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CHAPTER 1. LOOKUP TABLES FOR ALL PROBLEMS IN CURRENT BOOK

1.1 Exercises 3, page 60

Table 1.1: Lookup table for all problems in current section

) Vel +1y +y =2z

b) Va2 +1y —y=2Va? +1

c) VE+a)(z+b) (2 —3)+y=0

d) ViE+a)(z+b)y+y=vVr+ta—Vz+b
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ID problem ODE
4190, 1(a) yy =z
1(b) y —y=21°
1(c) Y +ycot(z) ==z
1(d) Yy + ycot (z) = tan (z)
1(e) Yy + ytan (z) = cot (x)
1(f) Y +yln(z)=z""
4196  2(a) oy +y=c
4197 2(b) —y+zy =x3
4198/ 2(c) zy +ny ="
4199 2(d) zy —ny ="
2A)  (P+n)yty=a
3(a) cot(z)y +y==z
3(b) cot (z) y' +y = tan (z)
3(c) tan (z)y' +y = cot (x)
3(a) tan (z)y =y — cos (z)
4205 4(a) y' + ycos (z) = sin (2x)
4206/  4(b) y' cos (z) + y = sin (2z)
4207 4(c) y' + ysin (z) = sin (2x)
4208 4(d) sin (z) y' + y = sin (2z)
(
(
(
(

=
[\
—_
N
ot



oHaPTER 2
CHAPTER

Book SOLVED PROBLEMS

2.1 Exercises 3, page 60 . . . . . . ... L L Lo



CHAPTER 2. BOOK SOLVED PROBLEMS 8
2.1 Exercises 3, page 60

2.1.1 problem 1(a) . . . . . ... i)
212 problem 1(b) . . .. . ... 36
2.1.3 problem 1(c) . . . . . ... e 50
2.14 problem 1(d) . . . . . . ... bY
2.1.5 problem 1(e) . . . . . . . ... 66l
2.1.6 problem 1(f) . . ... .. ... (4
2.1.7 problem 2(a) . . . .. ... ’2
2.1.8 problem 2(b) . . .. . ... 105
2.1.9 problem 2(c) . . . ... 121]
2.1.10 problem 2(d) . . . . . . ... 133l
2.1.11 problem 2(e) . . . . . . ... 144
2.1.12 problem 3(a) . . . . ... 160
2.1.13 problem 3(b) . . . . . .. 168
2.1.14 problem 3(c) . . . . . ... 176l
2.1.15 problem 3(a) . . . . . ... 184
2.1.16 problem 4(a) . . . . . .. ... 192
2.1.17 problem 4(b) . . . . ... 200
2.1.18 problem 4(c) . . . . ... 208
2.1.19 problem 4(d) . . . . . . ... 276l
2.1.20 problem 5(a) . . . . ... 2241
2.1.21 problem 5(b) . . . . . ... 232
2.1.22 problem 5(C) . . . ... 247]
2.1.23 problem 5(d) . . . . ... 249



CHAPTER 2. BOOK SOLVED PROBLEMS 9

2.1.1 problem 1(a)
Solved as first order separableode . . . ... ... ... .... )
Solved as first order homogeneous class Aode . . . . . ... .. 11
Solved as first order homogeneous class D2 ode . . .. ... .. 14
Solved as first order homogeneous class Maple Code . . . . . . 16}
Solved as first order Bernoulliode. . . . . . . ... ... .... 211
Solved as first order Exactode . . . .. ... ... ... .. .. 23
Solved as first order isobaricode . . ... ... ... ... ... 26
Solved using Lie symmetry for first orderode . . ... ... .. 29]
Maple step by step solution . . . . ... ... ... ... .... 134
Maple trace . . . . . . . . . .
Maple dsolve solution . . . .. ... ... ... .. ....... 351
Mathematica DSolve solution . . . . . ... ... ........

Internal problem ID [4190]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 1(a)

Date solved : Tuesday, December 17, 2024 at 06:49:48 AM
CAS classification : [_separable]

Solve
yy=z

Solved as first order separable ode
Time used: 0.178 (sec)

The ode y' = % is separable as it can be written as

/

y:

Where
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Integrating gives

+2¢;

xr2

:

y:

Solving for y gives

+ 2¢;

x2

:

y=-
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Figure 2.1: Slope field plot

Yyy==c

Summary of solutions found

2 + 2¢;

y:

72+ 2¢;

y=-
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Solved as first order homogeneous class A ode
Time used: 0.500 (sec)

In canonical form, the ODE is

y' = F(z,y)
x
== 1
y (1)
An ode of the form 3’ = % is called homogeneous if the functions M(z,y) and

N(z,y) are both homogeneous functions and of the same order. Recall that a function
f(z,y) is homogeneous of order n if

[z, t"y) =" f(z,y)

In this case, it can be seen that both M = z and N = y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = £, or y = uz.

Hence
% _ du

dz ~ dz
Applying the transformation y = uz to the above ODE in (1) gives

r+u

dzx Y
du ﬁ—u(w)

dz = =

Or
v (z) u(z) 4+ u(z)® —1=0

Which is now solved as separable in u(z).

The ode v/'(z) = —% is separable as it can be written as
2
-1
) = 12

= f(2)g(u)
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Where
1
fla)=—_
u? —1
gu) = —

Integrating gives

U 1
/u2_1du—/—;dz

nltef 0 (1)

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or # = 0 for u(z)
gives

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

MZIH(E)M

2
u(z) = -1
u(z) =1
Solving for u(z) gives
u(z) = -1
u(z) =1
N
wz) = ———
x
u(z) = ——
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Converting u(x) = 1 back to y gives

Y gives

261 2
€—*2 back to

Converting u(x) =

e2cl + x2

y:

Y gives

2cq 2
—¥e m“ back to

Converting u(z) =

chl + 1.2

y=—
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Summary of solutions found

e2c1 + .172
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Solved as first order homogeneous class D2 ode
Time used: 0.283 (sec)

Applying change of variables y = u(x) z, then the ode becomes

(W' (z)z +u(z))u(z)z =1

Which is now solved The ode v/'(z) = —“S”():;;l is separable as it can be written as
2
= f(z)g(u)
Where
1
fla)=—_
u?—1
gu) = —

Integrating gives

U 1
/u2_1du—/—5dz

nltef 0y (1)

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or “=1 = 0 for u(z)

gives
u(z) =1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(z)® — 1) . (1) e
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Solving for u(z) gives

—1 back to y gives

Converting u(zx)

Converting u(xz) = 1 back to y gives

Y gives

2c 2
e+ hack to

Converting u(x) =

x

6201 + x2

y:

Y gives

2cq 2
—¥e m“ back to

Converting u(z) =

e201 + 1.2

y=-
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Summary of solutions found

Il
8

A /6201 _|_ .’)32

® e e
i
|
8

A /6201 + x2

Summary of solutions found

Il
8

A /6201 _|_ $2

—T

— A /e201 + x2

SIS
i

Solved as first order homogeneous class Maple C ode
Time used: 0.472 (sec)

Let Y =y — yo and X = x — z, then the above is transformed to new ode in Y (X)

Solving for possible values of xy and yo which makes the above ode a homogeneous ode
results in

$0=0

Yo =0

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d X
x X =y X)
In canonical form, the ODE is
Y =F(X,Y)
X

=y (1)
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An ode of the form Y’ = %g}}:)) is called homogeneous if the functions M(X,Y) and
N(X,Y) are both homogeneous functions and of the same order. Recall that a function

f(X,Y) is homogeneous of order n if
fE"X,"Y) =t"f(X,Y)

In this case, it can be seen that both M = X and N = Y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode
is homogeneous, it is converted to separable ODE using the substitution v = %, or

Y = uX. Hence

dY du

X ~ax*
Applying the transformation Y = uX to the above ODE in (1) gives
du _ 1
—X
axt T
du _ g~ ulX)
dx X
Or . (x)
wx) ¥
X —
u(X) X 0
Or

(diXu(X)> u(X)X +u(X)—1=0

Which is now solved as separable in u(X).

The ode J%u(X) = —“if)g;(l is separable as it can be written as
d u(X)® -1
LX) = ) T
XX = ox
= f(X)g(w)
Where
1
X)=—=
FX) =%
u?—1
g(u) = —

Integrating gives




CHAPTER 2. BOOK SOLVED PROBLEMS 18

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or “21:1 = 0 for
u(X) gives

u(X)=-1
u(X)=1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (w(X)* -1 1
(=1, (1)
u(X)=-1
uw(X)=1
Solving for u(X) gives
w(X)=-1
u(X)=1
wX) = ——
X
wX)=——"—5"—
X
Converting u(X) = —1 back to Y (X) gives
Y(X)=-X
Converting u(X) = 1 back to Y(X) gives
Y(X)=X

Converting u(X) = —Ve%;(m back to Y (X) gives
Y (X) = Ve + X2
Converting u(X) = _—vezc;(m back to Y (X) gives

Y(X) = —vVe¥r + X2
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Using the solution for Y (X)
Y(X)=X
And replacing back terms in the above solution using

Y=y+y
XICC+.’130

Y=y
X=z

Then the solution in y becomes using EQ (A)
y==z
Using the solution for Y (X)
Y(X) = Ve + X2
And replacing back terms in the above solution using

Y =y+yo
X=z+x

Y=y
X=z

Then the solution in y becomes using EQ (A)
y = Ve + g2
Using the solution for Y (X)
Y(X)=-X
And replacing back terms in the above solution using

Y=y+y
X =z+x
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Or

(A)

Then the solution in y becomes using EQ

Using the solution for Y (X)

_ e201 + X2

Y(X

And replacing back terms in the above solution using

=Y+Y

Y
X

T+ xo

Or

Then the solution in y becomes using EQ (A)

6201 _+_ 1.2

Yy=-
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Figure 2.4: Slope field plot

Yyy==c
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Solved as first order Bernoulli ode
Time used: 0.065 (sec)

In canonical form, the ODE is

y = F(z,y)
_z
Yy
This is a Bernoulli ODE.
Y = (@) (1)
Yy

The standard Bernoulli ODE has the form

Yy = fo(z)y + fi(z)y" (2)
Comparing this to (1) shows that
fo=
h=z

The first step is to divide the above equation by y™ which gives

/

4 = T
y_n—fl( ) 3)

The next step is use the substitution v = y' ™" in equation (3) which generates a new
ODE in v(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

Yy=0+c (4)

Let

=y’ (5)
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Taking derivative of equation (5) w.r.t  gives

(6)

,U/ — 2yy/

into equation (4) gives

Substituting equations (5) and (6)

(7)

which is now solved.

)

T
Since the ode has the form v'(z) = f(z

The above now is a linear ODE in v(

then we only need to integrate f(x).

Y

)

dv

= /Qxdx

/

2+

v(z)

y'~™ is now used to convert the above solution back to y which

The substitution v

results in

2 4 ¢

y2

Solving for y gives

24 ¢
24

y:
y=-
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Figure 2.5: Slope field plot
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Summary of solutions found

y=vVz2+c
y=—val+c

Solved as first order Exact ode
Time used: 0.087 (sec)

To solve an ode of the form

M(z,9)+ N(z,9) 2 =0 (A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
ZEE¢(xay) =0

0  O¢pdy
Oz 8y dz (B)

Hence

Comparing (A,B) shows that

09 _
or
09 _
oy

But since 8‘9 g = 2% then for the above to be valid, we require that

Oyor

OM _ ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa 5’5 is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore

(y)dy = (z)dz
(—z)dz+(y)dy =0 (2A)
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Comparing (1A) and (2A) shows that

M(l‘,y) =z
N(:C,y) =Y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM _ 0
dy Oy

And
ON 0
% = %(y)
=0
oM __

Since By = ‘%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

8(;5_
g—M
6¢_
ay =

1)
2)

Integrating (1) w.r.t. z gives

oo .
%dx—/de

op .
%dx— /—wda:

.’L‘2

¢=—5 +f 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ /
3y =0+ 1" (y) (4)
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But equation (2) says that g—‘z = y. Therefore equation (4) becomes
y=0+f(y) (5)
Solving equation (5) for f’(y) gives
f'y) =y

Integrating the above w.r.t y gives

[rwa= [ e

2
f(y)=y§+01

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
x2 ,y2

¢=—?+5+Cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

$2

5+

NS,

Ci = —

Solving for y gives

y=\Vx2+ 2
y=—vz2+2¢
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yy=zc

Summary of solutions found

Al
s |
QO
S |
+ |«
. 8
8
_
Il |
) S

Solved as first order isobaric ode

Time used: 0.349 (sec)

Solving for 3’ gives

1)

f(z,y) is isobaric if

Each of the above ode’s is now solved An ode ¥/

1)

" f(z,y)

)

Y

tm

Y

f(te

SIS

flz,y) =

m is the order of isobaric. Substituting (2

Where here

) into (1) and solving for m gives

then the substitution

Y

Since the ode is isobaric of order m =1
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Converts the ODE to a separable in u(x). Performing this substitution gives

u(z) + zu'(z) = 1

u(z)
The ode v/(z) = —% is separable as it can be written as
2
vy = 8 =1
= f(z)g(u)
Where
fla)=—_
u?—1
gu) = —

Integrating gives

/ﬁduz/f(x)dm
/uzu_ldu:/—%dac

len(%)_i_cl

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or =1 = 0 for u(z)

u

gives

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

Mzm(z)m
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Solving for u(z) gives

u(z) = -1
u(z) =1
A /e201 + :1;2
u(r) = ——
x
A /e201 + .’,E2
u(r) = ———
x
Converting u(x) = —1 back to y gives
Yy__4
x
Converting u(xz) = 1 back to y gives
¥y_4
x
Converting u(x) = —“’2;“””2 back to y gives
y B A /e2cl + IL'2
T T
Converting u(x) = ——“32;“””2 back to y gives
y . _1/e201 +x2
z z
Solving for y gives
y=x
Y= /e2c1 + x2
y=-z
Y= _,/e2cl + x2
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yy=zc

Summary of solutions found

e201 + $2

e201 + $2

= S D S

Solved using Lie symmetry for first order ode

Time used: 0.627 (sec)

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by

0

+ w(ny - fz) - W2€y — wz§ — Wyl =

Nz

To determine &,n then (A) is solved using ansatz. Making bivariate polynomials of

degree 1 to use as anstaz gives

(1E)
(2E)

ras + yas + a;

£
U]

xby + ybz + by
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Where the unknown coeflicients are

{ala asz, asg, bla b2a b3}
Substituting equations (1E,2E) and w into (A) gives

z(bs —az) z?ag _zagtyas+ o n x(zby + ybs + b)

=0
Yy y? Yy y?

by +

Putting the above in normal form gives

z’az — x°by + 2yzay — 2yxbs + y2az — byy® — xby + yay

y? =0

Setting the numerator to zero gives

—z2a3 + 2%by — 2yzag + 2yxbs — y2as + boy® + xby —ya; =0

(5E)

(6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}

in them

{z =v1,y = v}
The above PDE (6E) now becomes
—2a9V1V9 — G,3'U% — a3v§ + bzvf + bzvg + 2bsv1v9 — a1 + biv; =0
Collecting the above on the terms v; introduced, and these are
{v1, v2}
Equation (7E) now becomes

(—ag + bo) v% + (—2ay + 2b3) v1ve + bivy + (—a3 + by) vg —a1v3=0

(7E)

(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

by =0

—a; =0

—2a9 +2b3 =0
—as3+by; =0

Solving the above equations for the unknowns gives

a; =0
az = b3
az = by
by =0
by = by
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y)é

(2

—a? 42
Y
§=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

F=, = (1)
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The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

1
S=/—dy
7
1
:/Wdy

Y

S is found from

Which results in
In ( 25.2 y2)
2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S

ﬁ S+ w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

x
(AJ(.’E,y) = g

Evaluating all the partial derivatives gives

R, =1
R,=0
x
Sz=$2_y2
Yy
Sy:_mz_yz

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

R
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

0 (2A)

0



CHAPTER 2. BOOK SOLVED PROBLEMS 33

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

R) = Cy
To complete the solution, we just need to transform the above back to x,y coordinates.
This results in

In(—z +7y) +ln(x+y)
2 2

:C2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
ds __
%=0
EQ
R=x=x
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Figure 2.8: Slope field plot

yy=zc

Summary of solutions found

:CZ

In(z+y)

In(—z+y)

Maple step by step solution

Let’s solve

y(@) (#y(@) ==

Highest derivative means the order of the ODE is 1

d
dx

y(z)
Integrate both sides with respect to x

Jy(@) (Ly(=))

[ zdz+ C1

dzr =

Evaluate integral

+ C1
Solve for y(x)

y@)? _ 22

2

2

{y(z) = V2® +2C1,y(z) = —Vz> + 2C1}
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful”

Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 23

dsolve(y(x)*diff (y(x),x) = x,
y(x),singsol=all)

y(xz) =vVa2+
y(x) =—vVal+ ¢
Mathematica DSolve solution

Solving time : 0.117 (sec)
Leaf size : 35

‘ DSolve [{D[y[x],x]*y[x]==x,{}},

y[x],x,IncludeSingularSolutions->True]

y(x) = —vVz2+2¢
y(z) = V2 4+ 2¢;
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2.1.2 problem 1(b)
Solved as first order linearode . . . . . . . . . ... ... ... 36
Solved as first order Exactode . . . . . . . .. ... ... ... 38
Solved using Lie symmetry for first orderode . . . .. .. . .. 42]

Maple step by step solution

Maple trace

Maple dsolve solution

Mathematica DSolve solution

Internal problem ID [4191]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 1(b)

Date solved : Tuesday, December 17, 2024 at 06:49:51 AM
CAS classification : [[_linear, ‘class A‘]]

Solve

y —y=2a’

Solved as first order linear ode

Time used: 0.108 (sec)

In canonical form a linear first order is

Y + q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

g(z) = —1
p(z) = 2°

M:efqda:

- ef(_l)dw

e

—T
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Dividing throughout by the integrating factor e gives the final solution

The ode becomes
Integrating gives

CHAPTER 2.

Figure 2.9: Slope field plot
y-y=2’

y=—-13+c e —32°—62—6

Summary of solutions found
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Solved as first order Exact ode
Time used: 0.111 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (2 +y) dz
(—2° —y)dz+dy =0 (2A)

Comparing (1A) and (2A) shows that
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0 3
o ~oy Y
=-1
And
ON
1
B = ( )
= O

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratmg factor to make it exact. Let

3_M _oN
Jy ox
= 1((—1) —(0))
=-1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
p=e JAdz
— ef —1dzx

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.
M = uM
— (- —y)
— (:B3 + y) e
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And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

0p —
¢ _~

Integrating (2) w.r.t. y gives
% dy = / N dy
9y

9 . _ [ 2
a—ydy—/e dy

p=ye *+ f(z) 3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t = gives

9 _

Pyt () @

But equation (1) says that % = —(z3 + y) e~®. Therefore equation (4) becomes

—(2° +y)e" =—ye " + f(z) (5)
Solving equation (5) for f'(z) gives

J'(@) =~z
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Integrating the above w.r.t = gives

/f’(z) dx=/(—x3e_z) dz

(z°+32°+6z+6)e "+

f(z)

Where ¢; is constant of integration. Substituting result found above for f(z) into

equation (3) gives ¢

(b=ye_x+(x3+3x2+6x+6)e_’”+cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and

combining c¢; and ¢, constants into the constant c; gives the solution as

a=ye "+ (z°+3z>+6x+6)e”

Solving for y gives

y=— (w3e_”’ +3z% " 46z +6e° — cl) e’

B e

B e
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Figure 2.10: Slope field plot

y—y=2°

Summary of solutions found

y=—(2°e"+3s% " +6re " +6e " —ci)e
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Solved using Lie symmetry for first order ode
Time used: 0.766 (sec)
Writing the ode as
y=a+y
Y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo+ w1y — &) — W€y — wef —wyn =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 2 to use as anstaz gives

€ = 2%a4 + yzas + ylag + zas + yas + a1 (1E)
n= .’L‘2b4 + ywb5 + y2b6 + .’I7b2 + yb3 + bl (2E)

Where the unknown coeflicients are

{ala a2, a3, 44, s, 6, bla b2a b37 b47 b5a bﬁ}

Substituting equations (1E,2E) and w into (A) gives

2xbs + ybs + by + (2° +y) (—2za4 + zbs — yas + 2ybe — az + by) (5E)
— (L + y)2 (zas + 2yag + a3) — 32 (z%as + yzas + y’as + zaz + yas + a1
— 2%by — yxbs — y?bg — by — ybs — by =0

Putting the above in normal form gives

—x"as — 2x6ya6 — z%a5 — 2w4ya5 — 4x3y2a6 — 5ztay + b5 — 2w3ya3 — 4x3ya5
+ 223ybs — 3x%y%ag — 42ay + 23bs — 32%yas — v y?as — 2ylas — 327y
— 2%by — 2zyas — y2as — ylas + y2bg — xby + 2xbs — yas + ybs — by + by =0

Setting the numerator to zero gives

—x as— 2x6ya6 —x’as— 2x4ya5 — 4x3y2a6 —5zta,+xtbs — 2x3ya3 — 4a:3ya5 (6E)

+ 2x3yb6 — 3x2y2a6 —423ay + 23b5 — 3x2ya3 -z y2a5 — 2y3a6 —32%a;
— 2°by — 2zyas — y®az — y®as + y°b — zby + 2xby — yas + ybs — by + by =0

6
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Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y =}

The above PDE (6E) now becomes

—a5vI — 2a6va2 — agv‘f — 2a5vaz — 4a6vi’v§ — 2a3vi’v2 — 5a4vj1 — 4a5vi”v2 (7E)
— a2 4 bsv] + 2bgv3vy — 4agv? — 3a3v7vy — asv1V2 — 2a6VS + b3v> — 3a,v?

