says that % = cos (z) y — tan (z) sin (z). Therefore equation (4) becomes
cos (z) y — tan (z) sin (z) = cos (z) y + f'(z) (5)
Solving equation (5) for f'(z) gives

f'(z) = — tan (z) sin (z)

Integrating the above w.r.t = gives

/ f(z)dz = / (—tan (z) sin (z)) dz
f(z) =sin (z) — In (sec (x) + tan (z)) + ¢;
Where c; is constant of integration. Substituting result found above for f(z) into equation

(3) gives ¢
¢ = ysin (z) + sin (z) — ln (sec (z) + tan (z)) + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢, constants into the constant c; gives the solution as

¢; = ysin (z) + sin (z) — In (sec (z) + tan (z))

Solving for y gives
_sin (z) —In(sec (z) + tan (z)) —a
B sin (z)
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Figure 2.15: Slope field plot
y' + ycot (z) = tan (z)

Summary of solutions found

_sin (z) —In(sec (z) + tan (z)) —a
sin ()

Maple step by step solution

Let’s solve
%y(z) + y(z) cot (z) = tan (z)

° Highest derivative means the order of the ODE is 1

Ly(z)

° Solve for the highest derivative
4y(z) = —y(z) cot (z) + tan (z)
) Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
4y(z) + y(z) cot (z) = tan (z)
° The ODE is linear; multiply by an integrating factor u(x)
u(@) (£y(e) +y(z) cot (2)) = (a) tan (o)
o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
(@) (y(z) +y(@)cot (z)) = (Ly(2)) p(z) +y(@) (Lu(z))
o Isolate - /u(x)
L 4(z) = u(z) cot (2)
° Solve to find the integrating factor
p(z) = sin ()
° Integrate both sides with respect to x
[ (L (y(z) u(z))) dz = [ p(z)tan (z) dz + C1
° Evaluate the integral on the lhs
y(z) p(z) = [ p(z)tan (z) dz + C1
o Solve for y(x)

) tan(z)dz+ C1
y(z) = J u( )tu((x)) +
) Substitute p(z) = sin (x)
sin(z) tan(z)dz+C.
y(z) = Lot ):in((z)) =
° Evaluate the integrals on the rhs

__ —sin(z)+In(sec(z)+tan(z))+ C1
y(CL') - sin(z)
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° Simplify
y(z) = (—sin (z) + In (sec (z) + tan (z)) + C1) csc (z)

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

N\

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 19

‘ dsolve(diff (y(x),x)+y(x)*cot(x) = tan(x),
‘ y(x) ,singsol=all)

y(z) = csc (z) (—sin (z) + In (sec (z) + tan (z)) + ¢1)

Mathematica DSolve solution

Solving time : 0.063 (sec)
Leaf size : 18

e

DSolve [{D[y[x],x]+y[x]*Cot [x]==Tan[x],{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(x) — csc(x)arctanh(sin(z)) + ¢; cse(z) — 1
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2.1.5 problem 1(e)

Solved as first order linearode . . . . ... ... ... .......
Solved as first order Exactode . . . . ... ... ... .......
Maple step by step solution . . . . . . ... ... ... ...
Maple trace . . . . . . . . . . ...
Maple dsolve solution . . . . . ... .. ... L.
Mathematica DSolve solution . . . . ... ... ... ........

Internal problem ID [4194]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 1(e)

Date solved : Tuesday, December 17, 2024 at 06:49:56 AM
CAS classification : [_linear]

Solve
y' + ytan (z) = cot (x)
Solved as first order linear ode

Time used: 0.148 (sec)

In canonical form a linear first order is

Y + q(z)y = p(x)

Comparing the above to the given ode shows that

q(z) = tan (x)
p(z) = cot (z
The integrating factor u is
p=e [qdx
—e [ tan(z)dz
= sec ()
The ode becomes
d
3p M) = 1o

d
1z #Y) = (k) (cot (2))
d
3 Y sec (2)) = (sec () (cot (2))
d(ysec (z)) = (cot (x) sec (z)) dz
Integrating gives
ysec(x) = / cot () sec (x) dx
= In (csc (z) — cot (z)) + 1
Dividing throughout by the integrating factor sec (z) gives the final solution

y = cos (z) (In (csc (z) — cot (z)) + ¢1)
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Figure 2.16: Slope field plot
y' + ytan (z) = cot (x)
Summary of solutions found
y = cos (z) (In (csc (z) — cot (z)) + 1)
Solved as first order Exact ode
Time used: 0.112 (sec)
To solve an ode of the form
dy
M(.’ﬂ,y)-i—N(.’L‘,y)%:O (A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06 d
vy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
o
9 M
o
TN
Ay
But since 6‘12 a¢y = 8(9: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = aajgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy=0 (1A)

Therefore

dy = (—ytan (z) + cot (z)) dz
(ytan (z) — cot (z))dz+dy =0 (2A)



CHAPTER 2. BOOK SOLVED PROBLEMS 53

Comparing (1A) and (2A) shows that
M (z,y) = ytan (z) — cot (z)
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _on
oy Oz
Using result found above gives
oM 0
By B_y(y tan (x) — cot (z))
= tan (z)
And
ON 0
o~ o)

=0

Since %iy/f # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4] (8M 6N)

- N oy ox
= 1((tan (z)) — (0))
= tan (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is

p= efAdm
— ef tan(z) dz
The result of integrating gives
p=e" In(cos(z))
= sec (z)

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
= sec (z) (y tan (z) — cot (x))

= ytan (z) sec (z) — csc ()

And

= sec (z)

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M + Nj—i =0
(y tan (z) sec (z) — csc (z)) + (sec (x) j—i =0
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The following equations are now set up to solve for the function ¢(z,y)

% _w (1)
0p  —
oy =" 2)

Integrating (2) w.r.t. y gives

Oy
op .
6—ydy—/sec(m)dy

¢ = ysec(z) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t x gives

% = ytan (z)sec (z) + f'(x) (4)

But equation (1) says that % = ytan (z) sec () — csc (z). Therefore equation (4) becomes
ytan (z)sec (z) — csc (z) = ytan (z) sec (z) + f'(z) (5)
Solving equation (5) for f'(z) gives
f'(x) = —csc ()
Integrating the above w.r.t = gives
/f'(m) dr = / (—csc(z))dz
f(z) =1n(csc(z) + cot (z)) + 1
Where c; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
¢ = ysec(x) + ln (csc (z) + cot (x)) + 1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢, constants into the constant c; gives the solution as

¢1 = ysec (z) + In (csc (z) + cot (z))

Solving for y gives
_In(csc(z) +cot (z)) —a
sec (x)
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Figure 2.17: Slope field plot
y' + ytan (z) = cot ()

Summary of solutions found

__In(esc(z) +cot (z)) — a1
sec ()

Maple step by step solution

Let’s solve
4y(z) + y(z) tan (z) = cot (z)
° Highest derivative means the order of the ODE is 1
=y(®)
° Solve for the highest derivative
4 y(z) = —y(z) tan (z) + cot (z)
) Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
4y(z) + y(z) tan (z) = cot (z)
° The ODE is linear; multiply by an integrating factor u(x)
() (£y(@) +y(z) tan (z)) = p(z) cot (z)
o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
() (Ly(@) +y(z) tan (z)) = (Fy(2)) wz) +y(@) (Lu(@))
o Isolate - /u(x)
2 () = u(s) tan (o)
° Solve to find the integrating factor

K (117) = cosl(x)
° Integrate both sides with respect to x

[ (L (y(z) u(z))) dz = [ p(z)cot (z) dz + C1
° Evaluate the integral on the lhs

y(@) u(x) = [ p(z) cot (z) da + C
o Solve for y(x)

) cot(x)dz+C1
y(z) = [ u(z) “t((z)) +
o Substitute u(z) =
y(z) = cos () (f zgzggdx + C’I)
° Evaluate the integrals on the rhs

y(z) = cos (z) (In (csc (z) — cot (x)) + C1)
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 17

-

dsolve(diff (y(x),x)+y(x)*tan(x) = cot(x),
L y(x) ,singsol=all)

y(z) = (—1In(csc (z) + cot (x)) + ¢1) cos (z)

Mathematica DSolve solution

Solving time : 0.072 (sec)
Leaf size : 16

‘DSolve [{Dly[x] ,x]+y [x] *Tan [x]==Cot [x] , {}},
L y[x] ,x,IncludeSingularSolutions->True]

y(x) — cos(z)(—arctanh(cos(z)) + ¢1)
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2.1.6 problem 1(f)

Solved as first order linearode . . . . ... ... ... .......
Solved as first order Exactode . . . . ... ... ... .......
Maple step by step solution . . . . . . ... ... ... ...
Maple trace . . . . . . . . . . ...
Maple dsolve solution . . . . . ... .. ... L.
Mathematica DSolve solution . . . . ... ... ... ........

Internal problem ID [4195]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 1(f)

Date solved : Tuesday, December 17, 2024 at 06:49:58 AM
CAS classification : [_linear]

Solve
Yy +yln(z)=a"
Solved as first order linear ode

Time used: 0.287 (sec)

In canonical form a linear first order is

Y + q(z)y = p(x)

Comparing the above to the given ode shows that

q(z) =In(z)

p(z)=z7°
The integrating factor y is

o= ef In(z)dz

Therefore the solution is

y= (/ x—zefln(z)dwdx + cl) e—fln(z)dm
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Figure 2.18: Slope field plot
Y +yln(z)=a7"

Summary of solutions found

y = </ m—mefln(x)dxdx +cl) e—fln(ac)d:l:
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Solved as first order Exact ode
Time used: 0.121 (sec)
To solve an ode of the form

dy
M(z,9) + N(z,5) £ =0 (A)
T
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.

Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06d
Y
— —_—— B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
9 M
o
TN
9y
But since ;;gy = ;): g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = a‘fgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (—yln(z) +z7") dz
(yln(z) —z*)dz+dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =yln(z) —2™"
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz

Using result found above gives

oM 0

= 2 (yl _z =

By — 5y W@ —<7)

= In ()
And
ON 0

o~ oz
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Since %i; # ‘98—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

1 /0M ON
TN (6_1/ - %)
= 1((In (z)) — (0))
= In (z)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p= efAda:
— ef In(z) dz
The result of integrating gives
= e® In(z)—z

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
=z *(yln(z) — z7°)

=e °(yln(z)z® —1)

And

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

o _dy
M+ P 0
(e*(yIn(z)2® — 1)) + (z"e™*) j—z =0

The following equations are now set up to solve for the function ¢(z,y)

0y —

Integrating (2) w.r.t. y gives
@ dy = / Ndy
9y
@ dy = /wze_” dy
Ay

¢ =z "y + f(x) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

99 _

5 = & (n(2) +1)e™y — ey + f'(z) (4)

=z "yl (z) + f'(z)
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But equation (1) says that g—x = e *(yln (z) z* — 1). Therefore equation (4) becomes

e *(yln(z)z” —1) = z%e "yIn () + f'(z) (5)

Solving equation (5) for f'(z) gives

fla)= e
Integrating the above w.r.t = gives

/f'(:c) dz = / (—e™®)dz

flx)=e"+c
Where c; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢

p=2x"¢"y+e "+

But since ¢ itself is a constant function, then let ¢ = ¢, where c; is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

—X

co=zx"""y+e

Solving for y gives

/ / /
/ / /
v /

f///////

bl

|

\L

/ /////c///z/
)/ [ —

| [ /e
WP P

‘ \ AN N
\

\ \ \\ A e O S O N
A e e e S N N R R Y

24

\ o\
P

\x\x\\\\\\\\\ \\“ L ,/’ / /////‘ =

SO
o] N \\\\\\\\\\ \\; v \

e/

&
‘
|
\
14

SN\ \\ \\ "
RSO NN SN \\ "

— NN\ \ ,‘
A —a A \x\\\\\\\\ \

=4 2 0

Figure 2.19: Slope field plot
Y +yln(z) =z7"

Summary of solutions found

y=—(e"—c1)z %"
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Maple step by step solution

Let’s solve
&Y(z) +y(@)n(z) =27
° Highest derivative means the order of the ODE is 1
=y(2)
° Solve for the highest derivative
&y(@) = —y()In(z) + 2~
° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
wy(@) +y(@)n(z) =2~
° The ODE is linear; multiply by an integrating factor u(x)
wz) (4y(@) +y(@)In(2)) = p(z) a2~
o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

w=) (5y() +y(@) (@) = (Ly@) wz) +y(@) (Gu())
e Isolate L u(z)

L(x) = u(z) In ()

° Solve to find the integrating factor
p(z) = z%e”
° Integrate both sides with respect to x
[ (@) p(@))) do = [ () a~*dz + C1
° Evaluate the integral on the lhs
y(2) p() = [ p(z)e*do + C1
o Solve for y(x)

z)x~ Tdx+C1
y(z) = J )u(x) +

) Substitute u(z) = x%e~

T

T

zTe Tz~ Tdx+C1
y(z) = f . xrTe— T
° Evaluate the integrals on the rhs
y(z) = =52
° Simplify

y(x) =27%(C1e* —1)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 16

‘ dsolve(diff (y(x),x)+y(x)*1n(x) = x~(-x),
L y(x) ,singsol=all) J

y(e) = (e = 1)z™*
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Mathematica DSolve solution

Solving time : 0.127 (sec)
Leaf size : 19

p
' DSolve [{D[y[x],x]+y[x]*Log[x]==x"(-x),{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(x) = 27%(—1 4 c1€)



CHAPTER 2. BOOK SOLVED PROBLEMS 63

2.1.7 problem 2(a)
Solved as first order linearode . . . .. ... ... ... ...... 63
Solved as first order homogeneous class Aode . . . . .. ... ... 64
Solved as first order homogeneous class D2ode . . . ... ... .. 66!
Solved as first order homogeneous class Maple Code . . . ... .. 68}
Solved as first order Exactode . . . . ... ... ... ....... 701
Solved as first order isobaricode . . . . ... ... ... ... ... [73l
Solved using Lie symmetry for first orderode . . . . ... ... .. [74
Maple step by step solution . . . . ... ... ... ... ...... [78
Maple trace . . . . . . . . . e 79]
Maple dsolve solution . . . ... ... ... ... ... ... ... 79]
Mathematica DSolve solution . . . . . ... ... ... ....... 79

Internal problem ID [4196]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 2(a)

Date solved : Tuesday, December 17, 2024 at 06:50:00 AM

CAS classification : [_linear]

Solve

Solved as first order linear ode

Time used: 0.050 (sec)

Ty +y==z

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

The ode becomes

Integrating gives
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Dividing throughout by the integrating factor x gives the final solution

2?42
y= 2z
/777770y N N N
J7 77777 TN N NS -
777777 7711 LN NN -~
A7 777777 TN N - —
A A A A A A I NN -
7777 77T N~ -
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JI7 777777 N~
7777777 N
W)w////////////////////
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N =N\
S N1 1117777
S N1 1777
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NVt 777777
-3 \ V1777777
I ) 5 ; 7
X
Figure 2.20: Slope field plot
) t+y==z
Summary of solutions found
2+ 20
2
Solved as first order homogeneous class A ode
Time used: 0.254 (sec)
In canonical form, the ODE is
y = F(z,y)
—z
=t (1)
x
An ode of the form ¢ = % is called homogeneous if the functions M (z,y) and N(z,y)

are both homogeneous functions and of the same order. Recall that a function f(z,y) is
homogeneous of order n if

f(t"z, t"y) =t"f(z,y)
In this case, it can be seen that both M = —y 4+ 2 and N = z are both homogeneous

and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = ¥, or y = ux.

Hence
dy _du
dz  do
Applying the transformation y = uz to the above ODE in (1) gives
d—u:c +u=1—-u
dx N
du _ 1—2u(z)
dz x
Or _
w@y__liﬁﬂzo
x
Or

v(z)x+2u(z) —1=0

Which is now solved as separable in u(z).
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The ode v/'(z) = —% is separable as it can be written as
2u(z) — 1
! ——
u'(x) = -
= f(z)g(u)
Where
1
flz) = o
g(u) = —-2u+1

Integrating gives

/ﬁdUZ/f(x)da:
/ﬁduz/id.’t

_In(2u(z) — 1)

5 =In(z) + ¢

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or —2u+ 1 = 0 for
u(z) gives

u(z) = %

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

_In(2u(z) — 1)

=1
5 n(z) +ca
1
u(z) = 2
Solving for u(z) gives
1
u(z) = 2
wQ + e—201
u(x) = 57
Converting u(z) = 3 back to y gives
_Zz
=3
Converting u(x) = % back to y gives
.’1:2 + e—201

y 2x
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Figure 2.21: Slope field plot

zy +y==x
Summary of solutions found
x
V=3
z? +e 2
¥= 2z

Solved as first order homogeneous class D2 ode

Time used: 0.136 (sec)

Applying change of variables y = u(x) z, then the ode becomes

z(uW(z)z +u(z)) +u(z)z ==

Which is now solved The ode v/'(z) = —% is separable as it can be written as
2u(z) —1
! _——
v(z) = -2
= f(z)g(u)
Where
1
fla)=~
g(u) = —-2u+1

Integrating gives

/i(](%)du=/];(x)dx
/mdu=/5d1‘

_In(2u(z) — 1)

5 =In(z)+ ¢

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or —2u + 1 = 0 for
u(z) gives
1
u(z) = 3
Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.
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Therefore the solutions found are

—
Q

Solving for u(z) gives

back to y gives

1
2

Converting u(zx)

SHEa

back to y gives

(L'2 +e_2cl
212

Converting u(x) =

$2 _|_ e—201
2z

y:
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Figure 2.22: Slope field plot

xy +ty==zx

Summary of solutions found

Summary of solutions found
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Solved as first order homogeneous class Maple C ode
Time used: 0.251 (sec)

Let Y =y — yo and X = x — x, then the above is transformed to new ode in Y (X)

x Y (X) = ——

Solving for possible values of zy and y, which makes the above ode a homogeneous ode
results in

Tog =
Yo =10

Using these values now it is possible to easily solve for Y (X). The above ode now becomes

d Y(X)-X
ax¥ ="
In canonical form, the ODE is
Y' = F(X,Y)
Y-X
=== 1
X (1)

An ode of the form Y’ = %&(2,’)) is called homogeneous if the functions M (X,Y’) and

N(X,Y) are both homogeneous functions and of the same order. Recall that a function
f(X,Y) is homogeneous of order n if

fE"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = X —Y and N = X are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = %, or Y =uX.

