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18169 1 (vi) o' =9

2 (i) ¥ =12%— 31 +2

2 (i) ' =be”
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Internal problem ID [18164]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 1 (i)

Date solved : Thursday, December 19, 2024 at 01:51:42 PM

CAS classification : [_quadrature]
Solve

r =3t>+ 4t
With initial conditions

z(1) =0

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as
z’ 4+ q(t)z = p(t)
Where here

q(t) =0
p(t) = 3t2 + 4t

Hence the ode is
z = 3t? + 4t

The domain of ¢(t) =0 is
{—00 <t < o0}
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And the point t, = 1 is inside this domain. The domain of p(t) = 3t% + 4t is

{—o0 <t < o0}

And the point ty = 1 is also inside this domain. Hence solution exists and is unique.

Solved as first order quadrature ode
Time used: 0.094 (sec)

Since the ode has the form ' = f(¢), then we only need to integrate f(t).
/dx:/3t2+4tdt
z=t4+22 +¢
Solving for the constant of integration from initial conditions, the solution becomes

r=t3+2t>-3

1000+ 1000+

500+ 500+

— 5007 — 5007

— 10001 — 10001

(a) Solution plot (b) Slope field plot
z=t3+2t2-3 T’ =3t? + 4t

Summary of solutions found

r=t3+2t2-3
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Solved as first order Exact ode
Time used: 0.075 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

dz = (3t* + 4t) dt
(=3t> —4t)dt+dz =0 (2A)

Comparing (1A) and (2A) shows that

M(t,x) = —3t* — 4t
N(t,z) =1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
ox Ot
Using result found above gives
oM 0
= (=3t — 4t
Oor Oz ( )
=0
And
ON 0
-2
o ot )
=0
Since % = %’, then the ODE is exact The following equations are now set up to solve

for the function ¢(¢, z)

0p
g—t =M (1)
¢ N

Integrating (1) w.r.t. ¢ gives
9 4t = [
ot

@dt = /—3t2 — 4t dt
ot

¢ = —t> — 2% + f(x) (3)

Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t z gives

0 )
%=O+f(x) (4)

But equation (2) says that % = 1. Therefore equation (4) becomes

1=0+ f'(z) (5)
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Solving equation (5) for f'(z) gives
flz) =1

Integrating the above w.r.t = gives

/f’(m)dx=/(1)da:

flx)=z+¢c

Where c; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢
p=—t] -2 +x+4¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

cg=—t3—2*+ 2
Solving for the constant of integration from initial conditions, the solution becomes
—t3 -2’4+ =-3

Solving for z gives

r=t"+2t*-3
10001 ; ; /77
800 177
W=
y J e
- R —
y 7
. s
7 /
o N ———
M e 7
x(#) o x(O) 0y e /
1177 f0r———m—meerr/
—2007 1117
N A e 4
—4001 B A 7
N /
—6001 111777 e v
Wissrr —————erry
~800; 17777
—10004 /' / 1/ /7rmmmeme s/
~10-8 —6-4-20 2 4 6 8 10 =5 0 5 10
t t
(a) Solution plot (b) Slope field plot

r=t3+2t2-3 =32+ 4t
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Summary of solutions found

r=t"+2t*-3
Maple step by step solution

Let’s solve
[z/ = 3t? + 4t,z(1) = 0]
° Highest derivative means the order of the ODE is 1

.Z'l

° Integrate both sides with respect to ¢
[z'dt = [ (3t* +4t)dt + C1

° Evaluate integral
z=1t3+2t*+ C1

° Solve for x
z=1t3+2t*+ CI1

o Use initial condition z(1) =0
0=C1+3

) Solve for _ C1
C1=-3

° Substitute _ C1 = —3 into general solution and simplify
r=1t"4+2t>-3

° Solution to the IVP
r=t3+2t*-3

Maple trace

“Methods for first order ODEs:

‘——— Trying classification methods —-—-
‘trying a quadrature

‘<— quadrature successful”
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Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 14

dsolve([diff(x(t),t) = 3*%t~2+4xt,
op([x(1) = 0])],x(t),singsol=all)

r=t3+22-3

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 15

DSolve [{D[x[t],t]==3%t"2+4xt,{x[1]1==0}},
x[t],t,IncludeSingularSolutions->True]

z(t) =t +2t* -3
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2.1.2 problem 1 (ii)

Existence and uniqueness analysis . . . . . . ... ... ... .. 18]
Solved as first order quadratureode . . . ... ... ... ... 19
Solved as first order Exactode . . . . . ... ... ... .... 19|
Maple step by step solution . . . . . .. ... ... ... .. .. 22]
Mapletrace . . . . . . . . . . .. 23]
Maple dsolve solution . . . .. ... ... ... .. ....... 23]
Mathematica DSolve solution . . . . .. .. ... ... ..... 23

Internal problem ID [18165]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 1 (ii)

Date solved : Thursday, December 19, 2024 at 01:51:43 PM

CAS classification : [_quadrature]

Solve
' =be
With initial conditions

z(1) =0

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

o' +q(t)z = p(t)

Where here
q(t) =0
p(t) = be'
Hence the ode is
' =be'

The domain of ¢(t) =0 is
{—00 <t < o0}
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And the point tq = 1 is inside this domain. The domain of p(t) = be' is

{—00 <t < o0}
And the point ¢ty = 1 is also inside this domain. Hence solution exists and is unique.

Solved as first order quadrature ode
Time used: 0.109 (sec)

Since the ode has the form 2’ = f(¢), then we only need to integrate f(t).

/dm—/bedt

z=bel+ ¢
Solving for the constant of integration from initial conditions, the solution becomes

r=>be —be

Summary of solutions found

x=>bel —be

Solved as first order Exact ode
Time used: 0.073 (sec)

To solve an ode of the form

M(z,) + N(z,) B =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d

0¢  O¢dy
oz oy Oy dz =0 (B)

Hence

Comparing (A,B) shows that

9¢ _
or
9¢ _
oy
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But since aa g = then for the above to be valid, we require that

oM _on
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

By(')

to determine ¢(z,y) but at least we know now that we can do that since the condition
5?: ;’y = aay gs is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)
Therefore
dz = (be') dt
(—be')dt+dz =0 (2A)
Comparing (1A) and (2A) shows that
M(t,x) = —be'
N(t,z) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0 .
" as e
=0
And
ON 0
heh G |
ot 8t( )
=0
Since %]‘gf = 6t , then the ODE is exact The following equations are now set up to solve

for the function ¢(¢, z)

9
E_M (1)

8¢ _
=N 2)
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Integrating (1) w.r.t. ¢ gives
99 dt = /Mdt
ot
o .. :
%dt —/ be'dt
¢ =—be' + f() (3)

Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t  gives

0% _ 4
=0+ f(2) @

But equation (2) says that % = 1. Therefore equation (4) becomes
1=0+ f'(z) (5)
Solving equation (5) for f'(z) gives
fi(z) =1
Integrating the above w.r.t = gives
/f’(w) dx=/(1) dz

fx)=z+ac

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

¢=—be'+zx+c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

c,=—be'+z
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Solving for the constant of integration from initial conditions, the solution becomes
—be' +x = —be

Solving for z gives

x=>bel —be

Summary of solutions found

z=>be' —be
Maple step by step solution

Let’s solve
[#' =be', z(1) = 0]
° Highest derivative means the order of the ODE is 1
/

x
° Integrate both sides with respect to ¢

[2'dt = [beldt + C1

° Evaluate integral
z=be' + C1
° Solve for x
z="be'+ C1
) Use initial condition z(1) =0
0=be+ C1
) Solve for _ C1
C1 = —be
° Substitute _ C1 = —be into general solution and simplify
z =b(e! —e)

° Solution to the IVP
z =b(e" —e)
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Maple trace

‘“Methods for first order ODEs:

‘——— Trying classification methods ——-
‘trying a quadrature

‘<- quadrature successful’

Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 14

dsolve([diff (x(t),t) = brexp(t),
| op([x(1) = 01)],x(t),singsol=all)

x = —b(e — et)

Mathematica DSolve solution

Solving time : 0.004 (sec)
Leaf size : 14

‘ DSolve [{D[x[t],t]==bxExp[t],{x[1]1==0}},
‘ x[t],t,IncludeSingularSolutions->True]

z(t) = b(e" —e)



CHAPTER 2. BOOK SOLVED PROBLEMS 24

2.1.3 problem 1 (iii)

Existence and uniqueness analysis . . . . . . ... ... ... .. 24
Solved as first order quadratureode . . . ... ... ... ... 251
Solved as first order Exactode . . . . . ... ... ... .... 261
Maple step by step solution . . . . . .. ... ... ... .. .. 29]
Mapletrace . . . . . . . . . . .. 301
Maple dsolve solution . . . .. ... ... ... .. ....... 301
Mathematica DSolve solution . . . . .. .. ... ... ..... 30

Internal problem ID [18166]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 1 (iii)

Date solved : Thursday, December 19, 2024 at 01:51:43 PM

CAS classification : [_quadrature]

Solve

With initial conditions

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

o' +q(t)z = p(t)

Where here

q(t)=0

1
t) =

p(?) 2+1

Hence the ode is
x = 1
2+1

The domain of ¢(t) =0 is
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And the point o = 1 is inside this domain. The domain of p(t) = z7 is

{—o0 <t < o0}

And the point ty = 1 is also inside this domain. Hence solution exists and is unique.

Solved as first order quadrature ode
Time used: 0.105 (sec)

Since the ode has the form z’ = f(¢), then we only need to integrate f(t).

1
/dw—/t2+1dt

x = arctan (t) + ¢

Solving for the constant of integration from initial conditions, the solution becomes

s
x = arctan (t) — 1

——— e~ >

=

o5l 1 e 777

' S Y
»»»»» (11
””””” R —
o /| e
N N
QQQQQ 7 BESSENINN
sl T My,77-=—=—=——
0.5 —0.5] o 77—

f

f

f

e~

—— =~ s~

—— =~ e~

Bt L [ S A R E—— N P | I TGN

Y

/ J S

/ ]

/ ]

—10 -5 0 5 10 -0 -5 0 5 10
t t
(a) Solution plot (b) Slope field plot
_ 1
x = arctan (t) — § =g

Summary of solutions found

x = arctan (t) — %
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Solved as first order Exact ode
Time used: 0.325 (sec)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_3/_

8%¢ _ 8%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

1
dx = (t2+1) dt

Therefore
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Comparing (1A) and (2A) shows that

M(t,z) = —

241
N(t,x) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
or Ot

Using result found above gives

oM _9( 1
or Or\ 2+1

=0
And
ON 0
heah S |
ot 0t( )
=0
Since %4 = %I, then the ODE is exact The following equations are now set up to solve

for the function ¢(¢, z)

0

=M M
86

e @

Integrating (1) w.r.t. ¢t gives

o9 ..
Edt—/Mdt

o6 . 1
Edt—/——t”_ldt

¢ = —arctan (t) + f(x) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t z gives

00 _ . ¢
=0+ f() @
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But equation (2) says that % = 1. Therefore equation (4) becomes
1=0+ f'(z) (5)
Solving equation (5) for f'(z) gives
fi(z) =1

Integrating the above w.r.t x gives

/f’(x)dx=/(1)dx

flx)=z+¢c

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

¢ = —arctan (t) + = + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy constants into the constant c¢; gives the solution as

¢y = —arctan (t) + z

Solving for the constant of integration from initial conditions, the solution becomes

T
—arctan (t) + z = ~1

Solving for = gives

s
x = arctan (t) — 1
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0.5 —>—>—>)///// 7 ] ////‘/),)
. 0.5 —>—>—>)///// 7 ] // N
A R ) L
—_»_—>)))//// 7 ] J s
0+ o —_»_—>)))/‘/// 7 ] ////‘))),),_»
I
f
—0.51 ;
f
f
f

— 1.5

-10 -5 0 5
t t
(a) Solution plot (b) Slope field plot
x = arctan (t) — § z' = tzil

Summary of solutions found

0y
x = arctan (t) — 1

Maple step by step solution

Let’s solve
[z = 7, 2(1) = 0]

= 51
° Highest derivative means the order of the ODE is 1
x/

° Integrate both sides with respect to ¢
[2'dt = [ Zzdt + C1

° Evaluate integral
x = arctan (¢t) + C1
° Solve for x
x = arctan (¢t) + C1
. Use initial condition z(1) =0
0=7%+C1
° Solve for _ C1
Cl=-%

4
° Substitute __ C'1 = —7 into general solution and simplify
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x = arctan (t) — §

° Solution to the IVP

x = arctan (t) — §

Maple trace

“Methods for first order ODEs:

‘——— Trying classification methods ——-
‘trying a quadrature

‘<— quadrature successful’

Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 10

dsolve([diff (x(t),t) = 1/(£°2+1),
‘ op([x(1) = 0])],x(t),singsol=all)

s
x = arctan (t) — —

4
Mathematica DSolve solution

Solving time : 0.005 (sec)
Leaf size : 13

p
'DSolve[{D[x[t],t]==1/(1+t"2) ,{x[1]==0}},
L x[t],t,IncludeSingularSolutions->True]

z(t) — arctan(t) — Z
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2.1.4 problem 1 (iv)

Existence and uniqueness analysis . . . . . . ... ... ... .. 31
Solved as first order quadratureode . . . ... ... ... ...
Solved as first order Exactode . . .. ... ... ........
Maple step by step solution . . . . . .. ... ... ... .. .. 3061
Maple trace . . . . . . . . . .. 371
Maple dsolve solution . . . .. ... ... ... .. ....... 37
Mathematica DSolve solution . . . . .. .. ... ... ..... 37

Internal problem ID [18167]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 1 (iv)

Date solved : Thursday, December 19, 2024 at 01:51:44 PM

CAS classification : [_quadrature]

Solve

With initial conditions

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as
'+ q(t)z = p(t)
Where here

q(t)=0

1
t) =
p() 2+1

Hence the ode is
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The domain of ¢(¢t) =0 is
{—00 <t < o0}

1
t24+1

And the point ¢y = 1 is inside this domain. The domain of p(t) = is

{—00 <t < o0}

And the point £y = 1 is also inside this domain. Hence solution exists and is unique.

Solved as first order quadrature ode
Time used: 0.108 (sec)

Since the ode has the form 2’ = f(t), then we only need to integrate f(t).
/ dz = / -
V2 +1
x = arcsinh () 4+ ¢;
Solving for the constant of integration from initial conditions, the solution becomes

x = arcsinh (¢) — In (1 + \/é)

—10 =5 0 5

(a) Solution plot (b) Slope ﬁelld plot
z = arcsinh (¢) — In (1 + v/2) T =
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Summary of solutions found

x = arcsinh (t) — In (1 + \@)

Solved as first order Exact ode
Time used: 0.064 (sec)

To solve an ode of the form

M(z,) + N(z,y) S =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
el -0
Hence 06 06d
Y
— —_—— B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
- M
ox
09
TN
Ay
But since aajgy = aa; 5’; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = (93; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(t,z)dt+N(t,z)dz =0 (1A)

dx:( 1 >dt
2+1

(— \/ﬁlﬁ) dt+dz = 0 (24)

Therefore
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Comparing (1A) and (2A) shows that

M(t,z) = —
N(t,z) =1

1
t2+1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
or Ot

Using result found above gives

=0
And
ON 0
T _"n
ot 8t( )
=0
Since %M = 6t , then the ODE is exact The following equations are now set up to solve

for the function ¢(¢, z)

0

=M M
86

i @

Integrating (1) w.r.t. ¢t gives

o9 ..
Edt—/Mdt

= |- ¢___

¢ = —arcsinh (¢) + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t z gives

00 _ . ¢
=0+ f() @
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But equation (2) says that % = 1. Therefore equation (4) becomes
1=0+ f'(z) (5)
Solving equation (5) for f'(z) gives
fi(z) =1

Integrating the above w.r.t x gives

/f’(x)dx=/(1)dx

flx)=z+¢c

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

¢ = —arcsinh (t) + z + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy constants into the constant c¢; gives the solution as

¢; = —arcsinh (t) +
Solving for the constant of integration from initial conditions, the solution becomes

—arcsinh (¢) + z = —In (1 + \/§>

Solving for x gives

x = arcsinh (t) — In (1 + \@)



CHAPTER 2. BOOK SOLVED PROBLEMS 36

-10 -5 0 5 10

t t
(a) Solution plot (b) Slope ﬁeild plot
z = arcsinh (t) — In (1 + v/2) g’ = 1

Summary of solutions found

z = arcsinh (¢) — In (1 + \/5)

Maple step by step solution

Let’s solve

|:IL'/ = ﬁ,.’ll(l) = O]
. Highest derivative means the order of the ODE is 1
xl

° Integrate both sides with respect to ¢

Ja'dt = [ Z=dt+ C1
° Evaluate integral
x = arcsinh(t) + C1
° Solve for z
x = arcsinh(¢t) + C1
) Use initial condition (1) =0

0=1In(1++2)+ C1
° Solve for  C1
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Cl=-In(1+v2)

. Substitute _ C1 = —1In (1 + \/§) into general solution and simplify

z = arcsinh(¢) — In (1 + v/2)
. Solution to the IVP
z = arcsinh(¢) — In (1 + v/2)

Maple trace

“Methods for first order ODEs:

‘--- Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful”

Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 15

-

dsolve([diff(x(t),t) = 1/(t"2+1)"(1/2),
L op([x(1) = 0])],x(t),singsol=all)

x = arcsinh (t) — In (1 + \/5)

Mathematica DSolve solution

Solving time : 0.022 (sec)
Leaf size : 26

p
' DSolve[{D[x[t],t]==1/Sqrt[1+t~2],{x[1]==0}},
‘ x[t],t,IncludeSingularSolutions->True]

z(t) — arctanh( ! ) - arctanh(i>
Ve +1 V2
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2.1.5 problem 1 (v)

Existence and uniqueness analysis . . . . . . ... ... ... .. 38}
Solved as first order quadratureode . . . ... ... ... ... 391
Solved as first order Exactode . . . . . ... ... ... .... 40}
Maple step by step solution . . . . . .. ... ... ... .. .. 43l
Mapletrace . . . . . . . . . . .. 43
Maple dsolve solution . . . .. ... ... ... .. ....... 44
Mathematica DSolve solution . . . . .. .. ... ... ..... 44

Internal problem ID [18168]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 1 (v)

Date solved : Thursday, December 19, 2024 at 01:51:44 PM

CAS classification : [_quadrature]

Solve
z’ = cos (t)
With initial conditions

z(1) =0

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

' +q(t)z = p(t)
Where here
q(t) =0
p(t) = cos (t)
Hence the ode is
z' = cos (t)

The domain of ¢(t) =0 is

{—00 <t < o0}
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And the point ¢y = 1 is inside this domain. The domain of p(t) = cos (¢) is

{—o0 <t < o0}

And the point ty = 1 is also inside this domain. Hence solution exists and is unique.

Solved as first order quadrature ode

Time used: 0.109 (sec)

Since the ode has the form ' = f(¢), then we only need to integrate f(t).

/da::/cos(t) dt

z =sin (t) +

Solving for the constant of integration from initial conditions, the solution becomes

x =sin (t) —sin (1)

—0.57

o L

—1.54

N T N e N N N N N N N

———

(a) Solution plot
x = sin (¢t) — sin (1)

Summary of solutions found

1= e e e e e e

{
f
f
f
f
f
f
f

[\
|
N
|
a~
|
)
)
N
=

(b) Slope field plot
x' = cos (t)

x =sin () —sin (1)
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Solved as first order Exact ode
Time used: 0.321 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

dz = (cos (t))dt
(—cos(t))dt+dz =0 (2A)

Comparing (1A) and (2A) shows that
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
ox Ot
Using result found above gives
oM 0
% % (— COS (t))
=0
And
ON
1
o ()
= O
Since %];I = at , then the ODE is exact The following equations are now set up to solve

for the function ¢(¢, z)

0p
gZ_M' (1)
¢
5 =N (2)

Integrating (1) w.r.t. ¢ gives

@dt=/Mdt
ot

68? dt = / —cos (t)dt

¢ = —sin(t) + f(2) (3)

Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t z gives

0 _ o, o
=0+ ) @

But equation (2) says that a¢ = 1. Therefore equation (4) becomes

1=0+ f'(z) (5)
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Solving equation (5) for f'(z) gives
flz) =1

Integrating the above w.r.t = gives

/ (z)dz = / (1)dz

fx)=z+c
Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢
p=—sin(t)+z+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and cy constants into the constant c; gives the solution as

cp=—sin(t)+z

Solving for the constant of integration from initial conditions, the solution becomes
—sin (¢) + ¢ = —sin(1)
Solving for z gives
x =sin () —sin (1)

—0.61 —0.51

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

—1.64 —1.51

N T N e N N N N N N N N

s

1= e e e e e e

{
f
f
f
f
f
f
!

—-27 - _n 0 =® m 31 2m

2 2 2 6 —4 -2 0 2 4 6

(a) Solution plot (b) Slope field plot
x = sin (t) — sin (1) x' = cos (t)
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Summary of solutions found

x = sin (t) — sin (1)

Maple step by step solution

Let’s solve
[z = cos (t),z(1) = 0]

) Highest derivative means the order of the ODE is 1
.,L./

° Integrate both sides with respect to ¢
J2'dt = [ cos(t)dt + C1

° Evaluate integral
z = sin (t) + C1
° Solve for x
z = sin (t) + C1
. Use initial condition z(1) =0

0 =sin(1) + C1
° Solve for _ C1
C1 = —sin(1)
° Substitute _ C1 = —sin (1) into general solution and simplify
x = sin (t) — sin (1)
° Solution to the IVP
x = sin (t) — sin (1)

Maple trace

-

“Methods for first order ODEs:

‘——— Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful”
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44

Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 11

‘dsolve([diff(x(t),t) = cos(t),
‘ op([x(1) = 01)],x(t),singsol=all)

x = sin (t) — sin (1)

Mathematica DSolve solution

Solving time : 0.009 (sec)
Leaf size : 12

‘ DSolve[{D[x[t],t]==Cos[t],{x[1]==0}},
‘ x[t],t,IncludeSingularSolutions->True]

x(t) — sin(t) — sin(1)
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2.1.6 problem 1 (vi)
Solved as first order quadratureode . . . ... ... ... ... 45]
Solved as first order Exactode . . . . . ... ... ....... 46
Maple step by step solution . . . . . ... ... ... ... .. B0
Mapletrace . . . . . . . . . . ... B0
Maple dsolve solution . . . . . ... ... ... L. 0!
Mathematica DSolve solution . . . . . ... ... ... ..... 61l

Internal problem ID [18169]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 1 (vi)

Date solved : Thursday, December 19, 2024 at 01:51:45 PM
CAS classification : [_quadrature]

Solve
o c?s (t)
sin (¢)
With initial conditions
z(1)=0

Solved as first order quadrature ode
Time used: 0.146 (sec)

Since the ode has the form z’ = f(¢), then we only need to integrate f(t).

/ / cos (

sin (

z = In (sin (t)) +c

Solving for the constant of integration from initial conditions, the solution becomes

z =In(sin (¢)) — In(sin (1))
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TNV 7NNV 7=\ )
T7=NVET 7NV \ b
0 ALl /=N T NN ~\ )
NN R EEANEEE ZAY
TNV 7NNV 7~\W
TNV 7NNV 7=\
—0.57 TOST L NN LNV L 7~
TNV 7NN L7~
IR EIANNEE [T
NOE MO AR RN AR R MANEE [N
AN R AN EAYN
T7=NVET T 7NNV 7=\ )
AN N SRR FONEE F AN
—1.51 T7=NVET 7NN 7=\ )
T7=NVET 7NNV 7=\ )
T7=NVET 7NNV 7=\ )
RN LR PAYER EALE
— 21 T7=NVET 7NN 7=\ )
T7=NVET 7NNV 7=\ )
—I6 _'5 _'4_'3 _'2 _'1 (') '1 i é —I6—I5—I4—I3—I2—Il (I) I1 é é
¢ t
(a) Solution plot (b) Slope ﬁezg plot
z =In(sin (¢)) — In (sin (1)) z’ = Z?x?(t)
Summary of solutions found
z =In(sin (¢)) — In(sin (1))
Solved as first order Exact ode
Time used: 0.072 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d

Hence 06 04d
—_ —_— —y =
Oxr Oydx 0 (B)

Comparing (A,B) shows that

0p
a—M
0p
a_y_N
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But since % = % then for the above to be valid, we require that
Y yox
oM _ ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
(96;: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)
Therefore
oo (08 (t)
= ()
_cos (t) o
P o

Comparing (1A) and (2A) shows that

_cos(t)

M(t,z) = sin (t)

N(t,z)=1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
or Ot

Using result found above gives

oM 8 (_cos(t))

Bxr 9z \ sin(t)
=0
And
ON 0
= ad

=0
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Since %M = 3t , then the ODE is exact The following equations are now set up to solve

for the function ¢(¢, z)

6¢_
gZ—M' (1)
¢ _
%—N (2)

Integrating (1) w.r.t. ¢t gives

oo ..
Edt—/Mdt

(9¢ cos (t)
ot 9= /‘m@“

¢ = —In(sin (¢)) + f(2) 3)

Where f(z) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t  gives

% 0+ f(@) @
But equation (2) says that 6—¢ = 1. Therefore equation (4) becomes
1=0+ f(z) (5)
Solving equation (5) for f'(z) gives
fllz) =1

Integrating the above w.r.t = gives

[r@do= [m

fx)=z+c

Where ¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

¢=—In(sin(t)) +z+c
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

¢y =—In(sin(¢)) + z
Solving for the constant of integration from initial conditions, the solution becomes
—In(sin(t)) + z = —In (sin (1))

Solving for z gives
z =In(sin (¢)) — In(sin (1))

[ 1NV TN \
1NV 7N \
‘ of | 17NV 117Ny
[r=NVET 7N \
[7=NVET 7N \
[7=NVET 7N \
—05] =051 /NN \
[7=NVET 7N \
TN \
x(1) - (1) = \
[7=NV T 7N \
[ 7=\ TN \
—1.54 [/=NVET 7NN \
—1.57 [/=NVET 7NN \
7=\ TN \
7=\ TN \
A b INNV TN \
2 7NV 7N \
7//\\l1//\\ \
6 s 4 -3 2-1 0 1 & 3 “6-5-4-3-2-10 1 2 3
t t
(a) Solution plot (b) Slope Cf})(:%g plot
z = In (sin (¢)) — In (sin (1)) = sin(D

Summary of solutions found

z =1In(sin (¢)) — In (sin (1))



CHAPTER 2. BOOK SOLVED PROBLEMS

Maple step by step solution

Let’s solve

[x' =<0 2(1) = O}

sin(t) ?