— agvg —2a4V1V9 — a5v§ — b4vf + bﬁvg — AUy — by +2b4v; +bsvy — by +by =0

Collecting the above on the terms v; introduced, and these are
{v1,v2}

Equation (7E) now becomes

—a5vz — 2(16'0?’02 — 0/3’0? — 2a5vaz + (—bays + bs) v‘f — 4a6vi”v§
+ (—2a3 — 4as + 2bg) Vivy + (—4ay + b3) Vi — 3agviv; (8E)
— 3asvivy + (—3a; — by) v} — a5v1v3 — 2040109 + (—by + 2by) vy

— 2a6v3 + (—az — as + be) v3 + (—ag + bs) va — by + by =0
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Setting each coefficients in (8E) to zero gives the following equations to solve

—3a3=0

—a3 =0

—2a4 =0
—2a5 =0

—as =0

—4ag =0
—3a6 =0
—2ag =0
—3a;—b;,=0
—4ay+ b3 =0
—as+b5=0
—5a4+ b5 =0
—by+b,=0
—by +2b, =0

—2(13 — 4a5 + 2b6 =0

—a3—a5+b6=0

Solving the above equations for the unknowns gives

-
3
a; =10
a3 =10
as =0
a5 =0
ag =0
by = 2b,
by = 2b,
bs =0
by = by
bs =0
bg =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
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any unknown in the RHS) gives

n=21z"+2z+2

Shifting is now applied to make £ = 0 in order to simplify the rest of the computation
n=mn—wxy)
1

=12+2x+2—(x3+y) (—§>

1 1
2 3
= 2r+2+ - =
o+ 2r+2+ 37 + 3Y
§=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dr dy
& n

The above comes from the requirements that ({f a% + 77(%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==zx

S is found from
1
S = / —dy
n

1
_/x2+2x+2+%x3+%y

dy

Which results in
S =3In(z*+32° + 6z +y + 6)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
ﬁ _ Sx + W(ZE, y)Sy
dR R, +w(z,y)R,

(2)
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =2 +y
Evaluating all the partial derivatives gives

R,=1
R, =0
9z2 4+ 18z + 18

234+322+6z+y+6
3

S, =
Y z3+312+6x+y+6

x:

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
dR

=3 (2A)

=3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).

/dS /3dR

R)—3R+02

To complete the solution, we just need to transform the above back to x,y coordinates.
This results in

31ln ($3+3x2+6x+y+6) =3z +c
Which gives
z4+2

y=e"ts — 23 —32> —62—6
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

ODE in canonical coordinates

(R,5)

coordinates
transformation

Original ode in z,y coordinates

S =

T T T T T TS S TS~ <—

B e e

B

B

77777////////2\\\\\\
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Figure 2.11: Slope field plot

y—y=2°

Summary of solutions found

y=e"t% —7° 32> — 62 —6
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Maple step by step solution

Let’s solve
=Y(@) —y(z) =2°
° Highest derivative means the order of the ODE is 1
=y(2)
° Solve for the highest derivative
wy(z) = y(z) +2°
° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
wy(z) —y(a) = 2°
° The ODE is linear; multiply by an integrating factor u(x)
(@) (7y(z) — y(@)) = pz) 2°
o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

w(z) (Ly(@) —y(@)) = (Hy(@) p@) +y(2) (Fu))
e Isolate L u(z)

L u(z) = —p(x)

° Solve to find the integrating factor
pu(z) = e~
° Integrate both sides with respect to x
[ (£(y(@) p(2))) do = [ p(z) a*de + C1
° Evaluate the integral on the lhs
y(@) u(2) = [ p(z) 2%do + C1
o Solve for y(x)

x)z3dx+C1
y(z) = Lot )ﬂ(x)

) Substitute p(z) = e™*

T

z3e~%dz+C1
y(z) = fe——w
° Evaluate the integrals on the rhs
— (234322 4-62+6)e %+ C1
y(z) = ( G- Je

° Simplify
y(z) = -2+ C1e® — 32> — 62 — 6
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 23

-

dsolve(diff (y(x),x)-y(x) = x73,
L y(x) ,singsol=all)

y(z) = —2° — 32% — 62 — 6 + ¢,

Mathematica DSolve solution

Solving time : 0.074 (sec)
Leaf size : 26

'DSolve [{D[y[x],x]-y[x]==x"3,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(zr) = —2> — 32> — 62+ 1" — 6
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2.1.3 problem 1(c)
Solved as first order linearode . . . . . ... ... ....... B0
Solved as first order Exactode . . . . . ... ... ....... H2
Maple step by step solution . . . . . ... ... ... ... .. Hol
Mapletrace . . . . . . . . . . ... Tl
Maple dsolve solution . . . . . ... ... ... L. ¥
Mathematica DSolve solution . . . . . ... ... ... ..... ¥

Internal problem ID [4192]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 1(c)

Date solved : Tuesday, December 17, 2024 at 06:49:53 AM

CAS classification : [_linear]

Solve

Yy +ycot(z) ==

Solved as first order linear ode

Time used: 0.123 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

q(z) = cot (z)

p(z) =z
p= efqu
— ef cot(z)dz

= sin (z)



51

(zsin (z)) dz

Kp

(y) = (1) ()
/ zsin (z) dx
sin (z) — z cos (z) + ¢1

dzx

(ysin (z)) = (sin (z)) (z)

d(ysin (z))
y=1—zcot(x)+ c; csc(x)

dx
ysin (z)

N N T T T T S S S S S S S S S S S
) 1
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Dividing throughout by the integrating factor sin (x) gives the final solution

The ode becomes
Integrating gives

CHAPTER 2.
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Figure 2.12: Slope field plot
y' + ycot ()

y=1—zcot(x)+ c;csc(x)

Summary of solutions found
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Solved as first order Exact ode
Time used: 0.156 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (—ycot (z) + z)dz
(ycot () —z)dx+dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = ycot (z) —
N(z,y) =1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
By 6_y(y cot (z) — z)
= cot ()
And
ON
1
B = ( )
= 0

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratmg factor to make it exact. Let

(-2
((COta ? ) —8(0))

= cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
— ef cot(z) dz
The result of integrating gives
u= eln(sin(ac))
= sin (z)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
= sin (z) (y cot (z) — x)

= ycos (z) — zsin (z)
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And
N = uN
= sin (z) (1)
= sin ()

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is

M+N%=0
dz
d
dy _

(ycos (z) — zsin (z)) + (sin (z)) gy

The following equations are now set up to solve for the function ¢(z,y)

0 —
oo =M @
0 —
oy = N (2)
Integrating (2) w.r.t. y gives
0¢
3y dy = / N dy
0¢ :
3y dy = / sin (z) dy

¢ = ysin (z) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and

y. Taking derivative of equation (3) w.r.t x gives

00 — yeos () + 1'a) @

(x) — xsin (x). Therefore equation (4) becomes

(5)

But equation (1) says that a¢ = Yy cos

ycos () — zsin (z) = ycos (z) + f'(x)

Solving equation (5) for f'(z) gives

f(z) = —zsin (z)
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Integrating the above w.r.t = gives

/ (—zsin (z))dz
f(z) = —sin(z) + zcos (z) + ¢

/f'(z) dzx

Where ¢; is constant of integration. Substituting result found above for f(z) into

equation (3) gives ¢

ysin (z) —sin (z) + z cos (z) + 1

¢ =

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining ¢; and cy constants into the constant c; gives the solution as

c1 = ysin (z) — sin (z) + z cos (z)

Solving for y gives
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y' + ycot ()

Summary of solutions found
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Maple step by step solution

Let’s solve
4y(z) + y(z) cot (z) =

° Highest derivative means the order of the ODE is 1
=y(@)

° Solve for the highest derivative

%y(m) = —y(z) cot (z) + z

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
y(@) +y(@)cot (v) =

° The ODE is linear; multiply by an integrating factor u(x)
w) (y(@) +y(@) cot (z)) = p(z) =

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

W(o) (£4(@) + ¥(o) cot () = (@) @) +y(z) (fn(c)
e Isolate L u(z)

2Lu(z) = p(z) cot (2)

° Solve to find the integrating factor
p(z) = sin (z)

° Integrate both sides with respect to x
[ (£(e) w(x))) do = [ p(a) zdz + O1

° Evaluate the integral on the lhs
y(@) u(x) = [ u(c) ado + C1

) Solve for y(x)

x)xdz+ C1

y(z) = Lot /)t(w)

o Substitute pu(z) = sin (x)
sin(x)zdz+C1

y(z) = L (sizl(w)

° Evaluate the integrals on the rhs
sin(z)—z cos(z)+C1
y(a:) = 2l sin(x)( -

° Simplify
y(x) =1—2zcot (z) + CI csc(z)
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 15

-

dsolve(diff (y(x),x)+y(x)*cot(x) = x,
L y(x) ,singsol=all)

y(x) = —cot (x)z+ 1+ csc(z) ey

Mathematica DSolve solution

Solving time : 0.062 (sec)
Leaf size : 17

‘DSolve[{D[y[x],x]+y[x]*Cot [x]==x, {}},
L y[x] ,x,IncludeSingularSolutions->True]

y(z) = —zcot(z) + crcse(z) + 1
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2.1.4 problem 1(d)
Solved as first order linearode . . . . . ... ... ....... H]
Solved as first order Exactode . . . . . ... ... ....... 601
Maple step by step solution . . . . . ... ... ... ... .. 64}
Mapletrace . . . . . . . . . . ... 651
Maple dsolve solution . . . . . ... ... ... L. 651
Mathematica DSolve solution . . . . . ... ... ... ..... 651

Internal problem ID [4193]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 1(d)

Date solved : Tuesday, December 17, 2024 at 06:49:55 AM
CAS classification : [_linear]

Solve

y' + ycot (z) = tan (z)

Solved as first order linear ode

Time used: 0.162 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

p= efqu
— efcot(x)dz

= sin (z)
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The ode becomes

Integrating gives

ysin (z) = /tan (x)sin (x) dx

= —sin (z) + In (sec (z) + tan (z)) + ¢;

Dividing throughout by the integrating factor sin (x) gives the final solution

y = (—sin (z) + In (sec (z) + tan (z)) + ¢1) csc (z)
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Figure 2.14: Slope field plot

y' + ycot (z) = tan (x)

Summary of solutions found

y = (—sin (z) + In (sec (z) + tan (z)) + ¢1) csc (x)
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Solved as first order Exact ode
Time used: 0.125 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (—ycot (z) + tan (z)) dz
(ycot (z) — tan (z))dz+dy =0 (2A)

Comparing (1A) and (2A) shows that

M (z,y) = ycot (z) — tan (z)
N(l‘,y) =1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 9N
oy Oz
Using result found above gives
oM 0
oy @(y cot (z) — tan (z))
= cot ()
And
ON 0
o~ o)

Since %—A; # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

am k(2 _omy

- N oy oz
= 1((cot (2)) — (0))
= cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
— ef cot(z) dz
The result of integrating gives
u= eln(sin(ac))
= sin (z)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = puM
= sin (z) (y cot (z) — tan (z))

= cos (z) y — tan () sin (z)
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And

N =uN

= sin (z) (1)

= sin (z)
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is
~dy
dx

dy
(cos (z) y — tan (z) sin (z)) + (sin (z)) a =0

M+N-=>=0

The following equations are now set up to solve for the function ¢(z,y)

0p —
g—x =M (1)
6
oy = N (2)
Integrating (2) w.r.t. y gives
0¢
ay dy = /Ndy
g—zdy = /sin (z)dy
¢ = ysin (z) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t x gives

9¢

= cos @)y + £'(@) @

But equation (1) says that % = cos (z)y — tan (z)sin (z). Therefore equation (4)
becomes
cos (z) y — tan (z) sin (z) = cos (z) y + f'(z) (5)

Solving equation (5) for f'(z) gives

f'(z) = — tan (z) sin ()
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Integrating the above w.r.t = gives

:/(—tan (z)sin (x)) dz

/f’(a:) dz

sin (z) — In (sec (z) + tan (z)) + ¢

f(=)

Where c¢; is constant of integration. Substituting result found above for f(z) into

equation (3) gives ¢

ysin (x) + sin (x) — In (sec (x) + tan (z)) + ¢

¢ =

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining c¢; and cy constants into the constant c; gives the solution as

¢y = ysin (x) + sin () — In (sec (x) + tan (z))

Solving for y gives

sin ()
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Figure 2.15: Slope field plot

y' + ycot () = tan ()

Summary of solutions found

sin ()
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Maple step by step solution

Let’s solve
Ly(z) + y(z) cot () = tan (z)

L Highest derivative means the order of the ODE is 1
&y(@)

° Solve for the highest derivative

4y(z) = —y(z) cot (z) + tan (z)

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
4 y(z) + y(z) cot (z) = tan (z)

° The ODE is linear; multiply by an integrating factor u(x)
w) (Ly(z) +y(z) cot (z)) = p(z) tan (z)

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

W(o) (£4(@) + ¥(o) cot () = (@) @) +y(z) (fn(c)
e Isolate L u(z)

2Lu(z) = p(z) cot (2)

° Solve to find the integrating factor
p(z) = sin (z)
° Integrate both sides with respect to x
| (£w(@) p(@))) do = [ p(z) tan (z) dz + C1
° Evaluate the integral on the lhs
y(@) u(x) = [ u(a) tan (z) dz + C1
) Solve for y(x)

) tan(z)dz+ C1
y(z) = [ n(=) “((gc)) +

o Substitute pu(z) = sin (x)
__ [sin(z) tan(z)dz+C1

y(m) _ sin(x)
° Evaluate the integrals on the rhs
y(a:) _ —sin(x)+ln(s;aicn((xx))—i—tan(z))+C’1
° Simplify

y(x) = (—sin (z) + In (sec (z) + tan (z)) + C1) csc (z)
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 19

-

dsolve(diff (y(x),x)+y(x)*cot(x) = tan(x),
L y(x) ,singsol=all)

y(z) = csc (z) (—sin (z) + In (sec (z) + tan (z)) + ¢1)

Mathematica DSolve solution

Solving time : 0.063 (sec)
Leaf size : 18

‘DSolve [{Dly[x] ,x]+y [x] *Cot [x]==Tan[x] , {}},
L y[x] ,x,IncludeSingularSolutions->True]

y(x) — csc(z)arctanh(sin(z)) + ¢; csc(z) — 1
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2.1.5 problem 1(e)
Solved as first order linearode . . . . . ... ... ....... 60!
Solved as first order Exactode . . . . . ... ... ....... 631
Maple step by step solution . . . . . ... ... ... ... .. 2]
Maple trace . . . . . . . . . . e [73l
Maple dsolve solution . . . . . ... ... ... L. 73]
Mathematica DSolve solution . . . . . ... ... ... ..... 73]

Internal problem ID [4194]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 1(e)

Date solved : Tuesday, December 17, 2024 at 06:49:56 AM
CAS classification : [_linear]

Solve

y' + ytan (z) = cot (x)

Solved as first order linear ode

Time used: 0.148 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

’u:efqu

— ef tan(z)dz

= sec ()
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(cot (z) sec(z)) dx

Hp

/ cot (x) sec (x) dz
= In (csc (z) — cot (z)) + ¢

(uy) = (1) (cot (z))

(1y)

dz
dz

(ysec(x)) = (sec (z)) (cot (z))
cos (z) (In (csc (x) — cot (z)) + ¢1)

d(ysec(z))

dz
ysec (x)
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Dividing throughout by the integrating factor sec (z) gives the final solution

The ode becomes
Integrating gives

CHAPTER 2.

J I e -~
////////// _, \\\\\\\\\\\x =L
S
z
=

Figure 2.16: Slope field plot
Y + ytan (z) = cot (x)

y = cos (z) (In (csc (z) — cot (z)) + ¢1)

Summary of solutions found
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Solved as first order Exact ode
Time used: 0.112 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (—ytan (z) + cot (z)) dz
(ytan (z) — cot (z))dz+dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = ytan (z) — cot (z)
N(l‘,y) =1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 9N
oy Oz
Using result found above gives
oM 0
oy @(y tan (x) — cot (z))
= tan ()
And
ON 0
o~ o)

Since %—A; # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4] (8M 6N)

- N Oy ox
= 1((tan (z)) — (0))
= tan ()

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e [Adz
— ef tan(z) dz

The result of integrating gives
p=e" In(cos(z))
= sec ()

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM
= sec (z) (y tan (z) — cot (x))

= ytan () sec (z) — csc (z)
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And

N =uN
= sec (z) (1)

= sec (z)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

~dy
dz

(ytan (z) sec (z) — csc (z)) + (sec (z)) j—i =0

M+N-==0

The following equations are now set up to solve for the function ¢(z,y)

0p —
g—x =M (1)
6
oy = N (2)
Integrating (2) w.r.t. y gives
? dy = /Ndy
gf /sec () dy
¢ = ysec () + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t x gives

% = ytan (z)sec (z) + f'(z) (4)

But equation (1) says that a¢ = ytan (z)sec (x) — csc(z). Therefore equation (4)
becomes
ytan (z)sec (z) — csc (x) = ytan (z) sec (z) + f'(z) (5)

Solving equation (5) for f'(z) gives

f'(z) = —csc ()
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Integrating the above w.r.t = gives

/ f(z)dz = / (= cse (z)) dz

f(z) =1In(csc(z) + cot (z)) + 1

Where ¢; is constant of integration. Substituting result found above for f(z) into

equation (3) gives ¢

¢ = ysec(x) + In (csc (x) + cot (z)) + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining ¢; and cy constants into the constant c; gives the solution as

c1 = ysec(z) + In (csc (z) + cot (z))

Solving for y gives

In (csc (z) + cot (z)) — 1

sec (z)
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Figure 2.17: Slope field plot

cot ()

y' + ytan ()

Summary of solutions found

In (csc (x) + cot (z)) — ¢

sec (z)
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Maple step by step solution

Let’s solve
4 y(z) + y(z) tan (z) = cot (z)

° Highest derivative means the order of the ODE is 1
()

° Solve for the highest derivative

4y(z) = —y(z) tan (z) + cot (z)

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
4 y(z) + y(z) tan (z) = cot (z)
° The ODE is linear; multiply by an integrating factor u(x)
wz) (Ly(z) +y(z) tan (z)) = p(=) cot (z)
o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
x

w(@) (3y(@) + y(z) tan (z)) = (Fy(@) u(z) +y(2) (Fu()
o Isolate - yu(x)

L(x) = p(z) ban (z)

° Solve to find the integrating factor

_ 1
,u,(l') ~ cos(z)

° Integrate both sides with respect to x

[ (E(y(z) p(z))) dz = [ p(z) cot (z) dz + C1
° Evaluate the integral on the lhs

y(z) p(z) = [ p(z) cot (z) dz + C1
o Solve for y(x)

x) cot(z)dz+ C1
y(z) = J (=) “t((x)) +
o Substitute p(z) = Fl(m)
y(z) = cos (z) (f zgzg; dz + C]>
° Evaluate the integrals on the rhs

y(z) = cos (z) (In (csc (z) — cot (z)) + C1)
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 17

-

dsolve(diff (y(x),x)+y(x)*tan(x) = cot(x),
L y(x) ,singsol=all)

y(z) = (—1In(csc (z) + cot (x)) + ¢1) cos (z)

Mathematica DSolve solution

Solving time : 0.072 (sec)
Leaf size : 16

‘DSolve [{Dly[x] ,x]+y [x] *Tan [x]==Cot [x] , {}},
L y[x] ,x,IncludeSingularSolutions->True]

y(z) — cos(z)(—arctanh(cos(z)) + ¢1)
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2.1.6 problem 1(f)
Solved as first order linearode . . . . . ... ... ....... (74l
Solved as first order Exactode . . . . . ... ... ....... 751
Maple step by step solution . . . . . ... ... ... ... .. [79]
Mapletrace . . . . . . . . . . ... 801
Maple dsolve solution . . . . . ... ... ... L. 01
Mathematica DSolve solution . . . . . ... ... ... ..... [Tl

Internal problem ID [4195]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 1(f)

Date solved : Tuesday, December 17, 2024 at 06:49:58 AM
CAS classification : [_linear]

Solve

T

y +yln(z) =2

Solved as first order linear ode
Time used: 0.287 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is
p= ef In(z)dz

Therefore the solution is

y= </ x—xefln(x)dzdx + Cl) e—fln(:c)dz
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Figure 2.18: Slope field plot
Y +yln(z) =277

Summary of solutions found

y = (/ a;—a:efln(z)da:dx + cl) e—fln(:c)dm

Solved as first order Exact ode
Time used: 0.121 (sec)

To solve an ode of the form

M(z,) + N(z,9) 2 =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d

Hence 06 06 d
Yy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
09 _
ox
99

oy
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But since aa g = a a then for the above to be valid, we require that
yox
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
dy = (—yln(z) +z™°) dz
(yln(z) —z*)dz+dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) =yln(z) —z7°
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives

oM o .
n ay(yln() )

~In(a)

And

N
B = (1)

=0

Since %i; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

oM ON
a=x(% %)
=1((In (z)) — (0))
= In (z)
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Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor u is

o= 6fAda:
— ef In(z) dz
The result of integrating gives
L ev In(z)—z

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
=2 *(yln(z) — z7°)

=e °(yln(z)z® —1)

And

= z%"(1)

=z% "

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
. _dy
M+ N-—2 =
+ e 0
dy_,

(e_z(y In(z)z” — 1)) + (xme"m) gy

The following equations are now set up to solve for the function ¢(z,y)

o
=M
o
o ="

Integrating (2) w.r.t. y gives
/ @dy = / Ndy
9y
9¢

6_y dy = /zze_”” dy

6= a7y + f(2)

1)

(2)
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Where f(z) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t = gives

op
5 =
=z "yl (z) + f'()

z°(In(z) + 1) e™y — %"y + f'(x) (4)

But equation (1) says that % = e *(yln(x)z* — 1). Therefore equation (4) becomes
e *(yln(r)z® — 1) = 2% *yIn (z) + f'(z) (5)
Solving equation (5) for f'(z) gives
f'(z) = —e*
Integrating the above w.r.t = gives
/f’(x) dr = / (—e™*)dz
flx)=e"+c

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

p=x"¢"y+e "+

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and cy constants into the constant c; gives the solution as

co=zx"¢"y+e”

Solving for y gives

y=—(e"—c1)z %"
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Figure 2.19: Slope field plot
Y +yln(z) =a7"

Summary of solutions found

Y= —(e — cl) x %"

Maple step by step solution

Let’s solve
&Y(@) +y(@)n(z) =27
° Highest derivative means the order of the ODE is 1
()
° Solve for the highest derivative
&y(@) = —y(2)In(z) + 2~
° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
&Y(@) +y(@)n(z) =27
° The ODE is linear; multiply by an integrating factor u(x)
wz) (Ly(@) +y(z)In(2)) = p(z) 27
o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
wz) (y(2) +y(2)In(2)) = (Ly(@)) u 7) (F1(2))

e Isolate 2 u(z)
2 4(z) = (@) n (2)
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° Solve to find the integrating factor
pu(z) = zve”
° Integrate both sides with respect to x
[ (@) p(@))) do = [ p(z)a~=dz + C1
° Evaluate the integral on the lhs
y(@) u(x) = [ p(e) 3*da + C1
) Solve for y(x)

z)x~*dx+C1
y(z) = S )#(m)

) Substitute u(z) = z%e™*

T

__ [z%e "z %dx+C1

y(l‘) - rTe—T

° Evaluate the integrals on the rhs
y(@) = =55

° Simplify

y(x) =z7%(C1e* —1)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 16

‘(dsolve (diff (y(x) ,x)+y(x)*1n(x) = x~(-x),
‘ y(x) ,singsol=all)

y(e) = (e = 1) z™*
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Mathematica DSolve solution

Solving time : 0.127 (sec)
Leaf size : 19

'DSolve [{D[y[x],x]+y[x]*Loglx]==x"(-x),{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(x) = 7% (=1 + c1€%)
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2.1.7 problem 2(a)
Solved as first order linearode . . . . . ... ... ... .... 82
Solved as first order homogeneous class Aode . . . . . ... .. R
Solved as first order homogeneous class D2 ode . . .. ... .. 80
Solved as first order homogeneous class Maple C ode 88}
Solved as first order Exactode . . . . . ... ... ....... 92
Solved as first order isobaricode . . .. ... ... ... .. .. 95
Solved using Lie symmetry for first orderode . . ... ... .. 98
Maple step by step solution . . . . ... ... ... ... ..., 103
Maple trace . . . . . . . . . . . e 104!
Maple dsolve solution . . . .. ... ... ... .. ....... 104
Mathematica DSolve solution . . . . . ... ... ........ 104

Internal problem ID [4196]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 2(a)

Date solved : Tuesday, December 17, 2024 at 06:50:00 AM

CAS classification : [_linear]

Solve

Y +y=z

Solved as first order linear ode

Time used: 0.050 (sec)

In canonical form a linear first order is

Y +q(z)y = p(z)

Comparing the above to the given ode shows that

The integrating factor u is
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The ode becomes

Integrating gives

Dividing throughout by the integrating factor x gives the final solution
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Figure 2.20: Slope field plot

oy t+y==z

Summary of solutions found

22+ 2¢;
2x
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Solved as first order homogeneous class A ode
Time used: 0.254 (sec)

In canonical form, the ODE is

y =F(z,y)
y—1
=— 1
. )
An ode of the form 3 = % is called homogeneous if the functions M(z,y) and

N(z,y) are both homogeneous functions and of the same order. Recall that a function
f(z,y) is homogeneous of order n if

f(t"z, t"y) = t"f(z,y)

In this case, it can be seen that both M = —y + x and N = x are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = £, or y = uz.
Hence

dy du
Applying the transformation y = uz to the above ODE in (1) gives

du
—z+u=1—-u

dzx
du _ 1—2u(z)
dz T
Or | — 2u(a)
oy 1= 2u(z)
u'(z) - =0
Or

v(z)xz+2u(z)—1=0

Which is now solved as separable in u(z).