Hence v d
u
axX ~ax
Applying the transformation Y = uX to the above ODE in (1) gives
du
du _ —2u(X)+1
dx X
Or d 2u(X) + 1
—2u +
2 ulx) — —
ax ) X 0
Or

(diXu(X)> X +2u(X)—1=0

Which is now solved as separable in u(X).

The ode Ju(X) = —% is separable as it can be written as
d 2u(X) -1
ax" X =""%
= f(X)g(u)
Where
1
FX) =~

g(u) = —2u+1
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Integrating gives

[ siu= [ 1x)ax

/%HdUZ/%dX
In (2u(X) — 1)

- 5 =In(X)+a

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or —2u + 1 = 0 for
u(X) gives

u(X) =

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (2u(X) — 1)

- 5 =In(X)+a
1
X) =~
u(X) = 5
Solving for u(X) gives
1
X)==
u(X) =
X2+ o2
U0 =55
Converting u(X) =  back to Y (X) gives
X
Y(X) =2
(x)=7

Converting u(X) = X 2;;;261 back to Y (X) gives

X2 + e—201
Y(X)=2 0
(X) 5%
Using the solution for Y (X)
X
Y(X) =7 (A)

And replacing back terms in the above solution using

Y=y+y
X=xz+2x

Y=y
X=z

Then the solution in y becomes using EQ (A)

Using the solution for Y (X)
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And replacing back terms in the above solution using

Y =y+uyo
X=z+x

Y=y
X=z

Then the solution in y becomes using EQ (A)

_ $2 + e—201
vy= 2x
/7 777777101171V \VNNN~——
77777 TN N N ————— e
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Figure 2.23: Slope field plot
xy +ty==zx
Solved as first order Exact ode
Time used: 0.063 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
el -0
7.0 y)
Hence 06  06d
Y
— —_—— B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o¢
T M
oz
o
T _N
Ay
But since ;: g’y = aa; g; then for the above to be valid, we require that
oM _ ON

oy Oz
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If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘2: ;’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,
which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

()dy = (—y+=z)dz
(y—x)dz+(x)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(x7y):y_x
N(z,y) ==

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM_ 0.
oy oy
=1
And
ON 0
%~ 5
=1
Since %i; = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

8¢_
g—x—M (1)
¢ _
B_y_N (2)

Integrating (2) w.r.t. y gives

%dy=/Ndy
Oy

g—jdyz/xdy
¢ =yz + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t x gives

% v+ 1@ @

But equation (1) says that 52 = y — z. Therefore equation (4) becomes

y—z=y+ f'(z) (5)
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Solving equation (5) for f'(z) gives

Integrating the above w.r.t = gives

/f'(:c) dx:/(—z) dz

2

flz) = —”%Jrc1

Where c¢; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
1
¢ =yzxr— 55[22 +c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

1,
I =Yxr — =X
1=Y B
Solving for y gives
2 + 2¢;
2z
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Figure 2.24: Slope field plot
Ty ty=zx

Summary of solutions found

2?42
N 2x
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Solved as first order isobaric ode
Time used: 0.113 (sec)

Solving for 3’ gives

Each of the above ode’s is now solved An ode y' = f(z,y) is isobaric if

ftz, t™y) =™ f(z,y) (1)

Where here

f@y)=-4—= @)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m=1
Since the ode is isobaric of order m = 1, then the substitution

y=uz"

=uxr

Converts the ODE to a separable in u(z). Performing this substitution gives

u(z) + zu/(z) = _a:u(xxﬁ
The ode v/(z) = —% is separable as it can be written as
2u(z) —1
! —_——
() = - 240
= f(z)g(u)
Where
1
fz) = o
g(u)=-2u+1

Integrating gives

/ﬁdu:/f(x)dx
/ﬁdu:/%dx

_In(2u(z) — 1)
2
We now need to find the singular solutions, these are found by finding for what values

g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or —2u+ 1 = 0 for
u(z) gives

=In(z)+ ¢

u(z) =

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

_In(2u(z) — 1)

5 =In(z) +

Q
AR

u(z) =

N =
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Solving for u(z) gives

back to y gives

1
2

Converting u(x)

back to y gives

z2+e—2cl
212

Converting u(z) =

Solving for y gives
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Figure 2.25: Slope field plot
Yy +y=z

Summary of solutions found

Solved using Lie symmetry for first order ode

Time used: 0.469 (sec)

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by

0

Nz + W(ny - &) — W2€y — wz§ —wyn
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To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

£ =zaz +yas + a (1E)
n= wbg + yb3 + bl (QE)

Where the unknown coefficients are

{01, as, as, by, by, b3}

Substituting equations (1E,2E) and w into (A) gives

—z)(bs—a —2)%a 1 - xby +ybs + b
b2_(y ) (b3 2)_(y 2) 3—(—+y2>(xa2+ya3+a1)+ 2T Y 10 _
x x T x
(5E)
Putting the above in normal form gives
z?ay + zlaz — 2by2% — 1°b3 — 2xyas + 2y’az — xby +yay

_ p =0
Setting the numerator to zero gives

—zay — 2%ag + 2b,2° + 2%bs + 2zyas — 2y%as + xby —ya; =0 (6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y} in
them

{r =v1,y = v}
The above PDE (6E) now becomes
—agv} — asv? + 2a3v1v; — 2a3v5 + 2byv? + bsvi — vy 4+ biv; =0 (TE)
Collecting the above on the terms v; introduced, and these are
{v1, 02}
Equation (7E) now becomes

(—CLQ — as + 262 + bg) ’U% + 2a3v1v2 + bl’Ul - 2@3’03 — a1V = 0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

by =0
—a; =0
—2a3 =0
2a3 =0

—ag—a3+2b2—|—b3=O
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Solving the above equations for the unknowns gives

a; =0
ag = 2by + b3
a3 =0
by=0
by = by
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

E=x
n=y
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(y)é

~v-(-2%) @

=2y—=z
=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=, = 1)

The above comes from the requirements that (58% +77§—y> S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

Ui
1
_/2y—xdy

In (2y — z)
2

S is found from

Which results in
S =

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

Yy—
T

w(:c, y) = -
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Evaluating all the partial derivatives gives

R, =1
R,=0
. 1
T2 —4y
1
S =
Voo oy —x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s 1

R- (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

a _ 1
dR 2R

The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form ;%S(R) = f(R), then we only need to integrate f(R).

/dS /——dR

(R) = — ln;R) v

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in
In(2y—z)  In(z)

2 2 T@

Which gives

fL'Q _|_ 6202

y= 2z

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

C ical
. . . ano.mca ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)

transformation ’
a5 _ 1
dR 2R

R==x

In(2y — x
g n( y2 )
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Figure 2.26: Slope field plot

Ty ty=zx
Summary of solutions found
1:2 + e202
y= 2z

Maple step by step solution

Let’s solve

2(Ly(@) +y(e) =2
° Highest derivative means the order of the ODE is 1

Ly(z)
° Isolate the derivative
ay(@) =1-13

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
Y@+ 4 =1

° The ODE is linear; multiply by an integrating factor u(x)
w(z) (Ly(e) +12) = ()

o Assume the lhs of the ODE is the total derivative 2 (y(z) u(z))

() (Zy(@) +12) = (Ly()) n(z) + y(=) (Lu())

e  Isolate 2 u(z)
an(z) =2

° Solve to find the integrating factor
uz) ==

° Integrate both sides with respect to x

[ (L (y(z) p(z))) dz = [ p(z)dz + C1
J Evaluate the integral on the lhs

y(z) p(z) = [ p(z) dz + C1
o Solve for y(x)

da+C1
y(z) = S/ u(a;)(zac;r
o Substitute u(z) = z
zdz+C1
y(z) = Lot
° Evaluate the integrals on the rhs
2 4C1

y(z) = =
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° Simplify

_ x%4201
y(z) = =5

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 13

dsolve(diff (y(x),x)*x+y(x) = x,
y(x) ,singsol=all)

Mathematica DSolve solution

Solving time : 0.039 (sec)
Leaf size : 17

DSolve [{x*D [y [x],x]+y[x]==x,{}},

y[x],x,IncludeSingularSolutions->True]
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2.1.8 problem 2(b)
Solved as first order linearode . . . . ... ... ... ....... 80
Solved as first order homogeneous class D2ode . . . .. ... ... [T
Solved as first order Exactode . . . . .. .. ... ... ...... 82
Solved as first order isobaricode . . . ... ... ... ....... 851
Solved using Lie symmetry for first orderode . . . . ... ... .. 01
Maple step by step solution . . . .. ... ... ... ... ..., 901
Maple trace . . . . . . . . . OT]
Maple dsolve solution . . . . . . ... ... ... ... .. ..., OT]
Mathematica DSolve solution . . . . . ... ... ... ....... OT]

Internal problem ID [4197]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 2(b)

Date solved : Tuesday, December 17, 2024 at 06:50:02 AM

CAS classification : [_linear]

Solve

gy —y=2a°

Solved as first order linear ode

Time used: 0.050 (sec)

In canonical form a linear first order is

Y+

q(z)y = p(=)

Comparing the above to the given ode shows that

The integrating factor u is

The ode becomes

Integrating gives

1
Q(x)——;
p(z) = 2?
m el adz

_ef— dx
_1
_.17
d
;Eww—up
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gives the final solution

1
T

Dividing throughout by the integrating factor
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Figure 2.27: Slope field plot

oy —y =21

Summary of solutions found

z(z? + 2¢;)

2

Y

Solved as first order homogeneous class D2 ode

Time used: 0.030 (sec)

Applying change of variables y = u(x) z, then the ode becomes

z(v'(z) z + u(z)) — u(z) z = =*

Which is now solved Since the ode has the form «'(z) = f(z), then we only need to

integrate f(z).

/wdm
72

:E'i‘cl

+ ¢; back to y gives

[

z2
2

Converting u(z) =

T T ST TS S S SN S S S S —S S s—s—
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Figure 2.28: Slope field plot
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Summary of solutions found

Solved as first order Exact ode
Time used: 0.104 (sec)
To solve an ode of the form

dy
x
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.

Taking derivative of ¢ w.r.t.  gives

d
el -0
7.0 y)
Hence 96  06d
Y
— —_—— T B
Or Oydx 0 (B)
Comparing (A,B) shows that
0
M
Oz
09
TN
Oy
But since aajgy = 5’: ;’x then for the above to be valid, we require that
oM _ oN
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

gf g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z)dy = (z* +y) dz
(—2® —y) dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that

The next step is to determine if the ODE is is exact or not. The ODE is exact when the

following condition is satisfied
oM  ON

By Oz
Using result found above gives
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And
ON 0
9r oz 5@
=1

Since aM 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

oM ON
(-2
1

= (-)- )

2

Tz
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is

o= el Ade
— e -2dz
The result of integrating gives
[ = ¢ 2@
1
72

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

And

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+Nd—=0
dz

() ()=

The following equations are now set up to solve for the function ¢(z,y)

9 M (1)
0 —
ay = (2)
Integrating (2) w.r.t. y gives
8¢ dy = /Ndy
dy
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(4)
(5)

=/(—m)dx
x2+
=——+c
2 1
x2+c
5 1

)

X

. Therefore equation (4) becomes
z

(

f

—z—y
x2

/f’(x) dz
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Figure 2.29: Slope field plot
oy —y =21
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BOOK SOLVED PROBLEMS
Where ¢; is constant of integration. Substituting result found above for f(z) into equation

(3) gives ¢
But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.

Taking derivative of equation (3) w.r.t z gives

combining ¢; and ¢y constants into the constant c; gives the solution as

CHAPTER 2.

; 0 _
But equation (1) says that 32 =
Solving equation (5) for f'(z) gives
Integrating the above w.r.t = gives
Solving for y gives

3
2
1
ol
1
2

-3

y(x)

Summary of solutions found
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Solved as first order isobaric ode
Time used: 0.256 (sec)

Solving for 3’ gives

3
, TPy (1)

Each of the above ode’s is now solved An ode y' = f(z,y) is isobaric if

f(t:L‘, tmy) = tm_lf(x’ y) (1)

Where here
3+ Y
T

f(z,y) =

m is the order of isobaric. Substituting (2) into (1) and solving for m gives
m =3
Since the ode is isobaric of order m = 3, then the substitution

y=uzx"

IU.’E3

Converts the ODE to a separable in u(z). Performing this substitution gives

3, .3
3z%u(z) + 2%/ (z) = %u(x)
The ode v/(z) = —% is separable as it can be written as
2u(z) — 1
! _————
u'(z) = -
= f(z)g(u)
Where
1
fla)=~
gu) = —-2u+1

Integrating gives

/ﬁduz/f(x)dw
/ﬁduz/idm

_In(2u(z) — 1)
2
We now need to find the singular solutions, these are found by finding for what values

g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or —2u+ 1 = 0 for
u(z) gives

=Iln(z)+c

u(z) = %

Now we go over each such singular solution and check if it verifies the ode itself and any
initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

_In(2u(z) — 1)

5 =In(z) +

Q
AR

u(z) =

N =
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Solving for u(z) gives

back to y gives

1
2

Converting u(zx)

back to y gives

132 +e72cl
212

Converting u(zx)

$2 + e—201
212

~
g
q
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|_|
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Figure 2.30: Slope field plot
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Summary of solutions found

Solved using Lie symmetry for first order ode

Time used: 0.393 (sec)

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by

0

Nz + W(ny — &) — W2fy — wz§ —wyn
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To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

£ =zaz +yas + a (1E)
n= wbg + yb3 + bl (QE)

Where the unknown coefficients are

{ala a2, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(z°+9) (bs—az)  (¢°+9)"aq

by + = = (5E)
o + xby + ybs + b
— | 3z — 2y (ma2+ya3+a1)—$=0
x x
Putting the above in normal form gives
zas + 3ztay — x%bs + 40Pyas + 2z3ay + xby —ya,
— p -0
Setting the numerator to zero gives
—z%a3 — 3z%ay + 2*bs — 423yas — 22301 — by +ya; =0 (6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y} in
them

{z =v1,y = v}
The above PDE (6E) now becomes
—a3vf — 3a21111 — 4a3v§’1)2 + b3’l)il — 2a1vi’ +a1vy —biv; =0 (TE)
Collecting the above on the terms v; introduced, and these are
{vr,va}
Equation (7E) now becomes
—a3v® + (=3ag + b3) vi — 4azvivy — 2008 — byvy + agvy = 0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0
—2a1; =0
—4a3 =0

—a3z =0
—b=0

—3as+b3=0
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Solving the above equations for the unknowns gives

a; =0
a2 = Gz
a3 =0
by=0
by = by
bs = 3as

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

£=0
n xr

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=y =48 1)

The above comes from the requirements that (56% +n%> S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S=/1dy
n
T

s=Y
X

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

4y
LL)(.'I} ) y) - T
Evaluating all the partial derivatives gives
R, =1
R,=0
Y
Sy = — 2
1
Sy =—
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds

R
We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

ds

>~ _R

dR
The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration

when the ode is in the canonical coordiates R, S.

x (24)

Since the ode has the form - S(R) = f(R), then we only need to integrate f(R).

/dS:/RdR
R2

S(R) = 74‘02

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

2
y_*r
T = 9 +c
Which gives
(22 4+ 2¢5) x
YT

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
das _
ir =1
R=x
s—Y
x
ST 1117 7=NV 11110117171
T 1111 7NNV 1171701117111
/A T A= N R A A A A A T B O
A1 11117 NNV 1177111111
111 117 7~NVv1 7771111111
P11 117 7=NV11 770117111
1111171 7=NV1777111111
111117 7=NNT 777111111
T11 10177 -~N777771111"1
o of LTIl o Tl
IR SN /A
tT1r 1110107777 \N~~7111111
111 1 1 7 7\ 71 111 1
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Figure 2.31: Slope field plot
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Summary of solutions found

(22 + 2¢5) x
=

Maple step by step solution

Let’s solve
2(Ly(@)) - y(o) = 2°
° Highest derivative means the order of the ODE is 1

=y(®)
° Solve for the highest derivative
xr Zs
Ly(z) = vt

) Collect w.r.t. y(z) and simplify
&y(@) =12 +
° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
—4 4 dy(x) = 2
° The ODE is linear; multiply by an integrating factor u(x)
() (—2 + Ly(2)) = p(z) 22
o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
w(a) (-42 + Ly(@)) = (Ly(@)) w(2) + (@) (La()
e Isolate L u(z)

danle) = =12
° Solve to find the integrating factor

p(z) = 3
° Integrate both sides with respect to x

[ (L (y(z) p(z))) dz = [ p(z) z?dz + C1
° Evaluate the integral on the lhs

y(@) u(x) = [ p(z) ada + C1
o Solve for y(x)

z)z2dx+C1
y(z) = Lot ),L(z)

o Substitute u(z) = %
y(z) = z([ zdz + C1)

° Evaluate the integrals on the rhs
y(z) = w(% + CI)
° Simplify

y(fl;) _ z(w2—2201)
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 14

-

t

dsolve(diff (y(x),x)*x-y(x) = x73,
y(x) ,singsol=all)

Mathematica DSolve solution

Solving time : 0.042 (sec)
Leaf size : 17

DSolve [{x*D [y [x] ,x]-y[x]==x"3,{}},
y[x],x,IncludeSingularSolutions->True]

3

x
y(x) — 5 + ¢z




CHAPTER 2. BOOK SOLVED PROBLEMS 92

2.1.9 problem 2(c)

Solved as first order linearode . . . . ... ... ... ....... 92
Solved as first order Exactode . . . . .. ... ... ........ 93
Solved using Lie symmetry for first orderode . . . . . .. ... .. 951
Maple step by step solution . . . . .. ... ... ... ... .. .. 98]
Maple trace . . . . . . . . . .. 99
Maple dsolve solution . . . ... ... ... ... . ... ... 99]
Mathematica DSolve solution . . . . ... ... ... ........ 100

Internal problem ID [4198]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 2(c)

Date solved : Tuesday, December 17, 2024 at 06:50:04 AM
CAS classification : [_linear]

Solve

zy +ny=z"
Solved as first order linear ode
Time used: 0.097 (sec)

In canonical form a linear first order is

Y +q(z)y = p(z)

Comparing the above to the given ode shows that

n
q(z) = =
p(z) ="
The integrating factor u is
p= el
_oJ R
= xn
The ode becomes
L () = p

dzx

Integrating gives

yx" = /m”‘lx” dx

.1'2”
= ta
Dividing throughout by the integrating factor z™ gives the final solution
xn
_ v -n
Yy = om +x "¢
Summary of solutions found
n
y=—+2" "¢

2n



CHAPTER 2. BOOK SOLVED PROBLEMS 93

Solved as first order Exact ode
Time used: 0.147 (sec)
To solve an ode of the form

dy
M(z,9) + N(z,5) £ =0 (4)
T
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.

Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06d
Y
— —_—— B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
i M
o
T _N
9y
But since ;;gy = ;): g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = a‘fgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z)dy = (—ny +2")dz
(ny —2")dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =ny — z"
N(z,y) ==z

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ ON
oy Oz
Using result found above gives
oy oy Y
=n
And
ON 0

or %(x)
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Since %i; # 88—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

P (aM 8N)

T N\ 8y Oz
= () - (1)
_n- 1

Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor yu is

= el Ade
— e =l dg
The result of integrating gives
j1 = =D
= xn_l

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M =uM

n—l(

=z" (ny —z")

= (ny — ") 2"

And

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.

The modified ODE is
_dy

M+N-—==0
dx
dy
_n n—1 ny = _
(ny—2™) 2" ") + (= )dx 0
The following equations are now set up to solve for the function ¢(z,y)
0p —
o - M (1)
0 —
TN 2
5 @)
Integrating (2) w.r.t. y gives
@ dy = / Ndy
Oy
0¢ n
a_y dy = / " dy
¢=yz"+ f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.

Taking derivative of equation (3) w.r.t x gives
0  z"ny
or  «

= nyz" + f(a)

+ f'(z) (4)
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But equation (1) says that % = (ny — z") ™ !. Therefore equation (4) becomes

(ny —2™) 2" ' =nya™ ' + f(2) (5)
Solving equation (5) for f'(z) gives

f’(x) — _xn—lxn

Integrating the above w.r.t x results in

/f'(:c)dx:/(—z2”_1) dz

2n

f(z) = —2—n+c1

Where c; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢

x?n
¢=y$n_%+cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and cy constants into the constant c; gives the solution as

172“

LA™Y

Solving for y gives

(2cn + 2*™) g™
2n

Summary of solutions found

(2e1n + ) 7"
2n

Solved using Lie symmetry for first order ode
Time used: 0.391 (sec)
Writing the ode as

) —ny+a”

Xz
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — Wny —we€ —wyn =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

§ =zaz +yaz +a (1E)
n = xbs +ybs + by (2E)

Where the unknown coefficients are

{al, az, as, bl) b2, b3}
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Substituting equations (1E,2E) and w into (A) gives

(—ny + ") (b3 —az) (—ny+ x”)2 as
bs + - 3
x x

"n —ny+zx"
- ( - >(ma2%—ya3+—aﬂ-+

(5E)
n(.’Ebg + yb3 + bl)
T

=0
2 x2

Putting the above in normal form gives

n*y2as + T"nzxay — x"nyas — nx2by + nylas + *"as + r"na; — r"xbs — 2yas — nrby + nya; — box? — 2

72
=0

Setting the numerator to zero gives

—n?y2as — z"nzay + z"nyas + nx’by — nyas — r¥"ag (6E)
— z"nay + 2" bz + x"yas + nxb, — nya, + boz? + z"a; = 0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y,2z"}

The following substitution is now made to be able to collect on all terms with {z,y} in

them

{37 =0,y =V, T" = U3}

The above PDE (6E) now becomes

—7’L2’I)§CL3 — VUsnviag — ’I’L’Ugag + V3NvU2a3 + nv%bg — Nvaa; (7E)
2 2
— vsnay + nviby 4 v3v2a3 — v3as + bovy 4 v3v1bs +v3a; =0

Collecting the above on the terms v; introduced, and these are
{,UI’ V2, '03}

Equation (7E) now becomes

(nbs + b2) vi + (—nas + bs) vivs + nvibs + (—n’as — naz) v3 (8E)
+ (nas + az) vovsz — nvya; — viaz + (—na; +a;) vz =0

Setting each coefficients in (8E) to zero gives the following equations to solve

nbl =0
—ag = 0
—na; =0

—na; +a; =0
nas +az =0
—n2ag —naz =0
nby + by =0
—nag +b3 =0
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Solving the above equations for the unknowns gives

a; =0
as = Qg
a3 =0
by =0
by =0
bs = nay

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

{=z
:’n,y

Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(,y)§

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

e =y~ (1)

The above comes from the requirements that (Ea% -I-n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

S is found from
n
1
N / 2ny — " dy
Which results in
g In (2ny — x™)
2n

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

aS _ S;+w(z,y)Sy @)
dR R, +w(z,y)Ry

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by
_ —ny+z”

wiz,y) = —_
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Evaluating all the partial derivatives gives

R, =1
R,=0
1
* 7 “dny + 227
_ 1
Y 2ny —an

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s 1

R 9 (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

as 1
dR 2R
The above is a quadrature ode. This is the whole point of Lie symmetry method. It

converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

/dS /——dR

S(R) = ln;R) b

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

In(2ny —z") _ In(z)
2n

Which gives

e—n(ln(m)—?cz) + "
2n

y:

Summary of solutions found

e—n(ln(a:) —2¢2) + "
2n

y:

Maple step by step solution

Let’s solve

z(zy(2)) +ny(z) =
° Highest derivative means the order of the ODE is 1

=y(2)
° Solve for the highest derivative
fey(w) = =

o Collect w.r.t. y(z) and simplify

Ly(e) = 22 4 2

) Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
ay(e) + ™0 =

T T
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° The ODE is linear; multiply by an integrating factor u(x)

u(z) (Ey(a) + 2 ) = 1

o Assume the lhs of the ODE is the total derivative 2 (y(z) u(z))

w(a) (Ly(@) +™2) = (Ly(2) ue) +y(z) (La()

e Isolate 2 u(z)
% u(z) = u(ﬁ)n

° Solve to find the integrating factor
pu(z) = z"

° Integrate both sides with respect to x
[ (L(y(z) p(z))) do = [ D4z + C1

° Evaluate the integral on the lhs

y(x)pz) = [ @dw + C1
° Solve for y(x)

G e
@) ="

o Substitute u(z) = ="

R
y(x) - Tz
° Evaluate the integrals on the rhs
2z 2
y(z) = !
° Simplify

y(z) =2 +z7"C1

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 20

‘ dsolve(diff (y(x),x)*x+n*y(x) = x"n,
‘ y(x) ,singsol=all)
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Mathematica DSolve solution

Solving time : 0.075 (sec)
Leaf size : 24

‘ DSolve [{x*D[y[x],x]+n*y[x]==x"n,{}},
‘ y[x],x,IncludeSingularSolutions->True]

n

y(z) — on + iz~

n
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2.1.10 problem 2(d)

Solved as first order linearode . . . . . . . . . .. . ... .. ...
Solved as first order Exactode . . . . . . . . . .. . ... .. ...

Solved using

Lie symmetry for first orderode . . .. ... ... ..

Maple step by step solution . . . . .. ... ... ... ... ... .

Maple trace

Maple dsolve solution . . . ... ... ... ... ... .. ...,
Mathematica DSolve solution . . . . . ... ... ... .......

Internal problem ID [4199]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 2(d)

Date solved : Tuesday, December 17, 2024 at 06:50:05 AM
CAS classification : [_linear]

Solve

zy —ny ="

Solved as first order linear ode

Time used: 0.128 (sec)

In canonical form a linear first order is

Y +q(z)y = p(z)

Comparing the above to the given ode shows that

The integrating factor u is

The ode becomes

Integrating gives

q(z) = —g

n—1

p(z) ==

Nzefqdm

— ef—%d:c

yr " = /z”‘lm_" dx

=In(z)+ ¢

Dividing throughout by the integrating factor ™" gives the final solution

Summary of solutions found

y =z"(In(z) +c1)

y=2z"(In(z) + ¢1)

102

L05]
L0g]
109
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Solved as first order Exact ode
Time used: 0.129 (sec)
To solve an ode of the form

dy
M(z,9) + N(z,5) £ =0 (A)
T
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.

Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06d
Y
— —_—— B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
9 M
o
TN
9y
But since ;;gy = ;): g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = a‘fgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z)dy = (ny + z") dz
(—ny —2z")dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —ny — z"
N(z,y) =z

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM  ON
oy Oz
Using result found above gives
oy oy Y
=-n
And
ON 0

or %(x)
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Since %i; # ‘98—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4l (8M aN)

~ N\dy Oz
1

= —((=n) - (1)

—n-—1

x
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
—e JAdz

:ef_z_ldx

The result of integrating gives

w= e(—n—l) In(z)
— m—n—l

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM

=z " (—ny — 2")

—1—z""ny

And

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

—  —dy

M + E—O
—1—z""ny a dy
( : )—l—(x )W

The following equations are now set up to solve for the function ¢(z,y)

0p —

g—x =M (1)
¢ N

oy - (2)

Integrating (2) w.r.t. y gives
@ dy = / Ndy
Oy
0¢ n
6_y dy = / x "dy
¢=yz "+ f(z) (3)
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Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

=T fa) @

But equation (1) says that % = w Therefore equation (4) becomes

—1—x""ny e
TEE et £ () )
Solving equation (5) for f'(z) gives
—n—1 —n
nyzx r—x "ny —1
f'(x) =
x
1
oz

Integrating the above w.r.t = results in

/f’(@@:/(-%) do

f(x)=—In(z)+ ¢

Where ¢, is constant of integration. Substituting result found above for f(x) into equation
(3) gives ¢
dp=yzr " —In(z)+c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and c; constants into the constant c; gives the solution as

aa=yz " —In(z)

Solving for y gives
y=2z"(In(z) + ¢1)

Summary of solutions found

y=2z"(In(z) + ¢1)

Solved using Lie symmetry for first order ode
Time used: 0.270 (sec)
Writing the ode as

, ny+z"
y =
x
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - fz) - w2€y - wz€ — Wyl = 0 (A)
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To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
1 to use as anstaz gives

£ =zaz +yas + a (1E)
n= wbg + yb3 + bl (QE)

Where the unknown coefficients are

{ala az, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(ny +2")(bs —az2) (ny+ ") as
72

) (zag + yaz + a1) —

by +

. (5E)
B (m”n _ny+az”

n(xby + ybs + by)
x

=0

x? x?
Putting the above in normal form gives

n*y2as + z"nxay + 3x"nyas + n by — ny?as + r2"a3 + z"na; — "xbs — x"yas + nxb, — nya; — byx?

72
=0

Setting the numerator to zero gives

—n?y2as — z"nzay — 3x"nyas — nx?by + nylas — x%"as (6E)
— z™nay + 2"xbs + z"yas — nxby + nya, + bex? + z"a; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y,2"}

The following substitution is now made to be able to collect on all terms with {z,y} in

them

{x =v1,y =vo,2" = v3}

The above PDE (6E) now becomes

—n2vga3 — v3nvi1a9 + ’rL’U;a3 - 3’037’1’02@3 - ’I'I,’U%bz + nvaaq (7E)
2 2
— vsna; — nv1by 4 v3v2a3 — v3a3 + bovy 4 v3v1bs +v3a1 =0

Collecting the above on the terms v; introduced, and these are
{,017 V2, '1)3}

Equation (7E) now becomes

(—nby + by) v; + (—nas + bs) vivs — nvibs + (—n’as + nas) v3 (8E)

+ (—3nas + a3) vovs + nvoa; — v§a3 + (—na; +a1)vs =0
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Setting each coefficients in (8E) to zero gives the following equations to solve

na; =0

—a3z3 =0

—nb; =0

—na; +a; =0
—3nas + a3 =0
—n?a3z +naz =0
—nby + b2 =0
—nag + b3 =0

Solving the above equations for the unknowns gives

a; =0
as = agy
a3 =0
by =0
by =0
bs = nasy

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

E=x

n=ny
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(y)§

oy — (ny +:c”) ()

T

= —xn

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that (56% +77%> S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

1
S:/—dy

n

—CL‘"

b (2

S is found from

Which results in

S=-yzx
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Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

ﬁ _ Sﬂ? +w(x’y)Sy
dR R, +w(z,y)Ry

(2)

Where in the above R, R,, S;, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

wo(z,y) = ny + "
x
Evaluating all the partial derivatives gives
R, =1
R,=0
Sy =nyz !
Sy=—z"

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 1

D 2A

dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

s 1

dR~ R
The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form - S(R) = f(R), then we only need to integrate f(R).
/ s = / ——dR
=—In(R)+c

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in

—yzr " =—In(z) +c
Which gives

y = (In(z) —cs) 2"

Summary of solutions found

= (In(z) — ¢c2) 2"
Maple step by step solution

Let’s solve

2(Ly(@) —ny(z) =
° Highest derivative means the order of the ODE is 1

()
° Solve for the highest derivative
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deylw) = MR

) Collect w.r.t. y(z) and simplify
Ly(o) =2 4 22

T T

° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
ay(@) - =2

° The ODE is linear; multiply by an integrating factor u(x)
u(a) (o) — ™2 = 1o

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
w(z) (Ly(@) - "2 = (Ly(2)) w(2) + y(@) (La()

o Isolate 2 u(z)

u(r) = e

T

° Solve to find the integrating factor

wz) =&
. Integrate both sides with respect to x
[ (L(y(z) p(z))) do = [ D4z + C1
° Evaluate the integral on the lhs

y(z)p(z) = [ @dw + C1
o Solve for y(x)

G e
@) ="

o Substitute p(z) = =
y(z) =2z"([ tdz + C1)

° Evaluate the integrals on the rhs
y(z) =z"(In(z) + C1)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 12

‘ dsolve(diff (y(x),x)*x-n*y(x) = x"n,
y(x) ,singsol=all)

N J

y(z) = (In(z) +¢1) 2"
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Mathematica DSolve solution

Solving time : 0.071 (sec)
Leaf size : 14

p
‘ DSolve [{x*D[y[x],x]-n*y[x]==x"n,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) — z"(log(z) + c1)
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2.1.11 problem 2(e)
Solved as first order linearode . . . . ... ... ... ....... 110}
Solved as first order Exactode . . . . .. ... ... ........ 111l
Solved using Lie symmetry for first orderode . . . . . .. ... .. 114
Maple step by step solution . . . . .. ... ... ... ... .. .. 120
Maple trace . . . . . . . . . . . e e e 1211
Maple dsolve solution . . . . .. ... ... .. .. ... ... .. 121]
Mathematica DSolve solution . . . . ... ... ... ........ 121]

Internal problem ID [4200]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 2(e)

Date solved : Tuesday, December 17, 2024 at 06:50:06 AM
CAS classification : [_linear]

Solve
(P+z)y+y==
Solved as first order linear ode
Time used: 0.115 (sec)
In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

(0) = ——
N =7 (x2+1)
1
The integrating factor u is
b= efqdz
= ef “”(’”21“) ?
. T
2 +1
The ode becomes
d
e (ny) = pp

Integrating gives
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Dividing throughout by the integrating factor \/ﬁ gives the final solution

VN

3 [N

3

Figure 2.32: Slope field plot
(@ +z)y+y=2

Summary of solutions found

_avrr+1-1
y= z
Solved as first order Exact ode
Time used: 0.135 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
Hence 96 06d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0¢ _

or

99

i N

But since 512 g = 83 Qg’ then for the above to be valid, we require that
Y yox

oM _ ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘?: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
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might not exist. The first step is to write the ODE in standard form to check for exactness,
which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(2 +2z)dy = (—y+ ) dz
(y—z)dz+(z° +2)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(.’I?,y)=y—.’17
N(z,y) =24z

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
By = 8_y(y — )
=1
And
ON 0
o = T
=322 +1

Since %i; %—]l, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

. (aM 8N)

T N\ 8y Oz

_ 1 _ 2
= :c((l) (322 +1))
_ 3z

o241

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

p=e JAdz
= ef_zgj-l da
The result of integrating gives
31n(z2+1)
u = e 2
B 1
(22 + 1)

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM

1
= W(y—x)

y—1
(552—1—1)3/2
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And

_ 3
= N 1)3/2 (x -l-x)
B x
Vo2 +1
Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

. _dy
M —~Z =0
+ dzx

The following equations are now set up to solve for the function ¢(z,y)

0p —
o0~ M M
0p

Integrating (2) w.r.t. y gives
@ dy = / N dy
Ay

9 4 _/Ld
Oy V= V2 +1 Y

LN
6= =+ 1@ (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

96 yz’ y :
%:_(x2+1)3/2+\/x2+1+f(x) @
4 /
RISV

But equation (1) says that 22 = Therefore equation (4) becomes
Y oz

Yy—x
(z24+1)3/2"

(xzy_|——13;3/2 = (22 51)3/2 + f'(z) (5)

Solving equation (5) for f'(z) gives

Integrating the above w.r.t = gives

/f’(m)dx=/<—(x2fw> dz
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Where c¢; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
YT 1

= +
¢ z24+1 V241

+Cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and c; constants into the constant c; gives the solution as

Yz n 1
Vz+1  Jz2+1

C1

Solving for y gives

S T N —
A I A N
77 TN N
2] — ~—= 77 11 L N~
- 7 7 N
s 7 7 T VN
— 7 7 1\
. - _= 7 / ’Ar \\‘ —_
— ~ 7 7 ] N\ —-
- - -
O — A
— =N\ ] S
— ——\ 1 J 7 - J—
e —~\ 17 -
—— -\ V177
e —————N 1 7 -
2\ | [ 7 S s -
———————\ S - —
———————\ | 1 ] ~—
e L A B AN A
4 2 0 2 4

Figure 2.33: Slope field plot
(B +r)y+y==x

Summary of solutions found

avzi+1-1

T

Solved using Lie symmetry for first order ode
Time used: 1.988 (sec)
Writing the ode as

Y=
v= z (22 +1)
y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(’?y - fx) - w2€y - Wx€ — Wyl = 0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of degree
3 to use as anstaz gives