° Highest derivative means the order of the ODE is 1

xl

° Integrate both sides with respect to ¢
[o'dt = [<=Dgt 4+ C1

sin(t)

° Evaluate integral
z =In(sin (t)) + C1
. Solve for =
z =In(sin (¢)) + C1
) Use initial condition z(1) = 0

0=1In(sin (1)) + CI
° Solve for C1
C1 = —In(sin (1))
o Substitute _ C1 = —In(sin (1)) into general solution and simplify
z =In(sin (¢)) — In (sin (1))
. Solution to the IVP
z =In (sin (¢)) — In (sin (1))

Maple trace

“Methods for first order ODEs:

‘-—- Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful”

Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 13

‘dsolve([diff (x(t),t) = cos(t)/sin(t),
L op([x(1) = 0])],x(t),singsol=all)

z =In(sin (¢)) — In (sin (1))
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Mathematica DSolve solution

Solving time : 0.009 (sec)
Leaf size : 11

;
‘ DSolve [{D[x[t],t]==Cos[t]/Sin[t],{x[1]1==0}},
‘ x[t],t,IncludeSingularSolutions->True]

z(t) — log(csc(1) sin(t))
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2.1.7 problem 2 (i)
Existence and uniqueness analysis . . . . . . ... ... ... .. H2]
Solved as first order autonomousode . . . . .. ... ... ... 53
Maple step by step solution . . . . . ... ... ... ... .. bl
Mapletrace . . . . . . . . . . ... Hol
Maple dsolve solution . . . . . ... ... ... L. Hol
Mathematica DSolve solution . . . . . ... ... ... ..... 50

Internal problem ID [18170)]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 2 (i)

Date solved : Thursday, December 19, 2024 at 01:51:47 PM
CAS classification : [_quadrature]

Solve

With initial conditions
z(0)=1
Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

z' = f(t,x)
=2?— 3242
The = domain of f(¢,z) when t =0 is

{—0 <z < o0}

And the point o = 1 is inside this domain. Now we will look at the continuity of

%z%(z2—3x+2)
=2z -3

The z domain of g—i when t = 0 is

{—00 <z < o0}

And the point g = 1 is inside this domain. Therefore solution exists and is unique.
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Solved as first order autonomous ode
Time used: 0.401 (sec)

Since the ode has the form 2’ = f(z) and initial conditions (¢, x) are given such that
they satisfy the ode itself, then we can write

0= f($)|z:zo
0=0

And the solution is immediately written as

T = X

=1
Singular solutions are found by solving
2 —3z+2=0

for z. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

r=1
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CHAPTER 2.

The following diagram is the phase line diagram. It classifies each of the above equilib-

rium points as stable or not stable or semi-stable.

unstable

stable

Figure 2.11: Phase line diagram
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(a) Solution plot
z=1
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Summary of solutions found

Maple step by step solution

Let’s solve
[/ = 2% — 3z + 2,2(0) = 1]
° Highest derivative means the order of the ODE is 1

/

x

° Solve for the highest derivative
2 =22-3x+2

° Separate variables
m2—§z+2 =1

° Integrate both sides with respect to ¢
[ m5dt = [1dt + C1

° Evaluate integral
In(z—2)—In(z—1)=t+ C1

° Solve for x

_ _2+et+01
T = “gror_q

e  Use initial condition z(0) =1

_ —24e??
1= eCl—1

) Solve for _ C1
C1 =)

° Solution does not satisfy initial condition

Maple trace

-

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful”




'DSolve[{D[x[t],t]==x[t]~2-3*x[t]+2,{x[0]==1}},
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Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 5

dsolve([diff(x(t),t) = x(t)~2-3*x(t)+2,
op([x(0) = 11)],x(t),singsol=all)

r=1

Mathematica DSolve solution

Solving time : 0.001 (sec)
Leaf size : 6

x[t],t,IncludeSingularSolutions->True]

z(t) > 1
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2.1.8 problem 2 (ii)
Existence and uniqueness analysis . . . . . . ... ... ... .. Tl
Solved as first order autonomousode . . . . . .. ... ... .. 5y
Solved as first order Exactode . . . .. ... ... . ... ... 58]
Solved using Lie symmetry for first orderode . . ... ... .. 62]
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Internal problem ID [18171]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 2 (ii)

Date solved : Thursday, December 19, 2024 at 01:51:51 PM
CAS classification : [_quadrature]

Solve

With initial conditions

Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as
' = f(t,z)
=be”

The z domain of f(¢,z) when ¢t =0 is

{—o0 <z < o0}

And the point zy = 1 is inside this domain. Now we will look at the continuity of
of _ 9
ox Oz

=be”

(be®)
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The x domain of g—i when ¢t =0 is
{—o0 <z < o0}
And the point zy = 1 is inside this domain. Therefore solution exists and is unique.

Solved as first order autonomous ode
Time used: 0.110 (sec)

Integrating gives

?dx =dt
o
-3 t+c
Solving for the constant of integration from initial conditions, the solution becomes
e ? e !
T T

Solving for z gives

Summary of solutions found

z=—In(—(tbe—1)e™")

Solved as first order Exact ode
Time used: 0.375 (sec)

To solve an ode of the form

M(z,) + N(z,) B =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

< oa,9) =0

Hence 06 06 d
Yy _
oxr  Oydr 0 (B)
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Comparing (A,B) shows that

09
T M
Oz
9 _ n
Oy
But since ;ﬂ:gy = 8‘9; g; then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)
Therefore
dz = (be”) dt
(—be®)dt+dx =0 (2A)

Comparing (1A) and (2A) shows that
M(t,x) = —be”
N(t,z) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0 -
o om0
= —be”
And
ON 0
ot~ ot

=0
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Since % # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let
L L(oM _oN
N\ 0z ot
= 1((=be*) — (0))

= —be”

Since A depends on z, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

g L(ON _oM
M\ ot ox

= -(0) - (=be")

Since B does not depend on t, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

— ede:z:

— ef—ldz

I

The result of integrating gives

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

M = puM
=e %(—be)
=-b
And
N = uN
=e*(1)
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M+N-—=0
TN

(D) + () 5 =0

The following equations are now set up to solve for the function ¢(¢, x)

0p —
g—t =M (1)
6
9 =N (2)
Integrating (1) w.r.t. ¢ gives
0 .. [~
N dt = /Mdt
op .
Edt = /—bdt
¢ = —tb+ f(z) 3)

Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t z gives

9¢

% 0+ f() @
But equation (2) says that 3¢ = e~. Therefore equation (4) becomes
e " =0+ f'(z) (5)
Solving equation (5) for f'(z) gives
fz)=e

Integrating the above w.r.t = gives

/f’(z) dx=/(e_“’) dz

f@)=—"+a
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Where ¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

p=—-th—e "+

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

ci=—th—e™”
Solving for the constant of integration from initial conditions, the solution becomes
—th—e® = —e

Solving for = gives
z=—In(—(tbe—1)e™")

Summary of solutions found

z=—In(—(the—1)e™")

Solved using Lie symmetry for first order ode
Time used: 0.569 (sec)

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by
e+ w1 — &) — W — wi€ —wyn =0 (A)

To determine &,n then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

§ =tay +zaz + ay (1E)
n = tby + xbs + by (2E)
Where the unknown coeflicients are

{al, a2, as, bl) b2, b3}
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Substituting equations (1E,2E) and w into (A) gives
by + be®(bs — ag) — b%e*“az — be®(tby + xbs + by) = 0
Putting the above in normal form gives
—b%e*®ag — e®btby — €“brbs — be®ay — €%bby + be®by + by = 0
Setting the numerator to zero gives
—b%e*® a3 — e®btby, — e"bxbs — be®ay — e®bby + be®bs + by = 0
Simplifying the above gives

—b%e* a3 — e®btby — e®bxbs — be®ay — e®bby + be®bs + by =0

(5E)

(6E)

(6E)

Looking at the above PDE shows the following are all the terms with {¢,z} in them.

{t,z,e", eh}

The following substitution is now made to be able to collect on all terms with {¢,z} in

them
{t =v1,2 =vq,€" = vs, €% = v4}

The above PDE (6E) now becomes
—b%v4a3 — v3bU1by — Usbuabs — busas — v3bby + busbs + by = 0
Collecting the above on the terms v; introduced, and these are
{v1,v2,v3,v4}
Equation (7E) now becomes

—U3b’01b2 - ’U3b’02b3 + (—ba2 - bbl + bb3) V3 — b2’U4(13 + b2 =0

(7E)

(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

b, =0
—bby =0
—bbs =0

—b%a3 =0

—ba2 - bbl + bb3 =0

Solving the above equations for the unknowns gives

a1 = ay
as = —b;
a3 =0
by =b,
by =0
bs =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

§=1
n=20

Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(z)
=0-—(be")(1)
= —be”
£E=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (t,z) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt dzx
—=—=dS 1
£ (1)

The above comes from the requirements that (é % + n%) S(t,x) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t
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S is found from
5= [Lay
n
1
N / —be” dy

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ds S+ w(t,z)S, @)
dR R, +w(t,7)R,

Where in the above Ry, R, S, S, are all partial derivatives and w(t, x) is the right hand
side of the original ode given by

w(t,z) =be®

Evaluating all the partial derivatives gives

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
-~ - 2A
IR (24)
We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
= =

dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S.
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Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).
/ ds = / —1dR
S (R) =—R +c

To complete the solution, we just need to transform the above back to ¢,z coordinates.
This results in

—— =—t+c
Which gives
z = —In (cob — tb)
Solving for the constant of integration from initial conditions, the solution becomes

z=—In (—tb + e_l)

Summary of solutions found

z=—In(—th+e™)

Solved as first order ode of type ID 1
Time used: 0.092 (sec)

Writing the ode as
' =be" (1)

And using the substitution © = e™* then

v =—2'e
The above shows that
' = —u'(t)e*
__v(®)
o
Substituting this in (1) gives
u'(t) b
U u
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The above simplifies to
w'(t) = —b (2)

Now ode (2) is solved for u(t).

Since the ode has the form u/(t) = f(t), then we only need to integrate f(t).
/ du = / —bdt
= —tb + C1

Substituting the solution found for u(t) in u = e™* gives

z = —1In (u(t))
=—In(—In(—tb+¢1))
=—In(—tb+c1)

Solving for the constant of integration from initial conditions, the solution becomes

r=—In(—th+e™")

Summary of solutions found

z=—In(—th+e")

Maple step by step solution

Let’s solve
[/ = be®, z(0) = 1]
° Highest derivative means the order of the ODE is 1

/

x

° Solve for the highest derivative
' =be”

° Separate variables
2=t

° Integrate both sides with respect to ¢
[ Zdt = [bdt+ C1

° Evaluate integral
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—L =tb+ CI

° Solve for x
z=In (_tb+101)

o Use initial condition z(0) =1
1= (-4)

) Solve for _ C1
01 =-1

° Substitute _ C1 = —% into general solution and simplify
v =In (k)

° Solution to the IVP
z=In ()

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful”

N\

Maple dsolve solution

Solving time : 0.033 (sec)
Leaf size : 14

‘dsolve([diff (x(t),t) = brexp(x(t)),
‘ op([x(0) = 11)],x(t),singsol=all)

z=—In (—tb + e_l)
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Mathematica DSolve solution

Solving time : 0.006 (sec)
Leaf size : 17

'DSolve[{D[x[t],t]==b*Exp[x[t]],{x[0]==1}},
‘ x[t],t,IncludeSingularSolutions->True]

z(t) = 1 —log(1 — ebt)
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Internal problem ID [18172]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 2 (iii)

Date solved : Thursday, December 19, 2024 at 01:51:52 PM
CAS classification : [_quadrature]

Solve

With initial conditions

Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as
' = f(t,x)
= (z—1)°

The z domain of f(¢,z) when ¢t =0 is

{—o0 <z < o0}

And the point o = 1 is inside this domain. Now we will look at the continuity of

af @ \
5 = g (@1

=2r—2
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The z domain of g—i when t = 0 is

{—o0 <z < o0}

And the point zy = 1 is inside this domain. Therefore solution exists and is unique.

Solved as first order autonomous ode

Time used: 0.083 (sec)

Since the ode has the form 2’ = f(z) and initial conditions (¢, z) are given such that
they satisfy the ode itself, then we can write

0= f(x)lxzwo
0=0

And the solution is immediately written as

T =X

x=1
Singular solutions are found by solving
(z—1°=0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

r=1

The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

semi-stable

<
Il
—

Figure 2.13: Phase line diagram
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(a) Solution plot

CHAPTER 2.

Summary of solutions found
Solved as first order Exact ode

Time used: 0.205 (sec)
To solve an ode of the form

d
M(w,y)+N(x,y)£=0

0

¢(.’IJ, y) =

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
d
dz

ode. Taking derivative of ¢ w.r.t. x gives

Comparing (A,B) shows that

Hence
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But since % = % then for the above to be valid, we require that
y Yoz
oM  ON
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
86; g’y = [f; a"; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)
Therefore
dz = ((z — 1)%) dt
(=(z—-1)*)dt+dz=0 (2A)
Comparing (1A) and (2A) shows that
M(t,z) = —(z —1)°
N(t,z)=1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0 2
a7 s @)
=242
And
ON 0
Bt~ ot
=0

Since %—A; # ‘98—127, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let
A=t (G_M _ 3_N)
N\ 0x ot
= 1((-2z +2) - (0))
=242
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Since A depends on z, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

1 (aN 8M)

T M\ ot Oz

= O = (2 +2)
_ 2

T or—1

Since B does not depend on t, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

b= ede:c
_ ef—% dz
The result of integrating gives
©w= e—21n(a:—1)
. 1
(—1)°

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

M =uM
1 2
=m(—($—1) )

=-1
And
N = uN
1
=——(1
(x — 1)2( )
1
(-1
So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

(-1)+ ((x_ 1)2) i—f =0
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CHAPTER 2.

The following equations are now set up to solve for the function ¢(¢, x)

o W

.
¢ -
9 =N (2)

Integrating (1) w.r.t. ¢ gives

/—dt /Hdt
% [ -1a

¢=—t+ f(z) (3)

Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z

Taking derivative of equation (3) w.r.t z gives

9¢ :
kg 4
5; =~ 0T /(@) (4)
But equation (2) says that 22 = = 1)2 Therefore equation (4) becomes
1
=0+ f'(z 5
o =0 @ ®)

Solving equation (5) for f'(z) gives

f (SC) = (:L'— 1)2

Integrating the above w.r.t = gives

/f /((x—11>>dx

flz) = - il‘i‘Cl

Where c¢; is constant of integration. Substituting result found above for f(z) into

equation (3) gives ¢

1
b=—t-—=+a
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

Clz—t—

1
r—1

Solving for the constant of integration from initial conditions, the solution becomes

z=1
1.4
121
x(1) 10 x(1)
0.8-
0.61
-10 -5 0 10
t
(a) Solution plot
rz=1
Summary of solutions found
z=1

0.5

B
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(b) Slope field plot
o = (z—1)

Solved using Lie symmetry for first order ode

Time used: 0.560 (sec)
Writing the ode as

= (z—1)°

' = w(t,z)

The condition of Lie symmetry is the linearized PDE given by

e+ w(nz - é-t) - w2£w —w — wn =0
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To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

§ = tay + ras + a; (1E)
n= tbz + .’Ebg + b1 (QE)

Where the unknown coefficients are
{a1,az,a3,b1,b9, b3}
Substituting equations (1E,2E) and w into (A) gives
bo+ (x— 1) (bs —az) — (x — 1) ag — (22 — 2) (thy + 2bs + b)) =0  (BE)
Putting the above in normal form gives

—ztas + 4z3as — 2txbs — T2ay — 62203 — 22b3 + 2tby
+2xa2+4xa3—2xb1 —ag—a3+2b1+b2+b3 =0

Setting the numerator to zero gives

—ztas + 4z3a5 — 2txby — T2ay — 62203 — 22b3 + 2tby (6E)
+2xa2+4xa3 —2$b1 —az—a3+2b1+b2+b3 =0

Looking at the above PDE shows the following are all the terms with {¢,z} in them.
{t, 2}
The following substitution is now made to be able to collect on all terms with {¢,z} in
them
{t =v1,z = v}

The above PDE (6E) now becomes

—agvg + 40,31)3 — agvg — Gagvg — 2byv1v9 — b3v§ + 2a5v, (7E)

+ 4a3v2 — 2b11)2 + 2b2’U1 — Qa9 — a3 + 2b1 + b2 + b3 =0
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Collecting the above on the terms v; introduced, and these are
{v1, v2}

Equation (7E) now becomes

—2b2’l}1’l)2 + 2b2’U1 — 013’(1;1 + 4(1;3’0:2)) + (—a2 — 60,3 — bg) ’U% (SE)
+(2a2+4a3—2b1)'v2 —ag—ag+2b; +by+b3=0

Setting each coefficients in (8E) to zero gives the following equations to solve

—a3 =0
4a3 =0
—2b, =0
2bo =0

—a2—6a3—b3:O
2a2+4a3—2b1=0
—az—a3+2b1+b2+b3=0

Solving the above equations for the unknowns gives

ay = ay
ay = —bs
as =0
by = —bs
by =0
bs = bs

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

=1
n=0
Shifting is now applied to make & = 0 in order to simplify the rest of the computation
n=n-wtz)¢
=0—((z-1)% @)

=-—z’+2r -1
=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt dx
£

The above comes from the requirements that (E % + 176%) S(t,z) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

ds (1)

R=t

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

@ . St+W(t,IE)Sz (2)
dR  R;+w(t,z)R,

Where in the above Ry, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

w(t,z) = (z — 1)

Evaluating all the partial derivatives gives
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _
dR
We now need to express the RHS as function of R only. This is done by solving for ¢, x

-1 (2A)

in terms of R, S from the result obtained earlier and simplifying. This gives

as

T
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).
/ ds = / —1dR
S (R) =—R + Cy

To complete the solution, we just need to transform the above back to t,z coordinates.
This results in

= —t
71 +c

Which gives

Cg—t+1
r=————
—t-l-Cz
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
coordinates

ODE in canonical coordinates

Original ode in ¢,z coordinates

(R,5)

transformation

=1

ds
dR

=(z— 1)2

dz
dt
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Solving for the constant of integration from initial conditions, the solution becomes
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Summary of solutions found

Maple step by step solution

Let’s solve
[z = (z — 1)*,2(0) = 1]
° Highest derivative means the order of the ODE is 1

/

T

° Solve for the highest derivative
= (z—1)>

° Separate variables

(xf1)2 -

° Integrate both sides with respect to ¢

° Evaluate integral
—L =t+C1
° Solve for x
- = %2
o Use initial condition z(0) =1
_ Cci-1
1 ="
) Solve for _ C1
C1 =)
° Solution does not satisfy initial condition

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful”
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Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 5

dsolve([diff(x(t),t) = (x(t)-1)"2,
op([x(0) = 11)],x(t),singsol=all)

r=1

Mathematica DSolve solution

Solving time : 0.001 (sec)
Leaf size : 6

DSolve[{D[x[t],t]l==(x[t]-1)"2,{x[0]==1}},
x[t],t,IncludeSingularSolutions->True]

z(t) > 1
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2.1.10 problem 2 (iv)

Existence and uniqueness analysis . . . . . . ... ... ... ..
Solved as first order autonomousode . . . . . .. ... ... ..
Solved as first order Exactode . . . . . ... ... ... ....
Solved using Lie symmetry for first orderode . . ... ... ..
Maple step by step solution . . . . . ... ... ... ... ...
Maple trace . . . . . . . . ..
Maple dsolve solution . . . .. ... ... ... .........
Mathematica DSolve solution . . . . .. ... ... .......

Internal problem ID [18173]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 2 (iv)

Date solved : Thursday, December 19, 2024 at 01:51:54 PM
CAS classification : [_quadrature]

Solve

With initial conditions

Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as
' = f(t,x)
=+vz2-1

The z domain of f(¢,z) when ¢t =0 is

{1<z<o00,—00<zx< -1}

And the point zy = 1 is inside this domain. Now we will look at the continuity of

- 8 v

2 —1
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The z domain of g—i when t = 0 is
{—o<z<-1,-1<z<],l<z< 0}

But the point £y = 1 is not inside this domain. Hence existence and uniqueness theorem
does not apply. Solution exists but no guarantee that unique solution exists.

Solved as first order autonomous ode
Time used: 0.126 (sec)

Since the ode has the form 2’ = f(x) and initial conditions (%o, z¢) are given such that
they satisfy the ode itself, then we can write

0= f(@)lys,
0=0

And the solution is immediately written as

T = X

z=1
Singular solutions are found by solving
2—1=0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

r=1
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The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

Figure 2.17: Phase line diagram
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1 O O O I B O O
1.4 BEEEEEEEEEEREEREEEE
BEEEEEREEEEEEEEEEEE
T T A A O O
R A A B O O
1.24 N A O O O A A A O B O A
NN SEEEEEEEEEEEEREREEE|
x(1) 10 x(1)
0.5
0.8
0.61
O-
—10 -5 0 5 10 T s 0 5 10
t t
(a) Solution plot (b) Slope field plot
z=1 z =vz?2 -1
Summary of solutions found
r=1
Solved as first order Exact ode
Time used: 8.006 (sec)
To solve an ode of the form
dy

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 0pd
vy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that

0¢p
or
0¢p
8_y—N
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But since % = % then for the above to be valid, we require that
Y yox
oM _ ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
(96;: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)
Therefore
dz = (\/362 — 1) dt
(—\/x2 - 1) dt+dz =0 (2A)
Comparing (1A) and (2A) shows that
M(t,z) =—Va? -1
N(t,z) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
or Ot

Using result found above gives

or Oz
=z
N 2 —1
And
N _ 0,
ot Ot
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Since % # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

1 /0M ON
A=N( )

P
=%(;;%3)‘@)
T ViR

Since A depends on z, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

o1 (ON _om
M\ ot ox

-0 ()

x
2 —1

Since B does not depend on t, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

— edex

J ——de

7

=€

The result of integrating gives

In(z—1) In(z+1)
n= e 2 T 2
1

Vz—1vz+1

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

1
T Vo—1vz+ 1(—\/#7—1)

B 2 —1

T Vo—1vz+1
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And

N =uN
1

T Vr—1vz+1
1
T Vr—1vz+1

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

—  —dz
M+N—=0
TV g

(1)

B z2—1 N ( 1 ) dz _ 0
ve—1yx+1 r—1vz+1/) dt
The following equations are now set up to solve for the function ¢(¢, x)
o¢
ot

9
or

(1)
(2)

[
<

I
2|

Integrating (1) w.r.t. ¢ gives

99 41 — / M dt

ot
Q?&_i/_ Vo' -l g
ot V—1vz+1

_ vz2 -1t
b= @ ®)

Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t z gives

09 tx x2—1t V-1t

90~ VA Ivioivarl 2@-10"viti oty T

(4)

=0+ f'(z)
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99 _

But equation (2) says that 32 = ﬁm Therefore equation (4) becomes

1
VT—1vz+1

0+ f'(z) (5)

Solving equation (5) for f'(z) gives

1

F@) = =71

Integrating the above w.r.t = gives

/f’(m)dx=/(mlm) dz

V-1 (z+1)In(z+ Va2 -1)
B vV —1vzr+1

f(z)

+

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

Va2 -1t N V(@—1)(z+1) In(z+vz2-1)

¢:_\/x—1\/x+1 rz—1vz+1

+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into the constant c; gives the solution as

Va1t N V(z—1)(z+1)In(z+v22-1)

C1 =

Solving for the constant of integration from initial conditions, the solution becomes

V2 -1t N V(@—1)(z+1) In(z+vz?-1)

=0
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x(t) o
_1_////////////////////
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w
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Figure 2.19: Slope field plot
r=+vz2-1

Summary of solutions found

Va1t N V(@—1)(z+1) In(z+vz2-1)

Solved using Lie symmetry for first order ode

=0

Time used: 1.941 (sec)
Writing the ode as
=vz?2 -1
' = w(t,z)
The condition of Lie symmetry is the linearized PDE given by
M+ wne — &) — w?é —wi€ —wm =10 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

£ =tay +zaz + a1 (1E)
n= tbQ + $b3 + bl (2E)
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Where the unknown coeflicients are

{ala a2, as, b17 b27 b3}

Substituting equations (1E,2E) and w into (A) gives

by + VI =T (by — a) — (a2 — 1) qy — 2 £ T B _ (5E)

2 —1

Putting the above in normal form gives

_Va? - 1z%a3 + toby + 2%ay — agVa? — 1 —byvVa? — 1+ xby —as +bs 0
2 -1

Setting the numerator to zero gives

—Vz2 — 12%a3 — txby — 2%ay + asVx2 — 1 + byVa2 — 1 — xb; +ay — b3 =0 (6E)

Simplifying the above gives

—Va?2 —12%a3 — (2° — 1) ag + (2 — 1) b3 — tzby (6E)
— 223+ asVar? —1+boVa2 —1—zb =0

Since the PDE has radicals, simplifying gives
—V12 —12%a3 — taby — 2203+ asVa2 — 1+ bovVa2 — 1 —zby +as — by =0

Looking at the above PDE shows the following are all the terms with {¢,z} in them.