The ode v/'(z) = —% is separable as it can be written as
2u(z) — 1
! —_———
u'(z) = -
= f(z)g(u)
Where
1
fl@) =~
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Integrating gives

/f(%)du=/i(x)dx
/mdu=/;dx

_In(2u(z) — 1)

5 =In(z)+ ¢

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) =0 or —2u + 1 = 0 for
u(z) gives

u(z) = %

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

_In(2u(z) — 1)

=1
5 n(x)+c
1
u(z) = 9
Solving for u(z) gives
1
u(z) = 2
$2 _|_ e—261
u(z) = 57
Converting u(z) = 1 back to y gives
.z
¥=2
Converting u(x) = % back to y gives
.,L.Q + e—261

y= 2z
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Figure 2.21: Slope field plot

o t+y==z

Summary of solutions found

Solved as first order homogeneous class D2 ode

Time used: 0.136 (sec)

Applying change of variables y = u(x) z, then the ode becomes

z(vW(z)z +u(z)) +u(z)z ==

is separable as it can be written as

2u(z)—1

Which is now solved The ode v/(z) = —

-1

2u(x)

' (z) = —

Where
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Integrating gives

/f(%)du=/i(x)dx
/mdu=/;dx

_In(2u(z) — 1)

5 =In(z)+ ¢

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) =0 or —2u + 1 = 0 for
u(z) gives

u(z) = %

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

_In(2u(z) — 1)

=1
5 n(x)+c
1
u(z) = 9
Solving for u(z) gives
1
u(z) = 2
$2 _|_ e—261
u(z) = 57
Converting u(z) = 1 back to y gives
.z
¥=2
Converting u(x) = % back to y gives
.,L.Q + e—261

y= 2z
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Figure 2.22: Slope field plot

o t+y==z

Summary of solutions found

Summary of solutions found

Solved as first order homogeneous class Maple C ode

Time used: 0.251 (sec)

Let Y

y — Yo and X = = — zo then the above is transformed to new ode in Y (X)

$0+A:

YXX)+yO—$0—XT

Y(X) = -

Solving for possible values of zy and yo which makes the above ode a homogeneous ode

results in

Zo

Yo =0
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Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d Y(X)-X
axV O =—"%—
In canonical form, the ODE is
Y' = F(X,Y)
Y-X
= —— 1
5 g

An ode of the form Y’ = %8((}}:)) is called homogeneous if the functions M(X,Y) and
N(X,Y) are both homogeneous functions and of the same order. Recall that a function

f(X,Y) is homogeneous of order n if
fE"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = X —Y and N = X are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode

is homogeneous, it is converted to separable ODE using the substitution u = ¥

X or
Y = uX. Hence

Applying the transformation Y = uX to the above ODE in (1) gives

du
du _ —2u(X)+1
dx X
Or d 2u(X) + 1
—2u +
XX - —x =0
Or

(diXu(X)> X 4 2u(X) —1=0

Which is now solved as separable in u(X).

The ode J&u(X) = —% is separable as it can be written as
d 2u(X) -1
Zou(X) = —
ax ") X

= f(X)g(u)
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Where
1
f(X) = X

g(u) = —2u+1

Integrating gives

/ﬁdu:/f(X)dX

1 1
- [ —ax
/—2u+1d“ /Xd
_1) 1

In (2u(X
_n( wX) =In(X)+a
2
We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) =0 or —2u + 1 =0 for
u(X) gives

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

_n (ZU(;() -1 _ In(X)+a
1
X) ==
u(x) = |
Solving for u(X) gives
1
u(X) =5
X2 +e—201
A
Converting u(X) = 3 back to Y (X) gives
X
Y(X)= 5

Converting u(X) = 4™ back to Y(X) gives

X2 + e—201

Y (X) 5%
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Using the solution for Y (X)

And replacing back terms in the above solution using

Y=y+y
X =z+x

Y=y
X=z

Then the solution in y becomes using EQ (A)

Using the solution for Y (X)

And replacing back terms in the above solution using

Y=y+uyo
X=z+x

Or

Y=y
X==x

Then the solution in y becomes using EQ (A)

x2 _|_ e—2c1

y 2x
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Figure 2.23: Slope field plot

o t+y==z

Solved as first order Exact ode

Time used: 0.063 (sec)

To solve an ode of the form

d
M(z,y)+ N(@,y) 2 = 0

)
(@)
o
| yﬂz
= =S
i I
Sy +
]
T

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

Hence

Comparing (A,B) shows that

then for the above to be valid, we require that

8%
oyor

5%
O0zdy

But since
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If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

6‘?: ;’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(x)dy = (—y+z)dz
(y—x)dz+(x)dy =0 (2A)

Comparing (1A) and (2A) shows that

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM_o,
oy oy
And
ON 0
%~ 5
=1

Since %’I = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

3(;5_
a—M (1)

3(]5_
8—y—N (2)
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Integrating (2) w.r.t. y gives

%dy=/Ndy
Oy

0p .
B_ydy_ /xdy

¢ = yz + f(z) 3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t  gives

% v+ 1@ @
But equation (1) says that % = y — z. Therefore equation (4) becomes
y—z=y+ f(z) (5)
Solving equation (5) for f'(z) gives
fe) ==

Integrating the above w.r.t = gives

/f’(a:) dx=/(—w) dz

.’1:2

fl@)=—-5 +a

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

1
¢:yx—§x2+cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and cy constants into the constant c; gives the solution as

1
cL=Yr — §x2
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Solving for y gives
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Figure 2.24: Slope field plot

xy +ty==zx

Summary of solutions found

22+ 2¢;
2x

Solved as first order isobaric ode

Time used: 0.113 (sec)

Solving for 3" gives

1)

f(z,y) is isobaric if

" f(x,y)

Each of the above ode’s is now solved An ode 3/

(1)

f(tz,t™y)

Where here

(2)

y—x

f(.’L', y) =
m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m=1
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Since the ode is isobaric of order m = 1, then the substitution
y=uz"
= Uux
Converts the ODE to a separable in u(z). Performing this substitution gives

u(z) + zu'(z) = —m(zﬁ

The ode v/(z) = —% is separable as it can be written as

W (z) = _ 2u(z) -1

Where

Integrating gives

/f(%)du=/i(x)dx
/mdu=/;dx

_In(2u(z) — 1)
2

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) =0 or —2u + 1 = 0 for

=In(z)+ ¢

u(z) gives

u(z) = %

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

_In(2u(z) — 1)

5 =In(z) +

Q
AR

N =

u(z) =
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Solving for u(z) gives

back to y gives

1
2

Converting u(z) =

g
q
e2
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80 Il

> 8

o
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IS
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8

Il

oun

8

N—r

3

a0

=

b=

3

>

=

o

O

Solving for y gives
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Figure 2.25: Slope field plot

o t+y==z

Summary of solutions found
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Solved using Lie symmetry for first order ode
Time used: 0.469 (sec)
Writing the ode as
A _y —Z
x
Yy =uw(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - €z) - w2€y —wg€ — wyn =0 (A)

To determine &,n then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

§ = zaz + yas + a (1E)
n = xbs +ybs + by (2E)

Where the unknown coeflicients are

{ala az, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

—z)(bs—a —z)%a 1 —x xby + ybs + b
bz—(y ) (b3 2)_(y 2) 3_(_+y _ )(za2+ya3+a1)+ 2T Y030 _
x x x x x

(5E)
Putting the above in normal form gives
2 2. _ 2 _ 2p 20, —
Tap + x°a3 — 2byw” — 1°b3 — 2xyaz + 2y“az — xby +ya;
_ p =0
Setting the numerator to zero gives
—z2ay — 22ag + 20,22 + 22bs + 2zyas — 2y%as + xby —ya; =0 (6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}
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The following substitution is now made to be able to collect on all terms with {z,y}
in them
{z =v1,y =}

The above PDE (6E) now becomes

—agv? — azv} + 2a3v1vy — 2a3v3 + 2bov? + bsv? — vy + bivy =0 (TE)
Collecting the above on the terms v; introduced, and these are

{’Ul, 1}2}

Equation (7E) now becomes

(—0,2 —as + 2b2 =+ bg) ’U% + 2@3’01’02 + bl’Ul - 20;3’0% — A1V = 0 (SE)

Setting each coefficients in (8E) to zero gives the following equations to solve

by =0
—a; =0
—2a3 =0
2a3 =0

—ag —ag+ 2by+ b3 =0

Solving the above equations for the unknowns gives

a; =0
as = 2by + b3
a3 =10
bp=0
by = b2
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wy)é

- (-2 @

=2y—z
§=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

do _dy _

F=, = (1)

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
S=/—dy
n
1
= d
/2y—xy

_ In(2y —x)
S=—73—

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S is found from

Which results in

ﬁ _ Sﬂ? +w(x’y)Sy
dR R, +w(z,y)Ry

(2)
Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right

hand side of the original ode given by

Yy—x
T

w(:c, y) = -
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Evaluating all the partial derivatives gives

R, =1
R,=0
1
Sx_2x—4y
1
S =
Voo —x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s 1

B- (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

a _ 1
dR 2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form ;%S(R) = f(R), then we only need to integrate f(R).

/dS /——dR

(R) = — ln;R) v

To complete the solution, we just need to transform the above back to x,y coordinates.
This results in
In(2y—z)  In(z)

2 2 T@

Which gives

fL'Q _|_ 6202
2x
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
coordinates

ODE in canonical coordinates

Original ode in z,y coordinates

transformation

S

S

UK SR
PRRRRRRRRR S
s

AN

NN N RO OO ONON O SN
AR S O NSNNNNNNN
B E RSO NN NN
IR SANA NN NN NN NN
i/

oo B RENNN NN OSSN
D 4 N NN O GG
e o e
7777777 N / J T
777777//////\\\\\\\\
R eSS NN NN N P
R S N NN
SN NN
NN

PSSO NN NN
ESSNNNNNNNNNNN

NN NN NN\

NSNS NN

\
\
\
SO NN
\
/

P & = S

y(x)

2

X

Figure 2.26: Slope field plot

zy +ty==zx

Summary of solutions found

‘,L.Z + e202

2z
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Maple step by step solution

Let’s solve

2(4y(@) +y(@) = @
° Highest derivative means the order of the ODE is 1

Ly(x)
° Isolate the derivative
Ly(z) =1-2

° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
yl@) +12 =1

° The ODE is linear; multiply by an integrating factor u(x)
w(z) (Ly(o) +12) = ()

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

w(z) (L) +12) = (Ly(2) p(@) +y(@) (L))

) Isolate - yu(x)
an(z) =12

° Solve to find the integrating factor
uz) ==

° Integrate both sides with respect to x

[ (& (@) u(2))) dz = [ u(z) dz + C1
° Evaluate the integral on the lhs

y(@) u(x) = [ p(z) da + C1
o Solve for y(x)

x)dz+ C1
y(z) = Lot ,B(w)+
o Substitute pu(z) = z
y(.’I;) _ f:l:d:l:w-i-CI
° Evaluate the integrals on the rhs
2
2 1C1
y(z) = 2—
° Simplify

_ z24201
y(z) = =5
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 13

-

dsolve(diff (y(x),x)*x+y(x) = x,
L y(x) ,singsol=all)

Mathematica DSolve solution

Solving time : 0.039 (sec)
Leaf size : 17

DSolve [{x*Dly[x] ,x]+y [x]==x, {}},

‘ y[x],x,IncludeSingularSolutions->True]
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2.1.8 problem 2(b)
Solved as first order linearode . . . . . ... ... ....... 1051
Solved as first order homogeneous class D2 ode . ... ... .. 107
Solved as first order Exactode . . . . . ... ... ... .... 108]
Solved as first order isobaricode . . . . ... ... ... .... 112l
Solved using Lie symmetry for first orderode . . . . . ... .. 114
Maple step by step solution . . . . .. ... ... ... .. ... 119
Maple trace . . . . . . . . . L 120
Maple dsolve solution . . . .. ... ... ... ......... 120
Mathematica DSolve solution . . . . .. .. ... ... ..... 120

Internal problem ID [4197]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 2(b)

Date solved : Tuesday, December 17, 2024 at 06:50:02 AM

CAS classification : [_linear]

Solve

ay —y=2a°

Solved as first order linear ode

Time used: 0.050 (sec)

In canonical form a linear first order is

Y + q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is
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The ode becomes

(1y) = pp

d
dzx

(uy) = (u) ()

dzx

=/xdz
x2+
=—+4c¢
2 1

VR
> 8 8
—
e

Integrating gives

gives the final solution

1
T

Dividing throughout by the integrating factor

T T T T T T T T T T S S S S S S S S

R N N N N N NN

A S OO NN NN NN )
S SO OSSN NNN / ;.,, \\; J 777
N R NN SN NN\ ), \ J I
N NN
B e A N
S 4 \ / / N ™ S S s
777 \ 1;\; ;,,,, / / NN NS S
) NN NN N O
N N e e e R
S
S —

R

X

Figure 2.27: Slope field plot
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Summary of solutions found
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f(z), then we only need to

+ Cl)

2

~ ¥
=—+c
2 1

2

T
2

d

u(z)

[du=[zdo

z(v'(z) z + u(z)) — u(z) z = =*
()

+ ¢; back to y gives

TS ST TSNS S S—Ss S S—s s —s—s— [

B e

T S S S
e T T T T T e T T T e T e S S S S S S S
e S S T S S S S S S S S S N S S S S S [
T T T TSSOSO OSSOSO N N / / / ,,/ >

R NS el
B R NS N NN / ) \ Y Pt

B . 4 \ / D
- P 7 A\

e/ B NN
77 ] \ .,, / N NN RS S S
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B
e

R

X

Figure 2.28: Slope field plot
oy —y =21
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Solved as first order homogeneous class D2 ode
Applying change of variables y = u(x) z, then the ode becomes
Which is now solved Since the ode has the form u'(x)

Time used: 0.030 (sec)
integrate f(z).

CHAPTER 2.
Converting u(x)

N

y(x)

Summary of solutions found
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Solved as first order Exact ode
Time used: 0.104 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z)dy = (z* +y) dz
(—2® —y) dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(.’L’,y) :_‘7’.3_3/
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0 3
755'—-3y( )
=-1
And
ON 0
o~ 2™
=1

Since %i: # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

1 /0M ON
= 3(-3)

Oy oz
= (-1 - )
__2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

= el Ade
_J-td
The result of integrating gives
[ = =2
_ 1
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM
1
= (=" —y)
By

xr2
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And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

m+NY _o
dzx

(=) () e

The following equations are now set up to solve for the function ¢(z,y)

0p  —
o - M (1)
0p  —
oy N (2)
Integrating (2) w.r.t. y gives
o¢ .
8y dy = /Ndy
5y = [ o
_y
¢= P f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t  gives

9¢
= — 4
=2+ f (@) (4)
But equation (1) says that ¢ = _”f{y. Therefore equation (4) becomes
YY) (5)
2 2?
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2

/(—z)dx
= —% +ca

/f’(a:) dz

Solving equation (5) for f'(z) gives

Integrating the above w.r.t = gives

)

X

(

f

1172

Where ¢; is constant of integration. Substituting result found above for f(z) into

equation (3) gives ¢

+c

2

Y
x

¢ =

e ST ST TS ST S S S S Ss—S s —s—s—s—<— [

B e R
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e I e e I I o
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X

Figure 2.29: Slope field plot

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining c¢; and cy constants into the constant c; gives the solution as

Solving for y gives

R

y(x)

oy —y=1’
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Summary of solutions found

x(z? + 2¢
y= 4 20)
Solved as first order isobaric ode
Time used: 0.256 (sec)
Solving for 3’ gives
3
;T +Y
- 1
y " (1)

Each of the above ode’s is now solved An ode y' = f(z,y) is isobaric if

fltz,t™y) =™ f(z,y) (1)
Where here s
flay) =Y @

m is the order of isobaric. Substituting (2) into (1) and solving for m gives
m=3
Since the ode is isobaric of order m = 3, then the substitution
y=uz"
=ux®
Converts the ODE to a separable in u(z). Performing this substitution gives

z3 + 23u(z)

3z%u(z) + 2%/ (z) = .

The ode v/'(z) = —% is separable as it can be written as

2u(z) — 1

Where
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Integrating gives

/ﬁdu=/f(x)dw
/ﬁdu=/idw

In (2u(z) — 1)

-

We now need to find the singular solutions, these are found by finding for what values

g(u) is zero, since we had to divide by this above. Solving g(u) =0 or —2u+ 1 =0 for
u(z) gives

=In(z) + ¢

u(z) = %

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are
_In(2u(z) — 1)

5 =In(z)+ ¢
1
u(z) = 3
Solving for u(z) gives
1
u(z) = 2
$2 + e—201
u(z) = 212
Converting u(z) = 3 back to y gives
Y 1
3 2

Converting u(x) = % back to y gives

y .’I;2 + e—201

3 212

Solving for y gives

z(x? + e72a)
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Figure 2.30: Slope field plot

zy —y=1’

Summary of solutions found

Solved using Lie symmetry for first order ode

Time used: 0.393 (sec)

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by

0

Ne +w(y — &) — w2€y — wz€ —wyn

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of

degree 1 to use as anstaz gives

(1E)
(2E)

Tas + yas + a;

£
U

be + yb3 + bl
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Where the unknown coeflicients are

{ala a2, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(¢ +y) (bs —a)  (z°+y) a3
z 2

by +

z3 + zby + ybs + b
— 3z — 2y (wa2+ya3+a1)—¢=0
x x
Putting the above in normal form gives
_x6a3 + 3xta; — x'bs + 4xPyas + 223y + xby —yay 0

)
Setting the numerator to zero gives

—z%a3 — 3z%ay + 2*bs — 423yas — 22301 — by +ya; =0

(5E)

(6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}

in them
{z =v1,y = v}

The above PDE (6E) now becomes
—a:wf — 3a21)§1 — 4a3v§’1)2 + bgv‘f — 2a1vi’ +a;v9 —biv; =0
Collecting the above on the terms v; introduced, and these are
{v1, 02}
Equation (7E) now becomes

—a3v? + (=3ay + b3) vi — 4asvivy — 20,08 — byvy + a1vy = 0

(7E)

(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 =0

—2a; =0
—4a3 =0
—a3=0
—b=0
—3az+b3=0

Solving the above equations for the unknowns gives

a; =0
as = Qo
a3 =0
by =0
by = by
bz = 3as

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

£=0
n xr

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dr dy
£

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

S=/1dy
n
T

S is found from
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Which results in

s=Y

T

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ — Sx +UJ(:E,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

B +y
w(m ’ y) - x
Evaluating all the partial derivatives gives
R, =1
R,=0
Y
Sg = — 2
1
Sy = -

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

x (2A)

R

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

/dS=/RdR
sy =&

R):7+CQ
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AT A

ODE in canonical coordinates

Canonical
coordinates
transformation
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Figure 2.31: Slope field plot
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To complete the solution, we just need to transform the above back to x,y coordinates.
Original ode in z,y coordinates

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

This results in

CHAPTER 2.
Which gives

R

y(x)
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Summary of solutions found

(22 + 2¢5) x

Maple step by step solution

Let’s solve
2(Ly(@)) - y(o) = 2°
° Highest derivative means the order of the ODE is 1

=y(®)
° Solve for the highest derivative
X Zs
Ly(z) = vte

) Collect w.r.t. y(z) and simplify
y(@) =2 + a2

° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
4 L) =

° The ODE is linear; multiply by an integrating factor u(x)
() (—42 + Ly(2)) = p(z) 22

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

w(a) (-42 + Ly(@)) = (Ly(2)) w(2) + () (La()

) Isolate - yu(x)
an(z) =17
° Solve to find the integrating factor
we) =3
. Integrate both sides with respect to x
[ (L (y(z) p(z))) dz = [ p(z) z?dz + C1
° Evaluate the integral on the lhs

y(@) u(x) = [ p(z) ada + C1
o Solve for y(x)

z)z2dx+C1
y(z) = ML(—z)

° Substitute u(z) = %
y(z) = z([ zdz + C1)
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° Evaluate the integrals on the rhs
y(x) = x(% + C'])
° Simplify

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 14

‘ dsolve(diff (y(x),x)*x-y(x) = x73,
‘ y(x),singsol=all)

Mathematica DSolve solution

Solving time : 0.042 (sec)
Leaf size : 17

‘ DSolve [{x*D[y[x],x]-y[x]1==x"3,{}},
‘ y[x],x,IncludeSingularSolutions->True]

3

x
y(z) — 5 +az
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2.1.9 problem 2(c)

Solved as first order linearode . . . . . ... ... .......
Solved as first order Exactode . . . . . ... ... .......
Solved using Lie symmetry for first orderode . . . .. .. . ..
Maple step by step solution
Mapletrace . . . . . . . . . . ..