¢ = 2iay + 2%yag + Ty%ag + yPayg + a4y + yzas + ylag + rag +yas +a;  (1E)
n= .’133b7 + iI?beg + CI?beg + y3b10 + x2b4 + yxb5 + y2b6 + xby + ybg + by (2E)



CHAPTER 2. BOOK SOLVED PROBLEMS 115

Where the unknown coeflicients are

{ala az, as, a4, as, g, a7, ag, ag, a9, b17 b2a b37 b47 b57 bﬁ’ b7’ b87 b9a blO}
Substituting equations (1E,2E) and w into (A) gives

3$2b7 + 2zybg + y2b9 + 2xby + ybs + by (5E)

(y — z) (—3x2%a; + x2bg — 2xyag + 2xyby — y?ag + 3y*bip — 2xas + Tbs — yas + 2ybs — az + bs)
a z(z2+1)

(y — z)? (z2as + 2zyas + 3ya10 + zas + 2yag + as) 1 y—1
- 22 (22 + 1) B (x(x2+1) +x2 (x2+1)

2y — 2z

(22 +1)°

N 2%b7 + 22ybs + 2 Yby + y>b1o + x2by + yabs + y?bs + by + ybs + by
z(z2+1)

) (z°ar + 2’yas +  y*as + y’a10 + z’as + yzas + y’as + vas + yas + a1)

=0

Putting the above in normal form gives

4x*b; + 2x7ybg + 4xPybs + 259by + xty?by + 22%yby — Tryag + xtylay + 3y’ by — 223y3ay — 223y3byg

=0
Setting the numerator to zero gives

4zb; + 22 ybs + 4x’ybs + 28y2by + xy%bg + 225yby — zy’ag + 2ty2ag
+ 3x9%byo — 20393 a9 — 223y3b1o + 223yar + 223yby + 322y %ay
+ 32%9%b1g — 2z y3a9 — 22 y3byo — 223yag — 3x2y%ar0 + 62 y3a10
+ 223y3a10 — 3z2y a1 + 32867 + 72507 — 28a; + 2805 — 3xtar + s
— ztag — 4y4a10 + ybsz? + 223ybg + 2by2% — 223ya, + 223yas (6E)
— 3z2%y%a5 — 32%ya; + 2zyas + 2%bs + zlas + 32tby + b3 + 2230y
+ 23b; — 2%ay — z2ag + x2bs — 2y%as + xby — yar — 3yiag + 227,
+ 52°bs + 2°b5 — 22%a4 — a5 + 235 — x y2as + 4 y2ag — v y%be
+ 3230y + 20ybs — 2tyay + 2tyas + 2xtybs + 2z ybs — 223y%as
+ 22%y2ag — 23y%bs — 32%y3as + v yay + 2%yas — 2ryas + 2x2ybg = 0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y} in
them

{z =v1,y = v}

The above PDE (6E) now becomes

3vdby + 4vib; 4 3v8b; 4 Tvlb; — v8a; + 08bs — 3uiay + vibs — viag
— 4vaig + 2bovd + v8by + viay + 3uihy + vibs + 2v3a; + vk — viay
— viag + vibs — 2v3a3 + viby — vaa1 — 3viag + 2] by + HvSby + vibs
— 2v:1”a4 — v:{’a5 + v:fb5 + 2vIv2bg + 4vi’v2b8 + ’U?U%bg + va%bg + 2vi’v2bg
—viviag + viviag + 3uivibig — 203v3ag — 20303b1 4 2v3vaar + 203vsbg (TE)
+ 3viviag + 3vivibyg — 2u1v5ag — 201v5b1 — 2v3vaa9 — 3vPV3alg
+ 6v1v5a10 + 203v5a10 — 3VIVaasg + Vabsv? + 203 vabg — 2v3vaa
+ 21):131)2a3 — 3va§a3 — 31)%1)2&1 + 2viv9a3 — vlvgag, + 4vlv§a6 — vlvgbg
+ v8uybs — vivaay + viveas + 20tvabs + 2viusbs — 203v2as + 2v3v2ag
— v303bg — 3viviag + viveay + viveas — 207vaa6 + 2vivabs = 0
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Collecting the above on the terms v; introduced, and these are

{vla v2}

Equation (7E) now becomes

3vdb; — dvsasg — 2v3a3 + v1by — vea; — 3viag + 2v]by + (4bg + 2bg) Vo]
+ (bg —ag+ ag + 3b10) ’U%’U‘l1 + (—2(19 — 2b10 + 2(110) ’U%’U%
+ (2&7 + 2bg - 2&9 + 2b8 — 2&2 + 2&3) ’Ug’Ui3 + (3&9 + 3b10 - 3a10 - 3a3) ’U%’U%
+ (—2CL9 — 2b10 + 6@10) ’US’Ul + (—3a1 + a4+ a5 — 2a6 + b5 + 2b5) U%Uz

+ (—a5 + 40/6 — b6) ’Ug’Ul + (—a4 + a5 + 2b5 + 2b6) ,02,0411

+ (—2as +2a6 — bg) vavs + (Tby — a7 +bg +by) V8 + (—az — az +2by +b3) v7

+ (5b4 + b5) ’Ui’ + (20,1 — 20,4 —as + b1 + 3b4 + b5) Ui’
—|— (4b7 —_ 3a7 —+— bg — as —|— a9 —+— 3b2 —|— b3) ’U;l + 2’0’17'02178
+ v8v2by — 3vivial + 2v1v0a3 + v8vsbs — 3viviag = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

by =0

bs =0

bg =0

—a1 =0
—2a3 =0
2a3 =0
—3ag =0
—4a10=0
—3a10=0
2by =0

3b; =0

20 =0

5by + b5 =0
4bg + 2by = 0

—2a5 + 2a —bg =0

—as + 4ag — bg =0

—2ag — 2b1g + 2a10 =0

—2ag9 — 2byg + 6a19 =0

—as —az+2by +b3=0

—a4 + a5 + 2bs + 2bg = 0

3ag + 3b1g — 3a190 — 3a3 =0

Tby —a7+bg+by =0

bg — ag + ag + 3b;p =0

—3a; + a4+ a5 — 2ag + bs + 2bg =0
2a1 — 204 — a5+ by +3by+ b5 =0
2a7 + 2bg — 2a9 + 2bg — 2a3 + 2a3 =0
4b; — 3a7 + bg —ag + as +3by +b3 =0

(8E)
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Solving the above equations for the unknowns gives

a; =0

as = —bs + 2byg
a3 =0

as =0

as =0

ag =0

a7 = —bsg +bio
ag = 2byg

ag = —byo
ayp =0
by=0

by = —b3 + by
bs = b3
by=0

bs =0

bg =0

b; =0

bs =0

by =0
bio = bio

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any
unknown in the RHS) gives

E =22+ 2% —zy’ + 22

n=y"+z

Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(y)§

_ .3 y—x 3 2 2

2ty — 2Py + 32y — 2 + 2y
B 2+

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

F=, = 1)

The above comes from the requirements that (Ea% +n%> S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
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S is found from

1 d
- 3y3 _ 23y 32242 —a2 4 2yx Y
34z

Which results in

n(x 2—11?
(@ (g ¢ o)

T

Now that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

aS _ Sp+w(z,y)Sy
dR R, +w(z,y)R,

2)

Where in the above R,, R,, S, S, are all partial derivatives and w(z,y) is the right hand
side of the original ode given by

wiz,y) = -2 L _
V= z(z2+1)
Evaluating all the partial derivatives gives

R, =1

R,=0

_ Y y’ -1
T yr+1 2zy?—2r+4y
2 +1

S —
Yo(yz 1) (zyr -z +2y)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

a_ 1
dR 2z

We now need to express the RHS as function of R only. This is done by solving for z,y in
terms of R, S from the result obtained earlier and simplifying. This gives

5 _ 1
dR ~ 2R

(24)

The above is a quadrature ode. This is the whole point of Lie symmetry method. It
converts an ode, no matter how complicated it is, to one that can be solved by integration
when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

[ds= [~par
S(R):_lnéR)

+ ¢

To complete the solution, we just need to transform the above back to z,y coordinates.
This results in
In (zy? — = + 2y) In (z)

1 1 -
n(yr+1)+ 5 5 +cy




CHAPTER 2. BOOK SOLVED PROBLEMS 119

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .
.. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
a5 _ 1
dR 2R
R==x

Sz—ln(yx—i-l)—i-l—nﬁ;

Solving for y gives

—e2e2 +1+ \/—.’1326202 + 2 —e22 1
(22 —1)x

€22 — 1+ +/—x2e22 4 g2 — 22 4 1

(€22 — 1)z
e A B BN —
0/ 1 I\ N —
—— == = 7 / 7 4} \V \ N —————— e o
S I D 2 I I T
—— = =~ 7 /], \ T~
—_——— = =~ ]\ \N—m—————
- N——
—— 7 ] |\ ————— ==
—_—— = =~ 7 ] / N——m————— — =
——— = = ] = ==

y(X) 0] ——— - = = = = 7 7 _= / J T ===

1
Y NN
— e N\ Ve -
777777777777 ——N\ V1S
22—~ \ 1 ] S
NNV ] 7 e
N B B
Y\ V1S
4 2 0 2 4

X

Figure 2.34: Slope field plot
(B +r)y+y==x

Summary of solutions found

—e2c2 +14+ \/—z2e2c2 + 12 — e2c2 +1
(22 —1)z

e2cz _ 1 _|_ \/_x2e202 _|_ wz _ 6202 _|_ 1
(22 — 1)z
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Maple step by step solution

Let’s solve
(@® + ) (Fy(@) +y(z) =2

° Highest derivative means the order of the ODE is 1
2y(z)

° Solve for the highest derivative

ay(@) =5

o Collect w.r.t. y(z) and simplify

(@) = —Fn + #h

) Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE

° The ODE is linear; multiply by an integrating factor u(x)
u@) (#v() + K ) = 55

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
w(z) (L) + ) = (Zy(@) w(a) + (@) (Lu())

o Isolate L p(z)

° Solve to find the integrating factor

x

wz) = 7
° Integrate both sides with respect to x
J (@) pe)) dz = [ &rdo + C1
° Evaluate the integral on the lhs

y(@) (o) = [ Hiyde + C1

241

o Solve for y(x)

J 52 de+C1

y(@) = =5
o Substitute p(z) = =
V21 (f (302_:”1)3/2dw+01>
y(z) = p
) Evaluate the integrals on the rhs
Va?+1 ( ————+C1
y(.’l?) — ( \m/z2+1 )
° Simplify
y(x) — Clx/x;-i-l—l
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 19

-

dsolve ((x~3+x)*diff (y(x),x)+y(x) = x,
L y(x) ,singsol=all)

Mathematica DSolve solution

Solving time : 0.061 (sec)
Leaf size : 23

} DSolve [{(x"3+x)*D [y [x],x]+y [x]==x,{}},
‘ y[x],x,IncludeSingularSolutions->True]

-1 +Cl\/.’E2 + 1

y(z) =

T
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2.1.12 problem 3(a)
Solved as first order linearode . . . . ... ... ... ....... 122
Solved as first order Exactode . . . . .. ... ... ........ 123
Maple step by step solution . . . . . . ... ... ... ... 126
Maple trace . . . . . . . . . . .. 127
Maple dsolve solution . . . . . ... .. ... oL 127
Mathematica DSolve solution . . . . . .. ... ... ... ..... 127

Internal problem ID [4201]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 3(a)

Date solved : Tuesday, December 17, 2024 at 06:50:09 AM
CAS classification : [_linear]

Solve
cot()y +y==x

Solved as first order linear ode
Time used: 0.148 (sec)
In canonical form a linear first order is
Y +q(z)y = p(x)

Comparing the above to the given ode shows that

4(z) = tan (z)
p(z) = z tan (z)

The integrating factor u is

p=e [qdx
—e [ tan(z)dz
= sec ()
The ode becomes
d
3p M) = kp

L () = () (& tan (2)

%(y sec (z)) = (sec(z)) (ztan (x))

d(ysec(z)) = (ztan (x) sec (z)) dz
Integrating gives

ysec(z) = /xtan (x) sec (z) dz

— o @ In (sec (z) + tan (z)) + ¢;

Dividing throughout by the integrating factor sec (z) gives the final solution

y = —In (sec (z) + tan (z)) cos (x) + ¢ cos (z) + z
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Figure 2.35: Slope field plot
cot()y +y==x

Summary of solutions found

y = —1In (sec (z) + tan (z)) cos (z) + ¢1 cos (z) +

Solved as first order Exact ode
Time used: 0.177 (sec)

To solve an ode of the form

M(z,) + N(z,3) 2 =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. z gives

d
Hence 06 06 d
vy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
o
9 M
o
TN
Oy
But since 6‘12 a¢y = 8(9: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = aajgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy=0 (1A)

Therefore

(cot (z))dy = (—y + z)dx
(y —z)dz +(cot (x))dy =0 (2A)
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Comparing (1A) and (2A) shows that
M(z,y) =y —=
N(z,y) = cot (z)

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM_o,
oy oy
=1
And
ON 0
B a(wt (z))
= —csc(z)”

Since %iy/[ # %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

At (3_M _ 5_N)
N\ oy Oz
= tan (z) ((1) — (=1 — cot (m)2))
= 2tan (z) + cot (z)
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
— efAdz

L
— ef2tan(m)+cot(z) dz

The result of integrating gives
b= e—2ln(cos(m))+ln(sin(ac))
_ sin(x)

 cos (z)?

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
_ sin(z)

 cos (z)? y-2)

= (y — x) sec (z) tan ()
And

_ sin(z)

2 (cot (2))

 cos (z)
= sec ()

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+N@:0
dz

(v — ) sec (a) tam (2)) + (sec () T2 = 0
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The following equations are now set up to solve for the function ¢(z,y)

3(;5_—
g—w—M (1)
6
8_y_N (2)

Integrating (2) w.r.t. y gives
% dy = / Ndy
Ay
99 dy = /sec (z)dy

Oy
¢ = ysec(z) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.

Taking derivative of equation (3) w.r.t  gives

% = ysec (z) tan (z) + f'(z) (4)

But equation (1) says that % = (y — z) sec (z) tan (x). Therefore equation (4) becomes
(y — z) sec (z) tan (z) = ysec (z) tan (z) + f'(x) (5)

Solving equation (5) for f'(z) gives

f'(z) = —x tan (z) sec ()
Integrating the above w.r.t = gives

/ f(z)dz = / (—z tan () sec (z)) dz

T

f(z)=— + In (sec (z) + tan (z)) + ¢

cos ()

Where ¢; is constant of integration. Substituting result found above for f(x) into equation
(3) gives ¢
¢ = ysec(z) — #(x) + In (sec (z) + tan (z)) + 1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into the constant c¢; gives the solution as

+ In (sec (z) + tan (z))

¢ =ysec(z) — o5 (2)

Solving for y gives

In (sec (z) + tan (z)) cos (z) — ¢y cos (z) —
sec (x) cos (x)

y=-
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Figure 2.36: Slope field plot
cot()y +y==x

Summary of solutions found

In (sec (z) + tan (z)) cos (z) — ¢y cos (z) — =
sec (x) cos (x)

Yy=-

Maple step by step solution

Let’s solve
cot (z) (Ly()) +y(e) ==

° Highest derivative means the order of the ODE is 1
&y(z)

° Solve for the highest derivative

(@) =5

o Collect w.r.t. y(z) and simplify

d — (z)
Ey(x) - _th:(Dz) + cot(m)

° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE

d (z) __ T
wy(@) + czt(w) = cot(@)
° The ODE is linear; multiply by an integrating factor u(x)

w(z) (L) + L) = sz
o Assume the lhs of the ODE is the total derivative 2 (y(z) u(z))
() (Ly(@) + L) = (L£y(@) ue) +y(@) (La()

e Isolate 2 u(z)

%/,L(l’) = cﬁg(xa?:)
° Solve to find the integrating factor

M(LE) = cosl(x)

° Integrate both sides with respect to x
J () pla)) do = [ 5d + C1
° Evaluate the integral on the lhs

z) = [ 4224, 4 O

cot(z)

) Solve for y(x)

2 )]

cot(x)

y@) ="
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1

) Substitute u(z) =

cos(z)
y(flf) = COS (CL’) (f md$ —|— 01)
° Evaluate the integrals on the rhs
y(z) = cos (x) (co:(x) — In (sec (z) + tan (z)) + CI)

° Simplify
y(xz) = —In (sec (z) + tan (x)) cos () + C1 cos (z) + =

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 19

‘dsolve(cot(x)*diff(y(x),x)+y(X) = X,
L y(x) ,singsol=all)

y(z) = = + cos (z) (— In (sec (z) + tan (z)) + ¢1)

Mathematica DSolve solution

Solving time : 0.1 (sec)
Leaf size : 45

‘DSolve[{Cot [x]*D [y [x] ,x]+y [x]==x,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(x) = = + cos(z) <log <cos (g) —sin (g)) — log (sin <g> + cos (g)) + cl)
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2.1.13 problem 3(b)
Solved as first order linearode . . . . ... ... ... ....... 128
Solved as first order Exactode . . . . .. ... ... ........ 129
Maple step by step solution . . . . . . ... ... ... ... 132
Maple trace . . . . . . . . . . e e 133
Maple dsolve solution . . . . . ... .. ... oL 133]
Mathematica DSolve solution . . . . . .. ... ... ... ..... 133]

Internal problem ID [4202]
Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60
Problem number : 3(b)

Date solved : Tuesday, December 17, 2024 at 06:50:11 AM

CAS classification :

Solve

[_linear]

cot (z)y +y = tan (z)

Solved as first order linear ode

Time used: 0.179 (sec)

In canonical form a linear first order is

Y + q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor

The ode becomes

Integrating gives

W is
L= efqdz
— eftan(:c)dw
= sec (z)
d
ap M) = kp

L (uy) = (4 (tan (2)?)