{t,x, x? — 1}

The following substitution is now made to be able to collect on all terms with {¢,z} in
them

{t:vl,x:vg,\/x2 -1 :’Ug}

The above PDE (6E) now becomes

—’1)3’U§G,3 - ’Ugaz — ’Ul’Ung + asvs — ’l)2b1 + bg’U3 + ag — b3 =0 (7E)
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Collecting the above on the terms v; introduced, and these are
{v1,v2,v3}
Equation (7E) now becomes
—v1Vgby — V3VIa3 — Viag — Vaby + (a3 + by) v3 — b3 +ay =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

—a; =0
—a3z =0
—b=0
—by, =0
az+by,=0
—bz3+ay =0

Solving the above equations for the unknowns gives

a1 = ay
a; =0
a3 =0
by =0
by =0
bs =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

n=20
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n—-uwtz)f

=0 (Vam=1) (1)
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

di _do _
§ 1

The above comes from the requirements that (f % + 77%) S(t,x) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

ds (1)

R=t

Sz/ldy
n

1
= [ ————d
/—\/x2—1 Y

S is found from

Which results in
S=—-In (a:-l—\/x2—1>

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ Si+w(t, z)S, @)
dR R+ uw(t,z)R,

Where in the above Ry, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

w(t,z) =vz2 -1

Evaluating all the partial derivatives gives
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _
dR
We now need to express the RHS as function of R only. This is done by solving for ¢, x

-1 (2A)

in terms of R, S from the result obtained earlier and simplifying. This gives

as

T
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).
/ ds = / —1dR
S (R) =—R + Cy

To complete the solution, we just need to transform the above back to t,z coordinates.
This results in

—In <x+\/a:2—1> =—t+c
Which gives

(e2t—2cz + 1) e—t+02
2

xr=
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

ODE in canonical coordinates

coordinates
transformation

Original ode in ¢,z coordinates

(R,5)

=1

das

dR
R A N T T A T N I N I I N

A N e N R A T I N N N I
RN NN NN T T AT I N N N N N
RN N T R A N N N

2 -1

dx

dt
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Solving for the constant of integration from initial conditions, the solution becomes

4

2

0

T e T4 s

0_

RS

—6

400
3007
200
100

t

(b) Slope field plot

t

(a) Solution plot

2 —1

z =

(e2t+1)e—t
2

Tr=
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Summary of solutions found

(e®+1)e”t

Maple step by step solution

Let’s solve

[/ = V22 —1,z(0) = 1]

° Highest derivative means the order of the ODE is 1

/

x
° Solve for the highest derivative
=+vz2-1
° Separate variables
A= =1
° Integrate both sides with respect to ¢
| S&=dt = [1dt + CI
° Evaluate integral
1n(x+\/ﬁ) =t+ C1
° Solve for x
(e’
= T gettli
o Use initial condition z(0) =1
1— (egfe );+1
) Solve for _ C1
C1=0

° Substitute _ C1 = 0 into general solution and simplify
r=try
° Solution to the IVP

— e | et
rT=5+5
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful”

Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 5

‘dsolve([diff (x(t),t) = (x(£)"2-1)7(1/2),
‘ op([x(0) = 11)],x(t),singsol=all)

r=1

Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0

‘DSolve[{D[x[t],t]==Sqrt[x[t]‘2-1],{x[0]==1}},
‘ x[t],t,IncludeSingularSolutions->True]

{3
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2.1.11 problem 2 (v)
Existence and uniqueness analysis . . . . . . ... ... ... .. 1001
Solved as first order autonomousode . . . . .. ... ... ... [10T1]
Solved as first order Bernoulliode. . . . . . . .. ... .. ... 102
Solved as first order Exactode . . . ... ... ... ...... 105
Solved using Lie symmetry for first orderode . . . . . ... .. 109
Maple step by step solution . . . . .. ... ... ... .. ... 114
Maple trace . . . . . . . . . L 115
Maple dsolve solution . . . .. ... ... ... ......... 115
Mathematica DSolve solution . . . . . ... ... ........ 115

Internal problem ID [18174]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 2 (v)

Date solved : Thursday, December 19, 2024 at 01:52:05 PM
CAS classification : [_quadrature]

Solve

With initial conditions

Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

' = f(t,x)
=2/

The = domain of f(¢,z) when t =0 is

{0 <}

And the point zy = 1 is inside this domain. Now we will look at the continuity of

of o
g—%@ﬁ)

NG
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The z domain of g—i when t = 0 is
{0 <z}

And the point zy = 1 is inside this domain. Therefore solution exists and is unique.

Solved as first order autonomous ode
Time used: 0.207 (sec)

Integrating gives

1
\/5=t+cl

The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

Figure 2.21: Phase line diagram
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r=t2+2t+1

BOOK SOLVED PROBLEMS
Solving for the constant of integration from initial conditions, the solution becomes

CHAPTER 2.
Solving for z gives

(1)
(2)

4

2
t

(b) Slope field plot

' =2z

—10-8 —6 —4 —2 0

2Vz

' = F(t,z)

r=t>+2t+1
2 =(2)Vz
' = fo(t)z + fi(t)z"

Solution plot

)

r=t2+2t+1

(a

—10 —=8 —6 —4 —2 0

100
801
60
401
20

O

Summary of solutions found

Solved as first order Bernoulli ode

In canonical form, the ODE is

The standard Bernoulli ODE has the form

Time used: 0.074 (sec)
This is a Bernoulli ODE.
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Comparing this to (1) shows that

Jo=
fi=2

The first step is to divide the above equation by ™ which gives

xl

— = 1) 3)

T
The next step is use the substitution v = '™ in equation (3) which generates a new
ODE in v(t) which will be linear and can be easily solved using an integrating factor.

Backsubstitution then gives the solution z(t) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

Dividing both sides of ODE (1) by z™ = /z gives

:ﬂ%:ou @)

Let

v=x""

SN ®)
Taking derivative of equation (5) w.r.t ¢ gives

r_ 1 ’
v—mx (6)

Substituting equations (5) and (6) into equation (4) gives

2v'(t)

'Ul

2
1

(7)

The above now is a linear ODE in v(t) which is now solved.
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Since the ode has the form v'(t) = f(¢), then we only need to integrate f(t).

[av=[1a

v(t)

The substitution v = 2!~ is now used to convert the above solution back to 2 which

t+01

results in

=t+a

VT

Solving for the constant of integration from initial conditions, the solution becomes

=t+1

VT

Solving for = gives

r=t2+2t+1

— S USOSOSONONON N
— eSS S SOOI\
R RN NSNS N NNNN
A R NS NN

—————

—10—8 —6 —4 —2 0

———

—10 =8 —6 —4 —2 0

1007
801
601
401
201

N

2

t

(b) Slope field plot

t

(a) Solution plot
r=1"+2t+1

=2z

Summary of solutions found

r=t2+2t+1
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Solved as first order Exact ode
Time used: 0.109 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

dxr = (2\/5) dt
(—2vz)dt+dz =0 (2A)

Comparing (1A) and (2A) shows that

M(t,z) = -2z
N(t,x) =1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
ox Ot
Using result found above gives
oM 0
o 5(—2\/5)
__1
Y
And
ON 0
Bt o)

=0

Since %—Af # %—1;’, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

Al L(OM _oN
- N\ oz ot

-(-5)-0)

1

NG

Since A depends on z, it can not be used to obtain an integrating factor. We will now

try a second method to find an integrating factor. Let

5 L(ON _om
M\ ot or

Since B does not depend on ¢, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

Nzedea:

:ef—ﬁdx
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The result of integrating gives

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.
M = uM

- = (-2v3)

And

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

— —dzx
M+N—=0
TV g

o () -

The following equations are now set up to solve for the function ¢(¢, x)

06 —
g_t_M (1)
6

=N @)

Integrating (1) w.r.t. ¢ gives
9 44 — / Mdt
ot

9¢
5 4t = /—2dt

¢ =—2t+ f(x) (3)
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Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t z gives

0 _ ., o
=0+ 1) @

But equation (2) says that % = \/ig Therefore equation (4) becomes

1 !/
A 0+ f'(z) ()
Solving equation (5) for f'(z) gives
fe) ==

NG

Integrating the above w.r.t = gives

frome=f (&)

f(z)=2vVz+ ¢

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

¢:—2t+2\/5+61

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and cy; constants into the constant c; gives the solution as

c1 = —2t+ 2\/5

Solving for the constant of integration from initial conditions, the solution becomes
—2t+2y/x =2

Solving for = gives

r=t"+2t+1
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(a) Solution plot (b) Slope field plot
z=t24+2t+1 z =2z

Summary of solutions found

r=t2+2t+1

Solved using Lie symmetry for first order ode
Time used: 0.672 (sec)
Writing the ode as

=2/

' =w(t,x)
The condition of Lie symmetry is the linearized PDE given by
M+ w(ne — &) — w e — wif —wen =0 (A)

To determine &,n then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

§ = tay + a3+ a; (1E)
n= tbz + .’Ebg + bl (2E)
Where the unknown coefficients are

{ala a2, as, b17 b27 b3}
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Substituting equations (1E,2E) and w into (A) gives
tb bs +b

by -+ 2v/T (bs — a5) — dzag — % —0 (5E)
Putting the above in normal form gives

_2.’E0,2 — .’Eb3 + 41,'3/2&3 - bQ\/i + tbg + b1 -0

N a
Setting the numerator to zero gives
—42%%ag + by/T — thy — 2za3 + b3 — by = 0 (6E)

Looking at the above PDE shows the following are all the terms with {¢,z} in them.

{ta z, \/Ea 133/2}

The following substitution is now made to be able to collect on all terms with {¢,z} in

them

{t =v1,2 =09, VT = v3,2%% = vy}
The above PDE (6E) now becomes
—2v9a9 — 4v4a3 — V1by + bov3 + Vob3 — by =0
Collecting the above on the terms v; introduced, and these are
{’Ul, Vg, U3, U4}
Equation (7E) now becomes

—’Ule + (—2a2 + b3) Vg + bg’l]g — 4’040,3 — b1 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

b, =0
—4a3 =0
—-b=0
—by, =0

—2a2 —+—b3 =0

(7E)

(8E)
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Solving the above equations for the unknowns gives

a1 = ay
as = ag
a3 =0
by=0
by =0
bs = 2as

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

n=0
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wtz)¢
=0— (2vz) (1)
= -2z
£=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (t,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt dzx
& n

The above comes from the requirements that (£2 +n2) S(t,z) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

ds (1)

R=t

S=/1dy
n

S is found from
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Which results in

S=—Va

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ Sitw(t, z)S, @)
dR  R;+w(t,z)R,

Where in the above Ry, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

w(t,z) = 2¢/x

Evaluating all the partial derivatives gives

R, =1
R,=0
St=0
Sy = !

20z

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dsS
— =1 2A
iR (24)
We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives

as

-~ -1
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

/dS - /—1 dR
S(R)

:—R+CQ
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To complete the solution, we just need to transform the above back to ¢,z coordinates.

This results in

—t+02

xTr=

Which gives

c3 — 2cot + t?

xr=

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

ODE in canonical coordinates

Original ode in ¢,z coordinates

~
™n
[a
N—r
g8
8 =
%a
£ E
e
g
3 &
—
+~

ds

dR

N

dz

dt
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r=t2—2t+1
r=t*+2t+1

Solving for the constant of integration from initial conditions gives
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(b) Slope field plot

At2e+1]

£—2t+1

=2z

(a) Solutions plot

Summary of solutions found

=t —2t+1
r=t2+2t+1

Maple step by step solution

Let’s solve

1]

[/ = 2y/z,2(0)

Highest derivative means the order of the ODE is 1

/

X

Solve for the highest derivative

2V

Separate variables

x =

2

/

T

==

Integrate both sides with respect to ¢

| Zzdt = [2dt+ C1

~

~

QO
= <t
A l_l
£o o
g+ 5 0

..Lr..b

D A
502
=} O o+
= &8 =
= .|0.__
H o »n 8
[ ] [ ]
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o Use initial condition z(0) =1
o
) Solve for _ C1
C1 = (-2,2)
° Substitute _ C1 = (—2,2) into general solution and simplify
z=(t—1)°
° Solution to the IVP
z=(t—1)>

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful~

Maple dsolve solution

Solving time : 0.031 (sec)
Leaf size : 9

‘dsolve([diff (x(t),t) = 2%x(£)~(1/2),
‘ op([x(0) = 11)]1,x(t),singsol=all)

zz(t—i-l)2

Mathematica DSolve solution

Solving time : 0.003 (sec)
Leaf size : 10

‘DSolve[{D[x[t],t]==2*Sqrt[x[t]],{x[0]==1}},
‘ x[t],t,IncludeSingularSolutions->True]

() = (t +1)?
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2.1.12 problem 2 (vi)

Existence and uniqueness analysis . . . . . . ... ... ... ..
Solved as first order autonomousode . . . . . .. ... ... ..
Solved as first order Exactode . . . . . ... ... ... ....
Solved using Lie symmetry for first orderode . . ... ... ..
Maple step by step solution . . . . . .. ... ... ... ...,
Maple trace . . . . . . . . ..
Maple dsolve solution . . . .. ... ... ... .........
Mathematica DSolve solution . . . . .. ... ... .......

Internal problem ID [18175]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 2 (vi)

Date solved : Thursday, December 19, 2024 at 01:52:07 PM
CAS classification : [_quadrature]

Solve

With initial conditions

z(0) =1

Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

The = domain of f(¢,z) when t =0 is
1 1
T < §7r—|-7r_Z10 \Y §7r+7r_Z10 <z

And the point o = 1 is inside this domain. Now we will look at the continuity of

af @
Fo %(’Gan (z))
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The z domain of g—i when t = 0 is
1 1
{z < 57r—|—7r_ZlO \Y 57r+7r_ZlO < x}

And the point zy = 1 is inside this domain. Therefore solution exists and is unique.

Solved as first order autonomous ode
Time used: 0.165 (sec)

Integrating gives

1
/ Mdm =dt
In(sin(z)) =t+ ¢

Applying the exponential to both sides gives

In(sin(z)) t+c1

€ =€

sin (z) = e’c;

The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

y=0. unstable

Figure 2.26: Phase line diagram

Solving for the constant of integration from initial conditions, the solution becomes
sin (z) = e’sin (1)

Solving for z gives

z = arcsin (e’ sin (1))
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Summary of solutions found

Solved as first order Exact ode

Time used: 0.205 (sec)
To solve an ode of the form

d
M(w,y)+N(w,y)£=0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

¢(z,y) =0

a
dzx

Comparing (A,B) shows that

Hence
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But since % = % then for the above to be valid, we require that
y Yoz
oM  ON
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
86; g’y = [f; a"; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)
Therefore
dz = (tan (x)) dt
(—tan(z))dt+dz =0 (2A)
Comparing (1A) and (2A) shows that
M(t,z) = —tan (z)
N(t,z)=1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0
% = a(— tan (.’E))
= —sec(z)?
And
ON 0
Bt~ ot
=0

Since %—A; # ‘98—127, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

Ao L(0M _oN
N\ Oz ot

=1((-1 —tan (z)*) — (0))

= —sec(z)°
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Since A depends on z, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

1 (ON OM
B=% ( 3 a_x)
= —cot (z) ((0) — (—1 — tan (x)Q))

= —cot (z) — tan (z)

Since B does not depend on t, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

b= edez
— ef—cot(m)—tan(z) dz
The result of integrating gives
u= e—ln(sin(w))+ln(cos(z))
_cos(z)
~ sin(z)

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

And

_ cos(x)

= (1)

sin (z)

= cot (z)

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M+N-—=0
TN %

dzx

a =0

(=1) + (cot (z))



BOOK SOLVED PROBLEMS 121

CHAPTER 2.

The following equations are now set up to solve for the function ¢(¢, x)

o6 W

.
-
5. = N 2)

Integrating (1) w.r.t. ¢t gives
9 41 — / Mdt
ot

oo ..
Edt—/—ldt
¢=—t+ f(z) 3)

Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z

Taking derivative of equation (3) w.r.t z gives

00 _ . ¢
=0+ f(a) @

But equation (2) says that % = cot (z). Therefore equation (4) becomes
cot (z) =0+ f'(z)

Solving equation (5) for f'(z) gives

f'(z) = cot (z)

Integrating the above w.r.t = gives

/f'(x) dz = /(cot (z))dz
f(z) =In(sin(x)) + ¢

Where ¢; is constant of integration. Substituting result found above for f(z) into

equation (3) gives ¢
¢p=—t+1In(sin(z)) +c
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

¢ = —t+In(sin (x))

Solving for the constant of integration from initial conditions, the solution becomes
—t+1In (sin (z)) = In(sin (1))

Solving for z gives

z = arcsin (e sin (1))

1.2 IBEREREEREREERERRER
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(a) Solution plot (b) Slope field plot
& = arcsin (e’ sin (1)) z' = tan (z)

Summary of solutions found

z = arcsin (e’ sin (1))
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Solved using Lie symmetry for first order ode
Time used: 0.626 (sec)

Writing the ode as

n (z)

T =ta
7z =w(t,x)

The condition of Lie symmetry is the linearized PDE given by

e+ w(e — &) —w % —wf—wm=0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

§ =tay +zaz + ar (1E)
n= tb2 + $b3 + bl (QE)

Where the unknown coefficients are
{a1, az, a3, b1, b, b3}
Substituting equations (1E,2E) and w into (A) gives
by + tan (z) (b3 — a3) — tan (z)? as — (1+ tan (x)z) (tbe +zbs+b1) =0 (5E)
Putting the above in normal form gives

— tan (z)? thy — tan (z)° 2bs — tan () az — tan (z)* by
— tan (z) ag + tan (z) by — thy — zbs — by + by =0

Setting the numerator to zero gives

—tan (z)° thy — tan (z)° zbs — tan (z)* a3 — tan (z)° by (6E)
—tan (z) ag + tan () bs — thy — xbg — by + b2 =0

Looking at the above PDE shows the following are all the terms with {¢,z} in them.

{t, z,tan (z)}
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The following substitution is now made to be able to collect on all terms with {¢,z} in
them
{t = v1,2 = v, tan (x) = vs}

The above PDE (6E) now becomes

—’032”0162 — ’Ug’Ung - 1}?2)(13 — ’Ugbl — V3G9 — ’Ulbg — ’UQb3 + ’U3b3 — bl + b2 =0 (7E)
Collecting the above on the terms v; introduced, and these are

{Ul) Vg, U3}

Equation (7E) now becomes

—’Ug’l}lbg — ’Ulb2 — ’l)g’ljgbg — ’U2b3 + (—CL3 — bl) ’U% + (b3 — CLQ) V3 — bl + bz =0 (SE)

Setting each coefficients in (8E) to zero gives the following equations to solve

—by, =0
—b3 =0
—a3—b; =0
—by+b,=0
bs —a; =0

Solving the above equations for the unknowns gives

a1 =a
a; =0
a3 =10
by =0
by =0
bs =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wz)¢
— 0 — (tan ()) (1)
= —tan (z)
£=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt dx
£
The above comes from the requirements that (f % + 77(%) S(t,z) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

= ds (1)

R=t

S is found from

9!
I

dy

/
[

I |+

Which results in
S = —In (sin(z))

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS S +w(t,z)S, o)
dR ~ R, +w(t,7)R,

Where in the above R;, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

w(t,z) = tan (z)
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Evaluating all the partial derivatives gives

Ri=1
R,=0
Si=0
Sz = — cot (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

dR
We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives

s
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

-1 (2A)

-1

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).
/ ds = / —1dR
S (R) =—R + Cy

To complete the solution, we just need to transform the above back to t, z coordinates.
This results in

—In(sin(z)) = —t+c
Which gives

z = arcsin (')
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=1

(R,5)
das

ODE in canonical coordinates
dR

Canonical
coordinates
transformation

tan (x)

—10
z’ = tan (z)

—15

(b) Slope field plot

-20
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dt

Original ode in ¢,z coordinates
dx

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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arcsin (et+ln(sin(1)) )

(a) Solution plot
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Summary of solutions found

x = arcsin (e!¢in(1))

Maple step by step solution

Let’s solve
[z = tan (z),z(0) = 1]
° Highest derivative means the order of the ODE is 1

/

x
° Solve for the highest derivative
x’ = tan (x)
° Separate variables
taralz(x) =1

° Integrate both sides with respect to ¢
| @ dt = [ 1dt + C1

° Evaluate integral
In (sin (z)) =t + C1
° Solve for x

z = arcsin (e"+¢7)

. Use initial condition z(0) =1
1 = arcsin (e!)
° Solve for _ C1
C1 =1In(sin (1))
° Substitute __C1 = In (sin (1)) into general solution and simplify
x = arcsin (e’ sin (1))
° Solution to the IVP
x = arcsin (e’ sin (1))

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli
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trying separable
<- separable successful”

Maple dsolve solution

Solving time : 0.093 (sec)
Leaf size : 10

dsolve([diff(x(t),t) = tan(x(t)),
op([x(0) = 11)]1,x(t),singsol=all)

z = arcsin (e’ sin (1))

Mathematica DSolve solution

Solving time : 0.007 (sec)
Leaf size : 12

'DSolve[{D[x[t],t]==Tan[x[t]],{x[0]==1}},

x[t],t,IncludeSingularSolutions->True]

(t) — arcsin (e’ sin(1))
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2.1.13 problem 3 (i)

Solved as first order separableode . . . ... ... ... .... [131]
Solved as first order Exactode . . . . . ... ... ....... 133}
Maple step by step solution . . . . . ... ... ... ... .. 138
Mapletrace . . . . . . . . . . ... 138
Maple dsolve solution . . . . . ... ... ... L. 139
Mathematica DSolve solution . . . . . ... ... ... ..... 139

Internal problem ID [18176]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 3 (i)

Date solved : Thursday, December 19, 2024 at 01:52:09 PM

CAS classification : [_separable]

Solve
3’z — zt + (3% + t3x4) =0

Factoring the ode gives these factors
z=0 (1)

o'z + 3zt +3t—1=0 (2)

Now each of the above equations is solved in turn.