Maple dsolve solution

Mathematica DSolve solution

Internal problem ID [4198]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 2(c)

Date solved : Tuesday, December 17, 2024 at 06:50:04 AM

CAS classification : [_linear]

Solve

zy +ny=z"

Solved as first order linear ode

Time used: 0.097 (sec)

In canonical form a linear first order is

Y + q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

n
Q(x)—;
p(z) =z
L= efqu

:efgdz

=T

n
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The ode becomes

Integrating gives

yx" = /m”‘lxn dx

x2n

= ta

Dividing throughout by the integrating factor z™ gives the final solution

n
n

y=%+x 1

Summary of solutions found

n

_ < —-n
y—2n+.’13 C1

Solved as first order Exact ode
Time used: 0.147 (sec)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
y =
or + Oy dx 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(x)dy = (—ny +2")dz
(ny —2")dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) =ny — 2"
N(z,y) ==z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM _ 0
ay oy’
=n
And
ON 0
o~ 2™

=1
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Since %i; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4] (aM aN)

- N oy ox
= () - (1)
_n- 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e [ Adz
The result of integrating gives
m e(n—l)ln(a:)
— xn—l

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM

= 2" (ny — ")

= (ny — ™) 2"

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N%=0
dz

((ny —z") mn_l) + (z") j—z =0
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The following equations are now set up to solve for the function ¢(z,y)

0p —
e M (1)
0p —
oy = N (2)
Integrating (2) w.r.t. y gives
6¢ dy = /Ndy
Ay
0¢ N
By dy = /x dy
p=yaz" + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t = gives

09  x"ny ,
00 _ T | pla (@)

—nya" + f(z)

But equation (1) says that a¢ = (ny — z") " !. Therefore equation (4) becomes
(ny — ™) 2" = nya" " + f(z) (5)

Solving equation (5) for f'(z) gives

Integrating the above w.r.t = results in

/f x)dx—/( 1) dz

:L.2n

fl@)=—-5 - +a
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Where ¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

2n

p=yi"— e
2n
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cy; constants into the constant c; gives the solution as

:L.Qn

a=yx" — —

2n

Solving for y gives
(2cin + 2*™) ™
2n

Summary of solutions found

(2e1n + ) 7"
2n

Solved using Lie symmetry for first order ode
Time used: 0.391 (sec)

Writing the ode as
,_ —ny+a”
x
Yy =uw(z,y)
The condition of Lie symmetry is the linearized PDE given by
e+ w(ny — &) — W€y —w€ —wyn =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

§ = zas +yaz + a (1E)
1 = xbz + ybs + by (2E)
Where the unknown coefficients are

{al, a2, as, bla b2, b3}
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Substituting equations (1E,2E) and w into (A) gives

(—ny +2") (bs —as)  (—ny +z")’as
bs + - 3
T T

"n —ny+x"
_ ( x2 — yxZ >(xa2+ya3—|—a1)+

(5E)
n(xbz + yb3 + bl)
T

=0

Putting the above in normal form gives

n*y%as + z"nxas — r'nyas — n by + nylas + r?az + r"na; — x"xbs — T yas — nxb; + nya; — byx?

e
=0

Setting the numerator to zero gives

—n?y’as — z"nxas + " nyas + n by — nylas — z"as (6E)
— z™nay + 2"xbs + z™yas + nxb — nya;, + byx? + z"a; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y,2"}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z = v,y = vg, 2" = v3}

The above PDE (6E) now becomes

—nzvgag, — V3nNv1a9 — nvgag + v3nvqasz + nv%bg — NV20, (7E)
2 2
— vsnay + nv1by 4 v3v2a3 — v3as + bevy 4 v3v1bs +v3a; =0

Collecting the above on the terms v; introduced, and these are
{Ul7 %2 ’U3}

Equation (7E) now becomes

(nby + by) v? + (—nag + bs) vi1vs + nuih + (—n2a3 — na3) va (8E)

+ (nas + a3) vav3 — nvea; — vaaz + (—na; +a1)v3 =0
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Setting each coefficients in (8E) to zero gives the following equations to solve

nb1 =0
—az = 0
—na; =0

—na; +a; =0
naz +az =0
—n2a3 —naz =0
nby + by =0
—nas + b3 =0

Solving the above equations for the unknowns gives

a; =0
as = ag
a3 =0
by =0
b, =0
bs = nas

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=z
:ny

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wy)§

= ny — <ﬂ) ()

x
=2ny — z"
§€=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

F=, = 1)
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The above comes from the requirements that (£ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
S is found from
1
S = / —dy
n
1
= [ —d
/ 2ny — " y
Which results in
g In (2ny — x™)
2n

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ — Sx +w(x,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = —ny +z"
Y) = T
Evaluating all the partial derivatives gives
R,=1
R,=0
n—1
g - T
—4ny + 2z
1
Sy=—"—
V' 2ny —an

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as 1
dR 2z

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

a _ 1
dR 2R

(24)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

/dS:/—%dR
S(R):_ln(R)

+ co

2

To complete the solution, we just need to transform the above back to x,y coordinates.
This results in
In(2ny —z")  In(z)
2n N

Which gives

e—n(ln(w)—?cz) + zn
2n

y:

Summary of solutions found

e—n(ln(a:) —2¢2) + "
2n

y:

Maple step by step solution

Let’s solve
z(Ly(z)) + ny(z) = z"
° Highest derivative means the order of the ODE is 1

=Y(@)
° Solve for the highest derivative
fy(w) = =

o Collect w.r.t. y(z) and simplify
fy@) =-2+ 2

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
fofe) + 7 = 2

° The ODE is linear; multiply by an integrating factor u(x)
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ul@) (@) + ) = e

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

w(a) (Ly(@) + ™2) = (Ly(@) ule) + y(z) (Ln()
o Isolate - /u(x)

fula) = 2o

° Solve to find the integrating factor
p(z) = ="

° Integrate both sides with respect to x
J (& (@) p(2)) de = [ #9dz + C1

. Evaluate the integral on the lhs
y(z) p(z) = [ D4z + C1

) Solve for y(x)

e gy o
y(z) = p(z)

o Substitute pu(z) = 2™

[ 0
y(.’l)) =z
° Evaluate the integrals on the rhs
G
y(z) = 27—
° Simplify

y(z) =2 + (1

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”
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Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 20

dsolve(diff (y(x),x)*x+n*y(x) = x"n,
y(x) ,singsol=all)

Mathematica DSolve solution

Solving time : 0.075 (sec)
Leaf size : 24

DSolve [{x*D[y[x],x]+n*y[x]==x"n,{}},
y[x],x,IncludeSingularSolutions->True]

n

x
y(z) — on + ¢z

bt 1
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2.1.10 problem 2(d)
Solved as first order linearode . . . . . ... ... ....... 133}
Solved as first order Exactode . . . . . ... ... ....... 134
Solved using Lie symmetry for first orderode . . . .. .. . .. 138]
Maple step by step solution . . . . . .. ... ... ... .. .. 142
Mapletrace . . . . . . . . . . .. 143
Maple dsolve solution . . . .. ... ... ... .. ....... 143
Mathematica DSolve solution . . . . .. .. ... ... ..... 143}

Internal problem ID [4199]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 2(d)

Date solved : Tuesday, December 17, 2024 at 06:50:05 AM

CAS classification : [_linear]

Solve

zy —ny ="

Solved as first order linear ode

Time used: 0.128 (sec)

In canonical form a linear first order is

Y + q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is
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The ode becomes

Integrating gives

yr " = /x”_lx_" dx
=Iln(z)+c
Dividing throughout by the integrating factor =" gives the final solution

y=2z"(In(z) + ¢1)

Summary of solutions found

y=2z"(In(z) + ¢1)

Solved as first order Exact ode
Time used: 0.129 (sec)

To solve an ode of the form

M(z,) + N(z,3) 2 =0 *)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 06 d
vy _
oxr  Oydr 0 (B)

Comparing (A,B) shows that

0p

9 M

0p

8_;1/ =N
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But since % = % then for the above to be valid, we require that
Y yox
oM _ ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
2 2
8‘5; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(x)dy = (ny + z™) dz
(—ny —z")dz+(z)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —ny — "
N(z,y) ==

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
M _0
ay oy Y
=-n
And
ON 0
% 5
=1

Since %i; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

am k(2o

- N oy ox
= ((-m) - )
-n—1

T



CHAPTER 2. BOOK SOLVED PROBLEMS 136

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is
—e [ Adz

— ef _';_1 dz

I

The result of integrating gives
pw= e(—n—l) In(x)

— l_—n—l

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM

—n—l(

=z —ny — z")

—1—-—z"ny

And
N =uN
=z " (z)

=$_

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is
—dy

M+N-—==0
dx
—1—z""ny _\ dy
- - 7 ny L —
( x ) () dz
The following equations are now set up to solve for the function ¢(z,y)
op —
Y =M 1
o (1)
op —
— =N 2
o e

Integrating (2) w.r.t. y gives
o —
—¢ dy = / N dy
Ay

0 . [ _n
a—ydy—/z dy

¢p=yz "+ f(x) (3)
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Where f(z) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t = gives

o¢ _  z"ny

=T () @

=—nyz " + f'(2)

But equation (1) says that % = w Therefore equation (4) becomes

11—z
=y 4 f (@) )
Solving equation (5) for f'(z) gives
—n—1 —n
iy YT r—x "ny —1
@) = -
1
oz

Integrating the above w.r.t = results in

/f’(@@:/(-%) do

f(x)=—In(z)+ ¢

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

dp=yr " —In(z)+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into the constant c; gives the solution as

aa=yz " —In(z)

Solving for y gives
y=2z"(In(z) + ¢1)

Summary of solutions found

y=2z"(In(z) + ¢1)
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Solved using Lie symmetry for first order ode
Time used: 0.270 (sec)
Writing the ode as
,_ny+a”
oz
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W("?y - gm) - w2£y — wz§ — wyn =0 (A)

To determine &,n then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

§ =zas +yas + a; (1E)
n = xbs +ybs + by (2E)

Where the unknown coeflicients are

{ala az, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(ny +2") (b3 —a2) (ny+ ") ag
72

by +

x
z"n ny+z"
== (zaz +yaz + a1) —

(5E)

n(l‘bz + yb3 + bl) .
T

0

Putting the above in normal form gives

n?y2as + z"nzxay + 3z"nyas + n by — nylas + r2"as + z"na; — "xbs — xyas + nxb; — nya; — b

2
=0

Setting the numerator to zero gives

(6E)

—n?y2as — z"nzas — 3x"nyas — nx?by + ny’as — x%as
— z"nay + 2" bz + x"yas — nxb; + nya, + boz? + z"a; =0
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Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y,2"}

The following substitution is now made to be able to collect on all terms with {z,y}

in them
n
{z = v,y = vg, 2" = v3}

The above PDE (6E) now becomes

—n2v§a3 — v3nuiag + nvga;; — 3usnusas — nv%bg + nvyay
2 2
— vzna; — nv1by 4 v3v2a3 — v3a3 + bovy 4 v3v1bs +v3a; =0

Collecting the above on the terms v; introduced, and these are
{Uh V2, ’U3}

Equation (7E) now becomes

(—nbs + bo) v + (—naz + b3) vivs — nuibs + (—n’as + nas) v

+ (—3nas + a3) vovs + nvea; — viaz + (—nay +a;) vz =0

Setting each coefficients in (8E) to zero gives the following equations to solve

na; =0

—a3 =0

—nb; =0

—na; +a; =0
—3nas +a3 =0
—n?asz +naz =0
—nby +by =0

—nag +b3 =0

(7E)

(8E)
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Solving the above equations for the unknowns gives

a; =0
a2 = a2
a3 =0
by =0
b, =0
bs = nas

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E==x

n=ny
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y)§

:W_(w+ﬁ)@

X

=—x
§=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that <§ 6% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S:/ldy
n
_ 1

_ / dy
_xn

S is found from
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Which results in

e 1

S=—yzx
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ — Sx +w(w,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

wo(z,y) = ny + "
Y) = x
Evaluating all the partial derivatives gives
R, =1
R, =0
Sy =nyx ™!
Sy=—z"
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dsS 1
D 2A
dR x (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S.

Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).

/dS /——dR

=—ln(R)+02

To complete the solution, we just need to transform the above back to x,y coordinates.
This results in

—yzr " =—In(z) +c
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Which gives
y=(In(z) — ) 2"

Summary of solutions found

y=(In(z) —c)z"
Maple step by step solution

Let’s solve

2(Ly(x)) - ny(e) = 2"
° Highest derivative means the order of the ODE is 1

=Y(@)
° Solve for the highest derivative
fey(w) = 2O

o Collect w.r.t. y(z) and simplify

fyla) = ) 4 2

) Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE

dy(o) - ) — =2

° The ODE is linear; multiply by an integrating factor u(x)

u(@) (fy() - ")) = vieke

o Assume the lhs of the ODE is the total derivative - (y(z) u(x))

w(a) (L) — ) = (Ly(@)) (=) + y(@) (Lulz))

o Isolate L u(z)
%M(l') _ _u(z)n

. Solve to find the integrating factor
W) = =

° Integrate both sides with respect to x

[ (L (y(@) p(@)) do = [ “22" 4 + C1
° Evaluate the integral on the lhs

y()p(z) = [ @dm + C1
o Solve for y(x)
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) = J @ gp i o

x

y(e (@)

e  Substitute pu(z) = -
y(z) =2z"([ tdz + C1)

) Evaluate the integrals on the rhs
y(z) =z"(In(z) + C1)

Maple trace

/

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 12

‘ dsolve(diff (y(x),x)*x-n*y(x) = x"n,
‘ y(x) ,singsol=all)

y(@) = (In(z) + 1) 2"

Mathematica DSolve solution

Solving time : 0.071 (sec)
Leaf size : 14

‘ DSolve [{x*D[y[x],x]-n*y[x]==x"n,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) = z"(log(z) + ¢1)
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2.1.11 problem 2(e)
Solved as first order linearode . . . . . ... ... ....... 144
Solved as first order Exactode . . . . . ... ... ....... 146}
Solved using Lie symmetry for first orderode . . . .. .. . .. 1501
Maple step by step solution . . . . . .. ... ... ... .. .. 157
Mapletrace . . . . . . . . . . .. 159
Maple dsolve solution . . . .. ... ... ... .. ....... 159
Mathematica DSolve solution . . . . .. .. ... ... ..... 1591

Internal problem ID [4200]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 2(e)

Date solved : Tuesday, December 17, 2024 at 06:50:06 AM

CAS classification : [_linear]

Solve

(P+z)y+y=2

Solved as first order linear ode

Time used: 0.115 (sec)

In canonical form a linear first order is

Y + q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

nx oz (z241)
1
p(x)—$2+1
“:efqdz
_ o
x
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The ode becomes

d
a(uy) = pp

d%(uy) = (w) (xzi 1)
%(xy?—x—i—l) B ( x:+1> <x211)
(2) - (i) =

dz

Integrating gives

yr / x
Va2 +1 (z2 +1)*2
1
= - —|— C
2+l
Dividing throughout by the integrating factor ﬁ gives the final solution

avzi+1-1

\
L A A A

[N}
h
[ O I |

NN L G TR

Vb

y(x) 01

[
b

1

e N N N

1 \
—— s | e
\

Figure 2.32: Slope field plot
(B+z)y+y==z

Summary of solutions found
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Solved as first order Exact ode
Time used: 0.135 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(P +z)dy=(—y+z)dz
(y—z)dz+(z* +2)dy =0 (2A)

Comparing (1A) and (2A) shows that
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
0y Oz
Using result found above gives
oM 0
By = a—y(y — )
=1
And
ON 0
o ~as® T
=32 +1

Since %—A; # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4] (aM azv)

- N oy ox
_ 1 _ 2
=5 x((l) (3z2 4+ 1))
__ 3%z

2+1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is

b= efAdz
_ ef _zgil dx
The result of integrating gives
31n(12+1)
n= e 2
_ 1
(22 + 1)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.
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CHAPTER 2.

And

1

(@2 +1)*?
. T

B vz 41

Now a modified ODE is ontained from the original ODE, which is exact and can be

(° + z)

solved. The modified ODE is

—d
M+ N—= =
+ P 0
y—z T dy
+ — =0
Qﬂ+nw) (mhﬂ)m
The following equations are now set up to solve for the function ¢(z,y)
op —
T =M 1
o (1)
op —
— =N 2
5 e

Integrating (2) w.r.t. y gives

%dy= /Ndy
Oy

9 4 —/ T 4
Oy V= Ve +1 Y

S )

¢_\/x2+1

Where f(z) is used for the constant of integration since ¢ is a function of both z and

3)

y. Taking derivative of equation (3) w.r.t = gives

(4)

9 ya® y e

=— +
0z (2241 Vai+

Y '
=m+f(m)
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But equation (1) says that % = ﬁ Therefore equation (4) becomes
y—T _ ) !
@1 @y ©)
Solving equation (5) for f'(z) gives
T
@) =
) (x2 +1)*?

Integrating the above w.r.t = gives

/f’(x)dxz/(—(msz) dz

1
T) = ———+c
/(=) z2+1 !

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢
x 1
Vzz+1  Vr2+1

¢

+C

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy constants into the constant c; gives the solution as

yx 1
= +
Vz+1l 22 +1

C1

Solving for y gives
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Figure 2.33: Slope field plot
(B+z)y+y==x

Summary of solutions found

aVvri+1-1

X

Solved using Lie symmetry for first order ode
Time used: 1.988 (sec)

Writing the ode as

y = __y=-z
z(z2+1)
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne +w(my — &) — w2€y —wz —wyn =0 (A)

To determine &,n then (A) is solved using ansatz. Making bivariate polynomials of
degree 3 to use as anstaz gives

¢ = 2day + 2%yas + Ty%ag + yPayg + a4y + yzas + ylas + zag + yas +a; (1E)

n = 13b; + 22ybs + T Y?bg + y*b1o + 22by + yxbs + y2be + by + Ybs + by (2E)

Where the unknown coeflicients are

{afla az, as, a4, as, g, a7, ag, ag, a0, bla b2a b37 b4) b57 bﬁ’ b7’ b87 b9, blO}
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Substituting equations (1E,2E) and w into (A) gives

32%b; + 2xybs + y?bg + 2xby + ybs + by (5E)
_(y-2) (—3z%a; + 2%bg — 2zyag + 2xyby — y2ag + 3y?bro — 2xay + Tbs — yas + 2ybg — as + b3)
z(z2+1)
_ (y — $)2 (z%as + 2xyag + 3y*a10 + was + 2yags + as)
22 (22 + 1)
1 Yy—z 2y — 2z 3 9
_ (x(x2 ) + @+D " @y 1)2) (z°ar + 2yas

+ zy’ag + y’a10 + ’as + yzas + y’as + vaz + yaz + a1)
n .'133b7 + .'132yb8 + il?beg + y3b10 + 1172b4 + y:cb5 + y2b6 + .’L‘bz + yb3 + bl

=0
z(z2+1)

Putting the above in normal form gives

4x*b; + 227ybg + 4xdybs + 25y2bg + 2*y?by + 225yby — ziy2as + xty?ag + 3xty?bio — 223y3a9 — 223y3byg

=0

Setting the numerator to zero gives

4z*by + 22" ybg + 4z ybg + 289 ?bg + 1% by + 225 yby — 2y % as + 1y ag
+ 3x*9%byo — 20393 ag — 223y3byo + 223yar + 223yby + 312y %ay
+ 32%9%byo — 2z y2a9 — 22 y3byo — 223yay — 3x2y%ar0 + 6z y3a10
+22%y3a19 — 32%yaig + 32807 + 72%b; — 28a; + 25bg — 32tar + zbg
— ztag — dytarg + ybsz? + 203ybs + 2b22% — 223yay + 223yas (6E)
— 3x2y2a3 — 3x2ya1 + 2zyas + 280 + ztas + 32*by + %bs + 22304
+ 236, — 20y — 22as + 2%bs — 2y%as + xby — yar — 3y3ag + 22 by
+ 52°bs + 2°b5 — 22%ay — 2305 + 235 — x y2as + 4 yPag — v y%be
+ 323by + .’EGyb5 — a:4ya4 + x4ya5 + 2x4yb5 + 2a:4yb6 — 2az3y2a5
+ 2239 a5 — 239°bg — 3%y a6 + 2%yay + 2°yas — 2x%yag + 2xybg = 0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{r =v1,y = v}
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The above PDE (6E) now becomes

3v1b4 + 4viby + 3v3by + Tvlb, — vla7 + v8bg — 3viay + vibs
— viag — 4v2a10 + 2byv} + v9by + viag + 3viby + vibs + 2via
+03by, — viag — v?as + vibs — 2v2a3 + v1b; — vaa; — 3viag
+ 207by + 5vSby + vibs — 203ay — v1a5 + v1b5 + 207 vybg + 4vivybg
+ vlvgbg + viviby + 2vSvyby — viviag + viviag + 31)1'02b10 (7E)
— 203v3ag — 203V5b1g + 2vivea7 + 203V9by + 3VIVIag + 3UTVIbig
— 2v1'v2a9 2v1v§‘b10 — 2'0?'02(19 — 3v%v§a10 + 61}1v§’a10 + 2vi’vg’alo
— 3v2v5a10 + Vabsv? + 203uabg — 2v3vaay + 203veas — 3vivias
— 321%1)20,1 + 2viv0a3 — vlvgas + 4vlv§a6 — vlvgbﬁ + va2b5
— ’0111)20/4 + U%U2(15 + 2’0411’021)5 + 2’0411’021)6 21)%1)%0/5 + 2’1)?’0;&6