L (ysec (2) = (sec (2)) (tan (¢)")

d(ysec (z)) = (tan (z)’sec (z)) dw

ysec(z) = /tan () sec (z) dx

Dividing throughout by the integrating factor sec (z) gives the final solution

Yy=-

_ sin(z)’  sin(z) _In(sec(z) + tan (z))

 2cos (z)? 2

In (sec (z) + tan (z)) cos (z)

2

2

+ ¢y cos (x) +

+ ¢

tan ()
2
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Figure 2.37: Slope field plot
cot (z)y' +y = tan (x)
Summary of solutions found
In (sec (z) + tan (z)) cos (z tan (z
,_ Infec(@) ttan@)eos(e) | o ten(a)
2 2
Solved as first order Exact ode
Time used: 0.261 (sec)
To solve an ode of the form
dy

dz

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
Hence 06 06 d
Yy _
oxr  Oydr 0 (B)
Comparing (A,B) shows that
0¢ _
or
0¢ _
oy
But since % = 66—284’— then for the above to be valid, we require that
0y yOx
oM _oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; g’y = afg; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore

(cot (z)) dy = (—y + tan (z)) dz
(y — tan (z)) dz +(cot (z))dy =0 (2A)
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Comparing (1A) and (2A) shows that
M(z,y) =y — tan (z)
N(z,y) = cot (z)

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
By a—y(y — tan (z))
=1
And
ON 0
B a(wt (z))
= —csc(z)”

Since %iy/[ # %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

1 /0M ON
=5(% %)
= tan () ((1) — <—1 — cot (m)Q))

= 2tan (z) + cot (z)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

b= efAdz
— ef2tan(m)+cot(z) dz

The result of integrating gives
b= e—2ln(cos(m))+ln(sin(ac))
_ sin(x)

 cos (z)?

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
sin ()

= cos (a)’ (y — tan (z))

= (y — tan (z)) sec (z) tan (x)
And

_ sin(z)

2 (cot (2))

 cos (z)

= sec ()

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+N%:0
dzx
dy

dz =0

((y — tan (z)) sec (z) tan (x)) + (sec (x)
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The following equations are now set up to solve for the function ¢(z,y)

% _w (1)
0p
oy =" 2)

Integrating (2) w.r.t. y gives

@dy= /Ndy
Oy

0
6_§ dy = /sec (z)dy

¢ = ysec(z) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

% = ysec (z) tan (z) + f'(z) (4)

But equation (1) says that % = (y — tan (z)) sec (z) tan (x). Therefore equation (4) be-
comes
(y — tan (z)) sec (z) tan (z) = ysec (z) tan (z) + f'(z) (5)
Solving equation (5) for f'(z) gives
f'(z) = —tan (z)* sec (z)
Integrating the above w.r.t x gives
/f’(x) dz = / (— tan (z)*sec (7)) dz

sin (z)® _sin(z)  In(sec(z)+tan(z))
2 cos (z)? 2 2

C1

flz) = -

Where ¢; is constant of integration. Substituting result found above for f(x) into equation
(3) gives ¢

sin (z)° _sin(z) N In (sec (z) + tan (z))

2 cos (z)? 2 2

¢ = ysec(z) — ¢l

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and cy constants into the constant c; gives the solution as

sin (z)°  sin(z) In(sec(z) + tan (z))
2 cos () T2 T 2

¢ =ysec(z) —

Solving for y gives

__sin(z) cos (2)? — In (sec () + tan (z)) cos (z)* + 2¢; cos (z)® + sin (z)°

2sec (z) cos ()
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Figure 2.38: Slope field plot
cot (z)y' +y = tan (x)

Summary of solutions found

sin () cos (z)* — In (sec () 4 tan (z)) cos (x)* 4 2¢; cos () + sin (z)°
2sec (z) cos (z)?

Maple step by step solution

Let’s solve

cot (z) (£y(@)) + y(x) = tan (z)

° Highest derivative means the order of the ODE is 1

=y(2)
° Solve for the highest derivative
£1(a) = e

° Collect w.r.t. y(z) and simplify

d _ (z) tan(z)
%y(x) - _czt(a:) + cot(z)

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE

d (z) _ tan(z)
Ey(z) + cgt?z) - Cot(:f)

° The ODE is linear; multiply by an integrating factor u(x)
() (Ly(z) + L) = el

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
w(z) (L) + 225) = (L)) wz) + y(@) (Lu())

o Isolate - u(x)
%M(LE) = clcl;gzvx))
° Solve to find the integrating factor

,LL(IL‘) = cosl(m)

. Integrate both sides with respect to x
I (L (y(2) p(z))) do = [ H220@ g 4

cot(z)

. Evaluate the integral on the lhs
y(z) p(z) = [ @)y 4 oy

cot(z)
o Solve for y(ac)

(z) tan(z)
£ cot(2) dz+C1

y(z) = p(z)
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e  Substitute u(z) = —%

cos(z)

y(x) = cos () (f _tan(e) gy 01)

cos(z) cot(z)

° Evaluate the integrals on the rhs
. 3 .
y(x) — CoS (w) <2s(1:r;£8)2 + 51n2(x) _ ln(sec(x)z—i-tan(z)) + C])
° Simplify

y(a:) _ tanQ(x) _ ln(sec(z)-l—t;n(a:))cos(x) + C1 cos (.’E)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 23

‘dsolve(cot (x)*diff (y(x),x)+y(x) = tan(x),
L y(x) ,singsol=all)

cos (z) In (sec (z) + tan (z))

y(z) = — 5 +cos(z) ey + tan (z)

2

Mathematica DSolve solution

Solving time : 0.088 (sec)
Leaf size : 25

'DSolve[{Cot [x]*D[y[x] ,x]+y [x]==Tan[x] ,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(x) — %(cos(m)(—arctanh(sin(m))) + tan(z) + 2¢; cos(x))



CHAPTER 2. BOOK SOLVED PROBLEMS 134

2.1.14 problem 3(c)
Solved as first order linearode . . . . ... ... ... ....... 134
Solved as first order Exactode . . . . .. ... ... ........ 135]
Maple step by step solution . . . . . . ... ... ... ... 138
Maple trace . . . . . . . . . . .. 139
Maple dsolve solution . . . . . ... .. ... oL 139
Mathematica DSolve solution . . . . . .. ... ... ... ..... 139

Internal problem ID [4203]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 3(c)

Date solved : Tuesday, December 17, 2024 at 06:50:14 AM
CAS classification : [_linear]

Solve
tan (z) 3y + y = cot (z)
Solved as first order linear ode

Time used: 0.169 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

(z)

cot
p(z) = cot (z)”

The integrating factor u is

p=e [ qdx
—e [ cot(z)dz
= sin (z)
The ode becomes
d
ap HY) = kp

L () = (1) (cot (2)?)
%(y sin (z)) = (sin (2)) (cot (z)?)
d(ysin (z)) = (cot (z)’sin (z)) da
Integrating gives
ysin (z) = /cot (z)sin (z) d
= cos (z) + In (csc (z) — cot (z)) + ¢
Dividing throughout by the integrating factor sin (z) gives the final solution

y = (cos (z) + In (csc (z) — cot (z)) + ¢1) csc (x)
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Figure 2.39: Slope field plot
tan (z)y' +y = cot (z)

Summary of solutions found

y = (cos (z) + In (csc (z) — cot (z)) + ¢1) esc (z)

Solved as first order Exact ode
Time used: 0.204 (sec)
To solve an ode of the form

M(z,) + N(z,3) 2 =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. z gives

d
Hence 06 06 d
vy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
99 _
or
o
TN
Ay
But since 6‘12 a¢y = 8(9: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = aajgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy=0 (1A)

Therefore

(tan (z)) dy = (—y + cot (z)) dz
(y — cot (z)) dz +(tan (z))dy =0 (2A)
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Comparing (1A) and (2A) shows that

M(z,y) =y — cot (z)
N(z,y) = tan ()

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0
oy a—y(y — cot (z))
And
ON 0
8_.’[ = %(tan (x))
= sec (z)°

Since %iy/f # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4] (aM 8N)

N oy Oox
= cot (z) ((1) — (tan () + 1))
= — tan (z)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

b= efAdm
— ef—tan(m) dz

The result of integrating gives
b= eln(cos(x))
= cos ()

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
= cos (z) (y — cot (z))
= (y — cot (z)) cos (z)
And
N = uN
= cos (z) (tan (x))
= sin (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+N% =0
((y — cot (z)) cos (z)) + (sin (z)) j_i =0
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The following equations are now set up to solve for the function ¢(z,y)

% _w (1)
0p
oy =" 2)

Integrating (2) w.r.t. y gives

a—(bdy=/ﬁdy
Oy

0
6—3 dy = /sin (z)dy

¢ = ysin () + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

0 — cos(a)y + 1'a) @

But equation (1) says that % = (y — cot (z)) cos (x). Therefore equation (4) becomes

(y — cot (z)) cos (z) = cos (z) y + f'() ()
Solving equation (5) for f'(z) gives

f'(z) = — cos (z) cot (x)

Integrating the above w.r.t = gives

/ fl(z)dz = / (— cos (z) cot (z)) dz
f(z) = —cos(z) — In(csc (z) — cot (z)) + ¢1
Where c; is constant of integration. Substituting result found above for f(x) into equation

(3) gives ¢
¢ = ysin (z) — cos (z) — In (csc (z) — cot (x)) + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and c; constants into the constant c; gives the solution as

¢; = ysin (x) — cos (z) — In (csc (x) — cot (z))

Solving for y gives
_cos (z) +In (csc (z) — cot (x)) + 1
B sin (z)
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Figure 2.40: Slope field plot
tan (z)y' +y = cot (z)

Summary of solutions found

cos (z) + In (csc (z) — cot (z)) + ¢
sin (z)

Maple step by step solution

Let’s solve

tan (2) (Ly(2)) +y(2) = cot ()
° Highest derivative means the order of the ODE is 1

&y(@)
° Solve for the highest derivative
Lyle) =

o Collect w.r.t. y(z) and simplify
%y(m) _ _ y= + cot(z)

tan(z) tan(z)
° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
ﬁy(z) + y(z) _ cot(x)

tan(z) tan(z)

° The ODE is linear; multiply by an integrating factor u(x)
w(e) (Ly(o) + 2l ) = Hets

o Assume the lhs of the ODE is the total derivative 2 (y(z) u(z))
() (Zy(@) + £25) = (Ly(@)) n(@) +y(2) (£n(z))

e Isolate 2 u(z)

%u(x) = tgx(lg(ca)c)
° Solve to find the integrating factor

p(z) = sin ()
° Integrate both sides with respect to x

J (& (o) n(@)) do = [ MR dw + C1
° Evaluate the integral on the lhs

y(@)p(z) = [ u(@) COt(“v)d + C1

tan(z)
o Solve for y(z)
f u(z) cot(x) dz+C1

tan(x)

y(z) = 1(z)
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o Substitute pu(z) = sin (x)
f sin(z) cot(z) do+C1

_ tan(x)
y(flf) - sin(zx)
° Evaluate the integrals on the rhs
cos(z)+In(csc(z)—cot(x))+C.
o) - ettt s
° Simplify

y(z) = (cos (z) + In (csc (z) — cot (z)) + C1) csc (z)

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 19

‘ dsolve(tan(x)*diff (y(x),x)+y(x) = cot(x),
‘ y(x) ,singsol=all)

y(z) = csc (z) (cos (z) + In (csc (z) — cot (z)) + ¢1)

Mathematica DSolve solution

Solving time : 0.103 (sec)
Leaf size : 29

p
' DSolve [{Tan [x]*D[y [x],x]+y[x]==Cot [x],{}},
L y[x],x,IncludeSingularSolutions->True]

y(x) — csc(x) (cos(:c) + log (sin (g)) — log (cos (g)) + cl)
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2.1.15 problem 3(a)
Solved as first order linearode . . . . ... ... ... ....... 140
Solved as first order Exactode . . . . .. ... ... ........ [141]
Maple step by step solution . . . . . . ... ... ... ....... 144
Maple trace . . . . . . . . . . .. 145
Maple dsolve solution . . . . . ... .. ... oL 145]
Mathematica DSolve solution . . . . . .. ... ... ... ..... 145]

Internal problem ID [4204]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 3(a)

Date solved : Tuesday, December 17, 2024 at 06:50:16 AM
CAS classification : [_linear]

Solve
tan (z)y = y — cos ()
Solved as first order linear ode
Time used: 0.154 (sec)
In canonical form a linear first order is
Y +q(z)y = p(x)

Comparing the above to the given ode shows that

q(z) = — cot (z)
p(z) = — cos (z) cot (z)

The integrating factor u is

’u:efqdz

— ef—cot(x)dx

= csc ()
The ode becomes
L () = p
dx
d
1z 1Y) = (1) (= cos (z) cot (2))
T
%(y csc (x)) = (csc (x)) (— cos (z) cot (z))
d(ycsc (z)) = (— cos (z) cot (z) csc (z)) dx
Integrating gives
yesc(x) = /—cos (x) cot (x) csc (z) dz
=cot(z)+z+ ¢
Dividing throughout by the integrating factor csc (z) gives the final solution

y = (cot () + z + ¢1) sin (x)
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Figure 2.41: Slope field plot
tan (z)y' =y — cos ()
Summary of solutions found
y = (cot () + & + c1) sin ()
Solved as first order Exact ode
Time used: 0.166 (sec)
To solve an ode of the form
dy
M(.’ﬂ,y)-i—N(.’L‘,y)%:O (A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. z gives

d
Hence 06 06 d
vy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
o
9 M
o
TN
Ay
But since 6‘12 a¢y = 8(9: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = aajgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y) dz +N(z,y)dy =0 (1A)
Therefore

(tan (z))dy = (y — cos (z)) dz
(—y + cos(z))dz +(tan (z))dy =0 (2A)
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Comparing (1A) and (2A) shows that
M(z,y) = —y + cos (z)
N(z,y) = tan (z)

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
By a—y(—y + cos (z))
=-1
And
ON 0
B a(tan (z))
= sec ()

Since %iy/[ # %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

At (3_M _ B_N)
N\ oy Oz
= cot (z) ((—1) — (tan (z)® + 1))
= —2cot (z) — tan (x)
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p= efAd:n
— ef —2cot(z)—tan(z) dz
The result of integrating gives
b= e—2ln(sin(x))+ln(cos(ac))
_ cos(x)
sin ()

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = puM
_ cos(x)

A

= —cot (z) (y csc (x) — cot (z))
And
cos (z)

= @)

= csc ()

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M + Nj—i =0
(—cot (z) (y csc (z) — cot (x))) + (csc (z)) j—gyc =0
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The following equations are now set up to solve for the function ¢(z,y)

% _w (1)
0p
oy =" 2)

Integrating (2) w.r.t. y gives

Oy
op .
6—ydy—/csc(m)dy

¢ = yesc(z) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

% = —ycsc () cot (z) + f'(x) (4)

But equation (1) says that % = —cot (z) (ycsc (z) — cot (z)). Therefore equation (4)
becomes

—cot (z) (y csc (z) — cot (x)) = —ycsc (z) cot (z) + f'(x) (5)

Solving equation (5) for f'(z) gives
f'(@) = cot ()’
Integrating the above w.r.t x gives

/f’(a:) dz = / (cot (z)?) dz

f(x):—cot(:c)—i-g—x—i-cl

Where ¢; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
¢ =ycsc(x) —cot(m)+g—:v—|—cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

c1 = yesc () —cot(x)—i-g—z

Solving for y gives

_ m—2cot(z) —2¢c; — 22

2csc (z)
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Figure 2.42: Slope field plot
tan (z)y' =y — cos ()

Summary of solutions found

T — 2cot (z) — 2¢; — 2%
2csc (z)

Maple step by step solution

Let’s solve
tan (2) (£y(2)) = () — cos (2)
° Highest derivative means the order of the ODE is 1
&y(z)
° Solve for the highest derivative
y(z)—cos(z)

%y(.’l)) tan(z)
o Collect w.r.t. y(z) and simplify

(@) = Sy — )

° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE

d (z) cos(z)
Ey(z) - tgn(z) — 7 tan(z)

° The ODE is linear; multiply by an integrating factor u(x)
u(w) (L) — 42) = et

o Assume the lhs of the ODE is the total derivative 2 (y(z) u(z))
() (Zy(@) — L25) = (Ly()) n(@) +y(2) (£n())

o Isolate - u(x)
o

d — (z)
%M(x) - tang(cw)

° Solve to find the integrating factor

M(LE) = sinl(x)

° Integrate both sides with respect to x
J (£ (@) (=) de = [ —422E 4z 4 C1
° Evaluate the integral on the lhs

y(@) (o) = [ -4 de + C1

" tan(z)

) Solve for y(x)

f H(z) 005(1) dz+C1
y(z) = e
w(z)
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e  Substitute u(z) = =+

sin(z)

y(x) = sin (x) (f —_cose) g 4 C’I)

sin(z) tan(z)
° Evaluate the integrals on the rhs
y(z) = sin (z) (cot (z) + = + C1)

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 15

‘ dsolve(tan(x)*diff(y(x),x) = y(x)-cos(x),
‘ y(x) ,singsol=all)

y(x) = (cot (x) — g +x+ cl> sin ()

Mathematica DSolve solution

Solving time : 0.081 (sec)
Leaf size : 28

‘ DSolve [{Tan[x]*D[y[x],x]==y[x]-Cos[x],{}},
L y[x],x,IncludeSingularSolutions->True]

1 1
1,-,— tan2(ac)) + ¢ sin(z)

y(z) — cos(z) Hypergeometric2F'1 (—5, 5
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2.1.16 problem 4(a)

Solved as first order linearode . . . . ... ... ... ....... 146
Solved as first order Exactode . . . . .. ... ... ........ 147
Maple step by step solution . . . . . . ... ... ... ... 150
Maple trace . . . . . . . . . . . e 1511
Maple dsolve solution . . . . . ... .. ... oL 1511
Mathematica DSolve solution . . . . . .. ... ... ... ..... [I51]

Internal problem ID [4205]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 4(a)

Date solved : Tuesday, December 17, 2024 at 06:50:19 AM
CAS classification : [_linear]

Solve
y' + ycos (z) = sin (2z)

Solved as first order linear ode
Time used: 0.170 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

q(z) = cos (z)
p(x) = sin (2z)

The integrating factor u is

p=e J[qdx
—e [ cos(z)dz
— esin(a:)
The ode becomes
d
3p (M) = kp

() = (1) sin (22)
% (ye™@) = (@) (sin (27))
d(ye™®)) = (sin (2z) ™) dz
Integrating gives
y et — / sin (2z) e¥2® dx
= 2sin (z) @ — 2@ 4 ¢