Solving equation (1)

Solving for x from

Solving gives z =0

Solving equation (2)
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Solved as first order separable ode
Time used: 0.903 (sec)

The ode 2/ = —% is separable as it can be written as

;L 3t—1
TT Ty (22 +3)
= f(t)g(z)
Where

3t—1
t2
1

z (22 +3)

/ﬁdzz/f(t)dt
/x(x2+3) dz=/—3tt;1dt

(z2+3)7 1 1
T:_Z—Hn 3 +c

ft)=-
g(z) =

Integrating gives

Solving for z gives

\/t (-3t +2¢/In(3) 2 +cr2—t)

r=
t
\/—t (3t+2¢/m(3) 2+ 1tz —t)
r=
t
\/t (=3t +2y/n(B) 2+ etz —t)
o —
t
\/—t (3t+2/In(}) 2 +crt2—t)
o —

t
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Figure 2.30: Slope field plot
r'r3t? +32'rt2 +3t—1=0

Summary of solutions found

\/t (=3t +2y/n (}) 2+ etz —t)

r=
t
\/—t (3t+2¢/m(3) &2+ er ez —t)
r=
t
\/t (-3t+2y/In(H) e +ere2—t)
o —

t

\/—t (3t+2y/m (&) 2+ etz —t)

t

x=—
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Solved as first order Exact ode
Time used: 0.313 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

(t°2® 4+ 3t°z) dz = (-3t + 1) d¢
(3t — 1) dt +(¢2° + 3t°z) dz = 0 (2A)

Comparing (1A) and (2A) shows that

M(t,z) =3t —1
N(t,z) = t*z® + 3t%x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0
T (3t—1
oxr Ox (3¢ —1)
=0
And
ON 0 ,, 3 9
i at(t 2’ + 3t°z)
= 2t x> + 6tz

Since %—A; %—f, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

g L(oM _ON
N\ Oz ot

1 3
= & (x2+3)((0) — (2t2® + 6tz))
2
o _g

Since A does not depend on z, then it can be used to find an integrating factor. The
integrating factor p is

= el Adt
— el —2at
The result of integrating gives
4 = e 20
_ !
=3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM

1
= 5Bt -1)
3t—1
t2
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CHAPTER 2.
And
N = uN
= t%(t%?’ + 3t%z)
= m(m2 + 3)

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is

M+N-—-=0
+ dt
3t—1 9 dz
<—t2 )—i—(m(m +3) &g
The following equations are now set up to solve for the function ¢(¢, x)

op —
T =M 1
ot (1)
0 —
T =N 2
e (2)

Integrating (1) w.r.t. ¢t gives
9 41 — / Madt
ot

0 3t — 1
adt_/ 5 dt

6= +3I(0)+ f(2) 3)

Where f(z) is used for the constant of integration since ¢ is a function of both ¢ and x
Taking derivative of equation (3) w.r.t z gives

0 _ ., p
=0+ 1) @

But equation (2) says that g—x = z(z? + 3). Therefore equation (4) becomes

(2 +3) =0+ f'(2)

Solving equation (5) for f'(z) gives
f(z) = z(z* + 3)
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Integrating the above w.r.t = gives

/f’(x)dx=/(:c(m2+3))dx

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢
1 7%+ 3)°
¢=—+31H(t)+—( ) +ca
t 4
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

(z2 +3)"

1
cl—¥—|—3ln(t)+ 1

Solving for z gives

\/t (—3t +2 /=3I @)+ t?— t>

xr=

¢
\/—t <3t +2y/-3In(t) 82 +c1 82 — t)
xr=
t

\/t (—3t +2/=3In(t) 2 + ¢ 12 — t)

xr = —
t

\/—t <3t +2,/=3m @)+t — t)

=

t
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Figure 2.31: Slope field plot
r'r3t? +32'rt2 +3t—1=0

Summary of solutions found

\/t (—3t +2/=3In () 2+ 12 — t)

t

\/—t (3t +2/3mDE+ o2 — t)

t

\/t (—3t +2,/-3m@O) B+ — t)

t

\/—t (3t +2,/=3In () &2+ 1% — t)

t

Tr=

xr=

r = —

x=—
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Maple step by step solution

Let’s solve
3t’r — xt + (3t3z2 + t3z4) ' = 0
° Highest derivative means the order of the ODE is 1

/

x
° Solve for the highest derivative
Q42
° Separate variables
o'z(z? +3) = -3

° Integrate both sides with respect to ¢
['z(z® +3)dt = [ -3 dt + C1

° Evaluate integral

) — _1_3In(t)+ C1

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’
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Maple dsolve solution

Solving time : 0.022 (sec)
Leaf size : 139

‘dsolve(3*t‘2*x(t)-x(t)*t+(3*t’“3*x(t)’“2+t‘3*x(t)‘4)*diff (x(t),t) =0,
‘ x(t) ,singsol=all)

=0
\/—3t2+2t\/ t(1+3In(t)t+tc)
¢
\/—3t2—2t\/ t(1+3ln @)t + te)
\/—3t2+2t\/ t(1+ 3 ()t +tc)
= ¢
\/—3t2 9t\/—t (1 + 3 () ¢ + ter)
r =

t

Mathematica DSolve solution

Solving time : 6.967 (sec)
Leaf size : 157

} DSolve [{(3*t~2*x [t]-t*x [t])+(3*t"3*x[t] "2+t~ 3*x [t] "4)*D[x[t],t]==0,{}},
‘ x[t],t,IncludeSingularSolutions->True]

2(t) = 0
2(t) — _\/_3 V9t - 12tlo\g/(it) T dcit—4
o(t) = \/_3 /912t loig/(it) +dcit—4
(t) — _\/_3 N /9t — 12t lo\g/(it) Tt —4
2(t) — \/_3 N V9t — 12t 10\g/(;) Fdcit—4

z(t) = 0
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2.1.14 problem 3 (ii)
Solved as first order linearode . . . . . ... ... ... .... 1401
Solved as first order separableode . . .. ... ... ... ... 142
Solved as first order Exactode . . .. ... ... ........ 144
Solved using Lie symmetry for first orderode . . ... ... .. 149
Maple step by step solution . . . . . ... ... ... ... ... 155]
Maple trace . . . . . . . . .. 155
Maple dsolve solution . . . .. ... ... ... ......... 156
Mathematica DSolve solution . . . . .. .. ... ... ..... 156]

Internal problem ID [18177]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 3 (ii)

Date solved : Thursday, December 19, 2024 at 01:52:12 PM

CAS classification : [_separable]

Solve

1+ 2z + (—t*+4) 2’

Solved as first order linear ode
Time used: 0.125 (sec)
In canonical form a linear first order is
' +q(t)x = p(t)

Comparing the above to the given ode shows that

q(t) = B4

p(t)=t2_4

The integrating factor u is
p=e Jaqdt

2
= ef_t27—4dt

Vi+2
t—2

=0
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The ode becomes

Integrating gives

J;\/t+2_/ Vi+2 "
Vi—2 ) -4)vE-2
=_\/—t—2(t—|—2)3/2+c

Dividing throughout by the integrating factor P gives the final solution

JE=?2 (—\/t T2t 42 42082 — 801)
VET2 (262 8)

xTr=
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Figure 2.32: Slope field plot
14+2z+ (—t*+4)2’ =0

Summary of solutions found

v%—zQwﬁ—2@+2f”+2qﬁ—8q)
Tr=
VET2 (22— 8)

Solved as first order separable ode
Time used: 0.171 (sec)

The ode ' = 122 is separable as it can be written as

, 142z
2 —4
= f(t)g(z)

Where

)= g

g(x)=2x+1
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Integrating gives
/ L /f(t)dt
9(x)
1 1
/2x+1d$_/t2—4dt

In(1+22) _ (t—2)"* .
— 5 =1 <—(t+2)1/4>+ 1

We now need to find the singular solutions, these are found by finding for what values
g(z) is zero, since we had to divide by this above. Solving g(z) =0 or 2z +1 =0 for
gives

T=—C

2

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In(1+22) _ ((t - 2)1/4> e

2 (t+2)"*
1
xT=—=
2
Solving for z gives
1
rT=—=
2
—e2\/t =2+t +2
x=—

2Vt +2
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Figure 2.33: Slope field plot
14+2z+ (—t*+4)2’ =0

Summary of solutions found

—e¥\t =24+t +2
2/t +2

Solved as first order Exact ode
Time used: 0.486 (sec)

To solve an ode of the form

o ®)

M(@,y)+N@,y)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

< pau) =0
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Hence 96 06d
Y
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
99 _
or
99 _
oy
But since aajgy = ;’: 6¢x then for the above to be valid, we require that
oM _ ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

(—t*+4)dz = (-1—2z)dt
(2z4+1)dt+(—t*+4)dz =0 (2A)

Comparing (1A) and (2A) shows that

M(t,z) =2x+1
N(t,z) = —t*+4

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ ON
ox Ot
Using result found above gives
oM 0

=2
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And

Since ‘%’I # %—Jf, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

Al L(OM _oN
- N\ oz ot

1
= (@) - (-2)

=2t -2

24
Since A does not depend on z, then it can be used to find an integrating factor. The
integrating factor p is

= el Adt
—2t—2
_ o Bt
The result of integrating gives
In(t+2) 31n(t—2)
n= e 2z T 2

1
CVEF2 (t—2)%?

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

1
= iz — Y

_ 2z + 1
VIF2 (t—2)%?

And

1 2
T Vit2 (-2 (= +4)
Vi+2

t—2
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CHAPTER 2.

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
—dz
M+ N-—- =
+ . 0
2z + 1 +(_\/t+2)d_:c_
VEF2 (t—2)%? Vi—2) dt
The following equations are now set up to solve for the function ¢(¢, x)
o —
% M 1
0p —
% _N 2
e 2)

Integrating (2) w.r.t. z gives

/—dx—/ﬁdx
9, _ [ _VE¥D,
o ¢ Vi—2 "
VIEZ L b 3)

$= =i

Where f(t) is used for the constant of integration since ¢ is a function of both ¢ and z

Taking derivative of equation (3) w.r.t ¢ gives

0¢ x T/t + 2
5= 3 + 5z + (1) (4)
VER2VE—2  2(t—2)
2z ,
Vit 2 (t—2)%? REAY
But equation (1) says that a—‘b \/HJ”(”;LZ)?, . Therefore equation (4) becomes
2r +1 2x
= EE + £(t) (5)

VIF2 (t-2°7  ViF2(t-

Solving equation (5) for f'(t) gives
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Integrating the above w.r.t ¢ gives

o e 1
/f (1) dé = / (\/t+ 2 (t - 2)3/2> «

VE+2
— == ta
2yt -2

ft) =

Where ¢, is constant of integration. Substituting result found above for f(t) into
equation (3) gives ¢

_x\/t+2_ Vt+2

N e R N 2

C1

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into the constant c; gives the solution as

A/t + 2 Vi+2
c=- —
! Vi—2 2/i—2

Solving for z gives

. 261\/t—2‘|‘\/t+2
N 2W/E+ 2
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Figure 2.34: Slope field plot
142+ (—t2+4)2' =0

Summary of solutions found

2c1/t — 2+t +2
2/t +2

Solved using Lie symmetry for first order ode
Time used: 0.819 (sec)

Writing the ode as

o= 2z +1
24
' =w(t,x)

The condition of Lie symmetry is the linearized PDE given by
M+ w(ne — &) — W — Wi —wen =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
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degree 1 to use as anstaz gives
§=tay+zaz+a (1E)
1 = tb + xbs + by (2E)
Where the unknown coeflicients are

{ala az, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(21,' + 1) (b3 — az) _ (2117 + 1)2 as
£_4 (& — 4)? (5E)
2(2$ + 1) t(taz + zas + CLl) 2(tb2 + .’L'b3 + bl)
+ 2 -
(2 —4) 24

by +

=0

Putting the above in normal form gives

tby — 2t3by + 2t%zay + 4t x%a3 + t2ay — 2t2b; — 8t2by + t2bs + 4txa; + 2tras — 4x’as + 2ta; + Stby + Sz
(2 — 4)*

=0
Setting the numerator to zero gives

t4b2 - 2t3b2 + 2t2.’1}(12 + 4t x2a3 + t2a2 - 2t2b1 - 8t2b2 + t2b3 + 4txa1 + 2tza3 (GE)
—_ 41}20,3 —|— 2ta1 —|— Stbg —+— 81‘(12 —_ 4£L'CL3 —|— 4(12 — as —|— 8b1 —|— 16b2 —_ 4b3 = O

Looking at the above PDE shows the following are all the terms with {¢,z} in them.
{t,z}

The following substitution is now made to be able to collect on all terms with {¢,z} in
them

{t =v1,2 = vo}

The above PDE (6E) now becomes

bgfvj1 + 2a2vf1}2 + 4a3vlv§ — 2b2vi’ + 4a;v1v9 + agvf + 2a3v1v9 — 4a3v§ — 2b1vf (7E)
- SbQ'U% + b3’l)% + 2a12}1 + 8021)2 - 4(13’02 + 8b2’l}1 + 4&2 —as + 8b1 + 16()2 - 4b3 =0



CHAPTER 2. BOOK SOLVED PROBLEMS 151

Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

bov} — 2bov3 4 2a5v3v5 + (ag — 2by — 8by + b3) v + dazv1v + (4ay + 2a3) V1V, (8E)
+ (2a1 + 8b2) U1 — 4a3v§ + (8&2 — 4(13) Vg + 4as — as + 8b; + 16by — 4b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

by =0

2a9 =0

—4a3 =0

4a3 =0

—2by =0

2a1 + 8b, =0
4a1 4+ 2a3 =0
8as —4a3 =0

a2—2b1—8b2+b3=0
4a2—a3+8b1+16b2—4b3=0

Solving the above equations for the unknowns gives

a; =0
as =0
a3 =0
by =0b;
by =0
bs = 2b;

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

=0
n=2r+1
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt _dr _
§ 1

The above comes from the requirements that (f % + 176%) S(t,z) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

ds (1)

R=t
S is found from
1
S = / —dy
n
1
= d
/éz+1y
Which results in
g In (2ac2 +1)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS S, +w(t,z)Sa @
dR ~ R,+w(t,z)R,

Where in the above Ry, R, S, S, are all partial derivatives and w(t, x) is the right hand
side of the original ode given by

2z +1
w(t,xz) = 54
Evaluating all the partial derivatives gives
R, =1
R,=0
St = 0
1
Sy =

2z +1
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s 1
dR  t2—-4

(24)

We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives

a1
dR ~ R?—4

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).

/dS /R2 dR

S(R) = _In( R4+2)+1n(R4—2)

+ co

To complete the solution, we just need to transform the above back to ¢,z coordinates.
This results in
In (1+ 2z) In(t+2) In(t—2)

> 1 ‘T g To

Which gives

In(t+2) , In(t—2)
e 2z T 3 t2
T = —
2 2
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical . . .
.. ) . . ODE in canonical coordinates
Original ode in ¢,z coordinates coordinates (R, S)
transformation ’
dr __ 2xz+1 ds 1
dt — t2—-4 dR R2—4
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Figure 2.35: Slope field plot
1+2z+ (-2 +4)2’ =0
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Summary of solutions found

R R EaC
T = - =

2 2

Maple step by step solution

Let’s solve
1+2z+ (—t*+4)2’ =0
° Highest derivative means the order of the ODE is 1

/

x
° Solve for the highest derivative
/. —1-2x
T = T2
° Separate variables
z 1
—1-2z =~ —t244

° Integrate both sides with respect to ¢
[ =Zdt = [ —hdt + C1

—-1-2z —t2+4
° Evaluate integral

In(—1—2z) _ In(¢t+2) In(t—2)
T2 ==z — 1 T0

. Solve for x
201y \/edC142_44C1 4 9401 2014496401 /e4C12_4e4C1
r=- 26701 (142) == 26701 (£42)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 18

| dsolve(1+2*x(t)+(-t~2+4) *diff (x(t),t) = 0,
‘ x(t) ,singsol=all)

Mathematica DSolve solution

Solving time : 0.078 (sec)
Leaf size : 87

' DSolve [{(1+2*x[t])+(4-t~2)*D[x[t],t]==0,{}},
‘ x[t],t,IncludeSingularSolutions->True]

. V2—t(VA—8 =2/t +2+ 201 (t+2v2 -t — 2))

z(t) WET2(t+2v2—t—2)

() = —%
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2.1.15 problem 3 (iii)

Solved as first order homogeneous class Aode . . . . . ... .. 157
Solved as first order homogeneous class D2 ode . ... ... .. 160
Solved as first order isobaricode . . . . ... ... ... .... [161]
Solved using Lie symmetry for first orderode . . ... ... .. 163l
Solved as first order ode of type dAlembert . .. ... ... .. 169
Maple step by step solution . . . . .. ... ... ... .. ... 172
Maple trace . . . . . . . . . L 173
Maple dsolve solution . . . . . .. ... .. .. .. ... ..., 173
Mathematica DSolve solution . . . . .. .. ... ... ..... 173l

Internal problem ID [18178|

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 3 (iii)

Date solved : Thursday, December 19, 2024 at 01:52:17 PM

CAS classification : [[_homogeneous, ‘class A‘], _dAlembert]

Solve
x’ = cos (%)

Solved as first order homogeneous class A ode
Time used: 0.369 (sec)

In canonical form, the ODE is
' =F(tx)
x
= cos (= 1
(3 »
An ode of the form z’' = % is called homogeneous if the functions M (t,z) and

N(t,z) are both homogeneous functions and of the same order. Recall that a function
f(t,x) is homogeneous of order n if

f&"t, t"x) =t"f(t,x)

In this case, it can be seen that both M = cos (%) and N =1 are both homogeneous
and of the same order n = 0. Therefore this is a homogeneous ode. Since this ode is
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homogeneous, it is converted to separable ODE using the substitution u = ¥, or z = ut.

Hence
dr du

Applying the transformation z = ut to the above ODE in (1) gives
d—ut + u = cos (u)
dt B
du _ cos (u(t)) — u(?)
dt t
Or . .
vy - st —ut) _
Or

u'(t)t — cos (u(t)) + u(t) =0
Which is now solved as separable in u(t).

The ode v/'(t) = ME)_"@) is separable as it can be written as

Where

Integrating gives

/ Wd’r =1n (t) +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or cos (u) —u =0
for u(t) gives

u(t) = RootOf (—cos (_2) +_ 2Z)
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Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution RootOf (— cos (_2Z) + _Z) will not be used
Converting [“* — L dr = In(t) + ¢; back to z gives

cos(T)—7
/ Tl oms
————dr=1In c
cos (1) —T !
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7
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Figure 2.36: Slope field plot
&’ = cos (%)

Summary of solutions found

z
t

1
/ de = 111 (t) + C1



CHAPTER 2. BOOK SOLVED PROBLEMS 160

Solved as first order homogeneous class D2 ode
Time used: 0.151 (sec)

Applying change of variables x = u(t) ¢, then the ode becomes

u/'(t) t + u(t) = cos (u(t))

Which is now solved The ode v/(t) = —M is separable as it can be written as
PRIOES 10)
= f(t)g(w)
Where
1
t) ==
f) =3

Integrating gives

/ﬁdu=/f(t)dt
/mduz/%dt

u(t)
/ ;dT =ln(t)+c

—T7 4 cos (7)

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or —u+ cos (u) =0
for u(t) gives

u(t) = RootOf (—cos (_2) +__Z)

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution RootOf (—cos (_Z) + __Z) will not be used
Converting | W __ 1 __gr=1In (t) + ¢ back to z gives

—T7+4cos(T)

i 1
. dr=1
/ —7 + cos (1) dr =In(t) + e
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Figure 2.37: Slope field plot

' = cos (%)

Summary of solutions found

| =m0+

—7 + cos (7)

Solved as first order isobaric ode
Time used: 0.585 (sec)

Solving for =’ gives

x
! —
z' = cos <t> (1)
Each of the above ode’s is now solved An ode &’ = f(t, z) is isobaric if
f(#t,t"e) =177 f (8, 2) (1)

Where here
f(t,2) = cos (%) 2)
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m is the order of isobaric. Substituting (2) into (1) and solving for m gives
m=1
Since the ode is isobaric of order m = 1, then the substitution

z = ut™

= ut
Converts the ODE to a separable in u(t). Performing this substitution gives
u(t) + tu'(t) = cos (u(t))
The ode u'(t) = —M is separable as it can be written as

() = 1O = st

Where

Integrating gives

/ﬁdu:/f(t)dt
/mdu:/%dt

u(t) 1
/ . =l +a

—T + cos (7)

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or —u+ cos (u) =0
for u(t) gives

u(t) = RootOf (—cos (_2) +_2)

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution RootOf (— cos (__Z) + __Z) will not be used
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1
—T74cos(T)

Converting [ u(t)

dr =1n (t) + ¢; back to z gives

| i =0+

—T + cos (7)

3H /77N \ =\ ]
S 777NN NN\~
V\ /77777 \N—"\N\N—~~"/7/777
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Figure 2.38: Slope field plot

' = cos (%)

Summary of solutions found

[

—7 + cos (7)

Solved using Lie symmetry for first order ode
Time used: 1.046 (sec)

Writing the ode as

= ()
T =cos|(—
t

' =w(t,x)
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The condition of Lie symmetry is the linearized PDE given by
M+ Wi — &) — W —wif — wan =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

§=tay +zaz+a (1E)
1 = tby + xbs + by (2E)

Where the unknown coefficients are
{a1, a2, as,b1,bs, b3}
Substituting equations (1E,2E) and w into (A) gives
N 2
) (bs — ag) — cos (;) as (5E)

t
zsin (%) (tas + zas + a1) N sin (2) (tby + zbs + by)
t2 t

Putting the above in normal form gives

cos (f)2 ast® + cos (%) t?as — cos (2) t2b3 — sin (%) t2by + sin (%) tzas — sin (2) twbs + sin (%) za3 — si
t2

=0

Setting the numerator to zero gives
2
— Cos (%) ast® — cos <%> t?as + cos <%) t2b3 + sin (%) t2by — sin (%) tzas (6E)
+ sin (%) txbs — sin (%) z2a3 + sin <%> tb; — sin (%) za; +bat? =0
Simplifying the above gives
t2  agt’cos (%=
a32 -2 5 (%) — cos (%) t*ay + cos <%> t2b3 + sin (%) t2by (6E)

. (T . (T [T\ . (T (T
—sin (;) txas+sin (;) txbs —sin <¥> a3 +sin (;) tb; —sin (?) za; =0

byt? —
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Looking at the above PDE shows the following are all the terms with {¢,z} in them.

f1m,con (2) cos (%) o (7))

The following substitution is now made to be able to collect on all terms with {¢,z} in

them
T 2z . /X
{t = V1,Z = V9, COS <?> = V3, COS (?) = Uy, SIin (;) = v5}

The above PDE (6E) now becomes

1
bgvf — 5(131)% — 5(13’0%’04 — vgvfaz + vgvfb:; + v5vfb2 (TE)

2
— VU5V1V209 + U5U1U2b3 — Us5V503 + ’U5’U1b1 — VUgV2071 = 0
Collecting the above on the terms v; introduced, and these are
{/Ulv V2, U3, U4, US}

Equation (7E) now becomes

2
(b3 — a2) VaV1V5 + (bz - %) ’U% - a31)211)4 + (b3 - az) ’U%’U,g (8E)

2 2
+ ’U5’l)1b2 — UsVUsy0s3 + ’U5’l)1b1 — UsU2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

by =0
by =0
—(11—0
—0,3—0
_8 _
2_
a
by~ =0
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Solving the above equations for the unknowns gives

a; =0
az = b3
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=t
n==x
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt dx
£ 1

The above comes from the requirements that (f % + 771;%) S(t,z) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

ds (1)

dr _n
dt ¢
_*
ot
_*
ot
This is easily solved to give
T =tc;

Where now the coordinate R is taken as the constant of integration. Hence

rR=2
t
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And S is found from

Integrating gives

s- 7
= In (¢)

Where the constant of integration is set to zero as we just need one solution. Now
that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

ds S+ w(t,z)S, @
dR ~ R, +w(t,7)R,

Where in the above Ry, R, S, S, are all partial derivatives and w(t, x) is the right hand
side of the original ode given by

w(t,z) = cos (%)

Evaluating all the partial derivatives gives

X
Ry=-3
Rl

t
1
St:;
S;=0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as t

dR - cos (%) t—=x (24)

We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives

g _ 1
dR cos(R)— R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R)

/dS /cos(R

)—/WdR+CQ

= f(R), then we only need to integrate f(R).

1
SGD::/};gGﬁi?RdR+ﬂb

To complete the solution, we just need to transform the above back to t,x coordinates.
This results in

d_a+02

1““’2/95@

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . i ODE in canonical coordinates

Original ode in ¢,z coordinates coordinates (R, S)
transformation ’
dr __ T as _ 1
o = cos (%) dR = cos(R)—R

A A7 o\ o T\ > _T T T P VNS e
PPN IE NGNS | S T AAA AL N e
AAA 7w e—a o~ |~ ~a> 7 T A e O S VNSNS e
/////»jt NN e 7 T A A A R ro Tl AN T TR
A AA A ADBLNNN e A A e A AAA A AL N
AAATAAASNINAN A AT S Gttt VI
AAPAAAA A r—e 7 A A S A A T it i T i
PAAAPAAAAANNAA A SN R=" i i T
AP PAT ISP Tt ettt alalalalallel VA TN e
R N, R VYR Vi e e ok RS R S
AP AAANNAAF A S S=ln(t) e A XA AL N
FAAFAAA Al r—a 7 7 A F A el U T e
AAATAAA NG AN A AT JJ A e 1 i e s
A AAAA A NN N T A Gt T
PO OO N S C o e o TS
AAA 7 o e—a N~ | T~ ~a> T T A A O W VNSNS b
e e R N R I Ol A A AAA AL N e
P O Y x Pl N Y S g e e AT FAT AL N a e e




CHAPTER 2. BOOK SOLVED PROBLEMS 169

3H 77N\ \\\N— ]
S 777NN NN\~
V\ /77777 \N—"\N\N—~~"/7/777
77 7N\ \\\~—="/77777
777NN\ ~"S ]
//\//\////

NN NN
\\\\\\\\\\
NN N

NN N

AN N Y N N N N N N
AN NN N 0 N N NN
AN N N N N

J 7=\ \\—~"/"/
J 77N\ \\\~—>"/"/
\ /77 777\ \\N~~""7777
S 777NN NN\~
3 SN\ ]

=
=
. 2 . .
NN N
ANONONONONONONONONIONNNN Y
NN N

AR T T T
t
Figure 2.39: Slope field plot

' = cos (%)

Summary of solutions found

Solved as first order ode of type dAlembert
Time used: 1.377 (sec)

Let p = 2’ the ode becomes

= COS (1:)
p= ¢

Solving for z from the above results in

x = arccos (p) t (1)

This has the form

r =tf(p) + g(p) *)
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Where f, g are functions of p = z'(t). The above ode is dAlembert ode which is now

solved.

Taking derivative of (*) w.r.t. ¢ gives

p=f+r+9) D
(! /@
p=f=0f+d)

Comparing the form z = tf 4+ g to (1A) shows that

f = arccos (p)
g=0

Hence (2) becomes

tp'(t)
V-p*+1

The singular solution is found by setting % = 0 in the above which gives

p — arccos (p) = —

p — arccos (p) =0

No singular solution are found.

The general solution is found when % # 0. From eq. (2A). This results in

(p(t) — arccos (p(t))) \/—p ()* + 1
t

This ODE is now solved for p(t). No inversion is needed. The ode p'(t) =

p(t)=—

2)

3)

_ (p(t)—arccos(p(t)))y/ —p(t)*+1

is separable as it can be written as

(p(t) — arccos (p(t))) \/ —p (t)* + 1

pt)=— "
= f(t)g(p)
Where
f)=—3

g(p) = (p — arccos (p)) /—p? + 1

t
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Integrating gives

/Flp)dp=/f(t)dt

/(p—arccos(;))mdpzf—%dt

p(t) 1 p | 1
=In{>)+
/ (1 — arccos (7)) vV—12+1 Te (t) “

We now need to find the singular solutions, these are found by finding for what values
g(p) is zero, since we had to divide by this above. Solving g(p) = 0 or (p — arccos (p)) vV—p>+1 =
0 for p(t) gives

p(t) = —1
p(t) =1
p(t) = RootOf (—cos (_Z) +__7)

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

The solution RootOf (—cos (_Z) + __Z) will not be used

Therefore the solutions found are

p(t) 1 J | 1
=ln|-|+c
/ (1 —arccos (7)) vV—12+ 1 ! (t) !

p(t) = -1
p(t) =1
Substituing the above solution for p in (2A) gives
& = arccos (RootOf (— /_Z ! dr +In (1) +c >) t
(1 —arccos (7)) vV—12+1 t '
r=mt
z=0
The solution
z=0

was found not to satisfy the ode or the IC. Hence it is removed. The solution

T =t
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was found not to satisfy the ode or the IC. Hence it is removed.