— v3udbg — 3vivsag + Viveay + Viveas — 203vzag + 207vabg = 0

Collecting the above on the terms v; introduced, and these are
{v1, v2}

Equation (7E) now becomes

3v1b7 4v§a10 - 20§a3 + v1by — voa1 — 3v§‘a6 + 2vIb4
+ (4bg + 2bg) vov3 + (bg — as + ag + 3byg) viv]
+ (—2ag — 2b1o + 2a10) V3v: + (2a7 + 2bg — 2ag + 2bg — 2as + 2a3) Vv3
+ (3ag + 3b1g — 3a1p — 3az) vavi + (—2ag — 2byo + 6ay) VoV, (SE)
+ (=3a1 + ag + a5 — 2ag + bs + 2b) vivy + (—as + dag — bg) viv,
+ (—a4 + a5 + 2b5 + 2b6) ’1)2’0411 + (—20,5 + 2(16 — bﬁ) ’U%’U%
+ (7b7 — a7+ bg + b2) ’U? + (—a2 —as + 2b2 + b3) ’U%
+ (5b4 + b5) U? + (2@1 - 2(14 — a5+ bl + 3b4 + b5) ’Ui’
+ (4b7 — 3(17 + bg —ag+as+ 3b2 + bg) ’Uil + 21);1)21)8
+ v?vgbg — 3v%v§a10 + 2v1v9a3 + vf'vgb5 — 3va§’a6 =0
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Setting each coefficients in (8E) to zero gives the following equations to solve

by =0

bs =0

by =0

—a1 =0
—2a3 =0
2a3 =0
—3ag =0
—4a10=0
—3a10 =0
2by =0

3b; =0

2bs =0

5by + b5 =0
4bg 4+ 2bg =0

—2a5 + 2a¢ —bg =0

—as +4ag — bg =0

—2a9 — 2b1g + 2a10 =0

—2ag — 2b1g + 6a10 =0

—ag —az+2by+b3=0

—ay4 + a5 + 2bs + 2bg = 0

3ag + 3b1g — 3a10 — 3a3 =0

Tb; —a7+bg+ by =0

bg — ag + ag + 3b1p =0

—3a1 + aq + a5 — 2a¢ + bs + 2bg = 0
2a17 — 2a4 — a5+ by +3by+b5=0
2a7 + 2bg — 2a9 + 2bg — 2a9 + 2a3 =0
4b; — 3a7 + bg —ag + as +3by + b3 =0
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Solving the above equations for the unknowns gives

a; =0

az = —bs + 2by
a3 =0

as =0

a5 =0

ag =0

ar = —bz + byo
ag = 2byg

ag = —bio
ap=0

by =0

by = —b3 + bio
bs = b3

by =0

bs =0

bg =0

b; =0

bs =0

by =0
bio = b1o

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=23+ 2% —zy® + 22
n=y’+z
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation
n=n-—wzy)

=y3—|—:v— (_xy;x) ($3+2m2y—zy2+2x)

(22 +1)
23y® — 23y + 32%y? — 22 + 2y
B 4+
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

Sz/ldy
n

1
- 33 3 29,2 2 dy
Toy° —xy+3riy? —z44-2yc

34z

S is found from

Which results in

2_
- (CL‘3 + :I?) (_lni%a_c:il) + ln(xzywzfgl—zy)>

T

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ — Sx +w(a:,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

(2,9) = ——
w(z,y) = ———5—-=
Y z(z2+1)
Evaluating all the partial derivatives gives

R, =1

R, =0

I B et
T yr 41 2zy?—2r+4y
2 +1

S —
YU (yz+1) (wy? — z +2y)



CHAPTER 2. BOOK SOLVED PROBLEMS 156

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s 1

R % (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s _ _ 1
dR~ 2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

/dS /——dR

(R) = — lnéR) ‘e

To complete the solution, we just need to transform the above back to x,y coordinates.
This results in

In(zy’ —z+2y)  In(z)

_1 1 —
n(yz+1)+ 5 5

+ co

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
Original ode in z,y coordinates coordinates
transformation

ODE in canonical coordinates

(R,5)
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Solving for y gives

—e2c2 +14+ \/_z26262 + 2 —e22 41

V= (2 — 1)z
€22 — 14 +/—x2e22 4 g2 — 22 4 1
y (€22 — 1)z
8 p— AR e —
A R
T NN ————e
A I I\ S
- 7NN ————
g 2 T N —
71N —=— -
7 N -
- - _~ - =
yo o T
- N
— N —
B e DEEE N W B P g g —
- NV
— ~~N\ V177 —
e NV 1 .
e NNV 7 .
NN A A —
B NN V1
o 5 5 5 7

Figure 2.34: Slope field plot
(#B+z)y+y=2z

Summary of solutions found

—e2c2 +1+ \/—.’1326202 + 2 —e22 1]
(22 —1)x

e202 _ 1 + \/_x2e202 _|_ $2 _ e202 + 1
(€22 — 1)z

y=-

Maple step by step solution

Let’s solve
(@® + ) (Fy(@) +y(z) =2

° Highest derivative means the order of the ODE is 1
Ly(z)

° Solve for the highest derivative
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(@) = 7

o Collect w.r.t. y(x) and simplify

) Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE

° The ODE is linear; multiply by an integrating factor u(x)
w(a) (L) + H ) = 42

° Assume the lhs of the ODE is the total derivative d%(y(m) w(zx))
w(z) (L) + ) = (Zy(@) iwa) + (@) (Lu())

e Isolate 2 u(z)

mh(z) = (zggi))z

° Solve to find the integrating factor

T

p(x) = Va2l
° Integrate both sides with respect to x
J (L (y(2) u(x)) dz = [ 42 dz + C1
° Evaluate the integral on the lhs
y(z) p(z) = [ 48 dg + C1

241

o Solve for y(x)

12+1

y(@) = —"m

° Substitute u(z) = m++1

[ 4= gz 1

T2+1 (f 2’”3/2dm+01)
x4+1
y(z) = ( p )
° Evaluate the integrals on the rhs

[o2 51
y(z) = e

° Simplify
C1Va?+1-1
T

z241 (—;+01>

y(z) =
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 19

-

dsolve ((x~3+x)*diff (y(x),x)+y(x) = x,
L y(x) ,singsol=all)

Mathematica DSolve solution

Solving time : 0.061 (sec)
Leaf size : 23

} DSolve [{(x"3+x)*D [y [x],x]+y [x]==x,{}},
‘ y[x],x,IncludeSingularSolutions->True]

-1 +Cl\/.’E2 + 1

T

y(z) =
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2.1.12 problem 3(a)
Solved as first order linearode . . . . . ... ... ....... 160
Solved as first order Exactode . . . . . ... ... ....... 162
Maple step by step solution . . . . . ... ... ... ... .. 166
Mapletrace . . . . . . . . . . ... 167
Maple dsolve solution . . . . . ... ... ... L. 167
Mathematica DSolve solution . . . . . ... ... ... ..... 167

Internal problem ID [4201]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 3(a)

Date solved : Tuesday, December 17, 2024 at 06:50:09 AM

CAS classification : [_linear]

Solve

cot(2)y +y==x

Solved as first order linear ode

Time used: 0.148 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

an ()

t
p(z) = z tan (z)

’u:efqu

— ef tan(z)dz

= sec ()
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The ode becomes

d
a(uy) = pp

L (uy) = (1) (2 tan (2))

%(y sec (z)) = (sec (z)) (z tan (z))

d(ysec(x)) = (z tan (x) sec (z)) dz
Integrating gives

ysec(z) = / ztan (z) sec (z) dz

= wos(@ In (sec (z) + tan (z)) + ¢

Dividing throughout by the integrating factor sec (z) gives the final solution

y = —In (sec (x) + tan (z)) cos (z) + ¢ cos (z) +

3 ? 7 —\ ‘\/ “; 4\ A’ VAN \\c “; | =7
1T 7—=N\V 1117 -~ ~~\N\1| /] ————~/
T 7—=N\VI1T1T7-~~~N\N)\|/——>—~7/
o 17 NV LT SN N L mmes—
T 7—=NV V1 17>~ N\NxN\~—7"7
T7—=NV L1171 7==>xN"\N N\
11 rA / - \ \V V 4\ /4 / /7"""\"’A7 \\‘ \ ~N—/ 7
T 7—N\V\V1 71 /=1 \V\NN\N—/ 1
7 / — \ \\/ j“v A“ /4 e — /7 /“ \ \/ N—/ 7
11 7—=N\N\V17 s ———=7 17V \NN—71
YO 0 =N NV S T NN ]
17—\ V1 /——— 771 LV \N\N—71
I 7—=\N\V1 —-——~—— 771V \V\N—7 1
- / 7 —\ \4 \\‘ /4 I / 7 /“ v \‘v \ - / yA
I 7NN "N~~~/ [ 1 | A\ \N—7 ]
J 77—\ \N~~7 71 \V\N—71
2] I, NN 7 LN 71
o7 L NN~~~ 7 11V \VN—=71
J o7 L NN~ 7 11V N—=T
S NN~ 7N N—T ]
4 2 0 2 4

X

Figure 2.35: Slope field plot
cot()y +y==

Summary of solutions found

y = —In (sec (z) + tan (z)) cos (z) + ¢1 cos (z) +
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Solved as first order Exact ode
Time used: 0.177 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(cot (z))dy = (—y + z)dx
(y —z)dz+(cot (z))dy =0 (2A)

Comparing (1A) and (2A) shows that

M(x,y)zy—x
N(z,y) = cot (x)
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM_o .
oy Oy y
=1
And
ON 0
% = a(cot (.’L’))
= —csc(z)°

Since %—A; # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

i (8M 8N)

T N\dy Oz

= tan (z) ((1) — (=1 — cot (z)?))

= 2tan (z) + cot (x)
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is
—e JAdz

w
— ef 2tan(z)+cot(z) dz

The result of integrating gives
©= e—21n(cos(x))+ln(sin(x))
_ sin(x)

 cos (z)?

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
_ sin(@)
cos(a:)2(y )

= (y — x) sec (z) tan ()
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CHAPTER 2.
And
N =uN
sin (z
= 22 (ot (@)
cos ()
= sec (z)

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is

M + ¥ _y
dx

dy

((y — z) sec (z) tan (z)) + (sec (z)) i 0

The following equations are now set up to solve for the function ¢(z,y)

99

8:02M
9 —
8_y_N (2)

Integrating (2) w.r.t. y gives
% dy = / Ndy
9y

/g—idy=/sec(x)dy

¢ = ysec(z) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and

y. Taking derivative of equation (3) w.r.t = gives

B 4
- (4)
8¢ = (y — z) sec () tan (z). Therefore equation (4) becomes

(5)

But equation (1) says that %
(y — z) sec (z) tan (z) = ysec (z) tan (z) + f'(x)

% _ ysec (r) tan (z) + f'(z)

Solving equation (5) for f'(z) gives

f'(z) = —xtan (z) sec ()
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Integrating the above w.r.t = gives

/f'(m)dx=/(—xtan(m)sec(x))d:c

T

f(z)=— + In (sec (z) + tan (z)) + ¢

cos ()

Where ¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

¢ = ysec(z) — coszw + In (sec (z) + tan (z)) + 1

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy constants into the constant c; gives the solution as

c; =ysec(z) — + In (sec (z) + tan (z))

cos ()
Solving for y gives

In (sec (z) + tan (z)) cos (z) — ¢y cos (z) —

Y sec (x) cos (x)
Al /7—=N\V 111 77-~\N\N| ] 7 =7
T7—=NVLII1T T 77NN\ |7/ ————"7
? /// -\ ) “; 4\ A VAN Y \ J — -7
A1 7—=NV 111 7"~N\N\| "=~
T 7—=NV 1171 7"=NXN\VxN\~—"7
1 7—=NV V117 -=NN"\N N~
d1T7—=N\V V11 7=—~—1\\N—/1
T 7—=NVI1 17T /7=—===1 \V\NN—/]
17—\ 17 /7/—=—=—=71 \V\NN—/1
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Figure 2.36: Slope field plot
cot(z)y +y==z

Summary of solutions found

In (sec (x) + tan (z)) cos () — ¢; cos (z) — x
sec (z) cos (x)

y=—



CHAPTER 2. BOOK SOLVED PROBLEMS 166

Maple step by step solution

Let’s solve

cot (2) (zy(2)) +y(z) =

° Highest derivative means the order of the ODE is 1
=Y(@)

° Solve for the highest derivative

Lole) =
) Collect w.r.t. y(z) and simplify

d _ () x
%y(x) - _czt(x) + cot(z)

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
%y(w) + cggg(ci) = @

° The ODE is linear; multiply by an integrating factor u(x)
(o) (y(o) + 2 ) = Hee

o Assume the lhs of the ODE is the total derivative - (y(z) u(x))
u(z) (Ly(@) + L) = (Ly(@)) we) +y(z) (Lulz)

o Isolate - /()

%M(x) = c‘éﬁ?i)
° Solve to find the integrating factor
wE) = o
° Integrate both sides with respect to x
J (& (y(@) p(x))) dz = [ A%z + C1
° Evaluate the integral on the lhs
y(@) wz) = [ 29245 4+ C1

cot(z)

o Solve for y(x)

| &5 et ol
y(@) = =
o Substitute u(z) =
y(z) = cos (z) (f @) ot @ 4% C’1>
° Evaluate the integrals on the rhs

y(z) = cos () <COS($) In (sec (z) + tan (z)) + CI)
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° Simplify
y(z) = —In (sec (z) + tan (z)) cos (z) + CI cos (z) + =

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

N\

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 19

‘dsolve(cot(x)*diff(y(x),x)+y(x) = X,
‘ y(x) ,singsol=all)

y(z) = z + cos (z) (— In (sec (z) + tan (z)) + ¢1)

Mathematica DSolve solution

Solving time : 0.1 (sec)
Leaf size : 45

‘DSolve[{Cot[x]*D[y[x],x]+y[x]==X,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) = z + cos(x) <log <cos (;) — sin (g)) — log (sin <g> + cos (;)) + cl>
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2.1.13 problem 3(b)
Solved as first order linearode . . . . . ... ... ....... 168
Solved as first order Exactode . . . . . ... ... ....... 170
Maple step by step solution . . . . . ... ... ... .. .... 174
Mapletrace . . . . . . . . . . ... 175
Maple dsolve solution . . . . . ... ... ... L. 1775
Mathematica DSolve solution . . . . . ... ... ... ..... 175

Internal problem ID [4202]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 3(b)

Date solved : Tuesday, December 17, 2024 at 06:50:11 AM
CAS classification : [_linear]

Solve

cot (z)y' + y = tan (z)

Solved as first order linear ode

Time used: 0.179 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

’u:efqu

— ef tan(z)dz

= sec ()
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The ode becomes

d
;Eww—up

(1) = () (tan ()°)

%(y sec (z)) = (sec (z)) (tan (x)Q)

d(ysec (z)) = (tan () sec (z)) dz
Integrating gives

ysec(x) = /tan () sec (z) dz

_ sin (z)®  sin(x) _ In(sec(z) + tan (z)) o

 2cos (z)° 2 2
Dividing throughout by the integrating factor sec (z) gives the final solution
In (sec (z) + tan (x)) cos (z tan (z
,_ _m(see(o) +an@)eos(@) o ten)
2 2
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=4 =2 0 2 a
X
Figure 2.37: Slope field plot
cot (z)y' + y = tan (x)
Summary of solutions found
In (sec (z) + tan (z)) cos (z) tan (z)

y=- 5 + ¢; cos (z) + 5
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Solved as first order Exact ode
Time used: 0.261 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(cot (z))dy = (—y + tan (z)) dz
(y —tan (z)) dz +(cot (x))dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =y — tan (z)
N(z,y) = cot (x)
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
By a—y(y — tan (z))
=1
And
ON 0
B a(COt (2))
= —csc(z)°

Since %—A; # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

i (8M 8N)

T N\dy Oz

= tan (z) ((1) — (=1 — cot (z)?))

= 2tan (z) + cot (x)
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is
—e JAdz

w
— ef 2tan(z)+cot(z) dz

The result of integrating gives
©= e—21n(cos(x))+ln(sin(x))
_ sin(x)

 cos (z)?

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM

_ sin(z) an (2
ey tan(@)

= (y — tan (z)) sec (z) tan (x)
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And

N =uN
_ sin (z) cot (
cos (CC)2 ( t ( ))

= sec ()

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M + N% =0
dz
((y — tan (z)) sec (z) tan (z)) + (sec (z)) j—z =0
The following equations are now set up to solve for the function ¢(z,y)
0p —
i M (1)
0y —
3y = (2)
Integrating (2) w.r.t. y gives
@ dy = / Ndy
Ay
op .
3 dy = /sec (z)dy
¢ = ysec(z) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t = gives

% = ysec (z) tan (z) + f'(z) (4)

But equation (1) says that ‘g—‘i = (y — tan (x)) sec (z) tan (z). Therefore equation (4)
becomes
(y — tan (z)) sec (z) tan (z) = ysec (z) tan (z) + f'(z) (5)

Solving equation (5) for f'(z) gives

f'(z) = —tan (z)® sec ()
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Integrating the above w.r.t = gives

/f'(a:)dx:/(—tan(x)2sec(z)) dz

sin (z)* _sin(z) | In(sec(z) + tan(z)) te

fe) = " 2cos (z)? 2 2

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

sin (z)° _sin(z)  In(sec(z) +tan(z))
2 cos (z)? 2 2

¢ = ysec(z) — +a

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

sin (z)° _sin(z) | In(sec(z) +tan (z))
2 cos (z)? 2 2

¢ =ysec(z) —

Solving for y gives

_sin () cos (z)? — In (sec (z) + tan (z)) cos (z)? + 2¢; cos (z)? + sin (z)°

2sec (z) cos (z)°
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Figure 2.38: Slope field plot
cot (z)y' +y = tan (x)
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Summary of solutions found

sin (z) cos (z)* — In (sec () + tan (z)) cos (z)* + 2¢; cos (z)? + sin (z)°
2sec (z) cos (z)?

Maple step by step solution

Let’s solve

cot (z) (Ly(z)) + y(z) = tan (z)

° Highest derivative means the order of the ODE is 1

=Y(@)
° Solve for the highest derivative
f4(s) = et

) Collect w.r.t. y(z) and simplify

d . (z) tan(z)
%’y(.’ll) - _czt(x) + cot(z)

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
d (z) __ tan(z)
d_my(x) + czt(z) ~ cot(z)

° The ODE is linear; multiply by an integrating factor u(x)
l’l’( ) (d y(.'L') + cot(:?:)) (i)oz?aril)($)

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

u(z) (Ly(@) + L) = (Ly(@)) pe) +y(@) (Lulz)

o Isolate - /u(x)

d — M=)
EM(LE) - clc:t(x)

. Solve to find the integrating factor

,LL(IL‘) = cosl(m)

° Integrate both sides with respect to x

J (L (@) p(a))) do = [ H@E@ gy 4 o
o Evaluate the integral on the lhs

y(z J‘ p(z) tan( z)dw + C1

cot(z)
o Solve for y(z)
f p(z) tan(z) tan(z) dz+C1

cot(z

y(z) = (z)




CHAPTER 2. BOOK SOLVED PROBLEMS

175

e  Substitute u(z) = —%

cos(z)

y(x) = cos () (f _tan(e) gy 01)

cos(z) cot(z)

° Evaluate the integrals on the rhs

y(.’L‘) — coS (w) < sin(z)3 + sinz(x) _ ln(sec(x)z—i-tan(z)) + CI)

2 cos(z)?

° Simplify

y(a:) _ tanQ(x) _ ln(sec(z)-l—t;n(a:))cos(x) + C1 cos (.’E)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 23

‘dsolve(cot (x)*diff (y(x),x)+y(x) = tan(x),
L y(x) ,singsol=all)

cos (z) In (sec (z) + tan (z))

y(z) = — 5

Mathematica DSolve solution

Solving time : 0.088 (sec)
Leaf size : 25

+cos(z) ¢y +

tan (x)

2

'DSolve[{Cot [x]*D[y[x] ,x]+y [x]==Tan[x] ,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(x) — %(cos(m)(—arctanh(sin(m))) + tan(z) + 2¢; cos(x))
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2.1.14 problem 3(c)
Solved as first order linearode . . . . . ... ... ....... 176]
Solved as first order Exactode . . . . . ... ... ....... 178
Maple step by step solution . . . . . ... ... ... ... .. 182
Maple trace . . . . . . . . . . . e 183
Maple dsolve solution . . . . . ... ... ... L. 183l
Mathematica DSolve solution . . . . . ... ... ... ..... 183

Internal problem ID [4203]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 3(c)

Date solved : Tuesday, December 17, 2024 at 06:50:14 AM
CAS classification : [_linear]

Solve

tan (z) 3y + y = cot (x)

Solved as first order linear ode

Time used: 0.169 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

4() = cot (2)
cot ()

p= efqu
— efcot(x)dz

= sin (z)
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The ode becomes
L (uy) = p
dz
L () = (1) (cot (2)?)
dx
d, . .
E(y sin (z)) = (sin (z)) (cot (x)z)
d(ysin (z)) = (cot (z)’sin (z)) da
Integrating gives
ysin (z) = /cot (z)sin (z) d
= cos (z) + In (csc (z) — cot (z)) + 1
Dividing throughout by the integrating factor sin (z) gives the final solution

y = (cos (z) + In (csc (z) — cot (z)) + ¢1) csc (x)
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Figure 2.39: Slope field plot
tan (z)y +y = cot ()

Summary of solutions found

y = (cos (z) + In (csc (z) — cot (x)) + ¢1) csc ()
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Solved as first order Exact ode
Time used: 0.204 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(tan (z)) dy = (—y + cot (z)) dz
(y — cot (z)) dz +(tan (z))dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =y — cot (z)
N(z,y) = tan ()
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON
oy Oz
Using result found above gives
oM 0

And
ON 0
% = g(tan (l‘))
= sec (z)°

Since %—A; # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

am k(2 _omy

- N oy Ox
= cot (z) ((1) — (tan (z)® + 1))
= —tan ()

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
— ef—tan(:z:) dz

The result of integrating gives
w= eln(cos(x))
= cos (z)
M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.
M = uM
= cos (z) (y — cot (z))
= (y — cot (z)) cos ()
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And

N = uN
= cos (z) (tan (x))
= sin ()

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+Nd—y=0
dz

d
((y — cot (z)) cos (z)) + (sin (z)) ﬁ =0
The following equations are now set up to solve for the function ¢(z,y)

9¢

6
3y N (2)
Integrating (2) w.r.t. y gives
0 . [
/8_ydy = /Ndy
0
a_;j dy = /Sin (z)dy
¢ = ysin (z) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t x gives

0 — cos(a)y + £ (x) (@)
But equation (1) says that % = (y — cot (z)) cos (). Therefore equation (4) becomes
(y — cot (z)) cos () = cos (z) y + f'(z) (5)

Solving equation (5) for f'(z) gives

f'(x) = — cos (z) cot (x)



CHAPTER 2. BOOK SOLVED PROBLEMS 181

Integrating the above w.r.t = gives

/ F(z)dz = / (= cos () cot (z)) dz
f

(z) = —cos (z) — In (csc (z) — cot (z)) + ¢

Where ¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

¢ = ysin (z) — cos (z) — In (csc (z) — cot (z)) + 1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and cy constants into the constant c; gives the solution as

¢; = ysin (x) — cos (z) — In (csc (z) — cot (z))

Solving for y gives

_cos (z) +In (csc (z) — cot (x)) + 1

y sin ()
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Figure 2.40: Slope field plot
tan (z)y +y = cot ()

Summary of solutions found

_cos (z) +In (csc (x) — cot (z)) + 1
v= sin ()
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Maple step by step solution

Let’s solve

tan (z) (Ly(z)) + y(z) = cot (z)
° Highest derivative means the order of the ODE is 1