Dividing throughout by the integrating factor e*™® gives the final solution

y = 2sin (z) + e 5@ ¢; — 2
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Figure 2.43: Slope field plot
y' + ycos (z) = sin (2z)
Summary of solutions found
y = 2sin (z) + e *"@¢; — 2
Solved as first order Exact ode
Time used: 0.120 (sec)
To solve an ode of the form
dy

dx

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
Hence 06 9pd
vy _
Oxr  Oydr 0 (B)

Comparing (A,B) shows that

09

P M

9¢

YN

Oy

But since % = aa—ig’— then for the above to be valid, we require that
0y yOx

OM ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = 6‘9;—8"; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,
which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (—ycos (z) +sin (2z)) dz
(ycos(z) —sin (2z))dz+dy =0 (2A)
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Comparing (1A) and (2A) shows that

M(z,y) = ycos (z) — sin (2x)
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _on
oy Oz
Using result found above gives
oM 0 .
By 8_y(y cos (z) — sin (2z))
= cos ()
And
ON
Bz (1)
= 0

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

-5 %)

Oy Oox
= 1((cos (z)) — (0))
= cos ()

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p= efAdz
—e J cos(z) dz

The result of integrating gives

sin(z)

p=e
=e

sin(z)

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M =uM
= "2@) (4 cos (z) — sin (2z))
= cos (z) (—2sin (z) + y) 2@

And

— esin(m)(l)
— esin(w)

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

(cos (z) (—2sin (z) + y) e®) + (efn@)) =
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The following equations are now set up to solve for the function ¢(z,y)

% _w (1)
0p
oy =" 2)

Integrating (2) w.r.t. y gives
@ dy = / Ndy
Ay

@ dy — /esin(z') dy
oy

¢ =ye@ + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

%9 — cos (@) Iy + f'(2) (@

But equation (1) says that % = cos () (—2sin (z) + y) e¥™@. Therefore equation (4)
becomes
cos (z) (—2sin () + y) @ = cos (z) @y + f/(x) (5)

Solving equation (5) for f'(z) gives

f'(z) = —2cos (x) @ sin (z)
Integrating the above w.r.t = gives

/f’(x) dz = / (—2cos (z) e @ sin (7)) dz
f

(z) = —2sin (z) &M@ 4 252 4 ¢

Where ¢; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
¢ =y esin(w) — 2sin (.’II) esin(x) +2 esin(x) +¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

a=y esin(ac) — 2gin (SE) esin(:c) +2 esin(:c)

Solving for y gives

y=e" sin(z) (2 sin (.’E) esin(av:) -9 esin(av) + Cl)
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Figure 2.44: Slope field plot
y' + ycos (z) = sin (2z)

Summary of solutions found

y=e" sin(z) (2 sin (.’E) esin(z) —9 esin(:/v) + Cl)

Maple step by step solution

Let’s solve
%y(z) + cos (z) y(z) = sin (2z)
. Highest derivative means the order of the ODE is 1
=y(®)
° Solve for the highest derivative
%y(m) = —cos (z) y(z) + sin (2z)
° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
%y(z) + cos (z) y(z) = sin (2z)
° The ODE is linear; multiply by an integrating factor u(x)
p(x) (y() + cos (z) y(z)) = (=) sin (22)
o Assume the lhs of the ODE is the total derivative 2 (y(z) u(z))
w(z) (Ly(@) + cos (2) y(2)) = (Zy(@)) p(2) +y(2) (Guz))

) Isolate L p(z)

Lu(z) = p(z) cos (z)

. Solve to find the integrating factor
:U'(x) — esin(x)

° Integrate both sides with respect to x
[ (L (y(z) u(z))) dz = [ p(z)sin (2z) dz + C1
° Evaluate the integral on the lhs

y(z) p(z) = [ p(z)sin (2z) dz + C1
o Solve for y(x)

) sin(2z)dx+ C1
y(z) = [ n(=) “((x)) +

° Substitute u(z) = es@)

__ [eo(® sin(2z)dx+C1
y(z) - esin(z)

° Evaluate the integrals on the rhs

_ 2e8n®@) sin(g)—2e50(*) L 01
y(m) - esin(z)

° Simplify
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y(z) = 2sin (z) + e~ 5@ C1 — 2

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 17

‘(dsolve(diff(y(x),x)+cos(x)*y(x) = sin(2%*x),

‘ y(x),singsol=all)

y(z) = 2sin (z) — 2 4 e~ 2@ ¢,

Mathematica DSolve solution

Solving time : 0.119 (sec)
Leaf size : 20

‘ DSolve [{D[y[x],x]+y[x]*Cos[x]==Sin[2*x],{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) = 2sin(z) 4 c;e” 0@ — 2
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2.1.17 problem 4(b)
Solved as first order linearode . . . . ... ... ... ....... 152
Solved as first order Exactode . . . . .. ... ... ........ 153
Maple step by step solution . . . . . . ... ... ... .......
Maple trace . . . . . . . . . . .. 157
Maple dsolve solution . . . . . ... .. ... oL 157
Mathematica DSolve solution . . . . . .. ... ... ... ..... 157

Internal problem ID [4206]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 4(b)

Date solved : Tuesday, December 17, 2024 at 06:50:21 AM
CAS classification : [_linear]

Solve
cos (z)y' +y = sin (2z)

Solved as first order linear ode
Time used: 0.239 (sec)
In canonical form a linear first order is
Y +q(z)y = p(x)

Comparing the above to the given ode shows that

a() = sec ()
p(x) = 2sin (z)

The integrating factor u is

b= efqu
— efsec(x)dx

= sec (z) + tan (z)
The ode becomes
%(uy) = pp
L () = () (25in (2))
%(y(sec () +tan(x))) = (sec(x) + tan (z)) (2sin (z))
d(y(sec (z) + tan (z))) = (2sin (z) (sec (z) + tan (z))) dz
Integrating gives
y(sec (z) + tan (z)) = /2sin (z) (sec (z) + tan (z)) dz
= —2sin(z) — 2In(sin(z) — 1) + &
Dividing throughout by the integrating factor sec (z) + tan (z) gives the final solution

_ (—2sin (z) — 21In(sin (z) — 1) + ¢1) (cos (x) — sin (z) + 1)
cos (z) + 1 + sin (z)

Y
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Figure 2.45: Slope field plot
cos (z)y' + y = sin (2z)

Summary of solutions found

(—2sin (z) — 21n(sin (z) — 1) + ¢1) (cos (z) — sin (z) + 1)
cos (z) + 1 + sin (x)

y:

Solved as first order Exact ode
Time used: 0.237 (sec)

To solve an ode of the form

M(z,) + N(z,3) 2 =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. z gives

d

Hence 96 04d
vy _
ox + Ooydr 0 (B)

Comparing (A,B) shows that

9¢

P M

9¢

3y N
¢ _ 9%
ozxdy ~ Oyoz

then for the above to be valid, we require that

oM _ ON

9y Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘?: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

But since

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore

(cos(z))dy = (—y +sin (2z)) dz
(y —sin (2z)) dz +(cos (z))dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(z,y) = y — sin (2x)
N(z,y) = cos ()

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0 )
By a—y(y — sin (2z))
=1
And
ON 0

or E(COS (z))

= —sin (z)

Since %i; 9N then the ODE is not exact. Since the ODE is not exact, we will try to

Oz ?
find an integrating factor to make it exact. Let

Ao L(oM _oN
N\ dy Oz
= sec (z) (1) — (—sin (z)))
= sec () + tan ()
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is
—e [Adz

L
— ef sec(z)+tan(z) dz

The result of integrating gives

= eln(sec(x)—i—tan(x))—ln(cos(x))

_ sec(z) + tan ()
cos ()

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

_sec(z) ttan(z), <in (22
- CoS (117) (y (2 ))

_ —y+2cos (x) sin (x)
sin (z) — 1

And

N =uN
_ sec (z) + tan (
cos ()
= sec (z) + tan (x)

%) (cos ()
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Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M—FN%:O
dz

) + (sec (z) + tan (z)) j—i _0

(—y + 2 cos (z) sin ()
sin (z) — 1

The following equations are now set up to solve for the function ¢(z,y)

o

Integrating (2) w.r.t. y gives

@dy = /Ndy
Oy

g—z dy = /sec (x) + tan (z) dy

¢ = y(sec (z) + tan (z)) + f(z) 3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

9¢

B y(sec (z) tan (z) + 1 + tan (35)2) + f'(2) (4)
" sin (wy) -1 +f(@)

—y+2 cos(z) sin(z)

sn(z)-1 - Lherefore equation (4) becomes

But equation (1) says that % =

—y + 2cos (z)sin (z) y

sin (z) — 1 ~sin(z) — 1

+ f'(z) (5)

Solving equation (5) for f'(z) gives

_ 2cos (z) sin (z)

fle) = sin (z) — 1

Integrating the above w.r.t = gives

[r@a= [ (QC;Z((?)SEI 1@)) dm

f(z) =2sin(z) +2In(sin(z) — 1) + ¢

Where ¢; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
¢ = y(sec (z) + tan (z)) + 2sin (z) + 2In (sin(z) — 1) + 1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

c; = y(sec (z) + tan (x)) + 2sin (x) + 21n (sin (z) — 1)
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Solving for y gives
2sin (z) + 2In(sin (z) — 1) — ¢
sec (z) + tan (z)

y=-
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Figure 2.46: Slope field plot
cos (z)y +y =sin (2z)

Summary of solutions found

_2sin(z) +2In(sin(z) — 1) —a
sec (z) + tan (z)

Maple step by step solution

Let’s solve

cos (z) (Ly(z)) + y(z) = sin (2z)
° Highest derivative means the order of the ODE is 1

=y(2)
° Solve for the highest derivative
fyle) = e

. Collect w.r.t. y(z) and simplify

d _ _ y(=) sin(2z)
dzy(x) — cos(z) + cos(z)

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
%y(iﬂ) + y(z) __ sin(2z)

cos(z) ~  cos(z)

° The ODE is linear; multiply by an integrating factor u(x)
u(@) (Ev(e) + 53 ) = "

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
w(z) (Ly(@) + 225) = (Ly(@)) pz) + y(@) (Lu())

o Isolate - u(x)
%M(LE) = clcl;é(xx))
. Solve to find the integrating factor
p(z) = sec (x) + tan (x)
° Integrate both sides with respect to x
J (& y(@) nl2))) dz = [ HEE de + C1

° Evaluate the integral on the lhs
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y(l’ f w(z) sm(2m)dm + C1

cos(z)
o Solve for y(z)
f u(z)sin(2z) do+C1

cos(z)

y(z) = (@)

o Substitute p(z) = sec (z) + tan (z)
f (sec(z)+tan(z)) sin(2x) de+C1

_ cos(z)
y(.’II) - sec(z)+tan(z)
° Evaluate the integrals on the rhs
_ —2sin(z)—2In(sin(z)—1)+C1
y(.’IJ) - sec(z)+tan(z)
° Simplify
(—2sin(z)—2In(sin(z)—1)+ C1)(cos(x)—sin(z)+1)
y(x) cos(z)+sin(z)+1

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 34

‘dsolve(diff (y(x),x)*cos(x)+y(x) = sin(2*x),
‘ y(x) ,singsol=all)

(—2sin () — 21In(sin(z) — 1) + ¢1) (cos (x) — sin (z) + 1)
cos (z) + sin (x) + 1

y(z) =

Mathematica DSolve solution

Solving time : 0.123 (sec)
Leaf size : 42

' DSolve [{Cos [x]#D[y[x],x]+y[x]==Sin[2*x], {}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) — e~ 2erctanh(tan(3)) (—2 sin(z) — 4 log <cos (g) — sin (g)) + cl>
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2.1.18 problem 4(c)
Solved as first order linearode . . . . ... ... ... ....... 158
Solved as first order Exactode . . . . .. ... ... ........ 159
Maple step by step solution . . . . . . ... ... ... ... 162
Maple trace . . . . . . . . . . e e 163
Maple dsolve solution . . . . . ... .. ... oL 163l
Mathematica DSolve solution . . . . . .. ... ... ... ..... 163

Internal problem ID [4207]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 4(c)

Date solved : Tuesday, December 17, 2024 at 06:50:24 AM
CAS classification : [_linear]

Solve

y' + ysin (z) = sin (2z)

Solved as first order linear ode
Time used: 0.165 (sec)
In canonical form a linear first order is
Y +q(z)y = p(x)

Comparing the above to the given ode shows that

q(z) = sin (z)
p(x) = sin (2z)

The integrating factor u is

p=e J[qdx
—e [ sin(z)dz
— e cos(z)
The ode becomes
d
3p (M) = kp

L () = (1) (s (22))
< (ye ) = (¢ sin (20))
d(ye @) = (sin (2z) e~ @) dz
Integrating gives
ye @) = / sin (2z) e~ °08(2) o
= 2cos (z)e” cos(z) 4 9 g c0s(®) 4 ¢
Dividing throughout by the integrating factor e~ > gives the final solution

y = ¢; @ 4 2cos (z) + 2
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Figure 2.47: Slope field plot
y' + ysin (x) = sin (2z)
Summary of solutions found
y = c; 6@ 4 2cos (z) + 2
Solved as first order Exact ode
Time used: 0.133 (sec)
To solve an ode of the form
dy

dx

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
Hence 06 9pd
Y
— —_—— T B
Oxr Oydx 0 (B)
Comparing (A,B) shows that
09
M
ox
09
T _N
9y
But since ;%g; = 88—;% then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = 6‘9;—8"; is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,
which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore

dy = (—ysin (z) + sin (2z)) dz
(ysin (z) —sin (2z))dz+dy =0 (2A)
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Comparing (1A) and (2A) shows that
M(z,y) = ysin (x) — sin (2z)
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _on
oy Oz
Using result found above gives
oM 0 :
By oy —(ysin (x) — sin (2z))
= sin (z)
And
ON
o (1)

—O

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

-v(a =)

dy ox
= 1((sin (z)) — (0))
= sin ()

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is

b= efAda:
— ef sin(z) dz
The result of integrating gives
p=e" cos(x)
— e~ cos(z)

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M = uM
= e~ %@ (ysin (z) — sin (2z))
= sin (z) (=2 cos (z) + y) e~ “*@
And

N =uN
—e” cos(m)(l)

—e cos(z)

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

(sin (z) (—2cos (z) +y) e~ @) 4 (e7 @) =



CHAPTER 2. BOOK SOLVED PROBLEMS 161

The following equations are now set up to solve for the function ¢(z,y)

o - M (1)
0p —
— =N 2
o )
Integrating (2) w.r.t. y gives
% dy = / N dy
dy
% _ — cos(z)
By dy = / e dy
¢ =ye 0 4 f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

9¢

0 = sin(z)e” Oy + f(z) @)

But equation (1) says that % = sin () (—2cos (z) + y) e~ @), Therefore equation (4)
becomes

sin (z) (=2 cos (z) + ) e~ @ = sin (z) e~ @y + f'(z) (5)
Solving equation (5) for f'(z) gives

f'(z) = —2sin (z) e~ @ cos (z)

Integrating the above w.r.t = gives

/f/(x) dz = / (—2sin (z) e~ ®) cos (z)) dz

f(x) = —2cos (z) e~ (@ —2e=s(® 4 ¢

Where ¢, is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
¢ =ye~ cos(x) _ 2 cos (.’L‘) e cos(z) __ %2¢~ cos(z) T+

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

a=ye” cos(z) __ 2 cos (.’L‘) e cos(z) __ ¢~ cos(z)

Solving for y gives

y = ecos(:):) (2 CoS (.’L') e~ cos(x) +92e” cos(z) 4+ 01)
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Figure 2.48: Slope field plot
y' + ysin (x) = sin (2z)

Summary of solutions found

y = ecos(z) (2 cos (.’13) e cos(z) +2e” cos(z) + Cl)

Maple step by step solution

Let’s solve
%y(z) + sin (z) y(z) = sin (2z)
. Highest derivative means the order of the ODE is 1
=y(®)
° Solve for the highest derivative
4y(z) = —sin (z) y(z) + sin (2z)
° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
%y(z) + sin (z) y(z) = sin (2z)
° The ODE is linear; multiply by an integrating factor u(x)
() (7y(z) +sin (z) y(z)) = u(z)sin (22)
o Assume the lhs of the ODE is the total derivative 2 (y(z) u(z))

(@) (Lu(a) +sin (2) y(x)) = (Lu(@) w(e) +y(o) ()
o Isolate L p(z)

dwh(z) = p(z)sin (z)

. Solve to find the integrating factor
p(z) = o
° Integrate both sides with respect to x
I (£ w(@) ule)) dz = [ p(z)sin (22) do + C1
° Evaluate the integral on the lhs
y(z) p(z) = [ p(z)sin (2z) dz + C1
o Solve for y(x)

) sin(2z)dx+ C1
y(z) = [ n(=) “((x)) +

) Substitute u(z) = e~ @)

_ Je cos(2) gin(2z)dz+C1
y(z) - e— cos(z)

° Evaluate the integrals on the rhs

26~ ©05(2) cog(x)+2e~ €0s() 4 O1
y(m) = e— cos(z)

° Simplify
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y(x) = C1 €@ + 2cos (z) + 2

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 15

‘ dsolve(diff (y(x),x)+y(x)*sin(x) = sin(2*x),
‘ y(x),singsol=all)

y(x) = 2cos (z) + 2 + @ ¢

Mathematica DSolve solution

Solving time : 0.105 (sec)
Leaf size : 18

‘ DSolve [{D[y[x],x]+y[x]*Sin[x]==Sin[2*x],{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) — 2cos(z) 4 ¢1e°® 42
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2.1.19 problem 4(d)
Solved as first order linearode . . . . ... ... ... ....... 164
Solved as first order Exactode . . . . .. ... ... ........ 165]
Maple step by step solution . . . . . . ... ... ... ... 168
Maple trace . . . . . . . . . . .. 169
Maple dsolve solution . . . . . ... .. ... oL 169
Mathematica DSolve solution . . . . . .. ... ... ... ..... 169

Internal problem ID [4208]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 4(d)

Date solved : Tuesday, December 17, 2024 at 06:50:26 AM
CAS classification : [_linear]

Solve

sin (z) y' + y = sin (2z)

Solved as first order linear ode
Time used: 0.337 (sec)
In canonical form a linear first order is
Y +q(x)y = p(z)
Comparing the above to the given ode shows that
q(z) = csc(z)
p(z) = 2cos (z)

The integrating factor y is
p= ef csc(z)dx

Therefore the solution is

- (/ 2 cos (z) e/ =¥ dy 4 cl> o= escle)dz
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Figure 2.49: Slope field plot
sin (z)y' +y = sin (2z)

Summary of solutions found

v (/ 2 cos (z) e/ =@y 4 01) e~ J esc(a)de
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Solved as first order Exact ode
Time used: 0.322 (sec)
To solve an ode of the form

dy
M(z,9) + N(z,5) £ =0 (4)
T
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.

Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06d
Y
— —_—— B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
i M
o
T _N
9y
But since ;;gy = ;): g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = a‘fgx is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(sin(z)) dy = (—y +sin (2z)) dz
(y — sin (2z)) dz +(sin (z)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =y — sin (2z)
N(z,y) = sin (z)

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
= 5y —sin(20)
=1
And
ON 0

B 8—x(Sin (z))

= cos (z)
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Since %i; # %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

1 /0M ON
A=y ( By %>
= csc(z) ((1) — (cos (x)))

= csc (z) — cot ()
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
—e JAdz

U
— ef csc(z)—cot(zx) dz

The result of integrating gives

— e In(sin(z))—In(csc(z)+cot(x))
_ 1
~ sin () (csc (z) + cot (x))

7

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

1
" sin (z) (csc (x) + cot (x))
_ Y- 2sin (x) cos ()
cos(z) +1

(y — sin (2))

And

1 .
~ sin (2) (1csc @)+ ot () 0 (@)

csc (x) + cot (z)

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+N-=2=0
+ dz

(y - iifig)f?s (x)) + (csc @ i oot (x)) S_Z =0

The following equations are now set up to solve for the function ¢(z,y)

0p —
9 =M (1)
0p
oy = N (2)
Integrating (2) w.r.t. y gives
@ dy = /Ndy
Oy

op . 1
Ay dy = / csc (z) + cot (z) dy

— Yy -
¢= csc (z) + cot () + /(@) (3)
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Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

8¢ y(—csc(z)cot (z) — 1 — cot (2)%)

= + f(z 4
Ox (csc (z) + cot (x))? f@) )
_ Y /
~ cos(z)+1 +f(=)
But equation (1) says that % = % Therefore equation (4) becomes
y — 2sin () cos (x) Yy ,

= )
cos(z)+1 cos(z) +1 +f(=) (5)

Solving equation (5) for f'(z) gives

2sin (z) cos (x)
cos (z) +1

fl(x) = -

Integrating the above w.r.t = gives

[rew [(Fam)

f(z) =2cos(z) —2In(cos(z) + 1) + ¢;

Where ¢, is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢

= Y cos (z) — 21n (cos (z 1
qﬁ_csc(av)-l—cot(x)jL2 (z) = 21n (cos (z) + 1) +

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

o= @ -gil—cot @ +2cos (z) — 21n (cos (z) + 1)

Solving for y gives

y = —2cos(x)csc(x) + 2In(cos (z) + 1) csc (x) + ¢; cse (x)
— 2cos (z) cot (z) + 21n (cos (x) + 1) cot (x) + ¢1 cot (x)
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Figure 2.50: Slope field plot
sin (z) y + y = sin (2z)

Summary of solutions found

y = —2cos (z)csc(z) + 21n(cos (x) + 1) csc (z) + ¢ csc (z)
— 2cos () cot (x) + 21n (cos () + 1) cot (x) + ¢; cot ()
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Maple step by step solution

Let’s solve

sin (2) (Ly(2)) + y(z) = sin (22)
° Highest derivative means the order of the ODE is 1

=Y(@)

° Solve for the highest derivative
fyte) = e

) Collect w.r.t. y(z) and simplify

d _ () sin(2z)
%y(x) - _s?iln(x) + sin(z)

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
dzy(x) + y(xz) __ sin(2z)

sin(z) ~ sin(z)

° The ODE is linear; multiply by an integrating factor u(x)
u(z) (Ly(o) + 1) = vzl

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
w(a) (Ly(@) + 225) = (Ly(@)) n(z) + y(@) (£u())

o Isolate - /u(x)

° Solve to find the integrating factor
u(z) = csc(x) — cot (z)

° Integrate both sides with respect to x

J (@) w(a)) do = [ M52 dn + C1
° Evaluate the integral on the lhs

y(z)p(z) = [ £ (“;lil(r;()zx) dx + C1

o Solve for y(m)

f p(x) 511;()2.7:) do+C1

sm

y(x) = 1(2)

) Substitute u(z) = csc (z) — cot (z)
f (csc(z)—cot(z)) sin(2z) do+C1

y(.’l?) = cssézla(va)c) cot ()
° Evaluate the integrals on the rhs
_ —2cos(z)+2In(cos(z)+1)+C1
y(.’L‘) - csc(z)—cot(z)
° Simplify

y(z) = (—2cos (z) + 21In (cos (z) + 1) + C1) (cos (x) + 1) csc (z)
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 24

-

dsolve(sin(x)*diff (y(x),x)+y(x) = sin(2*x),
L y(x) ,singsol=all)

y(x) = csc (z) (—2cos (z) + 21In (cos (z) + 1) + ¢1) (cos (z) + 1)

Mathematica DSolve solution

Solving time : 0.427 (sec)
Leaf size : 38

‘DSolve[{Sin[x]+D[y[x],x]+y [x]==Sin[2%x] ,{}},
L y[x] ,x,IncludeSingularSolutions->True]

y(z) — edretanh(cos(@) <—2\ /sin?(x) csc(x) (cos(x) + log (sec2 (g))) + cl)
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2.1.20 problem 5(a)
Solved as first order linearode . . . . ... ... ... ....... 170
Solved as first order Exactode . . . . .. ... ... ........ ival
Maple step by step solution . . . . . . ... ... ... ....... 174
Maple trace . . . . . . . . . . .. 175
Maple dsolve solution . . . . . ... .. ... oL 1775
Mathematica DSolve solution . . . . . .. ... ... ... ..... 175

Internal problem ID [4209]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 5(a)

Date solved : Tuesday, December 17, 2024 at 06:50:29 AM
CAS classification : [_linear]

Solve

V2 +1y +y =2z

Solved as first order linear ode

Time used: 0.146

(sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

The ode becomes

Integrating gives

1
xTr) =
@) z?2+1
(z) = 2x
RV
M=efqd:1:
:ef z;+1dm
=zr+vVa?+1
d
ap M) = 1p

%(uy) = (w) (;—xﬂ)

Ly(a+vam+1)) = (2+ Va2 +1) (2_w>

V41
d(y(e+Va?+1)) = (23”(93 22”12: 1)> de

y(x+x/ﬁ) :/2x<a¢+\/a;2+1) da

z2+1
= V22 + 1z — arcsinh (z) + z° + ¢;



CHAPTER 2. BOOK SOLVED PROBLEMS 171

Dividing throughout by the integrating factor z + v/z2 4+ 1 gives the final solution

z2 + 1z — arcsinh (z) + 22 + ¢

y:
T+VrZ+1
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Figure 2.51: Slope field plot
Vi + 1y +y =2z
Summary of solutions found
Vz? + 1z — arcsinh (z) + 22 + ¢;
y:
z+Vzr2+1
Solved as first order Exact ode
Time used: 0.217 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
Hence 96 06d
Y
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
99
T M
ox
09
T _N
9y
But since % = % then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
8‘12 (ffy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or
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might not exist. The first step is to write the ODE in standard form to check for exactness,
which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
(W) dy = (—y +2z)dz
(y - 20) do+(Va? +1) dy = 0 (2A)
Comparing (1A) and (2A) shows that

M(z,y) =y — 2z
N(z,y) =Vvz?+1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the
following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
T T (y—-2
9y oy (y — 22)
And
ON 0
Zr_ 2 2
- (%( %+ 1)
=z
2241

Since %‘/[ # %—];J, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4] (6M aN)

~ N\dy oz

- (- ()

_Vrl+l-x

241
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

’u:efAda:

vV :c2+1—:c
e oA

The result of integrating gives

. In (w2 +1)
earcsmh(:z)— —a

#,:

N

2 +1

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

T
24+ 1

= (y — 22) (1+ fo)

=1+ (y — 2x)
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And

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.

The modified ODE is
_dy .

M A
+ e 0
x dy
-2 1 Vrz+1) ==
((y x)(+\/m))+<x+ x+)dx 0
The following equations are now set up to solve for the function ¢(z,y)
op —
T —-M 1
e (1)
0p —
— =N 2
o )

Integrating (2) w.r.t. y gives
@ dy = /Ndy
Ay
99
/a—ydy=/m+vﬂv2+1dy
6=y(z+Va?+1) + f(a) 3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

2=y(14 s )+ @) (@)

But equation (1) says that % = (y — 2z) (1 + ﬁ) Therefore equation (4) becomes

z x ,
(y — 2z) (1+W)=y(1+ﬁ>+f($) (5)
Solving equation (5) for f'(z) gives
2
f(z) = 2x(z —;2\/—9: 1-|— 1)

Integrating the above w.r.t = gives

f(xz) = —Vz? + 1z + arcsinh (z) — 2% + ¢;

Where c; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢

¢ = y(m-l- Va2 + 1) — V22 + 1z + arcsinh (z) — 2° + ¢
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But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢y constants into the constant c; gives the solution as

cl—y<x+\/a:2 ) V22 + 1z + arcsinh (z) — 2°

Solving for y gives

12 + 1z — arcsinh (z) + 2% + ¢;

y:
z+vVz?+1
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Figure 2.52: Slope field plot
Vel+1ly +y=2z

Summary of solutions found

Vz?2 + 1x — arcsinh (z) + 22 + ¢
r+vVz2+1

Maple step by step solution

Let’s solve

211 (Ly(@) +y(@) =2
° Highest derivative means the order of the ODE is 1

=y(®)
° Solve for the highest derivative
2z—y(x
Ly(z) = miif

o Collect w.r.t. y(z) and simplify

d — (z) 2
wY(®) =~ g t e

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE

d yx) _ _ 2
w¥(@) + g = Varnn

° The ODE is linear; multiply by an integrating factor u(x)
we) (Ly(@) + k) = %8s

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
() (Zy(@) + 25 ) = (Lu(@) pa) + y(@) (Eul)

e  Isolate 2 u(z)

() = S5



t
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° Solve to find the integrating factor
pwz)=z+Vx2+1

. Integrate both sides with respect to x
[ (E(y(z) p(z)))dz = [ ?}‘%dx + C1

° Evaluate the integral on the lhs

y(@) p(z) = [ %iide + C1

o Solve for y(x)

[ 22 gy o1

y(@) = ==
o Substitute u(z) =z + vz2 + 1
2(m+\/m)z
J—— de—}-CI
° Evaluate the integrals on the rhs
z24x+/224+1—arcsinh(z)+ C1
y(z‘) _ zr+ ;—+\/z2+1 (z)+

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 34

dsolve((x"2+1)~(1/2)*diff (y(x) ,x)+y(x) = 2%x,
y(x),singsol=all)

(z) = z? + /22 + 1 — arcsinh (z) + ¢;
Y r+vVaz+1

Mathematica DSolve solution

Solving time : 0.254 (sec)
Leaf size : 85

DSolve [{Sqrt [1+x~2]*D [y [x] ,x]+y [x]==2%x,{}},
y[x],x,IncludeSingularSolutions->True]

—arctanh z 1
y(z) > e ' (Vz2+1) (a: 2+1<w2+\/x2+1x+1>
xr

lo L 24 S I
E\WWaezs1® "V T e
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2.1.21 problem 5(b)
Solved as first order linearode . . . . ... ... ... ....... 176]
Solved as first order Exactode . . . . .. ... ... ........ e
Maple step by step solution . . . . . . ... ... ... ... 180
Maple trace . . . . . . . . . . e e 181
Maple dsolve solution . . . . . ... .. ... oL 181l
Mathematica DSolve solution . . . . . .. ... ... ... ..... 181

Internal problem ID [4210]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 5(b)

Date solved : Tuesday, December 17, 2024 at 06:50:31 AM
CAS classification : [_linear]

Solve
V2 + 1y —y=2vVa2+1

Solved as first order linear ode
Time used: 0.130 (sec)

In canonical form a linear first order is
Y +q(z)y = p(x)

Comparing the above to the given ode shows that

1
2 +1

The integrating factor u is

uzefqu

— o/ van®
_ 1
z+vVzr2+1

The ode becomes
d
e (1y) = pp

() = (1) 2)

i erver) = rve) @
(o) = Grvern)

Integrating gives

] 2
———= | ———=dx
r+ V241 /x+\/ac2+1
= zvx2 + 1 + arcsinh (z) — 2° + ¢;
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Dividing throughout by the integrating factor w/ﬁ gives the final solution

y = <x+ Va2 + 1) (x\/acz + 1+ arcsinh (z) — 2° +cl>
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Figure 2.53: Slope field plot
V2+1ly —y=2vx2+1

Summary of solutions found

Y= <x+ Va2 + 1) (xx/xz + 1 + arcsinh (z) — 2° —l-cl>

Solved as first order Exact ode
Time used: 0.149 (sec)

To solve an ode of the form

M(z,) + N(z,) B =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
EE¢@%y)_O
Hence 96 04d
Yy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Ay
But since % = % then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘12 (ffy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or




CHAPTER 2. BOOK SOLVED PROBLEMS 178

might not exist. The first step is to write the ODE in standard form to check for exactness,
which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
( x2+1> dy = (y+2\/$27+1> dx
(—y - 2\/3TH) dz +(\/QT—H> dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —y—2Vz2+1
N(z,y) = Va2 +1

The next step is to determine if the ODE is is exact or not. The ODE is exact when the

following condition is satisfied
oM _ ON

oy Oz

Using result found above gives

oM _ 9 <—y—2\/rﬂ>

dy Oy

=1
And
ON 0
Y _ Y (/2
or 8z< z-l—l)
B T
2 +1

Since %i; # %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L] <8M 8N>

T N\dy Oz

=l ()

/=g g
z2+1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is

uzefAdw

_ T

z2+1

The result of integrating gives

X In 124—1
p=e" arcsinh(z)— ( 5 )
B 1
Va2 +1 (z+ V22 +1)
M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

1 2
RS (z+ Va2 +1) (—y—ZM)

_ y+2vVz2+1
Va2 +1 (z+ V22 +1)
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And
N =uN
- v (5
2+1 (z+ V2 +1)
1
VIR + 1

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

M+ N _
dx
_ y+2vz2+1 +< 1 )d_y_
Va2 +1 (z+ Va2 +1) r++vVa2+1/) dz
The following equations are now set up to solve for the function ¢(z,y)
0p —
T _-M 1
ox (1)
0p —
2 =N 2
o )

Integrating (2) w.r.t. y gives

@dyz /Ndy
Oy

o= [ v
6= (Va2 +1-2)y+ f(a) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t  gives

. (ﬁ _ 1) v+ f(=) (4)

But equation (1) says that ¢ = — \/Tﬁz(‘/%

3 Therefore equation (4) becomes

y+2vVz2+1 _( z

T — - 1)y+ /@ 5)

xr2

Solving equation (5) for f'(z) gives
, 2
T)=————
/@) r+Vr2+1

Integrating the above w.r.t = gives
2
"(z dx:/(——) dx
/f (@) z+vVar+1
f(z) = 2° — V22 + 1 — arcsinh (z) + ¢;

Where c¢; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢
¢ = (\/wQ +1-— x) y+ 2? — 2v/22 + 1 — arcsinh (z) + ¢
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But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢y constants into the constant c; gives the solution as

o = (, /22 + 1 — $) y+ 22 — 2v/22 + 1 — arcsinh (z)

Solving for y gives

_ xv/z? + 1+ arcsinh (z) — 2° + ¢
Y Vri+l—z

— e —a—

— A s

y(x) 0
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Figure 2.54: Slope field plot
Ve2+1ly —y=2vz2 +1

Summary of solutions found

_ zvz?+ 1+ arcsinh (z) — 2%+ ¢
Y Vz+1l—zx

Maple step by step solution

Let’s solve
2+ 1(Ly(z)) —y(z) =2va2 +1

° Highest derivative means the order of the ODE is 1

=y(®)
° Solve for the highest derivative
z)+2vz2+1

o Collect w.r.t. y(z) and simplify

@) =2+ i
° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
° The ODE is linear; multiply by an integrating factor u(x)

w(z) (L) — H5) = 2(z)
o Assume the Ihs of the ODE is the total derivative - (y(z) u(z))

u(a) (£y(@) - 225) = (£4(@) 1@ + (@) (£u(2))

e  Isolate 2 u(z)

T

@) = 2
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° Solve to find the integrating factor

w®@) = s
° Integrate both sides with respect to x
[ (£ W(e) w(x))) do = [ 2p(z) do + C1
° Evaluate the integral on the lhs
y(@) u(x) = [ 2u(z) dw + C1
o Solve for y(x)

2u(z)dz+C1
y(z) = fﬂ%

o Substitute u(z) = m
y(z) = (z+ V22 + 1) (f el + CI)
° Evaluate the integrals on the rhs

y(z) = (z+ V22 + 1) (zv2? + 1 + arcsinh(z) — 2 + C1)

Maple trace

/

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 32

~2+1) " (1/2)*diff (y(x) ,x)-y(x) = 2% (x~2+1)~(1/2),
L y(x) ,singsol=all)

y(z) = (:c\/aT-i—l + arcsinh (z) — z° + cl> (:c + \/aT—I—l>

Mathematica DSolve solution

Solving time : 0.149 (sec)
Leaf size : 82

p
| DSolve [{Sqrt [1+x~2]1*D [y [x],x]-y[x]==2%Sqrt [1+x~2],{}},
‘ y[x],x,IncludeSingularSolutions->True]

N—

y(z) — emtanh( ””z“) (:1:\/ ( — Va2 + 1z +1
+ log <

7

H) +cl)
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Internal problem ID [4211]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 5(c)

Date solved : Tuesday, December 17, 2024 at 06:50:33 AM
CAS classification : [_linear]

Solve

VE@+a)(z+b) (2 —3)+y=0

Solved as first order linear ode
Time used: 0.338 (sec)
In canonical form a linear first order is
Y +q(z)y = p(x)

Comparing the above to the given ode shows that

(z) = .