3H /7N \ =\ ]
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JI7 77777 NN"S7777777
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x(1) W77 777777777777777777
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4 -3 =2 -1 0 1 2 3 4
t

Figure 2.40: Slope field plot
z’ = cos (%)

Summary of solutions found

-z 1 1
= RootOf | — dr+In( =)+ t
i arccos ( 00 ( / (7’  arccos (7_)) \/T—i-l T n (t) C1)>

Maple step by step solution

Let’s solve
&’ = cos (%)
° Highest derivative means the order of the ODE is 1

xl

° Solve for the highest derivative

&’ = cos (%)
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful”

N

Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 27

‘dsolve(diff(x(t),t) = cos(x(t)/t),
‘ x(t),singsol=all)

Z
z = RootOf (—/ - ! d_a+In(t)+ cl> t
—cos(_a)+_a

Mathematica DSolve solution

Solving time : 0.351 (sec)
Leaf size : 33

e

DSolve [{D[x[t],t]==Cos[x[t]1/t]1,{}},
‘ x[t],t,IncludeSingularSolutions->True]

2(t)
t

1 K[1] = cos(K[1])

Solve [ / 1

dK[1] = —log(t) + c1, z(t)
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2.1.16 problem 3 (iv)

Solved as first order homogeneous class Aode . . . . . ... .. 174
Solved as first order homogeneous class D2 ode . ... ... .. 177
Solved as first order homogeneous class Maple C ode . . . . . . 180l
Solved as first order Exactode . . . .. ... ... ....... 184
Solved as first order isobaricode . . .. ... ... ... .... 188
Solved using Lie symmetry for first orderode . . . .. ... .. [191]
Maple step by step solution . . . . . .. ... ..., 196
Mapletrace . . . . . . . . . . . ... 196
Maple dsolve solution . . . . ... ... ... .. .. .. ..., 196
Mathematica DSolve solution . . . . .. .. ... ... ..... 197

Internal problem ID [18179]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 3 (iv)

Date solved : Thursday, December 19, 2024 at 01:52:21 PM

CAS classification : [[_homogeneous, ‘class A‘], _rational, _dAlembert]

Solve
(t* —2%) 2’ = at
Solved as first order homogeneous class A ode

Time used: 0.650 (sec)

In canonical form, the ODE is

' =F(t )
xt
T Tt g2 1)
An ode of the form z' = 1\]\/[1((:2)) is called homogeneous if the functions M(¢,z) and

N(t,z) are both homogeneous functions and of the same order. Recall that a function
f(t,z) is homogeneous of order n if

f&"t, t"x) =t"f(t,x)

In this case, it can be seen that both M =tz and N = t?> — z? are both homogeneous
and of the same order n = 2. Therefore this is a homogeneous ode. Since this ode is
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homogeneous, it is converted to separable ODE using the substitution u = ¥, or z = ut.

Hence
d_x = d—ut +u
dt — dt
Applying the transformation z = ut to the above ODE in (1) gives
d—ut +u=-— “
dit w2 —1
u(t
du _ —as —u)
dt t
Or ©
C) — u(t)
'(4) — u(t)®—1 _
u'(t) " 0
Or
u' () w(t)t +u(t)® — /' (t)t =0
Or

t(u®)? — 1) u'(t) +u(t)’ =0
Which is now solved as separable in u(t).

The ode u'(t) = — 40" __ 5 separable as it can be written as
t(u(t)2—1)

Where

Integrating gives
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We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u;‘il = 0 for u(?)
gives

u(t) =0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

Solving for u(t) gives
u(t)=0

u(t) = /- 1
N LambertW (—e—2¢1¢2)

Converting u(t) = 0 back to z gives

=0

Converting u(t) = \/ ) back to x gives

1
LambertW (—e—2¢1¢2

1
v t\/_ LambertW (—e—2c1¢2)
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Figure 2.41: Slope field plot
(t2 =zt 2 ==t

Summary of solutions found

=0

1
v t\/_ LambertW (—e—2c1¢2)

Solved as first order homogeneous class D2 ode
Time used: 0.530 (sec)
Applying change of variables x = u(t) t, then the ode becomes

(8 —u(t)® ) (W' (t) t + u(t)) = u(t) t?

Which is now solved The ode v/(t) = — ( (1:)(;)—31>t is separable as it can be written as

iy u®)’
wle) = (u(®)?—1)t

= f(t)g(w)




CHAPTER 2. BOOK SOLVED PROBLEMS 178

Where
1
t)=—=
3
U
g(U) - ’lL2 1

Integrating gives

1

1 1

1 1
t2=1n(¥)+01

(t)

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u;‘—il = 0 for u(?)
gives

U

In (u(t)) +

3
2u

u(t) =0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

Solving for u(t) gives

1
u(t) = \/ ~ LambertW (—e—2c1£2)

Converting u(t) = 0 back to z gives

=0

back to x gives

Converting u(t) = \/

_ 1
LambertW (—e~2¢1¢2)

1
—t,]—
v \/ LambertW (—e—2c1¢2)
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Figure 2.42: Slope field plot
(t? — 2?2’ = xt

Summary of solutions found

1
—t,]—
v \/ LambertW (—e—2¢1¢2)

Summary of solutions found

=0

1
—t,]—
v \/ LambertW (—e—2c1¢2)



CHAPTER 2. BOOK SOLVED PROBLEMS 180

Solved as first order homogeneous class Maple C ode
Time used: 1.020 (sec)

Let Y = x — yo and X =t — z then the above is transformed to new ode in Y (X)

Ao () +30) @+ X)
XX = T )+ ) = (o + X7

Solving for possible values of xy and yo which makes the above ode a homogeneous ode
results in

To =
Yo =10

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d Y(X)X
V(X)) = —
ax’ &) —X24+Y (X)?
In canonical form, the ODE is
Y' =F(X,Y)
YX
T —X24+Y? (1)

An ode of the form Y’ = %gz,})) is called homogeneous if the functions M(X,Y) and
N(X,Y) are both homogeneous functions and of the same order. Recall that a function

f(X,Y) is homogeneous of order n if
fE"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = Y X and N = X?—Y? are both homogeneous
and of the same order n = 2. Therefore this is a homogeneous ode. Since this ode is

homogeneous, it is converted to separable ODE using the substitution v = %, or
Y = uX. Hence

ax ~ax~ T
Applying the transformation Y = uX to the above ODE in (1) gives
du u
x -
Xt e
u(X
du _ _u(x()2)—1 —u(X)

dX X
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Or ) x)
d _u(X)2—1 w(X .
ax UX) X =0
Or p p
(KU(X)) w(X)* X +u(X)® - (ﬁ“(xo X=0
Or

X (u(X)? 1) ( d‘; (X)> +u(X)? =0

Which is now solved as separable in u(X).

The ode J%u(X) = _X<:((TX));—1) is separable as it can be written as
4 (X)=— u(X)*
X X (w(X)* - 1)
= f(X)g(u)
Where
1
fX)=-+
3
u
g(u) uQ 1

Integrating gives
/ Ldu_ / F(X
g(u
u? —1
In (u(X)) + . In (l) +c
w(X)?  \X)

We now need to find the singular solutions, these are found by finding for What values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u2 ; = 0 for
u(X) gives

w(X)=0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.
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Therefore the solutions found are

1 1
In (U(X)) + 2 (X)2 =In (Y) +c
u(X)=0

Solving for u(X) gives

1
uX) = \/_ LambertW (—e—2¢1 X2)

Converting u(X) = 0 back to Y (X) gives
Y(X)=0

Converting u(X) = \/ — Lambertw(l—e—%l <zy back to Y (X) gives

1
Y(X) = X\/_ LambertW (—e—2¢1 X ?2)

Using the solution for Y (X)
Y(X)=0 (A)
And replacing back terms in the above solution using

Y=x+1y
X:t+$o

Y=z
X =t

Then the solution in z becomes using EQ (A)
z=0

Using the solution for Y (X)

Y(X)=X \/_ LambertW:l(—e—zc1 X?) ()
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And replacing back terms in the above solution using

Y=zx+4+1y
X=t+.’130

Y=z
X=t

Then the solution in z becomes using EQ (A)

1
T t\/_ LambertW (—e—2c1¢2)

/ — —— —=—a~a
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Figure 2.43: Slope field plot
(2 — 22’ =zt
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Solved as first order Exact ode
Time used: 0.237 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

Comparing (1A) and (2A) shows that

M(t,z) = —tz
N(t,z) =t* — 2°
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 9N
ox Ot
Using result found above gives
oM 0
R
= —¢
And
-t )
=2t

Since %_1\; # aa—f, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A L(oM_oN
N\ Oz ot
1
= m((—t) —(2t))
3t
T TR _ g2
Since A depends on z, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let
p— L (9N _oM
M\ Ot ox
1
= ——((2t) = (1))

T

3

Tz
Since B does not depend on t, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

p= ede:L'
—e [-3da
The result of integrating gives
= 6_3 In(x)
1
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M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

And

So now a modified ODE is obtained from the original ODE which will be exact and

can be solved using the standard method. The modified ODE is
—dz

M+N-—-=0
+ dt

_t + H d_x_o
2 3 dt

The following equations are now set up to solve for the function ¢(¢, x)

0p —

_gt =M (1)
¢

i @

Integrating (1) w.r.t. ¢t gives

0 .. [+
Edt—/Mdt

86 ¢
Edt—/—ﬁdt

b= -1 4 f@) 3)

212

Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t  gives

o _ t*
5 = 5+ /@ (4)
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t2

But equation (2) says that % = ;—3””2 Therefore equation (4) becomes

2 .2 2

Solving equation (5) for f'(z) gives

Integrating the above w.r.t x gives

/f’@)@:/(-%) do

fx)=—In(z)+ ¢

Where c¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢
2

t
¢:—2—$2—1n($)+01

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

C1 = _2_,’E2 - ln(x)

Solving for z gives

LambertW(—thQCl )

r=e 2 A
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Figure 2.44: Slope field plot
(t2 =zt 2 ==t

Summary of solutions found

LambertW(—tzezcl )

r=e 2 A

Solved as first order isobaric ode
Time used: 0.615 (sec)

Solving for z’ gives
xt
x2 — 2

' =-

Each of the above ode’s is now solved An ode &’ = f(t, z) is isobaric if
f(tt,t"x) =t f(t, z)
Where here
xt
flt2)=-—>—3

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m=1

(1)

2)
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Since the ode is isobaric of order m = 1, then the substitution

z = ut™

=ut

Converts the ODE to a separable in u(t). Performing this substitution gives

: t*ut)
ult)+tu(t) = ——5"—
() () t2u(t)2_t2
The ode u'(t) = _<(1:)(+)—31>t is separable as it can be written as
3
d(t) = —— 2B
(u®)*—1)¢
= f()g(v)
Where
1
f)=—3
3
u
g(U) - uz -1

Integrating gives

/ﬁduz/f(t)dt
/“2u;1du=/—%dt

In (u(t)) + 2utt)2 —In (%) to

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u;‘—il = 0 for u(t)

gives
u(t) =0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(t)) + 2u1(t)2 Cn (%) to

u(t) =0
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Solving for u(t) gives
u(t) =0

1
u(t) = \/_ LambertW (—e—2¢1¢2)

Converting u(t) = 0 back to z gives

T _y
t

Converting u(t) = \/

1 .
TambertW (—e~%122) back to x gives

z_ | 1
t LambertW (—e—2¢1¢2)
Solving for = gives

z=0

=t/ — 1

v LambertW (—e—2c1¢2)
HNN V77 7m0\
[NNV V77 77=—==NN\ 0\

NN\ VT 77 —=—=~N\\ )
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Figure 2.45: Slope field plot
(t? =zt 2’ ==t
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Summary of solutions found

=0

1
v t\/_ LambertW (—e—2c1¢2)

Solved using Lie symmetry for first order ode
Time used: 0.829 (sec)
Writing the ode as

o xt
2412
' =w(t,x)

The condition of Lie symmetry is the linearized PDE given by

M+ w(e — &) — W — wi€ —w,n =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

f =tas + zasz + a1 (1E)
n= thy + .’L‘b3 + by (QE)

Where the unknown coefficients are

{al, az,as, by, b2a b3}

Substituting equations (1E,2E) and w into (A) gives

. zt(bs — as) r*t%a3 ( T 2z t2
,— _

—12 + x2 (—t2 4+ 1172)2 -\ —¢2 + 2 - (—t2 + IL'2)2

t 2z%t
_ <_ b A mz)Q) (tbs + b3 + by) = 0

) (taz+zas+aq) (5E)

Putting the above in normal form gives

3t22%by — 2t xag + 2t °bs — x'ag — 10y + t°by — t2way +ta?by — 2lay 0
) (2~ 22)° )
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Setting the numerator to zero gives
—3t22%by + 2t %ay — 2t 23b3 + a3 + 2*by — t3b; + t2za; — t 2%y + 23a; =0 (6E)
Looking at the above PDE shows the following are all the terms with {¢,z} in them.
{t, =}

The following substitution is now made to be able to collect on all terms with {¢,z} in
them
{t =v1,2 = v}

The above PDE (6E) now becomes
2020105 + azvy — 3bavivi + bovy — 2b3v1v3 + 41920y + a1v5 — b1vd — bivvi =0 (TE)
Collecting the above on the terms v; introduced, and these are
{v1,v2}
Equation (7E) now becomes
—b1v¥ — 3boviv: + a1v7vy + (2ap — 2b3) v1U5 — biv1va + (a3 + by) vy + a1v5 =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 =0
—b;=0
—3by =0
2a9 — 2b3 =0
a3 +by=0

Solving the above equations for the unknowns gives

a; =0
as = bs
a3 =0
by =0
by =0

bs = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

§
U]

t
T

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-—uwtmr)f

. (_—t?x—j—aﬂ) (t

x3

T2 g2
£€=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (t,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt dzx
&

The above comes from the requirements that (f % + 776%) S(t,z) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

ds (1)

R=t

n
:/ lx3 dy
o

t2
S =1 —
n(x) + 572
Now that R, S are found, we need to setup the ode in these coordinates. This is done

by evaluating

S is found from

Which results in

ﬁ . St+LU(t,$)Sw (2)
dR ~ R, +w(t, )R,
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Where in the above Ry, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

t
wt,z) = ——
_t2 + $2
Evaluating all the partial derivatives gives
Rt =
R, =
t
St = ﬁ
5 - —t2 4+ 22

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
— =0 2A
IR (24)
We now need to express the RHS as function of R only. This is done by solving for ¢,
in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

0

Since the ode has the form - S(R) = f(R), then we only need to integrate f(R).
S (R) = C2

To complete the solution, we just need to transform the above back to ¢,z coordinates.
This results in

2In (z)2® +¢*
2x2 N

C2

Which gives

LambertW(—t297262)
r=e€ 2

+c2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .
. . . . ODE in canonical coordinates
Original ode in ¢,z coordinates coordinates (R, S)
transformation ’
dz _ _ _ wt _ das __ 0
dt — —t2+x2 dR
I WD I
R S s
VAP NNy f 4
SNNNIRAAstan BRIP4
N T ~aa
NN E < St BN A S(R]
~N NN\t BN A 25
— s e ~aNa Ny /{\ AT o> R frd t
gy |1 g 2hﬂx)x2+t2 _— -1y 3 T
o o T 7 T A |7 (aTeeae—a—b — R
w7 AN e e+ A NN e ~a e 2x2
F A AP N e LN N N e 2%
AAAAL N N~ 7 A LN N
A2 A we—ser o A NN
AE NNN e g AN
21 AN S s f L -
RSN N S R R B
R O nencn e A
HNN V777NN L T
INNV V7 77—\ VT 177
NNN V7 7m=aNN\N\ | 177
HNNNN V[ /7NN 777
NNNN\WN\ LV /NN
ISNSN~\\\|/7—=—~\1{V /7777

W 7 N~ A NN
{77777 71 \N=~=77 1] N\ NN\
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S
/S S
/

1/
}
|
\
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Figure 2.46: Slope field plot
(t? —2?) 2’ = xt
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Summary of solutions found

LambertW(—tze_282 )

r=e 2
Maple step by step solution

Let’s solve

(t? —z?) 2’ = xt

+c2

° Highest derivative means the order of the ODE is 1

xl

° Solve for the highest derivative

/. _xt
T =32

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful”

Maple dsolve solution

Solving time : 0.017 (sec)
Leaf size : 19

‘(dsolve((t‘Q—x(t)‘2)*diff(x(t),t) = x(t)*t,

‘ x(t) ,singsol=all)

1
v \/_ LambertW (—c; t2) t




CHAPTER 2. BOOK SOLVED PROBLEMS 197

Mathematica DSolve solution

Solving time : 7.493 (sec)
Leaf size : 56

‘DSolve[{(t"2-x[t]~2)*D[x[t],t]==t*x[t],{}},
‘ x[t],t,IncludeSingularSolutions->True]

z(t) » —

z(t) =

z(t) =0
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2.1.17 problem 3 (v)

Solved as first order linearode . . . . . ... ... ....... 198}
Solved as first order Exactode . . . . . ... ... ....... 200
Solved using Lie symmetry for first orderode . . . .. .. . .. 203]
Maple step by step solution . . . . . .. ... ... ... .. .. 210
Maple trace . . . . . . . . . .. 2111
Maple dsolve solution . . . .. ... ... ... .. ....... 212
Mathematica DSolve solution . . . . .. .. ... ... ..... 212

Internal problem ID [18180]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 3 (v)

Date solved : Thursday, December 19, 2024 at 01:52:28 PM

CAS classification : [[_linear, ‘class A‘]]

Solve
ez’ + 3re’ =2t
Solved as first order linear ode

Time used: 0.069 (sec)

In canonical form a linear first order is

o' +q(t)z = p(t)

Comparing the above to the given ode shows that

q(t) =3
p(t) = 2te™
The integrating factor u is
b= efth
—e J3dt

— 3t



199

up
(1) (2t )
(e3t) (2t e_3t)
(2t e_3te3t) dt
/ 2t e 3 dt
2+ ¢
e 3t (t2 + cl)

(ux)
(ze™)
d (x e3t)

BOOK SOLVED PROBLEMS

Dividing throughout by the integrating factor e gives the final solution

The ode becomes
Integrating gives

CHAPTER 2.

12

t

0
Figure 2.47: Slope field plot

ez’ + 3z edt =2t

T O
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Summary of solutions found

="+ c1)

Solved as first order Exact ode
Time used: 0.390 (sec)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 06 d
o9 oeay _
Or Oydx 0 (B)

Comparing (A,B) shows that

0
M
ox
0
YN
Oy
8%¢ __ 82%¢
OzxOy ~— Oyoz

But since then for the above to be valid, we require that

oM  ON

By Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

e”)dzr = (—3ze™ +2t) dt
(e*) ( 3t )
(3ze® —2t) dt +(e*) dz =0 (2A)
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Comparing (1A) and (2A) shows that

M(t,z) = 3ze® — 2t
N(t,z) = e*

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
ox Ot
Using result found above gives
oM 0
— 2t
Oz Oz (3z )
= 3¢
And
ON 0,
-l
= 3¢
Since %]‘gf = 3t , then the ODE is exact The following equations are now set up to solve

for the function ¢(¢, z)

0p
¢
o=V @

Integrating (2) w.r.t. z gives

—dx—/Ndx

o¢ 3t
8mdx_/e dzx

¢ =ze + f(t) 3)

Where f(t) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t ¢ gives

9¢

2 et (1) @
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But equation (1) says that % = 3z e* — 2t. Therefore equation (4) becomes
3ze¥ — 2t = 3z e’ + f/(t) (5)

Solving equation (5) for f'(t) gives
fi(t) = -2t

Integrating the above w.r.t ¢ gives

/ F()dt = / (—2t) dt

fit)=—t*+¢

Where ¢; is constant of integration. Substituting result found above for f(¢) into
equation (3) gives ¢

p=xe — >+
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and

combining ¢; and ¢y constants into the constant c; gives the solution as

¢ = zedt —¢?

Solving for z gives

x=e 3 (t2 + cl)
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Figure 2.48: Slope field plot
ety 4 3z edt = 2t
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Summary of solutions found

z=e(t’ +c)

Solved using Lie symmetry for first order ode
Time used: 1.231 (sec)
Writing the ode as
' =—(3ze® —2t) e
' =w(t,z)
The condition of Lie symmetry is the linearized PDE given by
e+ w1 — &) — W — wi€ —wyn =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 2 to use as anstaz gives

€ = t?aq + tras + 2%ag + tas + zaz + ay (1E)
’l’] = t2b4 + t$b5 -I- x2b6 + tb2 + $b3 + bl (2E)
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Where the unknown coeflicients are

{a17 ag, as, a4, as, e, bl, b2, b3) b47 b5, bﬁ}

Substituting equations (1E,2E) and w into (A) gives

2tby + xbs + by — (3x et — 2t) e 3 (—2tay + tbs — was + 2xbs — ag + bs)
— (3ze® — 215)2 e %(tas + 2zag + az) — (—(9ze® —2) ™ (5E)
+ 3(3ze* — 2t) ™) (t?as + twas + zae + tas + zas + a1)
+ 3t2by + 3tzbs + 32°bg + 3tby + 3xbs + 3b; = 0

Putting the above in normal form gives

(—4t%as — 2€*as + 3be™ + bye™ — 9t z%a5 + 6 % twas — 8t°zag
+ 63 t3a, — 63 t2a4 + 23205 — 23 2%ag — 18 €% 2306 + 3t2bye’
+ 3e%z2a; — 322bge’ + 2tb,e% + e + 6 €3t2ay + 6 e3ta; — 4€3ta,
+ 2e3thy — 2e*zag — 9e%x2ag + 3thee + 3e%zay + 18 ¥ tzag
— 4t%as + 18*t°zas + 30 €*t 2°ag — 4 €*tzas + 4€°tabg) 6% =0

Setting the numerator to zero gives

—4t?a; — 2% aq + 3b1e% + bye® — 9€5% 2%a5 + 6 e%tra, — 8t2zag
+ 6e3t3as — 63 t%ay + 23 %5 — 23 2%ag — 18 %23 ag + 3t%be® (6E)
+ 3e%z2a; — 322bge’ + 2tb,e% + zbse® + 6 €3t2ay + 6 e3ita; — 4€e3ta,
+ 2e3thy — 2e*zas — 9eSx2ag + 3thee’ + 3 e zay + 18 ¥ tzas
— 4t3as + 18 ¥ t%zas + 30 €3t 22ag — 4 3tzas + 4 €3tzbg = 0

Simplifying the above gives

—4t%a5 — 2€%a; + 3b1€% + bye® — 9e%t 2%ay + 6 €%tza, — 8t zag
+ 6e3t3a, — 6> t%ay + 23 %bs — 23 2%ag — 18 €% 23ag + 3t2b,€% (6E)
+ 3e822ay — 322bgebt + 2tb,e8 + xbse’t + 6 €3t2a, + 6 €3ta; — 4 €3ta,
+ 2e3thy — 2e¥zag — 9eSz2as + 3thee’ + 3efizay + 18 € tzas
— 4t3as + 18 ¥ t%zas + 30 €3t 22ag — 4 3tzas + 4 €3 tzbg = 0

Looking at the above PDE shows the following are all the terms with {¢,z} in them.