=Y(@)
° Solve for the highest derivative
o) =

) Collect w.r.t. y(z) and simplify

d . () cot(z)
%y(x) - _tgn(x) tan(z)

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
Ly(z) + tgl(la(:;) = %

° The ODE is linear; multiply by an integrating factor u(x)
(o) (Ly(o) + 2ol ) = Hets

o Assume the lhs of the ODE is the total derivative - (y(z) u(x))
(@) (£y(@) + £25) = (Ly(@)) p(@) + y(2) (£u(z))

o Isolate - /()

%“(x) = t:r(;g(ca)c)
° Solve to find the integrating factor

p(z) = sin (z)
° Integrate both sides with respect to x

J (& @) pe)) do = [ “ET P do + C
° Evaluate the integral on the lhs

y()p(z) = [ w(z) cot( x)dx + C1

tan(z)
o Solve for y(m)

f u(z) co;(m) dz+C1

tan

y(x) = 1(z)
o Substitute p(z) = sin (x)

f sm(tzilt(:oi);(z) do+C1

y(.’l?) = sin(z)
. Evaluate the integrals on the rhs

y(z) _ cos(m)+1n(cssciglav()w;cot(m))+CI
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° Simplify
y(z) = (cos (z) + In (csc (z) — cot (z)) + C1) csc (z)

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

N\

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 19

‘ dsolve(tan(x)*diff (y(x),x)+y(x) = cot(x),
‘ y(x) ,singsol=all)

y(z) = csc (z) (cos (z) + In (csc (z) — cot (z)) + ¢1)

Mathematica DSolve solution

Solving time : 0.103 (sec)
Leaf size : 29

e

DSolve [{Tan[x]*D[y[x],x]+y[x]==Cot [x],{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(x) — csc(x) (cos(x) + log (sin (g)) — log (cos (g)) + cl>
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2.1.15 problem 3(a)
Solved as first order linearode . . . . . ... ... ....... 184
Solved as first order Exactode . . . . . ... ... ....... 186
Maple step by step solution . . . . . ... ... ... ... .. 190
Maple trace . . . . . . . . . . . e 191l
Maple dsolve solution . . . . . ... ... ... L. 191l
Mathematica DSolve solution . . . . . ... ... ... ..... [191]

Internal problem ID [4204]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 3(a)

Date solved : Tuesday, December 17, 2024 at 06:50:16 AM
CAS classification : [_linear]

Solve
tan (z)y = y — cos (x)

Solved as first order linear ode
Time used: 0.154 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

q(z) = — cot ()
p(z) = — cos (z) cot (z)
The integrating factor u is

u:efqdz

— ef—cot(x)dx

= csc ()
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(csc(z)) (— cos (z) cot (x))
d(ycsc(x)) = (—cos (x) cot (z) csc (z)) dz

pip
(cot (z) + = + ¢1) sin ()

cot () +x+ ¢

= /—cos (z) cot (z) csc () dx

(1y) = (1) (= cos (z) cot (z))

d
a;uw)
d
dz

Yy

(y csc (x))

y csc (z)

OSSN Yoo ssd
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/////// A\ww\www\ww
S SN \\\\\\\\xxb»

\\\\\\ /////774 ———
\\\\\\\ y,/////////

111111 \, A
///,/,/,/, A /|
e //////// \\\\\\\

R /7//// \\\\‘\w\v»

\\\\\\\\\\\ A ),,, ////////
™ & B ) a & ™

d

BOOK SOLVED PROBLEMS
dz

Dividing throughout by the integrating factor csc (z) gives the final solution

The ode becomes
Integrating gives

CHAPTER 2.

y(x)

(cot (z) +x + ¢1) sin (z)

Figure 2.41: Slope field plot
tan (z)y' =y — cos (z)

Y

Summary of solutions found
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Solved as first order Exact ode
Time used: 0.166 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(tan (z))dy = (y — cos (z)) dz
(—y + cos (z))dz +(tan (z))dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —y + cos (z)
N(z,y) = tan ()
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
oy a—y(—y + cos (z))
=-1
And
ON 0
% = %(tan ((L’))
= sec ()

Since %—A; # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

AL (3_M _ @’)
N\ Oy ox
= cot (z) ((—1) — (tan (z)> + 1))
= —2cot (z) — tan (x)
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is

p=e JAdz
— ef —2cot(z)—tan(z) dz
The result of integrating gives
©= e—21n(sin(x))+ln(cos(x))
_ cos(x)
sin ()

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM

_ cos(x)

A

= —cot (z) (y csc (x) — cot (z))
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And

_ cos(x) an (x
- e (ten @)

= csc ()

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+Nd—y=0
dx

(— cot (z) (ycsc (z) — cot (z))) + (csc (x)) :—Z =0

The following equations are now set up to solve for the function ¢(z,y)

0p —
g—m =M (1)
6
3y = (2)
Integrating (2) w.r.t. y gives
0 . [
6_y dy = /Ndy
0
8_5 dy = /csc (z)dy
¢ =ycsc(z) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t = gives

9¢

5 = Tvese (z) cot (z) + f'(x) (4)

But equation (1) says that % = —cot () (y csc (z) — cot (x)). Therefore equation (4)
becomes

—cot (z) (y csc (z) — cot (x)) = —ycsc (z) cot (z) + f'(x) (5)
Solving equation (5) for f'(z) gives

f'(z) = cot (2)*
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Integrating the above w.r.t = gives

/f’(x) dxz/(cot (z)?) dz

f(x)=—cot(x)+g—w+cl

Where ¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

qS:ycsc(x)—cot(z)—l-g—a:—l—cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

c1 = ycsc (z) —cot(x)—l—g—z

Solving for y gives

_ m—2cot(x) —2¢c; — 22

2 csc (z)
31\ T 77NNV VT 7 7=~V L1V1 17
21\ \ ? /7 =\ \ \v yA / 7 =\ \‘ \ A\ A’ /7/
\‘ “\/ j /7 ="\ \l \\“ f / 7" \4 \‘w A\ ’/* /
N 17 7=~ \N/ /7 ~~—~\N\11/
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N A e e e S W I
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~N N L7 o= — 7\ N\ ~N 1 77
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—\ | /= 7 1L N - -\ 17—
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S NN ~— /771 |\ N——_ 7 | N\
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Figure 2.42: Slope field plot
tan (z)y’' =y — cos (z)

Summary of solutions found

__m—2cot () — 2¢1 — 2z
N 2csc ()
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Maple step by step solution

Let’s solve
tan (z) (£y(z)) = y(z) — cos (z)

° Highest derivative means the order of the ODE is 1
2y(z)

° Solve for the highest derivative

d (z)—cos(z)
%y(.'ll) . tan(z)

) Collect w.r.t. y(z) and simplify

d _ y=z) cos(z)
%y(x) - tgn(x) " tan(z)

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE

d () _ (z)
wy(@) — t:nzt) = —fif;(ﬁ)

° The ODE is linear; multiply by an integrating factor u(x)
u(z) (Ly(o) — L2y ) =~

o Assume the lhs of the ODE is the total derivative - (y(z) u(x))
(@) (Ly(@) — £25) = (Ly(@)) p(@) + y(2) (£u())

o Isolate - /()

(@) = — 47

° Solve to find the integrating factor
wE) = mm

° Integrate both sides with respect to x

J (W) ple)) do = [ —HE22dw + C1
° Evaluate the integral on the lhs

y(2) p(z) = [ —H22de + C1

tan(z)
o Solve for y(x)
[ —B@eos@) g o

tan(x)

y(@) = u()
e  Substitute u(z) = -2

sin(z)

y(z) = sin (x) (f — @ __gp 4 01)

sin(z) tan(z)

° Evaluate the integrals on the rhs
y(z) = sin (z) (cot (z) + = + C1)



CHAPTER 2. BOOK SOLVED PROBLEMS

191

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 15

-

dsolve(tan(x)*diff (y(x),x) = y(x)-cos(x),
L y(x) ,singsol=all)

y(x) = (cot (x) — g +x+ cl> sin ()

Mathematica DSolve solution

Solving time : 0.081 (sec)
Leaf size : 28

' DSolve [{Tan[x]*D[y[x],x]==y [x]-Cos[x],{}},
‘ y[x],x,IncludeSingularSolutions->True]

1, -, — tan?

y(z) — cos(z) Hypergeometric2F1 (—5, 5

(x)) + ¢ sin(z)
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2.1.16 problem 4(a)
Solved as first order linearode . . . . . ... ... ....... 192
Solved as first order Exactode . . . . . ... ... ....... 194
Maple step by step solution . . . . . ... ... ... ... .. 198
Mapletrace . . . . . . . . . . ... 199
Maple dsolve solution . . . . . ... ... ... L. 199
Mathematica DSolve solution . . . . . ... ... ... ..... 199

Internal problem ID [4205]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 4(a)

Date solved : Tuesday, December 17, 2024 at 06:50:19 AM
CAS classification : [_linear]

Solve

y' + ycos (z) = sin (2z)

Solved as first order linear ode

Time used: 0.170 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

q(z) = cos (z)
p(z) = sin (2z)

’u:efqu

_ ef cos(z)dz

=€

sin(x)
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The ode becomes

d

qp (M) = kp

L () = (1) sin (22)

dx

% (y esin(z)) — (esin(z)) (Sin (2$))
d(y esm(w)) = (sin (2z) esm(”)) dz
Integrating gives
y @) — / sin (2z) e¥2® dx

= 2sin (z) sin@) _ 9@ 4 ¢

Dividing throughout by the integrating factor e gives the final solution

y = 2sin (z) + e 5@, — 2
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Figure 2.43: Slope field plot
y' + y cos (z) = sin (2x)

Summary of solutions found

y = 2sin (z) + e~ *@¢; — 2
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Solved as first order Exact ode
Time used: 0.120 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (—ycos (z) +sin (2z)) dz
(ycos(z) —sin (2z))dz+dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = ycos (z) — sin (2x)
N(z,y) =1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 9N
oy Oz
Using result found above gives
oM 0
—sin (2
¥ By(y cos (z) — sin (2z))
= cos ()
And
8N
s (1)

—0

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratmg factor to make it exact. Let

3_M _oN
Jy Oox
= 1((008( ) —(0)
= cos ()
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
—e JAdz

I
— ef cos(z) dz

The result of integrating gives

sin(z)

p=e

— esin(av)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM
= "2@)(y cos (z) — sin (2z))
= cos () (—2sin (z) 4 y) @
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CHAPTER 2.
And
N = uN
— esin(m)(l)
— esin(x)

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is

M+Nd—y=0
dzx

(cos (x) (—2sin (z) + y) eSin(w)) + (esin(x)) j_i -0

The following equations are now set up to solve for the function ¢(z,y)

o¢ W

8w:M
0p  —
3_y_N (2)

Integrating (2) w.r.t. y gives
o —
—¢ dy = / N dy
9y

@ _ sin(z)
By dy = / € dy
¢ =ye® + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and

y. Taking derivative of equation (3) w.r.t  gives

0 .

2 = cos (@) "y + £ @
Oz

But equation (1) says that 22 = cos (z) (—2sin (z) + y) €@, Therefore equation (4)

becomes
cos (z) (—=2sin (z) + y) 2@ = cos (z) @y + f'(x) (5)
Solving equation (5) for f'(z) gives

f'(z) = —2cos (z) @ sin (z)
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Integrating the above w.r.t = gives
/ fl(z)dz = / (—2cos (z) e @ sin (7)) dz
f(z) = —2sin (z) @ 4 2500 4 ¢

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

¢ _ yesin(x) — 2sin (JI) esin(x) +2 esin(x) +¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

=y esin(x) — 2sin (.’E) esin(ac) +2 esin(ac)
Solving for y gives

y=e" sin(z) (2 sin (117) esin(a:) -9 esin(av) + Cl)
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Figure 2.44: Slope field plot
y' + y cos (z) = sin (2x)

Summary of solutions found

y=e" sin(z) (2 sin (117) esin(x) -9 esin(av) + Cl)
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Maple step by step solution

Let’s solve
%y(w) + cos (z) y(z) = sin (2z)
° Highest derivative means the order of the ODE is 1
()
° Solve for the highest derivative
%y(m) = —cos (z) y(z) + sin (2z)
° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
%y(z) + cos (z) y(z) = sin (2z)
° The ODE is linear; multiply by an integrating factor u(x)
#(2) (4£y() + cos (z) y(z)) = (=) sin (2z)
o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

(=) (5y(@) + cos (2) y(2)) = (Zy(@) pe) +y(x) (=)

e Isolate L u(z)

L () = p(z) cos (z)

° Solve to find the integrating factor

p(z) = e
° Integrate both sides with respect to x

J (£ (@) w(x))) da = [ p(z)sin (22) dz + C1
° Evaluate the integral on the lhs

y(z) p(z) = [ p(z)sin (2z) dz + C1
o Solve for y(z)
x) sin(2z)dz+C1
y(z) = S u(@) u((w)) +

e  Substitute u(z) = e®
[ &87(®) sin(2z)dz+ C1

y(x) esln(z)

° Evaluate the integrals on the rhs
y(.’[;) _ 2esin(1‘) sin(eas;i)n?f)esin(:c)_l_cl

° Simplify

y(z) = 2sin (z) + e~ 2@ C1 — 2
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 17

-

dsolve(diff (y(x),x)+cos(x)*y(x) = sin(2*x),
L y(x) ,singsol=all)

y(z) = 2sin (z) — 2 + e 5@ ¢,

Mathematica DSolve solution

Solving time : 0.119 (sec)
Leaf size : 20

e

DSolve [{D[y[x],x]+y[x]*Cos [x]==Sin[2*x] ,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) = 2sin(z) + c;e” @) — 2
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2.1.17 problem 4(b)
Solved as first order linearode . . . . . ... ... ....... 200
Solved as first order Exactode . . . . . ... ... ....... 202
Maple step by step solution . . . . . ... ... ... ... .. 206
Mapletrace . . . . . . . . . . ... 207
Maple dsolve solution . . . . . ... ... ... L. 207
Mathematica DSolve solution . . . . . ... ... ... ..... 207

Internal problem ID [4206]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 4(b)

Date solved : Tuesday, December 17, 2024 at 06:50:21 AM
CAS classification : [_linear]

Solve

cos (z)y' +y = sin (2z)

Solved as first order linear ode

Time used: 0.239 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

q(z) = sec(z)
p(z) = 2sin (z)

b= efqu
_ efsec(x)dx

= sec (z) + tan (z)
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The ode becomes
%(uy) = pp
L (uy) = (1) (250 (2))
%(y(sec (z) + tan (z))) = (sec (z) + tan (z)) (2sin (z))
d(y(sec (z) + tan (z))) = (2sin (z) (sec (z) + tan (x))) dz
Integrating gives
y(sec (z) + tan (z)) = /2sin (z) (sec (z) + tan (z)) dz
= —2sin(z) —2In(sin (z) — 1) + ¢4

Dividing throughout by the integrating factor sec () + tan (x) gives the final solution

_ (—=2sin (z) — 21In(sin (x) — 1) + ¢1) (cos (x) — sin (z) + 1)
cos (z) + 1 + sin (z)

Y
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Figure 2.45: Slope field plot
cos (z)y +y =sin (2z)

Summary of solutions found

(—2sin (z) — 21n (sin (z) — 1) 4+ ¢1) (cos () — sin (z) + 1)
cos (z) + 1 + sin ()

y:
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Solved as first order Exact ode
Time used: 0.237 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(cos(z))dy = (—y +sin (2z)) dz
(y —sin (2z)) dz +(cos (z))dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =y — sin (2z)
N(z,y) = cos(x)
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0 )
oy 6_y(y — sin (2z))
=1
And
ON 0
e %(cos (x))
= —sin ()

Since %i; # %—1:, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

1 /0M ON
AZN(%‘%)
= sec (z) ((1) — (—sin(x)))

= sec (z) + tan (z)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
— ef sec(z)+tan(z) dz

The result of integrating gives

b= eln(sec(z)+tan(m))—ln(cos(a:))

_ sec(z) + tan ()
cos ()

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM

_sec(z) +tan(z) <in (92
- cos (.’L’) (y (2 ))

_ Y+ 2 cos (z) sin ()
sin (z) — 1
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And

_ sec (z) + tan (
cos ()
= sec (z) + tan (z)

%) (cos (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+Nj—y:0

—y + 2cos (z) sin (z) d_:gj B
( sin () — 1 ) + (sec (z) + tan (z)) I = 0

The following equations are now set up to solve for the function ¢(z,y)

0p —
g—x =M (1)
6
3y = N (2)
Integrating (2) w.r.t. y gives
0 . [+
B_y dy = /Ndy
g_q; dy = /sec (x) 4 tan (z) dy
¢ = y(sec (z) + tan (z)) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t  gives

% = y(sec (z)tan (z) + 1 + tan (1')2) + f'(z) (4)
~ " sin (:130/) -1 AR

—y+2 cos(z) sin(z)

wn(z)-1 - Lherefore equation (4) becomes

But equation (1) says that % =

e SR
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Solving equation (5) for f'(z) gives

_ 2cos (z)sin (z)

f'(x)

sin (z) — 1

Integrating the above w.r.t = gives

[reve= [(Fa@m®)

f(z) =2sin(z) 4+ 2In(sin(z) — 1) + &1

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

¢ = y(sec (z) + tan (x)) + 2sin (z) + 2In (sin () — 1) + ¢;

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

c1 = y(sec (z) + tan (z)) + 2sin (z) 4+ 21n (sin (z) — 1)

Solving for y gives
_2sin(z) +2In(sin(z) —1) —
sec (z) + tan ()

st 177710 b vVNNN YL
117l VNN 111

A 7 /7 / / A J\ / \‘v \\\“ \ \ \\\“ :‘w /“ A 7 /7 / /
A1 1777V VNNNN LT
r7r 7770 b VNNNNN VLT ST
17777 VNV NNNSNN VT 17 /o7
1 7 J 7= 7 j‘» \\‘ \‘ NN “‘v A 7 /S
77 7~ NN N~ [ ] 7
17 NSV NN—= o 17 7 N

0 ol 27 NNN N NNN= T 7 2NN
Y JZ=NN NN N~/ 7 [ 77 7=\ \
SN N TN TN
NNV Y [ =7 T T NN
NNV V[ = 77T NN
NN /“ ST / ) A“ N NN\ ?\‘ '
NN \/ \‘ \ j‘v /\‘ / J 77 7 1 /“ VNN \ Vol
21N\ N\ \\ \ \ j‘v /\‘ 777 7] A /\‘ VNN \\ \ \
NNNNN V7727V NN L
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-3 N \\v N \‘v | A\ /’ ,7 /// 7 A ? ; Vo \‘ \ \‘ “‘v
4 2 0 2 4

Figure 2.46: Slope field plot
cos (z)y' + y = sin (2z)
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Summary of solutions found

2sin (z) + 2In(sin (z) — 1) — ¢
sec (z) + tan (z)

Yy=-

Maple step by step solution

Let’s solve

cos (z) (Ly(z)) + y(z) = sin (2z)
° Highest derivative means the order of the ODE is 1

&y(@)
° Solve for the highest derivative
yle) = =1

o Collect w.r.t. y(z) and simplify

d _ (z) in(2z)
%y(x) - _ci/)sj(vx) + scos(;)

° Group terms with y(x) on the lhs of the ODE and the rest on the rhs of the ODE
%y(z) + y(z) __ sin(2z)

cos(z) ~  cos(z)

° The ODE is linear; multiply by an integrating factor u(x)
() (@) + 275 ) = e

o Assume the lhs of the ODE is the total derivative 2 (y(z) u(z))
w(z) (Ly(@) + 225) = (Ly(@) wz) + y(@) (Lu())

e Isolate 2 u(z)

%M(QJ) = clcjé(xx))
° Solve to find the integrating factor
wu(z) = sec(z) + tan (z)

° Integrate both sides with respect to x

J (£ (@) p(a)) de = [ M2 dn + C1
° Evaluate the integral on the lhs

@) ulo) = [ e 1 1

o Solve for y(z)
f p(z) sm(2z)d +C1

cos(x)

y(z) = u(@)
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o Substitute u(z) = sec (x) + tan (x)

f (sec(z)+zzrsl((;c)))sin(2x) dz+C1
y(flf) = sec(z)+tan(z)
° Evaluate the integrals on the rhs
_ —2sin(z)—2In(sin(z)—1)+C1
y(l') - sec(z)+tan(z)
° Simplify
_ (—2sin(z)—2In(sin(x)—1)+ C1)(cos(z)—sin(xz)+1)
y(.’L’) - cos(z)+sin(z)+1

Maple trace

p

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 34

e

dsolve(diff (y(x),x)*cos(x)+y(x) = sin(2*x),
L y(x) ,singsol=all)

(—2sin (z) — 21n (sin (z) — 1) + ¢1) (cos (z) —sin (z) + 1)
cos (z) +sin(z) + 1

y(z) =

Mathematica DSolve solution

Solving time : 0.123 (sec)
Leaf size : 42

' DSolve[{Cos [x]*D[y[x],x]+y [x]==Sin[2+x],{}},
y[x],x,IncludeSingularSolutions->True]

N

y(z) — ¢ 22rctanh(tan(3)) (—2 sin(z) — 4log (cos (g) — sin <g>> + cl>
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2.1.18 problem 4(c)
Solved as first order linearode . . . . . ... ... ....... 208]
Solved as first order Exactode . . . . . ... ... ....... 210
Maple step by step solution . . . . . ... ... ... .. .... 214
Mapletrace . . . . . . . . . . ... 215
Maple dsolve solution . . . . . ... ... ... L. 215
Mathematica DSolve solution . . . . . ... ... ... ..... 215)

Internal problem ID [4207]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 4(c)

Date solved : Tuesday, December 17, 2024 at 06:50:24 AM
CAS classification : [_linear]

Solve

y' + ysin (z) = sin (2z)

Solved as first order linear ode

Time used: 0.165 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

q(z) = sin (z)
p(z) = sin (2z)

p=e

J[qdx

— ef sin(z)dz

=€

— cos(z)
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The ode becomes
() = o
dz
L () = () (sim (20))
dz
d —cos(z — cos(zx .
a(ye ( )) = (e ( )) (sin (2z))
d(y e” COS(””)) = (sin (2z)e” COS(“’)) dz

Integrating gives
ye~ @) = / sin (2z) e~ =@ dg
= 2cos (x) e @) 4 2e75(®@ 4 ¢
Dividing throughout by the integrating factor e~ <**(®) gives the final solution

y = 1 €@ 4 2cos (z) + 2

HKNN—=7 7 177 7—=NN\V\V\V\N—71
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NN—/ 7/ 7=~ N\ \N—//
NN—/7 /=~ N~ =N\ \—/ /]
0 o NNTT T NN S SN\
y NN— 7 SN\ S oSNNS
NN— " = NN\ ") T =N S
N~ NN\ NS T NN
M =~ NN\ N7 m
————=\N\N\ NS ]S
=N NN\ NS T
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==\ NN NN ST T T SN
Jm—=~=NN\N VNN ST )T SN
3/ =N\ N NVNN ST T ] NN\
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X