= 2y/(z + a) (z +b)
3

P($)=§

The integrating factor u is

dx

1
n= ef 2/ (z+a)(z+b)

Therefore the solution is

1
3ef 2./ (z+a)(z+b) dz _f 1 dx
Y= dx +c|e 2/ (z+a)(z+b)

2

Summary of solutions found

dx

f%dz
3¢’ 2V/ra@th)
y=(/ :

1
dz + q) e | aErae

Solved as first order Exact ode
Time used: 0.328 (sec)

To solve an ode of the form

M(z,) + N(z,y) B =0 )

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. = gives

< owy) =0
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Hence 8(15 (9¢ p
ay
B
oz 8y dz =0 (B)
Comparing (A,B) shows that
99 _
or
99 _
oy
But since 6‘9; gy = ayaz then for the above to be valid, we require that
oM _ oN
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
Eff gy = a‘fg’x is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,

which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

<2\/(x+a)(x+b)) dy = (3\/(m+a)(x+b)—y> dz
(—3\/(x+a) (z+0) +y) dx+<2\/(x+a) (x+b)> dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —3\/(z+a) (z +b) +
N(z,y) = 2\/(z +a) (z +b)

The next step is to determine if the ODE is is exact or not. The ODE is exact when the

following condition is satisfied
OM ON

By Or
Using result found above gives

%—fz%(—3\/(x+a)(w+b)+y>
1

And
N
889: (2\/ z+a)(z+ b)>
_at+b+2z
V(z+a)(z+b)
Since %iy‘[ %];] , then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let
4o L(om_ox
oy or

_ 1 <(1)_< a+b+2z ))
2y/(z+a) (z+b) V(z+a)(z+D)

_VE+a)(z+b)—a—b—2z
B 2(z+a)(z+0)
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

p= efAda:
f v/ (z+a)(z+b)—a—b—2z dz
—e 2(e+a)(a+b)
The result of integrating gives
(a—b) 1n(%+g+z+,/(z+b)2+(a—b)(z+b)) (b—a)ln(%+%+z+\/(z+a)2+(b—a)(z+a))
V (2+b)2+(a—b) (z+b)+ > _ (@+a)24(b—a)(z+a)+ . _In((z+a)(z+
p=ce 2a—2b 2(a—b) 2
\/a+b+2a:+2\/(x+a)(ac+b)\/§
2\/(z+a)(z+b)

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

a+b+2z+2/(z+a)(z+b)V2
= \/ - +2\/(—;+\2()(:+)b§ +h) <—3\/(x+a)(x+b)+y)
(—3\/(z+a)(x—l—b)—|—y>\/a+b+2x+2\/(x+a)(z+b)\/§

2¢/(z +a) (z +b)

And
N =uN
B \/a+b+2x+2\/(x+a)(x+b)\/§
2¢/(z +a) (z +b)
=\/a+b+2x+2\/(x+a)(x+b)x/§

(2V@+a) @ +b))

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is

i

(—3\/($+a)(x—|—b)—|—y) \/a+b+2x+2\/(x+a)(x+b)\/§
N e

+ <\/a+b+2z+2 (x+a)(z+b

The following equations are now set up to solve for the function ¢(z,y)

EZM (1)
S
5 = (2)

Integrating (2) w.r.t. y gives

@dyz /Ndy
Ay

g—zdyz/\/a+b+2x+2\/(x+a)($+b)\/§dy

p=Ja+b+25+2/(@+0)(@+b)V2y+ f(z) 3)
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Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

%: \/_y<2+ _ atbi2z )

(z+a)(z+b)

+ f'(z) (4)

2\/a+b+2x+2\/a:+a ) (z +b)

\/_y\/ +b+ 2z 42/ (z +a) (z + b)
2\/(z+a (x+b)

+ f'(z)

(=3 @ra)@Hb)+y)  atbt2e+2y/(w+a)(@+b) V2

2/(z+a)(z+b)

But equation (1) says that 22 = . Therefore equa-

tion (4) becomes

(—3\/(x+a)(x+b)+y> \/a+b+2x+2\/(a:+a)(z+b)\/§

2¢/(z +a) (z+b) (5)
 VEyfatb+2w+2)/(@ta)(@+D)
B 2/(z +a) (z +b)

+ f'(z)

Solving equation (5) for f'(z) gives

3y/a+b+2z+2/(z+a)(@+b)V2
2

fa)=-

Integrating the above w.r.t = gives

/f’(x)dz :/ (_3\/a+b+2x+2\/(x+a) (z +b) \/5) s

2

dr + ¢,

f(ac):/090_3\/a+b—|—27+2\2/(T+a)(7'+b)\/§

Where c; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢

qb:\/a+b+2ac+2\/(a:+a)(x+b)\/§y+/x

3\/a+b+27'+2\/(7'+a)(7'+b)\/§
B 2

dr+ ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy; constants into the constant c; gives the solution as

01=\/a+b+2x+2\/(x+a)(w+b)\/éy+/w_3\/a+b+27+2\/(7+a)(7—+b)\/§d7-

2

Solving for y gives

0

(fz 3 a+b+27-+2\/m\[d B )\/5

y=-

2\/a+b+22+2/(c+a) (@ +b)
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Summary of solutions found

z 31/ a+b+2742/(7+a)(T+b) V2
(fo— \2/< )(r+b) dT—cl)\/i

y=-

2\/a+b+2x+2\/(x+a)(m+b)

Maple step by step solution

Let’s solve

V(z+a)(z+b) (2Ly(z) —3) +y(z) =0
° Highest derivative means the order of the ODE is 1

&y(@)

° Solve for the highest derivative
d (.’I?) _ _ y(=)—3y/(z+a)(z+b)
dY 2/ ta)(@+b)

o Collect w.r.t. y(z) and simplify
y(z)

d _3
() =3 = 5 GhaeT
° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE

4 _ y@ 3
LY@+ 3 rae — 2
° The ODE is linear; multiply by an integrating factor u(x)

T 3u(x
u(@) (Ly(@) + 5720 ) = o
o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

(@) (£y(@) + 77259 ) = (L) w(@) + y(@) (Eulz))
o Isolate - /u(x)

p(z)

d _
wH(®) = 5 i aerm
° Solve to find the integrating factor
u(x) = \/2a—|-2b+4a:—|—4\/(a:+a) (x +b)

° Integrate both sides with respect to x

J (£ (@) p(x))) de = [ 24Ddz + C1
° Evaluate the integral on the lhs

y(z) p(z) = [ 22z + 1
o Solve for y(x)

R 2F e
yo) ="

e  Substitute p(z) = \/2(1 +2b+4z+4/(z +a) (z+b)
f 3\/2a+2b+4x+4\/m
2

\/2a+2b+4z+4« /(z+a)(z+b)
° Simplify
3 ( [ \/2a+2b+4a-+4, /(x+a)(x+b)dx> +201
y(z) =

2y/2a-+2b+40+4,/(a+a) (@ +d)
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 60

‘ dsolve (((x+a)*(x+b)) ~(1/2)*(2xdiff (y(x),x)-3)+y(x) = O,
‘ y(x) ,singsol=all)

3(f\/2a+2b—|—4m+4\/(m+a)(m—l—b)daz) +4c
y(z) =

2\/2a+2b+4:v+4\/(x+a) (z+0)

Mathematica DSolve solution

Solving time : 0.637 (sec)
Leaf size : 115

‘ DSolve [{Sqrt [(x+a)* (x+b)]1* (2D [y [x] ,x]-3)+y [x]==0,{}},
‘ y[x],x,IncludeSingularSolutions->True]

) Va+ K[/b+ K[]

y(z)
va+ xvb+ xarctanh( ﬁm) /z 3 arctanh ( \/%
— exp 5 €Xp
V(a+z)(b+2) 1 2

V(a+ K1) (b + K[1])

+c



CHAPTER 2. BOOK SOLVED PROBLEMS 188

2.1.23 problem 5(d)
Solved as first order linearode . . . . ... ... ... ....... 1R8]
Solved as first order Exactode . . . . .. ... ... ........ 189
Maple step by step solution . . . . . . ... ... ... ... 192
Maple trace . . . . . . . . . . e e 193
Maple dsolve solution . . . . . ... .. ... oL 193]
Mathematica DSolve solution . . . . . .. ... ... ... ..... 193]

Internal problem ID [4212]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 5(d)

Date solved : Tuesday, December 17, 2024 at 06:50:36 AM
CAS classification : [_linear]

Solve

Vc+a)(z+b)y +y=ve+a—Vz+b

Solved as first order linear ode
Time used: 0.336 (sec)

In canonical form a linear first order is

y +a(z)y = p(z)
Comparing the above to the given ode shows that
1
Q\r) =
(=) V(z+a)(z+D)
_Vrt+a—Vz+b
V(z+a)(z+D)

p(z)

The integrating factor u is
1
= ef Teraem &

Therefore the solution is

1
dz + ¢, | e ! Veromm

= (\/117 +a—Vz+ b) ef (m+al)(x+b) dz
y / V(@ +a) (z +0)

Summary of solutions found

1
dz + ¢ | e VEroEm

_ / (\/3C +a—Vz+ b) ef e
o V(@ + a) (z +b)
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Solved as first order Exact ode
Time used: 0.264 (sec)

To solve an ode of the form

M(z,9) + N(z,9) 2 =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the ode.
Taking derivative of ¢ w.r.t. x gives

d
Hence 06 0 d
Yy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
09
T M
ox
09
T _N
9y
But since % = (,;9; g; then for the above to be valid, we require that
oM _ oN
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = 6‘9;—8"; is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness,
which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(\/(x+a)(m+b)> dy = (—y+\/:v+a—\/ac+b> dz
(y—\/x+a+\/x+b>dx+<\/(x+a)(x+b)>dy=0 (2A)

Comparing (1A) and (2A) shows that

M(z,y)=y—vVz+a+Vz+b
N(z,y) = V/(z +a) (z +b)

The next step is to determine if the ODE is is exact or not. The ODE is exact when the

following condition is satisfied
OM  ON

dy Oz

Using result found above gives

88—]\;=%<y—\/x+a+\/x+b)
=1
And
ai;fzﬁx(\/(x+a)(x+b)>

_ a+b+2z
2¢/(z +a) (z+b)
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Since %i; # %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L L(OM _oN
N\ Oy Oz

_ 1 (1) - a+b+2x
V(z+a)(z+b) 2/(z +a) (z +b)

_2/(z+a)(z+b)—a—b—2
B 2(z+a)(z+0)

Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor p is

N=6fAd:1:

f 2 (z+a)(z+b)7a7b72zd

2(z+a)(z+b) z

=e

The result of integrating gives

(a—b) ln(%+%+w+a/(w+b)2+(a—b)(w+b)) (b—a) 1n(g+ g +w+\/(m+a)2+(b—a)(w+a))

V/ (@+b)2+(a—b)(z+b)+ > _ (@+a)2+4(b—a)(z+a)+ 5 _In((z+a)(z+
M = e a—b a—b P}
_a+b+2z+2\/(z+a)(x+D)
2/ (z +a)(z+0)

M and N are multiplied by this integrating factor, giving new M and new N which are
called M and N for now so not to confuse them with the original M and N.

M =pM

_a+b+20+2y/(z+a)(z+b)/ r+a+Vz

_ Wi (v-vo+a+Vao+b)

_(y—\/x-l-a-l-\/x-l-b)(a+b+2m+2\/(z+a)($+b)>

= 2\/(z+a)(z+0)

And

N =uN
_a+b+2c+2\/(z+a)(z+b) z+a)(z
B 2\/(z +a) (z +b) <\/( ot +b)>
= et VT @ty

Now a modified ODE is ontained from the original ODE, which is exact and can be solved.
The modified ODE is
dy

M < =
+ dzx

N
(?/—\/x+a+\/x+b)<a+b+2x+2\/(x+a)(x+b)> 0 b i
( 2\/(z +a)(z+0) +(§+§+$+\/(x+a)(m+b)>£=o

The following equations are now set up to solve for the function ¢(z,y)

06  —
=M (1)
%N 2
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Integrating (2) w.r.t. y gives

@dy= /Ndy
dy

dp . [a b
6—ydy—/§+§+z+\/(z+a)(x+b)dy

a+b+2x+2\/(z+a)(z+0d)
ool é ) s 1 ©

Where f(z) is used for the constant of integration since ¢ is a function of both z and y.
Taking derivative of equation (3) w.r.t z gives

__atbi2x
% — (2 + V(z+a)(w+b)) Y + f/( ) (4)
oxr 2 o

(y—v/a@Fa++/z+b) (a+b+2x+2\ /(x+a)(m+b)>
2+/(z+a)(z+b)

But equation (1) says that g—f = . Therefore equation

(4) becomes

(y_¢x+a+¢x+b)(a+b+2z+2\/(z+a)(w+b)>_<2+%>y :
NCEDICED - 2 e
(5)

Solving equation (5) for f'(z) gives

<a+b+2a:+2\/(:c—|—a)(w+b)> (Vz+a—Vz+b)

fla) =~ 2/ (@ +a) (@ +b)

Integrating the above w.r.t = gives

/f’(x)dm:/ (_<a+b+2x+2\/(x+a)(x+b)) (\/x+a—\/x+b)) "

2y/(z+a) (z+b)

V(z+a)(z+0b)(2z — b+ 3a)

f(@)=— N
VE+a)(@+b) 2z —a+3b) 2a+a)*? 2z +0b)>?
" 3Vz+b N 3 + 3 +ca

Where ¢; is constant of integration. Substituting result found above for f(z) into equation
(3) gives ¢

<a+b+2w+2\/(x+a)(x+b)>y \/(x+a)(x+b)(2x—b+3a)

¢= 2 B 3Vr+a
N ViE+a)(@+b)Qr—a+3b) 2+a)’’ N 2z + b)*? e
3V +b 3 3 '

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

(a+b+2x+2\/(x+a)(z+b))y_ \/(x+a)(x+b)(2x—b+3a,)

2 3vz ta
N V@ +a)(@+0b)(2c—a+3b) 2z +a)*? N 2z + b)Y’

3Vx+b 3 3

Ci =
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Summary of solutions found

<a+b+2x+2\/(x+a)(x+b)>y V@ +a) (@ +0b) (2z — b+ 3a)

2 3Vzr+a

N ViE+a)(@+b)Qr—a+3b) 2+a)’’ L 2+ b)** _ .

3Vz+b 3 3

Maple step by step solution

Let’s solve

V(z+a)(z+b) (Zy(@) +yl@) =vo+a—Vz+b
° Highest derivative means the order of the ODE is 1

=y(@)

° Solve for the highest derivative
d _ —y(@)+vzta—vx+b
(@) = /(@ta)(@+b)

) Collect w.r.t. y(z) and simplify

d —___ y@ Vata—yvz+b
dwy(x) V/ (z+a)(z+b) t V/(z+a)(z+b)

o Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE

d y(z) — Vzta—v z+b
dz y(.’I;) + \/(z-‘,-a) (z+b) \/(Z-l-a) (z+b)

° The ODE is linear; multiply by an integrating factor u(x)

d y(z) _ #=@)(Vzta—va+b)
p(z) (dmy(m) + \/(w+a)(z+b)> = T J@ta)@td)

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

() (Ly(@) + 20 ) = (@) w(@) + y(@) (Lu(e))

e Isolate 2 u(z)

p(z)

d _
k(@) = (@+a)(@1b)
. Solve to find the integrating factor

wz)=a+b+2zx+2/(z+a)(x+b)

° Integrate both sides with respect to x
(z) (Va+ta—vz+b
| (@) ule)) de = [ “2REEL R dn + O

° Evaluate the integral on the lhs

x T+a—\/z+b
y(@) p(z) = [ LD gy

o Solve for y(x)

| ) (/oFa—/eFE

) dz+C1
_ V (z+a)(z+b)
y(@) = @

e  Substitute u(z) = a+b+2z+2+/(z + a) (z+ b)
(a+b+22+2y/(aFa) (@ +D) ) (VaFa—vaTh)

y(z) = (GO de+C1
a+b+2z+2/(z+a) (z+b)
. Evaluate the integrals on the rhs
4(z+0a)3/2  a(ztb)3/2 4 2vz¥a (z+b)(2z—b+3a) _ 2va+b (z+a)(2z—a+3b) 101
y(;z;) = 3 3 3v/(z+a)(z+b) 3y/(z+a)(z+b)
a+b+2x+2+/(z+a)(z-+b)

° Simplify
. 2 ( ((2a+2w)\/w+a+(—2b—2z) Vz+b+ %) v/ (z+a)(z+b)+3(z+b) (— %-I—a—l— %z) Vz+a+vz+b (z+a) (—2z+a—3b)>

y(x) - (z+a)(z+b) <3a+3b+6m+6 (m+a)(m+b))
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 114

‘ dsolve (((x+a)*(x+b)) ~(1/2)*diff (y(x) ,x)+y(x) = (x+a)~(1/2)-(x+b)~(1/2), \

‘ y(x) ,singsol=all)

y(z)

:2((2a+2x)\/m+(—2b—2a:)\/z+b+3cl) Ve+a)(z+b)+6(x+b) (-2+a+%)Vzt+a+

V(z+a)(z+b) <3a+3b+6x+6\/(x+a)(x+b)>

Mathematica DSolve solution

Solving time : 2.815 (sec)
Leaf size : 145

e

DSolve [{Sqrt[(x+a)* (x+b)]*D[y[x],x]+y[x]==Sqrt [x+a]-Sqrt [x+b],{}},

‘ y[x],x,IncludeSingularSolutions->True] ‘

y(z)
2v/a + z/b+ xarctanh(%fiiﬁ)
—exp | —

V(a+z)(b+2)

2arctanh< ﬁ::ﬁﬂ) ot K]+ K]
s P V(a+K[])(b+K[1]) < a+ K[1]

1 Vie+ K[1])(b+ K[1])

+c
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