{t, x, e3t, e6t}
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The following substitution is now made to be able to collect on all terms with {¢,z} in
them

6t

{t=v1,z= Vg, €3 = 3, €% = vs}

The above PDE (6E) now becomes

Gvgvi’(u + 18v3va2a5 — 9v4v1v§a5 + 30'031)1'03(16 — 18v4v§’a6 + 6’031)%(1,2
+ 18vsv1v2a3 — 91)41)%(13 — 6v31)fa4 + 6vav10204 — 4’U§’a5 — 4u3v1 V905 (TE)
+ 3v4v§a5 — 821%1)20,6 — 2v3v%a6 + 3v%b4v4 + 22)3v%b5 ~+ 4v3v1v2bg
— 3v§bﬁv4 + 6vsvia; — dvsviag + VU009 — 4vfa3 — 2u3v9a3
+ 3vlb2v4 + 2U31)1b3 + 2’Ulb4’U4 + Uzb5’04 — 2’03@1 + 3b1’U4 + b2’U4 =0

Collecting the above on the terms v; introduced, and these are

{Ul7 V2, Vs, ’U4}
Equation (7E) now becomes

6usviay — 4vias + 18v3viveas — 8viveag + (6ag — 6ay + 2bs) vivs
+ 3v2byvy — 42a3 + 30vsv1v3as — QUavivaas + (18as — 4as + 4bg) V1V2V3
+ 6’[)4’01’02(14 + (6&1 - 4(12 + 2b3) V1U3 + (3b2 + 2b4) V1V4 — 181}4’1)30,6 - 2’03’03@6

+ (—9a3 + 3&5 — 3b6) ’U%’U4 - 2031)2&3 + (3a2 + b5) VoUyg — 2’03@1 + (3b1 + bz) Vg = 0
(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

—2a1 =0
—4a3 =0
—2a3 =0
6as =0
—9a5 =0
—4a5 =0
18a5 =0
—18as =0
—8ag =0
—2a6 =0
30as =0
3by =0

3as + b5 =0
3b1 +b, =0
3by +2by, =0

6a, — 4ay + 2b3 =0
6as — 6a4 + 2b5 =0
—9a3 + 3as — 3bg =0
18a3 — 4a5 + 4bg = 0
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Solving the above equations for the unknowns gives

a; =0
et
3
a3 =0
as =0
as =0
ag =0
by =0
by =0
2b5
b3=—?
by =0
bs = bs
b =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

=tr— =
n=tc 3ac

Shifting is now applied to make & = 0 in order to simplify the rest of the computation
n=n-wlz)
2 3t —3¢ t
=t — 3%~ (—(3z e —2t) e7%) -3

_ (—2zeM 2% e
B 3

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,z) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt dx

F=, =45 1)
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The above comes from the requirements that (£2 +n2) S(t,z) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

S is found from

1
=/Wdy

3

Which results in

_3ln(—ze* +¢)
2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S =

as _ Sitw(t,z)S, @)

Where in the above R;, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

w(t,z) = —(3ze* — 2t) e

Evaluating all the partial derivatives gives

Rt:].
R,=0
B —9z 3 + 6t
' 2zedt — 22
3e3t
S =  oxedt — 22

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as _
dR

We now need to express the RHS as function of R only. This is done by solving for ¢, x

in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

0 (2A)

0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

R) = Cy
To complete the solution, we just need to transform the above back to ¢,z coordinates.
This results in

_3ln(—=ze* +¢°)
2

T = —(e 5 —t2)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

:C2

Which gives

Canonical ) . .
. . ) . . ODE in canonical coordinates
Original ode in ¢,z coordinates coordinates (R,S)
transformation ’

‘fi—fz—(3xe3t—2t)e_3t %=0

L A A

L O A A A

R IEEEEERERER 4

S{SSRERREES!

S UAE ISR R SR]

SRR REERE ’

PATY AN N % W N VN R=t

t \\\\2\\\\‘«\\ 3t 9 - - - :
_‘ Z FAAAAF AT AT _ - -
LTI g2 3n(zet 4t e o

IO AV A A A A 2

L%f?‘f?‘ﬂ“fﬁff >l

IO O O A

R

VP rEtr et

[ I R R 4

vttt trtttt

Nttt
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Summary of solutions found

x = —(e_% — t2> e 3t

Maple step by step solution

Let’s solve
ey’ + 3z e’ =2t
° Highest derivative means the order of the ODE is 1

/

T
° Isolate the derivative
¢ =-3z+%

° Group terms with z on the lhs of the ODE and the rest on the rhs of the ODE
o+ 3z =23

° The ODE is linear; multiply by an integrating factor u(t)
u(t) (2’ + 3z) = 240"
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o Assume the lhs of the ODE is the total derivative 4 (zu(t))
p(t) (2" + 3z) = 2'u(t) + ap'(t)

o Isolate p'(t)
' (t) = 3u(t)

° Solve to find the integrating factor

ult) = (%) e
. Integrate both sides with respect to ¢

[ (L(zu(t))) dt = [ 2804t + C1

. Evaluate the integral on the lhs
zut) = [ Qig?tdt + C1
° Solve for x

e e
1(t)
e  Substitute pu(t) = (¢3)?e~3

= J 2te 3te3tdt+C1

Tr=

(e3t)%e—3t
° Evaluate the integrals on the rhs
2
° Simplify

z =e3(t2 + C1)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 14

‘ dsolve(exp(3*t)*diff (x(t),t)+3*x(t)*exp(3*t) = 2%t, ‘
‘ x(t) ,singsol=all) ‘

z=e(t* +c)

Mathematica DSolve solution

Solving time : 0.056 (sec)
Leaf size : 17

DSolve[{Exp[3*t]1*D[x[t],t]+3%x [t]*Exp[3*t]==2%t,{}},
L x[t],t,IncludeSingularSolutions->True] J

z(t) = e (8 + 1)
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2.1.18 problem 3 (vi)

Solved as first order Exactode . . . . . ... ... ....... 213
Maple step by step solution . . . . ... ... ... ... .... 217
Maple trace . . . . . . . . . . . e 218
Maple dsolve solution . . . .. .. ... ... ... ....... 218
Mathematica DSolve solution . . . . . ... ... ........ 218

Internal problem ID [18181]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 3 (vi)

Date solved : Thursday, December 19, 2024 at 01:52:30 PM

CAS classification :

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘,

Solve

2t+3z+ (3t —z)1' =12

Solved as first order Exact ode
Time used: 0.546 (sec)

To solve an ode of the form

M(z,) + N(z,5) 2 =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence
0¢p 4 0¢p @ .

oc T ayds " (B)

Comparing (A,B) shows that
9¢

or
¢

oy
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But since aa g = then for the above to be valid, we require that

oM _ ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5?: ;’y = aay gs is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

By(')

exactness, which is
M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

(Bt —z)dz = (£* —2t — 3z) dt
(—t*+2t+3z) dt+(3t —z)dz =0 (2A)

Comparing (1A) and (2A) shows that
M(t,x) = —t* + 2t + 3z
N(t,z)=3t—z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
ox Ot
Using result found above gives
oM 0 9
2
5y ax( —t? + 2t + 3z)
=3
And
ON 0
Bt o)
Since %]‘gf = 6t , then the ODE is exact The following equations are now set up to solve

for the function ¢(¢, z)

9
E_M (1)

8¢ _
=N 2)
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Integrating (1) w.r.t. ¢ gives

0¢
E&_/Mw

¢
Edt:/—t2+2t+3xdt
2 _ _
o= -1EZHZD |y ®)

Where f(z) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t  gives

9¢ :

But equation (2) says that % = 3t — z. Therefore equation (4) becomes
3t—xz=3t+ f'(z) (5)
Solving equation (5) for f'(z) gives
fe)=—=
Integrating the above w.r.t = gives

/f'(x) dx:/(—z) dz

2

flz) = —%Jrc1

Where ¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into the constant c; gives the solution as
t(t? — 3t — 9z)

o =z
L 3 2
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v/ —6t3 + 99¢2 — 18¢;
v —6t3 + 99¢2 — 18¢;

r =3t —
r =3t +

BOOK SOLVED PROBLEMS

CHAPTER 2.
Solving for x gives

RN NN NN NN NN NN
710000 NN N NN N NN N
7777 10100V VN NNNNNNNNN
Zo77 7 7 A NN NNNNNNN N
=777 7 7 TN NNNNNNNN
——=—== 777 7 TN NNNNNNN
————— 77 1T AVNNNNNNNN
\\\\\ ——==77 T A NNNNNNNN
1111111 — 7 1N NN NSNS
777777777 AN SN
A R N N \_ T —————— S — N —
SSNNSNNNN\NAN S ——
////// \_ \\\\\\\‘\1\1 \\\\\\
\\\NM1 V1V /77—
VAV ALY AV A AP A P b
VALY AL PP b B
VAL A AP P P PP P e g B
VAP A AP P P P PP i S S S P S
s & = & T I L&

| I |

=

Figure 2.50: Slope field plot
V=613 + 992 — 18¢,
vV —6t3 + 99t2 — 18¢;

2t+3z+ (3t —xz)2’ =t?

r =3t —
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Summary of solutions found
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Maple step by step solution

Let’s solve
2t + 3z + (3t — x) 2’ =t

° Highest derivative means the order of the ODE is 1
.'I;I

([l Check if ODE is exact

o ODE is exact if the lhs is the total derivative of a C? function
F'(t,x) =0

o Compute derivative of lhs
F'(t,z) + (ZF(t,z)) o' =0

o Evaluate derivatives
3=3

o Condition met, ODE is exact

° Exact ODE implies solution will be of this form
[F(t,z) = C1,M(t,z) = F'(t,z) ,N(t,z) = ZF(t,1)]
° Solve for F'(t,z) by integrating M (¢,x) with respect to ¢
F(t,z) = [ (—t*+ 2t + 3z) dt + fi(x)
° Evaluate integral
F(t,z) = =Y + ¢ + 3tz + fi(=)
° Take derivative of F'(t,z) with respect to x
N(t,z) = %F(t,x)
° Compute derivative
3t —z=3t+ Lfi(z)
° Isolate for L fi(x)
whi(z) =~z
° Solve for fi(z)
filz)=-%
. Substitute fi(z) into equation for F'(¢,x)
F(t,z) = —3t3 +t* + 3tz — 3a?
° Substitute F'(t,z) into the solution of the ODE
—3t® + 8% + 3te — 2% = C1
° Solve for x

v/ —6t3+99t2—18C1 v/ —6t3+99t2—18C1
{a: = 3t — Y=OPFO=IBCT o _ 34 | V=GP EOOP=TEC
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

trying exact
<- exact successful"

differential order: 1; looking for linear symmetries

Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 51

‘dsolve (2+t+3xx (t)+(3xt-x(£) ) *diff (x(t),t) = £72,
‘ x(t) ,singsol=all)

v/ —6t3 + 99¢2 + 18¢;

r =3t — 3
665+ 9922 + 1
x=3t—|—\/ 6 +z9 + 18¢

Mathematica DSolve solution

Solving time : 0.161 (sec)
Leaf size : 67

‘ DSolve [{(2*t+3*x[t])+(3*t-x[t])*D[x[t],t]1==t"2,{}},
L x[t],t,IncludeSingularSolutions->True]

2t3
z(t) — 3t — z\/? — 112 — ¢

. [2t3
z(t) = 3t +1 5 — 112 — ¢
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2.1.19 problem 4 (i)

Solved as first order linear ode
Solved as first order Exactode . . . . . . . . . . ... ... .. 227]

Solved using Lie symmetry for first orderode . . . .. .. . .. 225
Maple step by step solution . . . . . .. ... ... ... .. .. 230
Maple trace . . . . . . . . . .. 2311
Maple dsolve solution . . . .. ... ... ... .. ....... 231]
Mathematica DSolve solution . . . . ... ... ......... 232

Internal problem ID [18182]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 4 (i)

Date solved : Thursday, December 19, 2024 at 06:17:34 PM
CAS classification : [[_linear, ‘class A‘]]

Solve
' +2z =¢€
Solved as first order linear ode

Time used: 0.187 (sec)

In canonical form a linear first order is

o' +q(t)z = p(t)

Comparing the above to the given ode shows that

The integrating factor u is
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The ode becomes

Hp

(uz) = (1) (¢)
(ze®) = (¢*) (¢')

d (z e2t)

(ete2t) dt

/ ete? dt

Integrating gives

T 62t

e3t

:?—Fcl

Dividing throughout by the integrating factor e* gives the final solution

(e + 3¢p) e

T T T T T T T T T T T T —— — —— ——~—

—_——— = _F 7 \ .////// 77777777

—_——— = _~ 7 \ / N r

—_——— 7] / NN T S —

SRS NS —

—_—— = _=_~ 7 \ / N T S ————~— |

\\\\\ - \ N N S S —
\\\\\ \1\{\\\\ / NN S S——~—~—

\\V\V\I\V\I\\i\\\ / N T S ——~——

—_—— == _ 7 7 \ / N T S ———— -

n_j T A_/~ T L T _0 T iy T n_/_ T 7_3

t

Figure 2.51: Slope field plot

x4+ 2z =¢
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Summary of solutions found

3
Solved as first order Exact ode
Time used: 0.182 (sec)
To solve an ode of the form
d
M(z,y) + N(z,y) 52 =0 (A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 06 06d
Y
— —_—— B
or + Oy dx 0 (B)
Comparing (A,B) shows that
0
T M
Oz
o9
T _N
Oy
But since aa;gy = 68; g; then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

dz = (—2z +¢') dt
(20 —€')dt+dz =0 (2A)
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Comparing (1A) and (2A) shows that

M(t,x) = 2z — €
N(t,x)=1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0 .
And
ON 0
= _Z1
o ot )
=0

Since %—Af # %—1;’, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let
Ao L(oM _oN
N\ Oz ot
((2) - (0))

1
2

Since A does not depend on z, then it can be used to find an integrating factor. The
integrating factor p is

=efAdt

_ pJ2dt

I

The result of integrating gives
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

And

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is

—  —dzx
M+N—=0
T

(20— ) ) + (%) & =0

The following equations are now set up to solve for the function ¢(¢, x)

o¢ 0

.
¢ -
9 =N (2)

Integrating (2) w.r.t. z gives

/%dx=/ﬁdz

0 . [ o
axda:—/e dz

¢ =ze” + f(t) 3)

Where f(t) is used for the constant of integration since ¢ is a function of both ¢ and z

Taking derivative of equation (3) w.r.t ¢ gives

% = 2z e* + f'(t) (4)
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But equation (1) says that 22 = (2z — e*) e*. Therefore equation (4) becomes
(2z —€') e =2z e* + f'(t) (5)
Solving equation (5) for f'(t) gives

f/(t) — _ete2t

= —¢€

Integrating the above w.r.t ¢ results in

/ f)dt= / (—e*) dt

e3t

f(t) = —? + C1

Where ¢; is constant of integration. Substituting result found above for f(¢) into
equation (3) gives ¢
3t

¢=xe2t—?+cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy constants into the constant c; gives the solution as

0 e3t
cCi=re — —
3

Solving for z gives

(€% + 3cy) e
3
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Figure 2.52: Slope field plot
' + 2z =et
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Summary of solutions found

(€3 + 3c;) e
3

xr=

Solved using Lie symmetry for first order ode
Time used: 0.563 (sec)
Writing the ode as
T =—-2z+¢
' = w(t,z)
The condition of Lie symmetry is the linearized PDE given by
M+ w1 — &) — W€ — W€ —wen =0 (A)

To determine &,n then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

£ =tay +zaz + a1 (1E)
n= tb2 + CI?b3 + bl (2E)
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Where the unknown coefficients are
{a1,a2,a3,b1,bs,b3}
Substituting equations (1E,2E) and w into (A) gives
bo+ (—2z+¢€") (bs—as) — (—2m—l—et)2 a3 —e'(tag+xaz+ay)+2thy +2xb3+2b; =0 (5E)
Putting the above in normal form gives
—e?ag — e'tay + 3elras — 4z2as; — ela; — etay + etbs + 2tby + 2zas + 2by + by = 0
Setting the numerator to zero gives
—e?ag — e'tay + 3e'zaz — 4r%az — e'a; — e'ay + e'bs + 2ty + 2xay + 2by + by =0 (6E)
Simplifying the above gives
—e*az — e'tay + 3e'ras — 4x’az — e'a; — e'ay + e'bs + 2tby + 2xay +2b + b, =0 (6E)
Looking at the above PDE shows the following are all the terms with {¢,z} in them.
{t,z, e, e*}
The following substitution is now made to be able to collect on all terms with {¢,z} in
them
{t =v1,2 = vy,€" = v3,e* = vy}
The above PDE (6E) now becomes
—U3U1Qg — 4v§a3 + 3v3U2a3 — U301 + 20209 — V3a9 — Vaa3 + 201 +v3bs +2b; + b, =0 (7E)
Collecting the above on the terms v; introduced, and these are
{v1,v2,v3,v4}
Equation (7E) now becomes

—V3010a9 + 2’01()2 - 4’03&3 + 3’03’02(13 + 2’02(12 + (—a1 —as+ b3) V3 — V403 + 2b1 + b2 =0 (8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

—az =0
209 =0
—4a3 =0
—a3=0
3az3 =0

2by =0

20 +b,=0

—al—a2—|-b3:0

Solving the above equations for the unknowns gives

a; = bs
a; =10
a3 =0
by =0
b =0
bs = bs

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

§=1
n==zx
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation
n=n-w(tz)é
=z — (—2z+¢") (1)
=3z —¢
§=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

&t _do _

F=, =45 1)
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The above comes from the requirements that (£2 +n2) S(t,z) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

1
S=/—dy
n
1
_/3x—etdy

In (3z — €')
3

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S is found from

Which results in

S =

dS  Si+w(t,x)Se )
dR  R;+w(t,z)R,

Where in the above R;, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

w(t,z) = —2z + ¢

Evaluating all the partial derivatives gives

Rt_
R,=0
et
P 9z + 3et
1
Sy =
3x — et

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 2

w__Z 2A

dR 3 (24)
We now need to express the RHS as function of R only. This is done by solving for ¢,
in terms of R, S from the result obtained earlier and simplifying. This gives

as 2

dR~ 3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

To complete the solution, we just need to transform the above back to t, z coordinates.
This results in

In (3z — €') 2t

I
Which gives
e—2t+302 et
T3 T3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

ODE in canonical coordinates

Original ode in ¢,z coordinates coordinates (R, S)

transformation

de _ t as _ _ 2
2r +e 9 = —3

&

e a—a—a—
=

1 NN N N NN

\ o abPaa—a—aba—a—
s

J o

I S R R %
R R O S O VN
e NN N N N N N N %N N N N N N N N N N
A N S N T N N N N VN
ot \\\\\ij\\\\\\\\\\\\
22N NN NN N N N N N NN

SN N NN N N N N N N N N N N N N NN

R R O S O VN

R=t R R N S VN
Sa NN N N N N N N NN N N N N N O N N N

. i S SN Y B e e

T S W J, S e a i e a—a—a—a—
~
N N N

|
e bl —a ~a &y

s aa N \|f s
e e e e e e G R N Y e P =
e s waa \[f e
e —a s~ \ [/ e

e e N B e o
——b—b—b—b—b—s—s—b—a~a a l, o a e i
— G a \ f e
——s—s bbb bbb —s e —aaa \

B S S N X
e e \ |/ 4 a i

——s—s—a—p—sa a4
——ee e
——s—s

] ]n(&r—eﬁ D R T A R NN
1t S==________ R R R R R R e N e
i 3 OV VRN YR VR 25 " VR VG Ve Ve W VO VN

D S N Y e
R R VN
R N %
A N S N T N N N N VN
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I S R R %



CHAPTER 2. BOOK SOLVED PROBLEMS 230

. . . T . . .

—_—_———— e s s s e e Ny \

-4 -3 =2 -1 0

t

Figure 2.53: Slope field plot
' + 2z =et
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Summary of solutions found

Maple step by step solution

Let’s solve
' +2zx=c¢e
° Highest derivative means the order of the ODE is 1

/

x
° Solve for the highest derivative
7' = -2z +¢

° Group terms with z on the lhs of the ODE and the rest on the rhs of the ODE
x4+ 2z =¢

° The ODE is linear; multiply by an integrating factor u(t)
pu(t) (2’ + 2z) = p(t) ¢

o Assume the lhs of the ODE is the total derivative 4 (zu(t))
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pu(t) (¢ +2x) = o'p(t) + oy (t)
e  Isolate p/(t)

p(t) = 2u(t)
° Solve to find the integrating factor
p(t) =e*

° Integrate both sides with respect to ¢
I (&an(t) dt = [ u(t)dt + C1

. Evaluate the integral on the lhs
zp(t) = [ p(t)etdt + C1

° Solve for x

J u(t)etdi+C1
w(t)

e  Substitute u(t) = e*

xr=

T = / etez.;dtt—l—CI
° Evaluate the integrals on the rhs
3t
e-+C1
T = 3e2t
° Simplify

(e3t+3C1)e~2
- 3

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 18

dsolve(diff (x(t),t)+2*x(t) = exp(t),
x(t) ,singsol=all)

(€% + 3cy) e

3
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Mathematica DSolve solution

Solving time : 0.154 (sec)
Leaf size : 21

'DSolve[{D[x[t],t]+2+x[t]==Exp[t],{}},
‘ x[t],t,IncludeSingularSolutions->True]

e _
.’I)(t) — g + cie

2t
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2.1.20 problem 4 (ii)
Solved as first order linearode . . . . . ... ... ... .... 233}
Solved as first order separableode . . .. ... ... ... ... 235)
Solved as first order homogeneous class D2 ode . . .. ... .. 236
Solved as first order Exactode . . . .. ... ... ....... 238
Solved using Lie symmetry for first orderode . . . . . ... .. 2472
Maple step by step solution . . . . .. ... ... ... .. ... 247

Maple trace . . . . . . . . . L
Maple dsolve solution . . . .. ... ... ... .........
Mathematica DSolve solution . . . . . .. .. ... ... ....

Internal problem ID [18183]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 4 (ii)

Date solved : Thursday, December 19, 2024 at 06:17:36 PM
CAS classification : [_separable]

Solve
'+ ztan () =0
Solved as first order linear ode

Time used: 0.059 (sec)

In canonical form a linear first order is

' +q(t)z = p(t)

Comparing the above to the given ode shows that

q(t) = tan (t)

p(t) =0
The integrating factor u is
p=e [qdt
—e J tan(t)dt

= sec (t)
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The ode becomes

=0

4y
att

(rsec(t) =0

d
dt

Integrating gives

Dividing throughout by the integrating factor sec (t) gives the final solution

x = ¢; cos (t)
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Figure 2.54: Slope field plot

0

z' + ztan (t)

Summary of solutions found

x = ¢ cos (t)
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Solved as first order separable ode

Time used: 0.104 (sec)

The ode ' = —x tan (t) is separable as it can be written as
z' = —xtan (t)
= f(t)g(z)
Where

Integrating gives

/ﬁda::/f(t)dt
/%dxz/—tan(t) dt

In (z) =1In(cos (t)) + ¢

We now need to find the singular solutions, these are found by finding for what values
g(x) is zero, since we had to divide by this above. Solving g(z) = 0 or = 0 for z gives

z=0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (z) =In(cos (t)) + ¢
z=0

Solving for z gives
z=0

x = cos (t) e
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Figure 2.55: Slope field plot

' +xtan(t) =0

Summary of solutions found

x = cos (t) e

Solved as first order homogeneous class D2 ode

Time used: 0.244 (sec)

Applying change of variables z = u(t) ¢, then the ode becomes

0

o' (t) t 4+ u(t) + u(t) t tan (¢)

is separable as it can be written as

u(t) (tan (¢)t + 1)

u(t)(tan(t)t+1)
t

Which is now solved The ode u/(t)

u'(t) = —

Ft)g(u)

Where
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Integrating gives

/ﬁdu,:/f(t)dt

/ldu:/_tan(t)t+1dt
U t

In (u(t)) = In (Cost(t)) + o

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or v = 0 for u(t)
gives

u(t) =0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(t)) = In (C"S (t)> te

Solving for u(t) gives

u(t) =
u(t) = et c;)s (t)
Converting u(t) = 0 back to z gives
z=0

Converting u(t) = GCICTOS“) back to x gives

x = cos (t) e
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Figure 2.56: Slope field plot

' +xtan(t) =0

Summary of solutions found

x = cos (t) e

Solved as first order Exact ode

Time used: 0.111 (sec)

To solve an ode of the form

d
M(w,y)+N(w,y)£=0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

da
dz

¢(z,y) =0

Hence
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Comparing (A,B) shows that

94 _
or
0% _
oy

¢ _

520y — Byam then for the above to be valid, we require that

But since

OM ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66: g’y = ﬁ is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

dz = (—zxtan (¢)) dt
(xtan (t))dt+dx =0 (2A)

Comparing (1A) and (2A) shows that
M(t,z) = xtan (¢)
N(t,x) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0

= tan (t)
And

ON

5 = o

=0
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then the ODE is not exact. Since the ODE is not exact, we will try to

Since % # %—If,
find an integrating factor to make it exact. Let
Ao L(oM _oN
N\ Oz ot
= 1((tan (2)) — (0))
= tan (t)

Since A does not depend on z, then it can be used to find an integrating factor. The

integrating factor p is

= el Adt
—e [ tan(t) dt
The result of integrating gives
) = ¢~ Inleos(t)
= sec (t)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
= sec (t) (z tan (t))

= z tan (t) sec (t)

And
N =uN
= sec (t) (1)

= sec (t)
Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
—dz

M+NE g
TN

(z tan (t) sec (t)) + (sec (¢)) i—f =0

The following equations are now set up to solve for the function ¢(¢,x)

0y —
%N ®

or
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Integrating (2) w.r.t. z gives

@dx = /Ndx
or

% dz = /sec (t)dz

¢ = wsec(t) + f(¢) (3)

Where f(t) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t ¢ gives

% = ztan (t) sec (t) + f'(¢) (4)
But equation (1) says that % = ztan (t) sec (t). Therefore equation (4) becomes
ztan (t) sec (t) = z tan (¢) sec (t) + f(¢) (5)

Solving equation (5) for f'(t) gives
fit)=0
Therefore
)=
Where ¢; is constant of integration. Substituting this result for f(¢) into equation (3)

gives ¢
¢ =xsec(t)+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

c1 = zsec (t)

Solving for = gives
1
sec (t)

8
Il
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Figure 2.57: Slope field plot
' +xtan(t) =0

Summary of solutions found

g =1
~ sec(t)

Solved using Lie symmetry for first order ode
Time used: 0.339 (sec)

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by
Ur; + w(nz - €t) - wzfz - wt€ — Wyt = 0 (A)

To determine &,n then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

£ =tay +zaz + a1 (1E)
n = tby + xbs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

by — ztan (t) (bs — az) — 22 tan () as (5E)
+ z(1 + tan (t)2) (tag + zas + ay) + tan () (tby + zbs + b1) =0

Putting the above in normal form gives

tan (t)° tzay + tan (t)® za; + tan (t) thy +  tan (¢) ay
+ tzag + x?az + tan (t) by + za; + by = 0

Setting the numerator to zero gives

tan (t)? tzay + tan (t) zay + tan (t) thy + z tan (¢) ay (6E)
+ tzay + x%a3 + tan (t) by + xay; + by =0

Looking at the above PDE shows the following are all the terms with {¢,z} in them.
{t, z,tan (t)}
The following substitution is now made to be able to collect on all terms with {¢,z} in
them
{t = v1,z = vo,tan (t) = vs}

The above PDE (6E) now becomes

VAV1U2Gg + V3201 + V1V2ay + Vavsay + vaas + vsviby + vaa; +vsby + by =0 (7E)
Collecting the above on the terms v; introduced, and these are

{v1,v2,v3}

Equation (7E) now becomes

v§v1v2a2 + v%mal + V10203 + VoUsay + vias + vsviby + vea; + vsby + by =0 (8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0
a, =0
a3 =0
by =0
by =0

Solving the above equations for the unknowns gives

a; =0
as =0
a3 =0
by =0
b, =0
bs = b

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

£E=0
n=c
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt dx
£ 7

The above comes from the requirements that (f % + 776%) S(t,z) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

ds (1)

R=t

S=/1dy
n
T

S is found from
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Which results in
S =In(x)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
as S + w(t,x)S, @)
dR  R;+w(t,z)R,
Where in the above Ry, R, S, S, are all partial derivatives and w(t, x) is the right hand
side of the original ode given by

w(t,z) = —z tan (¢)

Evaluating all the partial derivatives gives

Rt = 1
R,=0
St = 0
51
x
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
JR— tan (t) (2A)

We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives
ds
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.