Figure 2.47: Slope field plot
y' + ysin (z) = sin (2z)

Summary of solutions found

y = c; @ 4 2cos (z) + 2
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Solved as first order Exact ode
Time used: 0.133 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (—ysin (z) + sin (2z)) dz
(ysin (z) —sin (2z))dz+dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = ysin (x) — sin (2z)
N(z,y) =1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 9N
oy Oz
Using result found above gives
%}\; aay(y sin (z) — sin (2z))
= sin (z)

And

8N

s (1)

—0

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratmg factor to make it exact. Let

- (5 &)
= 1((sin (2)) — (0))

= sin (z)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
— ef sin(z) dz
The result of integrating gives
p=e" cos(z)
e~ cos(x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
= ¢~ %@ (ysin (z) — sin (2z))
= sin () (—2cos (z) + y) e~ @
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CHAPTER 2.
And
N =uN
—e cos(z)(l)
— e—cos(z)

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is

IZ+N€Q=0
dzx
d
dy _

(Sjn (x) (_2 oS (JI) + y) e—cos(w)) + (e— cos(x)) e

The following equations are now set up to solve for the function ¢(z,y)

0
g—; (1)
3y (2)

I
<

I
=1

Integrating (2) w.r.t. y gives

09 . [+
a—ydy = /Ndy
@ _ — cos(z)

By dy = /e dy
¢ =ye 0 4 f(x) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and

y. Taking derivative of equation (3) w.r.t  gives

0¢ sin (z) e~ @y + f'(z) (4)

Ox

aﬁ = sin () (—2cos (z) + y) e~ °*@). Therefore equation (4)

But equation (1) says that 32
(5)

becomes
sin () (—2 cos (z) + y) e~ @ = sin (z) e~ @y + f'(z)

Solving equation (5) for f'(z) gives

f'(z) = —2sin (z) e~ @ cos (z)
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Integrating the above w.r.t = gives

/ f(z)dz = / (—2sin (z) e~ @ cos (z)) dz

f(.’L‘) = —2cos (x) e~ cos(z) _ 2¢~ cos(z) e

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

(;5 =ye~ cos(z) __ 2 cos (1,') e cos(z) __ ¢~ cos(z) T+

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

c=ye cos(z) __ 2 cos (.’E) e cos(z) __ ¢~ cos(z)
Solving for y gives

y = ecos(a:) (2 CoS (117) e~ cos(x) +2e” cos(z) 4+ Cl)
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NN—// =N~ =N\ N— S
0 o] NNTTT NN S SN NN
4 NN SN\ S NN S
NN NN NN NN S
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NN\ N\ N7 ]S s ——
—————=N NN\ NS 77
————= NN\ 7]
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S 2 5 3 i
X

Figure 2.48: Slope field plot
y' + ysin (z) = sin (2z)

Summary of solutions found

y = ecos(a:) (2 cos (117) e cos(z) +2e” cos(z) + Cl)
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Maple step by step solution

Let’s solve
4 y(z) + sin (z) y(z) = sin (2z)
° Highest derivative means the order of the ODE is 1
()
° Solve for the highest derivative
4y(z) = —sin (z) y(z) + sin (2z)
° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
%y(z) + sin (z) y(z) = sin (2z)
° The ODE is linear; multiply by an integrating factor u(x)
#(z) (y(z) +sin (z) y(z)) = p(z) sin (22)
o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

(&) (24(@) +sin @) 5(2)) = (£6(@) (@) +y(a) (En(a)
e Isolate L u(z)

Lu(z) = p(z)sin (z)

° Solve to find the integrating factor
p(z) = e
° Integrate both sides with respect to x
| (£@(@) ule))) dz = [ u(z)sin (22) dz + C1
° Evaluate the integral on the lhs
y(z) p(z) = [ p(z)sin (2z) dz + C1
o Solve for y(x)

) sin(2z)dx+ C1
y(z) = J (=) u((w)) +

° Substitute p(z) = e~ @)

— cos(z) in
y(x) = fe e—scos((i:)t)dw—‘rc’]
° Evaluate the integrals on the rhs
y(:z;) _ 2 e— cos(x) co:(_xc)js_fz?_ cos(z)_l_Cl
° Simplify

y(z) = C1 €@ 4 2cos () + 2
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 15

-

L y(x) ,singsol=all)

dsolve(diff (y(x),x)+y(x)*sin(x) = sin(2*x),

y(z) = 2cos () + 2 + e=@)¢,

Mathematica DSolve solution

Solving time : 0.105 (sec)
Leaf size : 18

e

DSolve [{D[y[x],x]+y[x]*Sin[x]==Sin[2*x] ,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) = 2cos(z) + c,e@ +2
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2.1.19 problem 4(d)
Solved as first order linearode . . . . . ... ... ....... 216
Solved as first order Exactode . . . . . ... ... ....... 217
Maple step by step solution . . . . . ... ... ... ... .. 221]
Mapletrace . . . . . . . . . . ... 223
Maple dsolve solution . . . . . ... ... ... L. 223]
Mathematica DSolve solution . . . . . ... ... ... ..... 223

Internal problem ID [4208]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 4(d)

Date solved : Tuesday, December 17, 2024 at 06:50:26 AM
CAS classification : [_linear]

Solve
sin (z) y' + y = sin (2z)

Solved as first order linear ode
Time used: 0.337 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

sc (z)

p(w) = 2cos (z)

The integrating factor u is
o= ef csc(z)dz

Therefore the solution is



217

BOOK SOLVED PROBLEMS

CHAPTER 2.

S NN / ,/ \ \\\\\\\VN\V\«\V»» L

—— S ON / \,, \ PP

e e = = = > > 7 7 \ ,/ / N T T T

B e B 44 I IANANONO NN

oo e RN NN

R e oo RERNN NN NN
s 7] \A ,, / AN N NN
B P4 AN NONCEC RSN
—_— = = > > > 7 \ N TS
A\)\\/\J/\J43/3%J:AJ:MW ~N \A P NN
e e N NN / 7/ \ \ VP
SO OSONON N \ ;,, / \ J s

\ |
/

AN S SN ;, PP

SoSOSNNNN , A ]|

//////ﬁ\\\\\\\\\\bbk
O NN , \ PP

e

kbxkk\\\\\\\»///77f7

e P o OV A ARNAN NN

T T T T
] ~ — =] i o ¢

y(x)

X

Figure 2.49: Slope field plot

sin (z)y' +y = sin (2z)

Summary of solutions found

' (/ 2 cos (z) el =@ dz + cl) g~ J cse(@)dz

Solved as first order Exact ode

Time used: 0.322 (sec)

To solve an ode of the form

d
M(w,y)+N(x,y)ﬁ=0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

¢(z,y) =0

a
dz

Hence

Comparing (A,B) shows that
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But since % = % then for the above to be valid, we require that
Y yox
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(sin(z))dy = (—y +sin (2z)) dz
(y — sin (2z)) dz +(sin (z)) dy = 0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) =y — sin (2z)
N(z,y) =sin(x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0
e Z(y—sin(2
= 5y —sin (22))
=1
And
ON 0 ,.
% = g(SIH (1'))

= cos ()

Since %i; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

1 /0M ON
A=y (a_y B %>
= csc(z) ((1) — (cos (x)))

= csc (z) — cot ()
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is
p=e JAdz

— ef csc(z)—cot(z) dz

The result of integrating gives

—e In(sin(z))—In(csc(z)+cot(x))
_ 1
~ sin (z) (csc (z) + cot (z))

7

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
1
" sin (x) (csc (z) + cot (z))
_ y—2sin (x) cos (x)
cos(z) +1

(y — sin (2z))

And

1 .
~ sin (x) (1csc (x) + cot (x)) (sin (2))

csc (x) + cot (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

(y - ij:zf)v)—:(is (x)) + (csc (z) j— cot (x)) :ii_i =0

The following equations are now set up to solve for the function ¢(z,y)

9¢
or
¢
Oy

I
<

1)
2)

I
2|
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Integrating (2) w.r.t. y gives

0 . [

a—ydy—/Ndy

op . 1

8_ydy_/csc(x)+cot (z) dy
6= L+ f()

~ csc(z) + cot (z)

(3)

Where f(z) is used for the constant of integration since ¢ is a function of both z and

y. Taking derivative of equation (3) w.r.t = gives

¢ _ _y(— csc (z) cot () — 1 — cot (x)z) -
Ox (csc (z) + cot (x))? AR

~ cos (;/) +1 + 1)

y—2sin(z) cos(z

But equation (1) says that % = ). Therefore equation (4) becomes

cos(z)+1
y — 2sin (x) cos (x Y
(@) cos (a) _ . Fo)
cos(z) +1 cos(z) +1

Solving equation (5) for f'(z) gives

_ 2sin (z) cos (2)

fe) = cos(z) +1

Integrating the above w.r.t = gives

[ rise- [ (-Hnex),

f(z) =2cos(z) —2In(cos (z) + 1) + ¢;

(4)

Where ¢; is constant of integration. Substituting result found above for f(z) into

equation (3) gives ¢

¢ = Y

= e (@) + ot (@) +2cos (z) —2In(cos (z) + 1) + ¢
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

a=_ @ -?lj—cot @) + 2cos (z) — 21n (cos (z) + 1)

Solving for y gives

y = —2cos (x)csc(x) + 2In (cos (z) + 1) csc (x) + ¢; csc (x)
— 2cos (z) cot (z) + 21n (cos (z) + 1) cot (z) + ¢; cot (x)

S I A A A A A A A T T T A A
L T 2 /A A A A T T I T T A A4

\‘v » { /4 / / / /4 7 /“ j‘v \ \/ \ \ \‘v j‘v A\ /4 /
21\ / L 7 / / /4 7 7 /“ “‘v \/ N\ \/ Vol j‘v 4\ / 7
\\' / { /7 / / / /// A /“ / \« \\ \ \\‘ \\' ““w A\ /7 /
VY L7 T AN Y L
ANV L o V==V ]
N A A N N N A IR
AT N A A e e N M T NN

0w ANV ENNS=T 7T s =N NN NN
Y NN TNNN—S7 777 7NN NN
NN VNN~ =77 =N LN
~— 1 VNN N——=\N T [ 77—~ 1] |\
M= VNN N~~~ T 77 /7 =7 \\
7 TVNNNSNNV T T 7o
7 /7 1 » ' \ \ N \ / /“ 7 /// / / Ve / ‘\ \ '
21/ /// 1 j‘v Vol \/ \ \/ :‘v /“ 7 7 / / / 7 ‘v / \
71 UNNNNN VLT T
AREEERRERERER AR RN
317 1 1 Vyov N N T T ] 7 771 ‘\ Vo
% > 5 3 3

X

Figure 2.50: Slope field plot
sin (z) ¥ + y = sin (2z)

Summary of solutions found

y = —2cos(x)csc(x) + 21In (cos () + 1) csc (x) + ¢; cse (z)
— 2cos (z) cot (z) + 21n (cos (x) + 1) cot (x) + ¢1 cot (x)

Maple step by step solution

Let’s solve
sin (z) (Ly(z)) + y(z) = sin (2z)

° Highest derivative means the order of the ODE is 1
()

° Solve for the highest derivative
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d __ —y(x)+sin(2z)
ay(l’) = sin(z)

o Collect w.r.t. y(z) and simplify

d _ () sin(2z)
%y(w) - _s?iln(x) + sin(z)

o Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
y( ) + y(z) __ sin(2z)

sin(z) ~ sin(z)

° The ODE is linear; multiply by an integrating factor u(x)
(z) (Ly(o) + 1) = vzl

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
w(@) (£y(@) + 225 = (Ey@) n@) +y(@) (Ln(@))

o Isolate L p(z)

° Solve to find the integrating factor
u(z) = csc(x) — cot (z)

° Integrate both sides with respect to x

J (& (o) p(@)) do = [ M2 da + C1
° Evaluate the integral on the lhs

@) ulo) = [ P24 + 1

) Solve for y(x)
f p(z) sm(2z)d +C1

sin(x)

y(z) = 1(2)
o Substitute u(z) = csc (z) — cot (z)

f (csc(z)—cot(z)) sln(ZE)d +C1

y(CL') = cssé?:g) cot(x)
° Evaluate the integrals on the rhs
_ —2cos(z)+21In(cos(z)+1)+C1
y([L‘) - csc(z)—cot(z)
° Simplify

y(z) = (—2cos (z) + 21In (cos (z) + 1) + C1) (cos (x) + 1) csc (z)
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 24

-

dsolve(sin(x)*diff (y(x),x)+y(x) = sin(2*x),
L y(x) ,singsol=all)

y(x) = csc (z) (—2cos (z) + 21In (cos (z) + 1) + ¢1) (cos (z) + 1)

Mathematica DSolve solution

Solving time : 0.427 (sec)
Leaf size : 38

‘DSolve[{Sin[x]+D[y[x],x]+y [x]==Sin[2%x] ,{}},
L y[x] ,x,IncludeSingularSolutions->True]

y(z) — edretanh(cos(@) <—2\ /sin?(x) csc(x) (cos(x) + log (sec2 (g))) + cl)
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2.1.20 problem 5(a)
Solved as first order linearode . . . . . ... ... ....... 224
Solved as first order Exactode . . . . . ... ... ....... 226
Maple step by step solution . . . . . ... ... ... ... .. 230
Maple trace . . . . . . . . . . . e 231
Maple dsolve solution . . . . . ... ... ... L. 2311
Mathematica DSolve solution . . . . . ... ... ... ..... 231]

Internal problem ID [4209]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60
Problem number : 5(a)

Date solved : Tuesday, December 17, 2024 at 06:50:29 AM
CAS classification : [_linear]

Solve

V2 +1y +y=2z

Solved as first order linear ode

Time used: 0.146 (sec)

In canonical form a linear first order is

Y +q(z)y = p(x)

Comparing the above to the given ode shows that

The integrating factor u is

1

2 +1
2z

PE) =

q(z) =

M=efqd:1:

1
_ ef z2+1dm

=z+vVz2+1
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3

T

2
2+

Y.,

2z (z + vz + 1) p
x

2z )
z2+1
z2+1
x2 + 1 gives the final solution

2z (z + /z?
241
2 +1

Hp

T+

22 + 1z — arcsinh (z) + z° 4+ ¢;

(ky)
(ky) = (1) (
-/

d
dzx
d

dz
12 + 1z — arcsinh (z) + 2% + ¢
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BOOK SOLVED PROBLEMS
(y<x+ m2+1>> = <x+ x2+1> (
T
(o e751)) =
y(m +Va?+ 1>

d
d

Dividing throughout by the integrating factor x +

The ode becomes
Integrating gives

CHAPTER 2.

L

y(x)

Figure 2.51: Slope field plot
x2+1

T+

2?2+1y+y=2r
12+ 1z — arcsinh (z) + 2% + ¢;

Summary of solutions found
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Solved as first order Exact ode
Time used: 0.217 (sec)

To solve an ode of the form

M(z,) + N(z,3) 2 =0 *)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 06d
Yy _
0xr Oydx 0 (B)

Comparing (A,B) shows that

o

5. =M

op

=N
0%¢ _ 0%¢

But since =%

Bay = Byds then for the above to be valid, we require that

oM  ON

By Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
(W) dy = (—y +2z)dz
(y - 20) do+(Va? +1) dy =0 (2A)
Comparing (1A) and (2A) shows that

M(z,y) =y — 2z
N(z,y) =Vvz2+1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

OM _ ON
oy Oz
Using result found above gives
oM 0
= L (y—-2
oy oy (y — 2x)
=1
And
ON 0
9N _ 9 (/52 1)
Oor Ox ( Tt
=z
z2+1
Since %—Aj # %—1;’, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

L L(OM _oN
N\ oy Oz

- 7m0 ()
VrZ+1 2+ 1
V2+1l—=x
z2+1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

’u:efAdx

\/x2+l—m
_ ef i de

The result of integrating gives

2
earcsinh(ac) _n (12 +1)

M:

I

x2+1
M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

Xz
=14 ——(y—2z
z2+1(y )

~-20) (14 )
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CHAPTER 2.

And

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
~dy
M+ N-=
+ dzx

))+(x+\/r+1)d—_

=0

x
—2z) 1+
(=20 (1+ 5
The following equations are now set up to solve for the function ¢(z,y)

1)

o6
=M

op

o =" 2)

Integrating (2) w.r.t. y gives
0¢ —
—dy= | Nd
By Y / Y
8¢ / x+Vz2+1dy

8y
6=y(z+Va?+1) + f(2) 3)
Where f(z) is used for the constant of integration since ¢ is a function of both z and

y. Taking derivative of equation (3) w.r.t x gives

o¢ (4)

T
“oyl1+
Or y< VrZ+1

But equation (1) says that a¢ = (y — 2z) (1 + ﬁ) Therefore equation (4) becomes

(5)

>+f@)

T

(y — 2z) (1+ x2+1) =y<1+\/%+1> + f'(z)
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Solving equation (5) for f'(z) gives

:c-l—x/af—l—l)

2 +1

)= -2

Integrating the above w.r.t = gives

frse- | (HE5E)er

f(z) = —Vx2 + 12 + arcsinh (z) — 2° + ¢;

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

¢:y<x+\/x2+1> — V22 + 1z + arcsinh (z) — 2° + ¢;

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢y constants into the constant c; gives the solution as

C1 =y<$+\/$2+1> —\/x2+1x+arcsinh(a:) —

Solving for y gives

V2 + 1x — arcsinh (z) + 22 + ¢
r+Vz2+1

f/{
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Figure 2.52: Slope field plot
V2 4+ 1y +y =2z
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Summary of solutions found

V2 + 1x — arcsinh (z) + 22 + ¢
r+Vr2+1

Maple step by step solution

Let’s solve
2+ 1(Ly(z)) +y(z) =2z
° Highest derivative means the order of the ODE is 1
&y(2)
° Solve for the highest derivative

dx y(.’l?) 2\:;:1%)

o Collect w.r.t. y(z) and simplify

d _ (z) 2
w¥(®) =~ ma t e

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE

d (£) 2

° The ODE is linear; multiply by an integrating factor u(x)
w(a) (o) + ) = 2z

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
w(a) (@) + 25 ) = (Ly(@) wz) +y(@) (Ln())

e  Isolate £ p(z)

(@) = fii
° Solve to find the integrating factor
plr) =+ Va2 +1

° Integrate both sides with respect to x

[ (@) p(e)) de = [ 28240 + 01
° Evaluate the integral on the lhs

y(z) f 2 (w)”’ ~dz + C1

o Solve for y(z)

J 222 gy 01
ye) = =S
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o Substitute u(z) =z +vVz2 +1

2(z+\/z2+1)x
z+Vz2+1

° Evaluate the integrals on the rhs

__ z?+axv/x22+1—arcsinh(z)+C1

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 34

‘dsolve((x"2+1)~(1/2)*diff (y(x),x)+y(x) = 2*x,
‘ y(x) ,singsol=all)

z? 4+ /22 + 1 — arcsinh (z) + ¢;
z+vVz2+1

y(z) =

Mathematica DSolve solution

Solving time : 0.254 (sec)
Leaf size : 85

p
‘ DSolve [{Sqrt [1+x~2]1*D [y [x] ,x]+y [x]==2*x,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(x)—w‘m”h ( \/71 x2+ﬁx+1)
S e e PO
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2.1.21 problem 5(b)

Solved as first order linearode . . . . . ... ... .......
Solved as first order Exactode . . . . . ... ... ....... 234]
Maple step by step solution . . . . . ... ... ... ... .. 238
Mapletrace . . . . . . . . . . ... 239
Maple dsolve solution . . . . . ... ... ... L. 239
Mathematica DSolve solution . . . . . ... ... ... ..... 240)

Internal problem ID [4210]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 5(b)

Date solved : Tuesday, December 17, 2024 at 06:50:31 AM
CAS classification : [_linear]

Solve
V2 4+ 1y —y=2vVa2+1

Solved as first order linear ode
Time used: 0.130 (sec)
In canonical form a linear first order is
Y +q(z)y = p(x)

Comparing the above to the given ode shows that

1
x) = ——F——=
1) z?2+1
p(z) =2
The integrating factor u is
L= efqu

— o vaEn®
_ 1
z+vVr2+1
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o

) dx
+1
- gives the final solution

1
2
2
2

dx
T2+

1
T+

Hp

<x+
(:E—l-
2 +1

2

(ny) = (1) (2)

=)
=)

dz
Y
2
Y
2
N / T+
V12 + 1+ arcsinh (z) — 2% + ¢;

(x-l-

o
T+

Y

2 +1

dzx
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x4+

y = <x—|— :1:2—|—1> <x z2+1+arcsinh(x)—z2+61>

BOOK SOLVED PROBLEMS

Dividing throughout by the integrating factor

The ode becomes
Integrating gives

CHAPTER 2.

e

y(x)

Figure 2.53: Slope field plot
22+1y —y=2vVa2+1

Y= (33+ m2+1) (1: x2+1—|—arcsinh($)—:c2+cl>

Summary of solutions found
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Solved as first order Exact ode
Time used: 0.149 (sec)

To solve an ode of the form

M(z,) + N(z,3) 2 =0 *)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 06d
Yy _
0xr Oydx 0 (B)

Comparing (A,B) shows that

o

5. =M

op

=N
0%¢ _ 0%¢

But since =%

Bay = Byds then for the above to be valid, we require that

oM  ON

By Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
( x2+1> dy = <y+2\/m> dx
(~y—2va?+1) do+(Va? +1) dy =0 (2A)
Comparing (1A) and (2A) shows that

M(z,y) = —y —2vVz? +1
N(z,y) =vVz2+1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

Using result found above gives

oM :Q<_ — 2V +1)

dy By

=-1
And
ON 0
gy _ Y 2
z ax( x—l—l)
B T
24+ 1

Since %—A; # %—2’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

Ao L(0M _oN
N\ 8y Oz

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

= el Ade
_ =Vaitloe g
The result of integrating gives
L=e arcsinh(z)—ln(w§+1)

_ 1

TV ALz VR )
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CHAPTER 2.