= —tan (R)

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).

/dS /—tan (R) dR

=In (cos (R)) + c2

To complete the solution, we just need to transform the above back to ¢,z coordinates.
This results in

In () = In (cos (t)) + c2
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(R, S)
= —tan (R)

das

ODE in canonical coordinates
dR

Canonical

coordinates
transformation

x = e* cos (t)
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= —ztan (1)

Original ode in ¢,z coordinates
dt

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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Figure 2.58: Slope field plot

' +xtan(t) =0

Summary of solutions found

x = e* cos (t)

Maple step by step solution

Let’s solve

' +ztan(t) =0

x tan (t)

Separate variables

/

Highest derivative means the order of the ODE is 1

Solve for the highest derivative

Z
'

Integrate both sides with respect to ¢

J

dt = [ —tan (t)dt + C1

z
T

Evaluate integral

In (z)

In (cos (t)) + C1
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° Solve for z

x = cos (t) e%!

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 8

‘dsolve(diff(x(t),t)+x(t)*tan(t) = (U
‘ x(t) ,singsol=all)

x = ¢ cos (t)

Mathematica DSolve solution

Solving time : 0.136 (sec)
Leaf size : 15

'DSolve[{D[x[t],t]+x[t]*Tan[t]==0,{}},
x[t],t,IncludeSingularSolutions->True]

N

z(t) — ¢ cos(t)
z(t) =0
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2.1.21 problem 4 (iii)

Solved as first order linearode . . . . . ... ... ....... 249
Solved as first order Exactode . . . . . ... ... ....... 2511
Maple step by step solution . . . . . ... ... ... ... .. 255
Maple trace . . . . . . . . . . e
Maple dsolve solution . . . . . ... ... ... L. 256
Mathematica DSolve solution . . . . . ... ... ... ..... 257

Internal problem ID [18184]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 4 (iii)

Date solved : Thursday, December 19, 2024 at 06:17:37 PM

CAS classification : [_linear]

Solve

z' — ztan (t) = 4sin (¢)

Solved as first order linear ode
Time used: 0.173 (sec)

In canonical form a linear first order is

o' +q(t)z = p(t)

Comparing the above to the given ode shows that

q(t) = —tan (t)
p(t) = 4sin (¢)
The integrating factor u is

M=€fth

— ef—ta,n(t)dt

= cos (t)
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The ode becomes

d
a(ﬂx) = Hp

(uz) = (u) (4sin (t))

d
dt

(z cos (t)) = (cos (t)) (4sin (t))

d
dt

d(z cos (t)) = (4sin (¢) cos (t)) dt

Integrating gives

/ 4sin (£) cos (£) dt
= —2cos (1)’ + ¢

x cos (t)

—2cos (t) + c; sec (t)

Dividing throughout by the integrating factor cos (¢) gives the final solution
x

/) \\\\‘\\\i\{\i\i\\v\l \\\\\\\ L
VA AV AV A P P P b
fT1111 1111111111111 111
A R N N N N N N N N e e N
/2 N N N N
\I\I\\{\\\ /// 11111111111

111111111111 ~~~\\1{ /7~~~
77777777 A R NS / _/
A NN N N N N NN N N N U N O U L
s 7777 ]
\\\\\\\\\ \\1\\1\\\ ) NN S~
LLLLLLLLLL N T—————————
1///////// \\{\i\\l LLLLLLLLL
/ A \ VAP AP P P g g g
VA AV VAP AL P P b
(L e O O OO WO O
L U AN N NN NN O
2 A NN N e
- A = S — ) i3
| I
S
x

t

Figure 2.59: Slope field plot

= 4sin (?)

x’ — ztan (¢)
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Summary of solutions found

x = —2cos (t) + c; sec (t)

Solved as first order Exact ode
Time used: 0.131 (sec)

To solve an ode of the form

dy
5—0 (A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

M(z,y) + N(z,y)

d

Hence 06 06 d
o9 oeady _
Or Oydx 0 (B)

Comparing (A,B) shows that

8<;5_
%_M
¢
T — N
Oy

82¢ _ 62¢

But since 520y — Dyox

then for the above to be valid, we require that

OM _ ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
86; gy = [f; a"; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

dz = (ztan (t) + 4sin (¢)) d¢
(—xtan (t) —4sin(t))dt+dx =0 (2A)
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Comparing (1A) and (2A) shows that

M(t,x) = —x tan (t) — 4sin (¢)
N(t,z)=1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
or Ot

Using result found above gives

oM 0 .
oy = a(—xtan (t) — 4sin (1))
= — tan (¢)
And
ON 0
o oV
=0

Since %—Af # %—1;’, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let
A— L(OM _ON
N\ Oz ot
= 1((—tan (¢)) - (0))

= — tan (¢)
Since A does not depend on z, then it can be used to find an integrating factor. The
integrating factor p is
p=e JAdt
— ef—tan(t) dt
The result of integrating gives
= eln(cos(t))
= cos (t)
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = ,uM
os (t) (—z tan (t) — 4sin (¢))
in (t) (—4 cos (t) — z)

And

N =uN
= cos (t) (1)

= cos (t)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

—dz
M+N-—=0
TV

(sin (£) (—4cos (£) — z)) + (cos (£)) ‘j; 0

The following equations are now set up to solve for the function ¢(¢, x)

0p —
g—t =M (1)
¢
o =N (2)
Integrating (2) w.r.t. z gives
0p —
9z dxr = /Nd:c
gi dz = / cos (t) dz
¢ = zcos(t) + £(t) (3)

Where f(t) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t ¢ gives

o ,
2 = —wsin) + /(1) (4)
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But equation (1) says that % = sin (t) (—4 cos (t) — x). Therefore equation (4) becomes
sin (t) (—4cos (t) — z) = —zsin (¢) + f'(t) (5)
Solving equation (5) for f’(t) gives
f'(t) = —4sin (t) cos (t)

Integrating the above w.r.t ¢ gives

/ £ dt = / (—2sin (2t)) dt

f(t) = cos (2t) + ¢

Where ¢, is constant of integration. Substituting result found above for f(t) into
equation (3) gives ¢

¢ = z cos (t) + cos (2t) + c1

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy constants into the constant c¢; gives the solution as

¢ = xcos (t) + cos (2t)

Solving for z gives
_cos(2t) —a

= cos (t)
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Figure 2.60: Slope field plot
x' — ztan (t) = 4sin (¢)

Summary of solutions found

_cos(2t) —
N cos (t)

Maple step by step solution

Let’s solve
x' — ztan (t) = 4sin (t)
° Highest derivative means the order of the ODE is 1

xl

° Solve for the highest derivative
x’ = ztan (t) + 4sin (¢)

° Group terms with z on the lhs of the ODE and the rest on the rhs of the ODE
x' — ztan (t) = 4sin (t)

° The ODE is linear; multiply by an integrating factor u(t)
w(t) (2" — xtan (t)) = 4u(t) sin (¢)

o Assume the lhs of the ODE is the total derivative 4 (zu(t))
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p(t) (2" — ztan (b)) = 2'u(t) + o' (t)
e  Isolate p/(t)
' (t) = —p(t) tan (2)
° Solve to find the integrating factor
p(t) = cos (t)
. Integrate both sides with respect to ¢
[ (4 (zut)) dt = [4p(t)sin (¢)dt + C1

° Evaluate the integral on the lhs
zu(t) = [4p(t)sin (t) dt + C1

° Solve for x
T = J 4u(t) sin(t)dt+C1

w(?)
o Substitute p(t) = cos (t)
_ J 4sin(t) cos(t)di+C1

T

cos(t)
) Evaluate the integrals on the rhs
_ 2sin(t)®+0C1
T == cos(t)
° Simplify

z = (2sin (t)* + C1) sec (t)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

‘{

N\

Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 15

dsolve(diff (x(t),t)-x(t)*tan(t) = 4xsin(t),
x(t) ,singsol=all)

x = —2cos (t) + ¢ sec (t) + sec (t)
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Mathematica DSolve solution

Solving time : 0.065 (sec)
Leaf size : 17

;
' DSolve[{D[x[t],t]-x[t]#Tan[t]==4*Sin[t],{}},
‘ x[t],t,IncludeSingularSolutions->True] ‘

z(t) — sec(t)(— cos(2t) + ¢1)
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2.1.22 problem 4 (iv)

Solved as first order linearode . . . . . ... ... ....... 258]
Solved as first order Exactode . . . . . ... ... ....... 2601
Solved using Lie symmetry for first orderode . . . .. .. . .. 264
Maple step by step solution . . . . . .. ... ... ... .. .. 272
Mapletrace . . . . . . . . . . .. 271
Maple dsolve solution . . . .. ... ... ... .. ....... 274
Mathematica DSolve solution . . . . .. .. ... ... ..... 274

Internal problem ID [18185]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 4 (iv)

Date solved : Thursday, December 19, 2024 at 06:17:39 PM

CAS classification : [_linear]

Solve
t°r + (=3 +2)z = ¢°
Solved as first order linear ode

Time used: 0.101 (sec)

In canonical form a linear first order is

7'+ q(t)x = p(t)

Comparing the above to the given ode shows that

3t?—2
p(t) =1
The integrating factor u is
p= efth

3t2_2
_ of ¥
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gives the final solution

t

d
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Dividing throughout by the integrating factor

The ode becomes
Integrating gives

CHAPTER 2.

t

Figure 2.61: Slope field plot
3z + (—3t* +2)z =3

-1

—4 -3 -2
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Summary of solutions found

11\ 4
T = clet2—|—§ t

Solved as first order Exact ode
Time used: 0.146 (sec)

To solve an ode of the form

M(z,) + N(z,y) B =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 06 06 d
Yy _
ox  Oydr 0 (B)
Comparing (A,B) shows that

op
=M
op

oy =V

But since % = % then for the above to be valid, we require that
Y yox

oM _ ON

9y Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5?: ;’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(t,z)dt+N(t,z)dz =0 (1A)

Therefore
(t°)dz = (= (=3t +2)z +t°) dt
(=3t +2)z —t*) dt+(t*) dz = 0 (2A)
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Comparing (1A) and (2A) shows that
M(t,z) = (-3t +2) z — t°
N(t,z) =13

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
ox Ot
Using result found above gives
oM 0 9 3
=3t +2
And
ON 0 4
A

= 3¢?

Since %—Af # %—1;’, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A= L(OM _ON
N\ Oz ot
= (=3¢ +2) - (37))
—6¢2 + 2
SR

Since A does not depend on z, then it can be used to find an integrating factor. The
integrating factor p is

4= el Adt
= ef _6224—2 dt

The result of integrating gives
o= e—;lz—6ln(t)
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

e 2

(P4 3xt? — 22) e i
= 5

And

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
— —dzx
M+ N— =
+ 7 0
(£ +3zt2 — 2z)e & e 2\ dz B
( £6 e a0
The following equations are now set up to solve for the function ¢(¢, x)
0p —
— =M 1
5t (1)
0 —
9 =N (2)
Integrating (2) w.r.t. z gives
@ dx = / Ndz
Oox
0¢p e
9z dx = / 3 dx
z e_ti2
= (3)

¢=—z— T/t
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Where f(t) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t ¢ gives

1 1
0¢ 3re 2 2re 2
w- g T TS0 (4)
1
z(—3t*+2)e 2
= 6 + ()
_1
But equation (1) says that 32 = — (432 tif””)e 2 . Therefore equation (4) becomes

(& + 3282 —2x)e @ g(—3t2+2)e @

- p N0 )

Solving equation (5) for f'(t) gives

_1
e 2

t3

HORS

Integrating the above w.r.t ¢ gives

/f’(t)dtz/ (—if)dt

1
e 2
f(t)=— 9 +Cl

Where ¢, is constant of integration. Substituting result found above for f(t) into
equation (3) gives ¢

_1 _1
re 2 e t?
¢="p — g ta

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy constants into the constant c; gives the solution as

_1 1
re t? e 2

t3 2

C1 =
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Solving for x gives
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Figure 2.62: Slope field plot

3z + (—3t* +2)z =t*

Summary of solutions found

T2 4 261

e ¢

o

Solved using Lie symmetry for first order ode

Time used: 1.458 (sec)

4+ 32t — 22
t3

' = w(t,z)

=

Writing the ode as
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The condition of Lie symmetry is the linearized PDE given by
e+ w(ne — &) — W€ — wi —wen =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 3 to use as anstaz gives

£ = t3a7 +x t2a8 + tx2a9 + x3a10 + t2(14 + ztas + .1320,6 + tas + zasz + a1 (1E)
n= t3b7 +x t2b8 + t.’L’2b9 + $3b10 + t2b4 + .’L'tb5 + IE2b6 + tbg + .’L'b3 + bl (QE)

Where the unknown coefficients are

{ala aq, as, a4, as, g, a7, ag, ag, a9, b17 b21 b37 b47 b57 bﬁ’ b77 b87 b9a blO}

Substituting equations (1E,2E) and w into (A) gives

3t2b; + 2txbs + x2bg + 2tby + zbs + by (5E)
N (83 + 3z t2 — 2x) (—3t2a; + t2bg — 2tzag + 2txby — T2ag + 3x%b1g — 2tay + tbs — zas + 2xbg — as + b3)
t3
(83 + 3z t% — 230)2 (t%ag + 2twag + 3x%ay9 + tas + 2wag + az)
_ -
3t2+6xt  3(t3+3xt? —2x
_< t3 _ ( . ) (t3a7+mt2a8

+ t2’ag + 2°a10 + t2as + ztas + 2°as + tas + zaz + ay)
(3t2 — 2) (t3b7 + wt2b8 4+t x2b9 + SC3b10 + t2b4 + .’L'tb5 + .'172b6 + tb2 + .’L‘b3 + bl)
3

=0

Putting the above in normal form gives

2'[5704 + t7a5 - t7b5 - 2t5b4 + 81,'3016 + 3t8a7 — tgbs + ts(lg + 121’4&10 - 2t6b7 + t6(12 + t6a3 - t6b3 + 3t5b1

=0



CHAPTER 2. BOOK SOLVED PROBLEMS 266

Setting the numerator to zero gives

—2t7a4 - t7a5 + t7b5 + 2t5b4 - 8x3a6 - 3t8a7 + tsbg - t8a8
— 12z%a10 + 2t%b; — t8ay — t8as + tOb3 — 3t°b; + 2t%by + 2t°b;
— 42%a3 — 6t°zas — 6t1xas + 3ttza; — 4t3zay + 4t3zas + 6t2z2as
— 6t%za; — 2byt8 + 2t xbg + 42%bot® — 6t za; — 8t zag + 2t xbg
— 12t%2%ag — 13t52%ag + 3t52%b10 — 18t523ag + 6t°23b10 + 10t 22ag (6E)
— 2t12%bg + 208323 a9 — 4323019 — 2t xag — 3t82%a19 — 18t°x3aq
— 24t*x a1y + AtPzag + 8t*xlag + 12t323a19 + 30t2zra0 — 4t22%asg
— 8tzlag — 3t°zay — Tt9zas — 2t°zag + 2t5xbs — t2x2as
— 12t52%a¢ + 3t°22bg — 15t z3as — 2t zay + At zas + 8t3z%as
+ 8t3z2ag — 2t32%bs + 18t%x%ag — 4t 22a5 + xbst® —t'b, =0

Looking at the above PDE shows the following are all the terms with {¢,z} in them.
{t,z}

The following substitution is now made to be able to collect on all terms with {¢,z} in
them

{t =v1,2 = vo}

The above PDE (6E) now becomes

—6v3vsa3 — 6vTVaz + Svivea; — 4v3vaay + 4vivsas + 6vivias
— 6v%v2a1 + 2vIv2bg + 4v§bgv? — GUIv2a7 — 81){1)2(13 + 2’UI’Ugbg
— 120%2ag — 13v8v2ag + 3v0viby — 18v5v3ag + 6V vdbyo + 10vivias
— 20tv2bg + 20v3v3ag — 4vdvdbiy — 2vTvaag — 3vSvialy — 18v5vIa
— 24vivaaig + 4iveags + 8uiviag + 1203v3 a0 + 30vivaarp — 4vivias (7E)
- 8’011)30/9 — 31)?1)2&4 - 7’0?’1}2&5 — 2'0?’1)20,6 + 2’0??}2[)6 — 9’0?’0;0,5
— 120%v2ag + 3v3v2bs — 150 v3ag — 2viveay + 4viveas + 8vivias
+ 8vdviag — 203v3bg + 18vivias — 4vivaas + vabsvS — 2vTay — vlas
+v]bs + 2v5by — 8v3ag — 3viay +vibg — viag — 12v5a10 + 2056, — viay
— v%az + v8bs3 — 3vSb; + 2uiby + 203b; — 4viasz — 20,08 — vIby = 0

Collecting the above on the terms v; introduced, and these are

{vla v2}
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Equation (7E) now becomes

—6v2v9a; — 24vivsa10 + 30vivyaly — Sviviag — 15v vias + 18vviag

— dvyv3as — Svias — 12v5a10 + 2v1by + 203b; — dviaz + (—6az + dag) vV}

+ (—6a3 + 10ag — 2bg + 8ag) v3v} + (3a; — 2a4 + 4as) vov}

+ (—4ay + 4a3) vov3 + (6as — 4ag) vVav? + (2bg — 6ay; — 8ag + 2bg — 2ag) V2vT

+ (4bg — 12ag — 13ag + 3b1g — 3ay) v5v2 + (—18ag + 6byg — 18ay0) Vo]

+ (20ag — 4byg + 12a10) vav: + (—3aq — Tas — 2ag + bs + 2bg) vov?

+ (—9as — 12ag + 3bg) v3v° + (8as + 8ag — 2bg) vavs + (—3ay + bs — ag) v}

+ (—2a4 — a5 — by + bs) v] + (2by — ay — az + bs — 2by) V¥ + (—3by + 2b4) v? = 0 E)
S8E
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Setting each coefficients in (8E) to zero gives the following equations to solve

—6a; =0

—4a3 =0

—4a5 =0
—15ag =0
—8ag =10

18ag =0

—8ag =0
—24a, =0
—12a, =0
30a190 =0

201 =0

2bo =0

—4a9 +4a3 =0
—6as +4ag3 =0
6as — 4ag =0
—3b1 +2by, =0

3a;1 — 2a4 + 4a5 =0

—9a5 — 12a¢ + 3bg = 0

8as + 8ag — 2bg = 0
—3a7+bg—ag =0

—18ag + 6b1g — 18a19 =0

20a9 — 4b1p + 12a;0 =0

—6asz + 10ag — 2bg + 8ag = 0
—2a4 — a5 — by +b5=0

—3a4 — Tas — 2a¢ + bs + 2bg = 0
2b; —ag —az+ b3 —2by =0

2bg — 6a7; — 8ag + 2bg — 2a9 = 0
4by — 12ag — 13ag9 + 3b19 — 3a190 =0



CHAPTER 2. BOOK SOLVED PROBLEMS 269

Solving the above equations for the unknowns gives

a; =0
a; =0
a3 =0
as =0
as =0
ag =10
ot
3
ag =10
ag =0
a;o=0
by =0
by =0
bs = —2b;
by =0
bs =0
bg =0
b7 = by
bg = bg
bg =0
bio =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

§=0
n=t3—2x

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt dzx
—=—=dS
£~ (1)
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The above comes from the requirements that (£2 +n2) S(t,z) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

Sz/ldy
n
1
_/t3—2xdy

_In(#® - 22)
2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S is found from

Which results in

S:

ﬁ St w(t,x)S, @)
dR R +w(t,z)R,

Where in the above Ry, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

3+ 3zt? — 2z
w(t,z) = 43

Evaluating all the partial derivatives gives

thl
R,=0
3t2
St__2t3—4a:
1
S = t3 — 2z

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS  —3t* 42
drR 23
We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives
ds _ —3R*+2
drR~  2R?

(24)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form - S(R) = f(R), then we only need to integrate f(R).
dR
2
-2
[as= [ =2,
S(R) 1 3kn(R)

= — +62

2R? 2

To complete the solution, we just need to transform the above back to ¢,z coordinates.
This results in

In(*—-2z) 1 3ln(t) .
2 Y 2 2
Which gives
eSln(t)t2t—2202 t241 /3
e R

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

.. ) . . ODE in canonical coordinates

Original ode in ¢,z coordinates coordinates (R, S)
transformation ’
de __ t34+3zt>—2x dS __ —3R%42
dt t3 dR ~ 2R3

‘AR R R RN ~ttrrrrrt D O N AR
‘AR ERRRERE -ttt B S E PO LN NN e e a s
NNNNNN NN A v wrr 7 g N (N
NNNNNY VYL "’f fffffff o T T T A B B SN
NN NN \/\t(@f =ttt rrrry /"/"/’/"/":;Si — e T
NN\ AL et e e A N Y S
=N S At rrrrrrs v v A A e S O SO VCVENEN
AT f ALELPLAS R: t o AT A — NN A A e Sa e s
PGSBS J AR T AT AT In (t3 — 2£B) B TN I BN F IS RN OGN
VA A /’*’"""f'/’/"/"/" _— 7/ AT A — NN apw e e Sa s
rPrAAAES f f/"_y AN NN e bt N e N
A A At 20N NN e PSSP PPy AN NN e e a s
AR A 208 VN N N RS SO O AN — N N e e e e
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Figure 2.63: Slope field plot
3z + (=3t +2)z =3
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Summary of solutions found

3In(H)t2 —2c9 t2+1

e 2 t3
r=-————- + —_—
2 2

Maple step by step solution

Let’s solve
3z + (-3t*+2)z =3
) Highest derivative means the order of the ODE is 1

/

x

° Solve for the highest derivative
o = —(—3t2t—13—2):c+t3

° Collect w.r.t. x and simplify
x/ — 1 + (3752—2)17

3
° Group terms with z on the lhs of the ODE and the rest on the rhs of the ODE
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3t2—2
.’L‘, — —( B )w = 1

° The ODE is linear; multiply by an integrating factor u(t)

ut) (= = 5522) = ()

o Assume the lhs of the ODE is the total derivative 4 (zu(t))

ut) (2 = C5522) = pt) + o (1)
o Isolate u/(t )

° Solve to find the integrating factor

_1
2

p(t) =
. Integrate both sides with respect to ¢

[ (4 (zput)) dt = [ p(t)dt+ C1

° Evaluate the integral on the lhs
zp(t) = [ u)dt+ C1

° Solve for
T = J p(t)dt+C1

p(t)

1
t2

o Substitute u(t) =

t3 <f e dt+01>
= I

x —_—
e t2
° Evaluate the integrals on the rhs
_1
t3 <e;2+01>
r=——-+
P
° Simplify

(Cz eﬁ+%)t
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 16

-

dsolve(t~3*diff (x(t),t)+(-3*xt"2+2)*xx(t) = t~3,

L x(t) ,singsol=all)
z=(cre + ! 3
= (¢ 5

Mathematica DSolve solution

Solving time : 0.036 (sec)
Leaf size : 23

‘ DSolve [{t~3*D[x[t],t]+(2-3*t"2)*x[t]==t"3,{}},
‘ x[t],t,IncludeSingularSolutions->True]

w"—‘

1
z(t) — §t3 (1 + 2cyet

)
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2.1.23 problem 4 (v)
Solved as first order separableode . . . ... ... ... .... 275
Solved as first order Bernoulliode. . . . . . .. ... ... ... 278
Solved as first order Exactode . . . . . ... ... ... .... 2&T]
Maple step by step solution . . . . . .. ... ... ... .. .. 286
Mapletrace . . . . . . . . . . . e
Maple dsolve solution . . . .. ... ... ... .. ....... 28T
Mathematica DSolve solution . . . . .. .. ... ... ..... 2RT]

Internal problem ID [18186]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)
Section : Chapter 3. Solutions of first-order equations. Exercises at page 47
Problem number : 4 (v)
Date solved : Thursday, December 19, 2024 at 06:17:41 PM
CAS classification : [_separable]

Solve

42zt +tzx* =0

Solved as first order separable ode

Time used: 0.527 (sec)

The ode z’ = —tz* — 2zt is separable as it can be written as
= —tzt — 2zt
= f(t)g(z)
Where
Ft) =t

9(z) = z(2* + 2)

Integrating gives

/ﬁm:/m)dt
/mwz=/—tdt

JT

o ((x?’ + 2)1/6> N

t2

—_+Cl

2
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We now need to find the singular solutions, these are found by finding for what values
g(z) is zero, since we had to divide by this above. Solving g(z) = 0 or z(z*+2) =0
for z gives

z=0
z =23
21/3 ’i\/§21/3
Ty T T
. 21/3 N ’i\/§21/3
2 2

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

2
ln L — _t__|_cl
(23 +2)"/° 2

z=0

r =23

. 21/3 B ’l\/§21/3
2 2

. 21/3 N i\/§21/3
2 2

Solving for z gives

z=0

2 1/3
(_2(6—3t2+601 _ 1) e—3t2+601)

= o—3t2+6c1 _ |
r =213
21/3 'l\/§ 21/3
T = —
2 2
21/3 N Z\/g 21/3
xTr=
2 2
1/3 1/3
(_2 (e—3t2+601 _ 1>2 e—3t2+6c1> /3 (_2 <e—3t2+6cl _ 1>2 e—3t2+6c1>
T =—

2 (e—3¢*+6er — 1) N 2 (e=3t+6c1 — 1)
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9 1/3
Z\/g (_z(e—3t2+6cl _ 1) e—3t2+6c1)

>1/3
+

2
(_2 (e—3t2+601 _ 1) e—3t2+601

2 e—3t2+6c1 )

2 (e—3t2+6c1 _ 1)

_—— === >

—— e e e e =

—_————— e

~—— —————

R - ~—~—

———————————~—~——

t

Figure 2.64: Slope field plot

' +2xt+txt =0

Summary of solutions found

e—3t2 +601 P 1

x = —2/3

iv/321/3

21/3




CHAPTER 2. BOOK SOLVED PROBLEMS 278

5 1/3 5 1/3
(_2 <e—3t2+601 _ 1) e—3t2+6c1> Z\/g (_2 <e—3t2+601 _ 1) e—3t2+601>
=" 2 (e-37+6c1 _ 1) - 2 (e—37+6c1 _ 1)
5 1/3 9 1/3
(_2 (e—3t2+601 _ 1> e—3t2+601> ’L\/g <_2<e—3t2+601 _ 1) e—3t2+601>
== 2 (e-37+6c1 _ 1) T 9 e—30+6c1 _ 9
Solved as first order Bernoulli ode
Time used: 0.130 (sec)
In canonical form, the ODE is
¥ =F(tx)
= —tz* — 2zt

This is a Bernoulli ODE.