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
— L (—y W/ 1)
VETL (4 Va2 )
Y+ 2ver 41
VZ1 (¢ +VE 1)
And
N =uN
1
= Va2 +1
VZTI (@t V@ 1) (Ve +1)
1
o+ Var 1
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is
M + Nd—y =0
dx
_ y+2vVr2+1 +<;)d_y_0
V2 +1 (z+ V22 +1) r++vVr2+1/) dz
The following equations are now set up to solve for the function ¢(z,y)
op —
— =M 1
e (1)
0p —
— =N 2
o @)

Integrating (2) w.r.t. y gives
% dy = / N dy
9y

3 . _

1
8_y y_/:c+\/x2—|—1dy
qb:(\/wz—i-l—x)y-l-f(x)
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Where f(z) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t = gives

06 [ a ,
%—(—xm—l)yw(x) (4)
y+2vz2+1

But equation (1) says that % =— 3 Therefore equation (4) becomes

V241 (:v+\/ 241

y+2vVz2+1 . r g
_\/x2+1(z+\/x2+1)_( +1 1>y+f() ®)

xr2

Solving equation (5) for f'(z) gives

, _ 2
f(a:)— ac—i-\/m

Integrating the above w.r.t = gives
/f’(x) dz = / (—#) dz
r+Vz2+1
f(z) = 2* — xv22 + 1 — arcsinh (z) + ¢;

Where ¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

¢ = (\/m2—|—1 —m>y+x2 —zvVx? 4+ 1 — arcsinh (z) 4+ ¢;

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and ¢, constants into the constant c; gives the solution as

¢ = <1 /02 41— x) y + 2° — zvx2 + 1 — arcsinh (z)

Solving for y gives
_ zvz? 4 1+ arcsinh (z) — 2%+ ¢
Y Viz+1l—z
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Figure 2.54: Slope field plot
Ve2+1ly —y=2vz2+1

Summary of solutions found

_ zvx? 4 1+ arcsinh (z) — 2%+ ¢
v V2+1l—zx

Maple step by step solution

Let’s solve
2+ 1 (Ly(z)) —y(z) =2va2 +1

° Highest derivative means the order of the ODE is 1

()
° Solve for the highest derivative
)+2vx2
ay(z) = VSR

o Collect w.r.t. y(z) and simplify

ay(o) =2+ 255

° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE

yle) — fh =2

° The ODE is linear; multiply by an integrating factor u(x)

w(z) (L) — H5) = 2(z)
o Assume the lhs of the ODE is the total derivative - (y(z) u(z))
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() (Zy(e) — 25) = (Ly(@)) (=) + y(o) (Lul=))
e Isolate 2 u(z)

doh(z) = - \/l;(i)rl

° Solve to find the integrating factor

@) = e
° Integrate both sides with respect to x
[ (&) u(e))) de = [ 2u(z) dz + C1
° Evaluate the integral on the lhs
y(@) p() = [ 2u(z) do + C1
o Solve for y(x)

2u(z)dz+C1
o Substitute u(z) = H;\/m
y(z) = (z+ V22 + 1) (f el + CI)
° Evaluate the integrals on the rhs

y(z) = (z+ V22 + 1) (zv2? + 1 + arcsinh(z) — 2 + C1)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 32

‘(dsolve((x‘2+1)‘(1/2)*diff (y(x),x)-y(x) = 2x(x"2+1)"(1/2),
y(x) ,singsol=all)

N\

y(z) = (x\/ar—i—l + arcsinh (z) — z* + cl> (a: + \/QT—H)
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Mathematica DSolve solution

Solving time : 0.149 (sec)
Leaf size : 82

'DSolve[{Sqrt [1+x~2]#D [y [x] ,x]-y [x]==2%Sqrt [1+x~2] ,{}},
‘ y[x],x,IncludeSingularSolutions->True] ‘

arctanh z 1
y(z) — e i (”2“) (z (122—\/132+1:13+1)
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241

2.1.22 problem 5(c)

Solved as first order linearode . . . . . ... ... .......
Solved as first order Exactode . . . . . ... ... .......
Maple step by step solution . . . . . ... ... ... ... ..
Mapletrace . . . . . . . . . . ...
Maple dsolve solution . . . . . ... ... ... L.
Mathematica DSolve solution . . . . . ... ... ... .....

Internal problem ID [4211]

Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60

Problem number : 5(c)

Date solved : Tuesday, December 17, 2024 at 06:50:33 AM

CAS classification : [_linear]

Solve

V(z+a)(z+b) (2 —3)+y=0

Solved as first order linear ode
Time used: 0.338 (sec)
In canonical form a linear first order is
Y +q(z)y = p(x)

Comparing the above to the given ode shows that

(z) = =

= 2\/(z +a) (z+b)
3

P(w):§

The integrating factor u is
1
b= ef T

Therefore the solution is

L dz

3ef 2./(z+a)(z+b) _f 1
y= dr +ci | e 7 2/@tai+e)

2

dx

241]
242
24 7]
248
243
243
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Summary of solutions found

1
3ef 2/ (z+a)(z+b) dz —f 1 dx
Y= 5 dx +c|e 2v/(z+a)(z+b)

Solved as first order Exact ode
Time used: 0.328 (sec)
To solve an ode of the form

dy

M(z,y) + N(z,y) I

=0 (A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 06 06d
Y
— —_—— B
or + Oy dx 0 (B)
Comparing (A,B) shows that
o
T M
oz
o¢
T _N
Ay
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
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Therefore

(2\/(x+a)(x+b)) dy = (3\/(m+a)(x+b)—y> dz
(—3\/(33 ta)(@+b)+y dx+<2\/(x Ya) (@t b)) dy=0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = =3/ (z+a) (z +b) +
N(z,y) =2/ (z +a) (z +b)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N

dy ox
Using result found above gives

%—fz%(—3\/(x+a)(x+b)+y>
1

And
68]:1\37 (2\/x+ x-l—b))
_ a+b+2x
V(z+a)(z+b)

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

oM ON
A= (a—y‘a—x)

-t (o= ()
2/ (z +a) (z+b) V(z+a)(z+D)

_VJ@E@+a)(z+b)—a—b—2z

B 2(z+a)(z+Dd)
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

/,L=6fAdz

f v/ (z+a)(z+b)—a—b—2z d
= e 2(z+a)(z+b)

x
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The result of integrating gives
(a—b) 1n(%+g+z+,/(z+b)2+(a—b)(z+b)) (b—a)ln(%+%+z+\/(z+a)2+(b—a)(z+a))
V (z+b)2+(a—b) (z+b)+ ~ _ (@+a)24(b—a)(z+a)+ . _In((z+a)
2a—2b 2(a—b) 2

L=e
\/a+b+2:c+2\/(cc+a)(ac+b)\/§
B 2/(@+a) (@ +b)
M and N are mult_iplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM
a+b+2z+2/(z+a)(z+b)V2

— \/ NE +\2() (x+)b§ ) (—3\/(x+a) (x+b)+y)

(—3\/(z+a)(x—l—b)—|—y>\/a+b+2x+2\/(x+a)(z+b)\/§

2¢/(z +a) (z +b)

And

\/a+b+2x+2\/(x+a)(x+b)\/§
N 2y/(z+a) (z+) (2\/(a:+a) (z+b)>

=\/a+b+2x+2\/(x+a)($+b)\/§

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is

(3Gt @+ +y) Ya+b+2 42/t a4y Ve + (\/a+b+2z+2\/m

2/(@+a)(@+b)

The following equations are now set up to solve for the function ¢(z,y)

¢
gx
s @)

dy

1)

I
<

I
2|
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Integrating (2) w.r.t. y gives
% dy = / N dy
Oy

g_jdy:/\/a+b+2x+2\/(x+a)(x+b)\/§dy

p=\Ja+b+25+2/(+0) @ +b)V2y+ f(z) 3)

Where f(z) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t x gives

a+b+2z
¢ _ \/ﬁy(2+ x/(x-'l_—a-;_(z—i-b))
Oz 2\/a+b+2x+2\/(x+a)(x+b)

+ f'(2) (4)

B \/ﬁy\/a+b+2x+2\/(x+a)(x+b)

+ /
0/ (@ +a) (@10 f@
But equation (1) says that % = (8 (x+a)(x+b)2?(\g{:: ; ixb;rz ra)e \/i. Therefore
equation (4) becomes
(-3V@+a)@+b) +y) Vat+b+2e+2/(@+a)(@+b)v2
2y/(z+a) (z+b) (5)
\/iy\/a+b+2x+2\/(x+a) (z +b) fo)
= +/(z
2y/(z +a) (z +)

Solving equation (5) for f'(z) gives

__3\/a+b+2x+2\/(x+a)(x+b)\/§

e .
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Integrating the above w.r.t = gives

3v/a+b+2z+2/(z+a)(z+b) V2

/f'(x)dx——/ - \/ \2/( )( ) dz
¢ 3y/a+b+27+2/(T+a)(T+b)V2

/(@) /0 \/ \2/( ! ) dr+a

Where ¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

¢=\/a+b+2z+2\/(z+a)(:c—l—b)\/ﬁy—i-/m

3\/a+b+2r+2/(r+a)(T+b)V2
- 2

dT+Cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢, constants into the constant c; gives the solution as

clz\/a+b—|—2a:+2\/(a:+a)(z+b)\/§y+/x

3\/a+b+27'+2\/(7'+a)(7+b)\/§
a 2

T

Solving for y gives

0

( 5 _ 3yJatbrari2 2(T+a)(r+b)\/§ g — 01) 3

y=-

2\/a—|—b+2:v+2\/(:v—|—a)(x+b)

Summary of solutions found

z 3/ a+b+274+2+/(74+a)(7+b V2
(fo— ¢2< )(r+b) dT—cl)\/ﬁ

y=-

2\/a+b+2a:+2\/(x+a)(a:+b)
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Maple step by step solution

Let’s solve

V(e+a)(z+b) (2Ly(z) —3) +y(z) =0
° Highest derivative means the order of the ODE is 1

=y(@)

° Solve for the highest derivative
dy(g) = —V@)=3/ErIG)
do¥ 2/(cta)@tb)

° Collect w.r.t. y(x) and simplify

d _ 3 y(z)
wY(®) =5~ s rae
° Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE

d y(z) 3
wY(@) + 5 G = 2
° The ODE is linear; multiply by an integrating factor u(x)
p(z) (%y(m) + 2\/(x3ﬁ¢f))(x+b)) = g
o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

(@) (Ly(@) + 729 ) = (Lu(@)) (@) + y(o) (Lal2))

e  Isolate L p(z)

d - #@
wT) = 3 (@ta)(@th)
° Solve to find the integrating factor

u(@) = \/2a+ 2+ 4z +4/(w + a) (@ + D)

. Integrate both sides with respect to x
[ (E(y(z) p(=z)))dz = [ 3“T(m)dz + C1
. Evaluate the integral on the lhs

y(z) p(z) = [ *#2dz + C1
) Solve for y(x)

[ 32 4z 1 c1

y(@) = u(=)

o Substitute pu(z) = \/Qa +2b+4z +4+/(z +a) (z +b)
f 3\/2a+2b+4z+24\/mdm+01
\/2a-+2b+42+4y/ (@ +a) (@ 1D)

y(z) =
° Simplify
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3 ( [ \/2a-+2b+40+4, /(w+a)(z+b)dm) 1201
2\/2a+2b+4a-+4./ (et a)(@1b)

y(z) =

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 60

‘ dsolve (((x+a)*(x+b)) ~(1/2)*(2xdiff (y(x) ,x)-3)+y(x) = O,
‘ y(x) ,singsol=all)

3<f\/2a+26+4x+4\/(x+a)(x-l—b)dx) +4¢

y(z) =

2\/2a+2b+ 4z +4/(z + a) (& + )

Mathematica DSolve solution

Solving time : 0.637 (sec)
Leaf size : 115

' DSolve [{Sqrt [ (x+a)*(x+b)1*(2#D [y [x] ,x]-3)+y [x]==0,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z)
Vva+zvb+ xarctanh( Zf;) /z 3 arctanh(%) Vva+ K[1]/b+ K[1]
—exp | — — exp
Va+a)b+0) L2

V(a+ K1) (b + K[1])

+Cl
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2.1.23 problem 5(d)
Solved as first order linearode . . . . . ... ... ....... 249
Solved as first order Exactode . . . . . ... ... ....... 250)
Maple step by step solution . . . . . ... ... ... ... .. 254
Mapletrace . . . . . . . . . . ... 256
Maple dsolve solution . . . . . ... ... ... L. 256
Mathematica DSolve solution . . . . . ... ... ... ..... 256]

Internal problem ID [4212]

Book : Elementary Differential equations, Chaundy, 1969

Section : Exercises 3, page 60

Problem number : 5(d)

Date solved : Tuesday, December 17, 2024 at 06:50:36 AM
CAS classification : [_linear]

Solve

Vc+a)(z+b)y +y=ve+a—Vz+b

Solved as first order linear ode
Time used: 0.336 (sec)

In canonical form a linear first order is

Yy +a(z)y = p(z)
Comparing the above to the given ode shows that

q(z) = .
V(z+a)(z+D)
_ Vz+a—+Vz+b
V(z+a)(z+0)

p(z)

The integrating factor u is
1
= ef Teraem &

Therefore the solution is

1
dz + ¢, | e ! Veromm

_ /Ww+a—\/x+b)efmdx
y V(@ +a)(@+b)
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Summary of solutions found

dzx
— f B S
dx + c | e V(z+a)(z+b)

B /(\/x+a—\/x+b)ef\/<¢+al)w
v= NCEDICED)

Solved as first order Exact ode
Time used: 0.264 (sec)

To solve an ode of the form
d
M(z,y) + N(z,y) 22 =0 (8)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
I T i A B
ox + Oy dz 0 (B)
Comparing (A,B) shows that
99
9 M
09
TN
Ay
But since % = % then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
aa; gy = 5;9; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)
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Therefore

(Ve+a)@+b))dy=(-y+vaFa—ve+d)ds
(y—\/x+a+\/x+b>dx+<\/(x+a)(x+b)>dy=0 (2A)

Comparing (1A) and (2A) shows that

M(z,y)=y—+Vz+a+Vz+b
N(z,y) = V/(z +a)(z +0)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives

oM 0
8—y—8—y<y—\/x+a+\/x+b)
=1

And
a—fz%(\/(w+a)(x+b)>
a+b+2x

“ 2 /wta)(z+b)

Since %i; # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A— L(OM _ON
N\ Oy Oz

_ 1 (1) - a+b+ 2z
V(z+a)(z+D) 2\/(z +a) (z+b)

_2y/(z+a)(z+b)—a—b—2z
B 2(z+a)(z+0b)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

/J,=€fAdx

2/(z+a)(z+b)—a—b—2x
f 2(z+a)(z+b) d

T
=€
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The result of integrating gives
(a—b) 1n(%+g+z+,/(z+b)2+(a—b)(z+b)) (b—a)ln(%+%+z+\/(z+a)2+(b—a)(z+a))
V (z+b)2+(a—b) (z+b)+ ~ _ (@+a)24(b—a)(z+a)+ . _In((z+a)
a—b a—b 2

n=e
_a+b+2z+2\/(z+a)(x+D)

2/(z +a)(z+0)
M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

_at+b+22+2/(z+a)(z+b)/ T+a+ Ve
_ N IR (y Vz+a+V +b>
(y—\/x+a+x/x+b)<a+b+2z+2\/($+“)(‘”+b)>

N 2/ +a) (z +b)

And

N =uN
_a+b+2c+2\/(z+a)(z+b) z+a)(z
- 2\/(z +a) (z +b) NGRS

a b
=§+§+x+\/(x+a)(z‘+b)

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
M+NY .
+ dzx

—VvVz+a++vVr+b) (a+b+2x+2/(x+a)(x+b a
(y-vaFa+va+d) (at+b+20+2// +><+>))+(_+9+x+¢(x+a><w+b>)3—i=

( 2y/(z+a) (z+) 22

The following equations are now set up to solve for the function ¢(z,y)

o6
=M (1)
%N 2

Oy
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Integrating (2) w.r.t. y gives
@ dy = / Ndy
9y

0p . [a b
6—ydy—/§+§+z+\/(z+a)(x+b)dy

<a+b+2x+2\/(x+a)(x+b)>y

b= : + 1) 6

Where f(z) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t = gives

a+b+2x
¢ (2 + \/(z+a>(z+b)> vy o

(y—vTFa+vz+b) <a+b+2a:+2\ /(a:+a)(z+b))

. dp __
But equation (1) says that 32 = NI

. Therefore equation
(4) becomes

(y—vVz+a++Vz+b) <a+b—|—2m+2\/(m+a)(x—|—b)>
2¢/(z +a) (z +b) (5)
(2+ a+b+2x

z+a)(x+b > Yy
_ V . IGRVAGREIN

Solving equation (5) for f'(z) gives

a+b+2x+2\/(x+a)(x+b)> (Vz+a—+vVz+D)
2\/(z+a)(z+0b)

oy =

Integrating the above w.r.t x gives

/f’(x)dz:/ (_(a—l—b+2x—|—2\/(r—|—a)(w+b)> (\/m+a—\/x—|—b)> "

2\/($+a)(x—|—b)

f()__\/($+a)(x+b)(2x—b+3a)
oo 3Vita
+\/(x+a)(x+b)(2x—a+3b) 2(33+a)3/2 2(x+b)3/2

- + +c
3z +b 3 3 !
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Where ¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

<a+b+2x+2\/(x+a)(a£+b)>y \/(x+a)(x+b)(2x—b+3a)

¢= 2 B 3Vxr+a
N VE+a)(@+b)Qr—a+3b) 2z+a)’’ L 2+ b)3/2 e
3z +b 3 3 '

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

<a+b+2x+2\/(x+a)(z+b)>y_ \/(x+a)(m—|-b)(2x—b+3a)

“a= 2 3vVx+a
N ViE+a)(@+b)Qr—a+3b) 2+a)’’ L 2+ b)3/2
3Vx+b 3 3

Summary of solutions found

<a+b+2z+2\/(z+a)(x+b))y_ \/(x+a)(z+b)(2x—b+3a)

2 3Vz+a
N ViE+a)(@+b)Qr—a+3b) 2+a)’’ N 2z + b)*/? _,
3z +b 3 3

Maple step by step solution

Let’s solve

Ve+a)(z+b) (Ly(z) +yl) =vVz+a— Vo +b
° Highest derivative means the order of the ODE is 1
=Y(@)
° Solve for the highest derivative

d _ —y(@)+vz+a—Vz+b
(@) = V(@+a)(z+b)

o Collect w.r.t. y(z) and simplify

d _ y(z) Vzt+a—+z+b
dxy('r) T V(zta)(z+d) + V/(z+a)(z+b)

) Group terms with y(z) on the lhs of the ODE and the rest on the rhs of the ODE
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d y(z) _ Vzta—Vz+b
dxy(z) + /(z+a)(z+b) V(z+a)(z+b)

° The ODE is linear; multiply by an integrating factor u(x)

d y(z) _ w@)(Vat+a—Va+b)
H(w) <d"”y(x) + V (w+a)(w+b)> T V(z+a)(a+d)

o Assume the lhs of the ODE is the total derivative - (y(z) u(z))

(@) (Ey(@) + 72— ) = (Ly(@)) w(a) + y(@) (Eu()

o Isolate - u(x)

d p(z)

k() = Jorae
° Solve to find the integrating factor

w)=a+b+2r+2/(z+a)(x+b)

° Integrate both sides with respect to x
(z) (Vzta—Vaz+b
J (@) p())) do = [ HOFEREID g 1

° Evaluate the integral on the lhs

z) (vVz+a—z+b
y(@) p(z) = [ X \)/((w+—2)(x+b;_ ldo + C1

o Solve for y(x)
(@) (vEFa—v/aFh)

ylo) = LA

e  Substitute u(z) =a+b+2z+2y/(z+a) (z+d)
(a+b+22+2¢/(zFa)(@+b) ) (vVaFta—va+b)

dz+C1

y(z) = /GraGiD dz+C1
a+b+2z+2/(w+a) (z-+b)
° Evaluate the integrals on the rhs
4(z+a)3/2  4(atb)3/2 +2v/eFa (@4b)(22—b+3a) 2V Fb (z+a)(2x—a+3b) ey
y(z) = 3 3/(z+a)(z+b) 3./(a+a)(a+b)
a+b+2z+2+/(x+a)(z+b)

° Simplify
2(((20+22)vVaFa+(—26-20)Va+b+ 2L ) (@ +a) @ +)+3(e+b) (— b +a+ 2 ) Vatatyath (s-+a)(—2a+a—3b))

y(z) = (@+a)(z+b) (3a+3b+6x+6 (x+a)(w+b))
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 114

‘ dsolve (((x+a)*(x+b)) ~(1/2)*diff (y(x) ,x)+y(x) = (x+a)~(1/2)-(x+b)~(1/2),

y(x) ,singsol=all)

y(z)

:2((2a+2x)\/m+(—2b—2a:)\/z+b+3cl) Ve+a)(z+b)+6(x+b) (-2+a+%)Vzt+a+

V(z+a)(z+b) <3a+3b+6x+6\/(x+a)(x+b)>

Mathematica DSolve solution

Solving time : 2.815 (sec)
Leaf size : 145

e

DSolve [{Sqrt [(x+a)*(x+b)]*D [y [x] ,x]+y[x]==Sqrt [x+a] -Sqrt [x+b] ,{}},

‘ y[x],x,IncludeSingularSolutions->True] ‘

y(z)
2v/a + z/b+ xarctanh(%fiiﬁ)
—exp | —

V(a+z)(b+2)

V(a+K[1])(b+KT1])

sarctanh ( YEOL) AR/ R[]
exp ( («/a-f—K[l]) < a+K[1]

1 V(e+ K[1])(b+ K[1])

+c



	Lookup tables for all problems in current book
	Exercises 3, page 60

	Book Solved Problems
	Exercises 3, page 60
	problem 1(a)
	Solved as first order separable ode
	Solved as first order homogeneous class A ode
	Solved as first order homogeneous class D2 ode
	Solved as first order homogeneous class Maple C ode
	Solved as first order Bernoulli ode
	Solved as first order Exact ode
	Solved as first order isobaric ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 1(b)
	Solved as first order linear ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 1(c)
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 1(d)
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 1(e)
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 1(f)
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 2(a)
	Solved as first order linear ode
	Solved as first order homogeneous class A ode
	Solved as first order homogeneous class D2 ode
	Solved as first order homogeneous class Maple C ode
	Solved as first order Exact ode
	Solved as first order isobaric ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 2(b)
	Solved as first order linear ode
	Solved as first order homogeneous class D2 ode
	Solved as first order Exact ode
	Solved as first order isobaric ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 2(c)
	Solved as first order linear ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 2(d)
	Solved as first order linear ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 2(e)
	Solved as first order linear ode
	Solved as first order Exact ode
	Solved using Lie symmetry for first order ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 3(a)
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 3(b)
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 3(c)
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 3(a)
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 4(a)
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 4(b)
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 4(c)
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 4(d)
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 5(a)
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 5(b)
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 5(c)
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution

	problem 5(d)
	Solved as first order linear ode
	Solved as first order Exact ode
	Maple step by step solution
	Maple trace
	Maple dsolve solution
	Mathematica DSolve solution