= (=2t)z+ (—t)z* (1)
The standard Bernoulli ODE has the form
Comparing this to (1) shows that

fo=-2t
fi=—t

The first step is to divide the above equation by 2™ which gives

"I’., 1-n

i o)z ™™ + f1(t) 3)

The next step is use the substitution v = '™ in equation (3) which generates a new
ODE in v(t) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution z(t) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

fo(t) = -2t
filt) = ¢
n=4
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Dividing both sides of ODE (1) by 2™ = z* gives
1 2t
1
Let
v = wl—n
1
=3 (5)
Taking derivative of equation (5) w.r.t ¢ gives
3
v = —Ex’ (6)
Substituting equations (5) and (6) into equation (4) gives
/
t
YO oyt -t
3
v = 6tv + 3t (7)

The above now is a linear ODE in v(t) which is now solved.

In canonical form a linear first order is

V(1) +q(t)v(t) = p(t)

Comparing the above to the given ode shows that

q(t) = —6t
p(t) = 3t
The integrating factor u is
b= efth
—e J —6tdt
— e—3t2
The ode becomes
d
a(lw) Hp

< (ww) = (1) (3)

<v e_3t2> (e_3t2) (3t)
d <v e_3t2> (3t e_3t2> dit

&l
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Integrating gives

342
e3t

/ 3te 3" dt

_342
ve?’t

+Cl

Dividing throughout by the integrating factor e=3* gives the final solution

2
¥ —

v(t)

The substitution v = '~ is now used to convert the above solution back to z which

results in

—_———

e N S——— =~ e

t

Figure 2.65: Slope field plot

' +2xt+txt =0

Summary of solutions found
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Solved as first order Exact ode
Time used: 0.221 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)
Therefore
dz = (—tz* —2zt) dt
(tz* +2zt) dt+dz =0 (2A)
Comparing (1A) and (2A) shows that

M(t,x) = tz* + 2zt
T

=t
N(t,z)=1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
ox Ot
Using result found above gives
oM 0 4
- _ 2 )
o 8x(tx + 2at)
=4tz® + 2t
And
ON 0
hauh 4
o ot )
=0

Since ‘%’I # %—Jf, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

1 /OM ON
= 3(- )

oz ot
=1((4t2° + 2t) — (0))
=Adtx® + 2

Since A depends on z, it can not be used to obtain an integrating factor. We will now

try a second method to find an integrating factor. Let

1 /ON OM

M (E - %)

B 1
 tx (23 +2)
_ —4a’ -2
oz (23 +2)

Since B does not depend on t, it can be used to obtain an integrating factor. Let the

integrating factor be y. Then

((0) — (4tz® +2t))

p=e J/ Bdz
_ e
The result of integrating gives
b= —ln( (z3+2))
1
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M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

M = puM

And

= (1

z (z3 + 2) (1)

_

z (z3 + 2)

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

—  —dzx
M+N—=0
MY

The following equations are now set up to solve for the function ¢(¢, x)

0p  —
g_t =M (1)
6
B N (2)
Integrating (1) w.r.t. ¢ gives
o ..
/adt = /Mdt
o ..
Edt = /tdt
t2
¢ = 5T f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t z gives
o9

L =0+ () @
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But equation (2) says that % = m Therefore equation (4) becomes

1 /
z(z3+2)20+f($) (5)
Solving equation (5) for f'(z) gives
, _ 1
fiz) = z (23 + 2)

Integrating the above w.r.t = gives

frome= [ (sheg )

_In(z® +2) N In (z)
6 2

f(z) = +a

Where ¢; is constant of integration. Substituting result found above for f(z) into
equation (3) gives ¢
2 In(z*+2) In(z)

v=3 6 2 1A

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

2 In(2*+2) 1
Lt m@+2) ()

2 6 2

Solving for z gives

2 1/3
(_2(6—3t2+601 _ 1) e—3t2+601)

= o—3t2+6c1 _ |
0 1/3 0 1/3
(_2 (e—3t2+601 _ 1> e—3t2+6c1> Z\/g (_2 (e—3t2+601 _ 1) e—3t2+6c1>
== 2 (e-3P+6e1 _ 1) - 2 (e—3+6c1 _ 1)
0 1/3 ) 1/3
(_2 (e—3t2+601 _ 1) e—3t2+6c1> /3 <_2<e—3t2+6c1 _ 1) e—3t2+6c1)
r=—

2 (e—3t2+6c1 _ 1) + 2e—3t2+6cl -9
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Summary of solutions found

9 1/3
’L\/?; <_2(e—3t2+6c1 _ 1) e—3t2+6c1)
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Maple step by step solution

Let’s solve
x4+ 2zt +txt =0
° Highest derivative means the order of the ODE is 1

/

x
° Solve for the highest derivative
x = —tz* — 2xt
° Separate variables
Ees

° Integrate both sides with respect to ¢
Ik —x(w§+2) dt = [ —tdt + C1

° Evaluate integral
In(z%+2) In(z) __ 2
——% +t 3 =5 +0I
° Solve for x

1/3
<_2<e—3t2+601_1)28—31524—601) /

e—3t2+6C1 _1

r=

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful”
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Maple dsolve solution

Solving time : 0.004 (sec)

Leaf size : 121

‘dsolve(diff (x(t),t)+2xx(t)*t+t*x(t)"4 = 0,

‘ x(t) ,singsol=all)

Tr=

r = —

xTr=

1/3
21/3 ((201 e3t2 _ 1> 2>

2¢; 3 — 1

(1+iv3) 217 ((201 o — 1>2> e

4c, 3 — 2

(iv3 — 1)21/3<(2cle3t2 __1>2>1/3

4cy €3t — 2

Mathematica DSolve solution

Solving time : 11.147 (sec)

Leaf size : 177

'DSolve [{D[x[t],t]+2+t*x [t]+t*x [t]"4==0,{}},
‘ x[t],t,IncludeSingularSolutions->True]

/—2e2e1
o(t) - ————
,3/63t2 — eber
3 2 2c1
2(t) = \/_—e
3 e3t? _ eber
-1 2/33 2 2c1
2(t) = M
3 e3t2 _ 6661
z(t) =0
z(t) = v -2
z(t) - —v/2
z(t) = —(=1)¥3v2
1—iv3

z(t) — 5373
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2.1.24 problem 4 (vi)

Solved as first order linearode . . . . . ... ... ....... 288
Solved as first order Exactode . . . . . ... ... ....... 290)
Maple step by step solution . . . . . ... ... ... ... .. 294
Mapletrace . . . . . . . . . . ... 295
Maple dsolve solution . . . . . ... ... ... L. 296
Mathematica DSolve solution . . . . . ... ... ... .....

Internal problem ID [18187]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 4 (vi)

Date solved : Thursday, December 19, 2024 at 06:17:43 PM

CAS classification : [_linear]

Solve
te' +zln (t) =t
Solved as first order linear ode

Time used: 0.484 (sec)

In canonical form a linear first order is

o' +q(t)z = p(t)

Comparing the above to the given ode shows that

The integrating factor u is
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The ode becomes

Integrating gives

In(t)?
=/te 2 dt+ ¢

n(t)2
Dividing throughout by the integrating factor e gives the final solution

n(t)? In(t)?
x=e_12t</te > dt+cl>

3 V177777111
(177771111
(177771111
] 1177771111
(1777711111
(71777711111
N 17777711111
(777711111
i
x(1) o NS
N7 1T
| V711111
- V~/ 7111111
EVARERERE
AR RRERE
—2 SN2ZERERE
INZ 7111111
ENAERRERE
_3 N2AERRERE
-4 -3 =2 -1 0 1 2 3 4

t

Figure 2.67: Slope field plot
tr' + zln (t) = 2
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Summary of solutions found

Solved as first order Exact ode
Time used: 0.176 (sec)

To solve an ode of the form

M(z,) + N(z,y) 3 =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 96d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
M
oz
09
T _N
Oy
But since % = % then for the above to be valid, we require that
oM _oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

(t)dz = (—zln(¢) + %) dt
(zln(t) —t*) dt+(t)dz =0 (2A)
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Comparing (1A) and (2A) shows that

M(t,z) = zln (t) — *
N(t,z) =t

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN

oxr Ot
Using result found above gives

oM 0 9
= In (¢)

And

ON 0

A

=1

Since %—Af # %—1;’, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

1 /O0M ON
= 3(-8)

0x ot
= () - (1)
_ In(t)—1

t

Since A does not depend on z, then it can be used to find an integrating factor. The
integrating factor p is

= el Adt
. ef ln(tt)71 dt
The result of integrating gives
'u, = e%_l (t)
In(t) 1
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM
. (zln(t) — %)
= —(—zln() + )¢

And

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
—dzx

M+N-—-=0
MR

2) 421 me?\ dz
(—(—thﬂ-+t)t >+—(e )(ﬂ._o

The following equations are now set up to solve for the function ¢(¢, x)

0p —
¢ _x
s~ N @

Integrating (2) w.r.t. z gives

0¢ =
%dx—/Ndx

0¢ In()?
%dx—/e dzx

In(t)2
¢ = rre 2

+f(t) (3)

Where f(t) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t ¢ gives
n()?
0p _zln(t)e 2

A0 @
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But equation (1) says that 22 = —(—zIn (t) +t2)t#‘1. Therefore equation (4) be-
comes
In(t)2
n(t) zln(t)e 2
~(—aln()+ ) = T T )
Solving equation (5) for f'(t) gives
n n n(t 2
—In(t) " Yz + 5713 + o ln (£) e

fi(t) =— ;
In(t)

= ¢+
Integrating the above w.r.t ¢ results in

fl(t)dt = _ 1+ gy
[ roa= [ (-0e)

t
ft) = / MRS )dT+Cl
0

Where ¢, is constant of integration. Substituting result found above for f(t) into
equation (3) gives ¢

¢
In(t)? In(r)
p=ze 2 +/ 2 dr 4 ¢
0

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢, constants into the constant c; gives the solution as

t
In(t)2 In(7)
co=zxe 2 —I-/ —r 2 dr
0

Solving for z gives

t 2
In(7) _ln(t)
x=—(/ —7'1+2d7'—61)e 2
0
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3 V177777111
(177771111

(1777771111

2] 1177771111
(177771111

1777711111

§ 177777111114
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N7 1T
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EARERERE
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Figure 2.68: Slope field plot
tr' + zln (t) = 2

Summary of solutions found

t 2
In(7) _In(®)
x=—(/ —Tl+2dT—cl)e 2
0

Maple step by step solution

Let’s solve
tz' + zln (t) = 2
° Highest derivative means the order of the ODE is 1

/

x

° Solve for the highest derivative
7 = M

° Collect w.r.t. z and simplify

T = _xlrt1(t) +t
° Group terms with z on the lhs of the ODE and the rest on the rhs of the ODE
x4+ zlx;(t) =t
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° The ODE is linear; multiply by an integrating factor u(t)
p(t) (2 + 250 = ()t

o Assume the Ihs of the ODE is the total derivative 4 (zu(t))

u(t) (2 + =50) = o/pu(t) + 24 (1)
e  Isolate p/(t)

/,l/(t) — N(t)tln(t)
° Solve to find the integrating factor

In(t)?

p(t) =e 2

° Integrate both sides with respect to ¢
[ (4 (zput)) dt = [ p(t)tdt + C1

. Evaluate the integral on the lhs
zu(t) = [ p(t)tdt + C1

° Solve for x

J p(t)tdt+C1
u(t)

Tr=

In(t)?

o Substitute u(t) = ez
[t 0 b o
€
i

° Simplify
_n@®? n(t)?
r=e 2 (fte 2 dt+01)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 25

‘dsolve(t*diff (x(t),t)+x(t)*1n(t) = t72,
‘ x(t) ,singsol=all)

Mathematica DSolve solution

Solving time : 0.145 (sec)
Leaf size : 48

'DSolve [{t*D[x[t],t]+x[t]*Log[t]==t"2,{}},
‘ x[t],t,IncludeSingularSolutions->True]

1 —110g2(4)— log(t) +2
x(t) — e zlg® 2( 27rerﬁ(— + 2%
® -3 Vameri( <50 1



CHAPTER 2. BOOK SOLVED PROBLEMS 297

2.1.25 problem 5
Solved as first order linearode . . ... ... ... .. 297
Solved as first order Exactode . . . . . ... ... .. 298]
Maple step by step solution . . . . ... .. ... ...
Mapletrace . . . . . . . . . . . . ...
Maple dsolve solution . . . . ... ... ... .....
Mathematica DSolve solution . . . . ... ... ....

Internal problem ID [18188]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 5

Date solved : Thursday, December 19, 2024 at 06:17:45 PM

CAS classification : [_linear]

Solve

tr’' + zg(t) = h(t)

Solved as first order linear ode
Time used: 0.060 (sec)

In canonical form a linear first order is

o' +q(t)z = p(t)

Comparing the above to the given ode shows that

t
q(t) = #
h(t
p(t) = %
The integrating factor u is
_ of Ltat
p=e

Therefore the solution is
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Summary of solutions found

Solved as first order Exact ode
Time used: 0.374 (sec)

To solve an ode of the form

M(z,y) + N(z,9) 2 =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
el =0
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
h N /s
ox
09
T _N
Oy
But since % = % then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
gf g’y = 36; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)
Therefore

(t)dz = (—zg(t) + h(t)) dt
(zg(t) — h(t))dt+(t)dz =0 (2A)
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Comparing (1A) and (2A) shows that

M(t,z) = zg(t) — h(t)
N(t,z) =t

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0
e = 5g 29(t) = h())
=g(t)
And
ON 0
A
=1

Since %—Af # %—1;’, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

1 /O0M ON
3-8

0x ot
= (90 ~ (V)
_g(t)—1
t

Since A does not depend on z, then it can be used to find an integrating factor. The
integrating factor p is

= el Adt
_ o
The result of integrating gives
o= el L

— of {9at
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = puM
= of " (zg(t) — h(1))
= (ag(t) - h(t)) e/

And
N = uN
= o/ ey

of L9=2dt

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
—dzx

M+N-—==0
+ dt

(@ma—mma“TW)+@&W“ﬂ%f:o

The following equations are now set up to solve for the function ¢(¢, x)

0p —
Frie M (1)
0p —
9 N (2)
Integrating (2) w.r.t. z gives
— dx = /Ndx
8¢ dz = /tefg(t:)f_ldtdx
oz
¢ =tel Ty 4 f(t) (3)

Where f(t) is used for the constant of integration since ¢ is a function of both ¢ and z

Taking derivative of equation (3) w.r.t ¢ gives

a(b . fg() 1dt1’ n (g(t) _ 1) ef g(ti—ldtl, + fl(t) (4)

ot
= el “Fltzg(t) + £(t)
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But equation (1) says that % = (zg(t) — h(t)) e/ #=1dt Therefore equation (4) be-
comes

g(t)—1 g(t)—1
(zg(t) — h(t) el T % =&/ T ag(t) + £/(2) ()
Solving equation (5) for f'(t) gives
7/(t) = —el ¥ h(t)

Integrating the above w.r.t ¢ gives

/ F(t)dt = / (—ef g“?s;ldth(t)> dt

t 1
ft) = / —ef “o dTh(T) dr + ¢
0

Where ¢; is constant of integration. Substituting result found above for f(¢) into
equation (3) gives ¢

a(t

t
p=tel ; ldtx-l-/ —e/ %7 1dTh(7’)d7'+01
0

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

t
cr=tel “Fip oy [ ol hr)ar
0

Solving for = gives

(Jy = "5 0rh(r) dr — 1) o =57
t

x=—

Summary of solutions found

(Js —e/ 7o n(r dr — ey ) o] =7
t

r=—
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Maple step by step solution

Let’s solve
te' + zg(t) = h(t)
° Highest derivative means the order of the ODE is 1

/

x

° Solve for the highest derivative
o = —zg(tz+h(t)

° Collect w.r.t. z and simplify
= —%(t) + @

) Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE

h()

zg(t) _
x,_'_gT_ t

° The ODE is linear; multiply by an integrating factor u(t)
zg(t t)h(t
u(t) (x/ + o )) YIULL
o Assume the lhs of the ODE is the total derivative 4 (zu(t))
u(t) (27 + 22 ) = ou(t) + 2 (2

o Isolate p'(t)

w(t) = u(t)tg(t)
° Solve to find the integrating factor

p(t) = f
. Integrate both sides with respect to ¢

[ (L(zu(t)) dt = [ 2004t 1 C1

° Evaluate the integral on the lhs
cu(t) = [ L0 h(t) dt+ C1
° Solve for x
. f r(t)h(t) dt+C1
7=

o Substitute p(t) = ef “’dt

[ 7’1(”‘{ tdt+C1
of I
° Simplify

x:(f—h(t dt-l—CI) — [ Pt

xr=
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 35

-

dsolve (t*diff (x(t),t)+x(t)*g(t) = h(t),
L x(t) ,singsol=all)

Mathematica DSolve solution

Solving time : 0.084 (sec)
Leaf size : 63

‘DSolve[{t*D[x[t],t]+x[t]*g[t]==h[t], {}},
‘ x[t],t,IncludeSingularSolutions->True]

t texp (— [FP oKl
z(t) — exp < /1 ——g%[ll]])df{[lo /1 p< i II;[;]dKHD h(K[2])dK[2]

+c
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2.1.26 problem 6

Solved as second order Euler typeode . . ... ... ......
Solved as second order solved by an integrating factor . . . . .
Solved as second order ode using change of variable on

xmethod2 . . .. ... ... .. .. ..........
Solved as second order ode using change of variable on

xmethod 1 . . . . .. ... ... L B13
Solved as second order ode using change of variable on

ymethod1 . ... ... ... ... ... ........
Solved as second order ode using change of variable on

ymethod2 . . .. .. ... ... oo 316
Solved as second order ode using Kovacic algorithm . . . . . . . 3191
Solved as second order ode adjoint method . . . . . . ... ... B21]
Maple step by step solution . . . . ... ... ... ... ..., 324
Maple trace . . . . . . . . . .. 325
Maple dsolve solution . . . .. ... ... ... .. ....... 326
Mathematica DSolve solution . . . . . ... ... ........

Internal problem ID [18189]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 3. Solutions of first-order equations. Exercises at page 47

Problem number : 6

Date solved : Thursday, December 19, 2024 at 06:17:47 PM

CAS classification : [[_Emden, _Fowler]]

Solve

2z —6tx’ + 122 =0

Solved as second order Euler type ode
Time used: 0.087 (sec)

This is Euler second order ODE. Let the solution be x = ", then 2’ = rt"~! and
z” = r(r — 1)t"~2. Substituting these back into the given ODE gives

(r(r —1))t" > — 6trt" " + 126" =0

Simplifying gives
r(r—1)t"—6rt"+12t" =0
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Since t" # 0 then dividing throughout by ¢" gives
r(r—1)—6r+12=0

Or
rP—Tr+12=0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

7'1:3

ro =4
Since the roots are real and distinct, then the general solution is
T = C1T1 + C2T2
Where z; = ¢t™ and z5 = t™. Hence
z=cott+c1 83
Will add steps showing solving for IC soon.

Summary of solutions found

x=@#+qﬁ

Solved as second order solved by an integrating factor
Time used: 0.031 (sec)

The ode satisfies this form

(p(t) J;p’(t))l‘ — 1)

Where p(t) = —%. Therefore, there is an integrating factor given by

I +p(t) z +

M(x):e%fpd””
— ef—%da:

1
T

Multiplying both sides of the ODE by the integrating factor M (z) makes the left side
of the ODE a complete differential

(M(z)x)" =0

(3)-o
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Integrating once gives
xT /
() ==

Integrating again gives

T
(t_3> = Clt + Cy
Hence the solution is
cit +co
xTr =

1

3

T = t4cl + ¢y 3

Will add steps showing solving for IC soon.

Summary of solutions found

T = t4cl + ¢y 3

Solved as second order ode using change of variable on x method 2
Time used: 0.321 (sec)

In normal form the ode

2z —6tx’ + 122 =0

Becomes
" +plt)z +qt)z=0
Where

6
t) = —-
p(t) .
12
q(t) = =

Applying change of variables 7 = g(t) to (2) gives

Fralr) + 11 0(r) ) +asalr) =
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Where 7 is the new independent variable, and

7'(t) + p(t) ' (t)

T)= 4
P == @
q(t)
T) = 5
q]-( ) T, (t)2 ( )
Let p; = 0. Eq (4) simplifies to
() + p(t) 7' (t) =0
This ode is solved resulting in
T= /e_fp(t)dtdt
= / e~/ —tdtgy
— /eﬁln(t) dt
= [ %t
t7
S 6
a ©
Using (6) to evaluate ¢; from (5) gives
_ 4@
q1 (7—) 7_/ (t)Z
12
_
t12
12
=1u (7)

Substituting the above in (3) and noting that now p; = 0 results in
d2
7221 +auz(r) =0

& 12z(7)

dr2 z(7) a4 0

But in terms of 7
12 12

14~ 4972
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Hence the above ode becomes

d? 12z(7)
a2+ g

The above ode is now solved for z(7). Writing the ode as

=0

d? 12z(T
)+ 4952) =0 @
4L o)+ BLar) 1 Car) = 0 )
d7_2x T de T T\T) =
Comparing (1) and (2) shows that
A=1
B=0 (3)
12
¢= 4972

Applying the Liouville transformation on the dependent variable gives
2(r) = z(r) el 2

Then (2) becomes

() =ra(r) (4)
Where r is given by
r= 5)
_ 2AB'—2BA' 4+ B? — 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
—12
"7 gor2 ©)
Comparing the above to (5) shows that
§=—12
t = 4977

Therefore eq. (4) becomes

#(0) = (- 008 ) 70 @
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Equation (7) is now solved. After finding z(7) then z(7) is found using the inverse
transformation

w(r) = 2(r) e & dr

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(oc0)
1 {Oa17274a6a87"'} {'"7_67_47_27()’2’3747576’"'}
2 Need to have at least one pole that no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}.{1,3},{2}.{3},{3,4},{1,2,5}.
3 {1a2} {273a4a5a677a"'}

Table 2.26: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢t minus the degree of s. Therefore

O(00) = deg(t) — deg(s)
=2-0
=2
The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4972. There is a pole at 7 = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at co is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since

pole order is not larger than 2 and the order at oo is 2 then the necessary conditions
for case three are met. Therefore

L=11,2,4,6,12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

B 12
4972
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For the pole at 7 = 0 let b be the coefficient of T% in the partial fractions decomposition

of r given above. Therefore b = —%. Hence

[VTle=0

1
aj:§+\/1+4 =

1
O!c_=§—\/1+4b=

W~

Since the order of r at oo is 2 then [/T]oc = 0. Let b be the coefficient of Z in
the Laurent series expansion of r at co. which can be found by dividing the leading
coefficient of s by the leading coefficient of ¢ from

12

S
r=-=-———-:
t 4972

Since the ged(s,t) = 1. This gives b = —32. Hence

[\/F]oo =0

1
a;g=§+\/1+4b=

1
Ol;o=§—\/1+4b=

| W~

The following table summarizes the findings so far for poles and for the order of r at

h .
oo whnere r 18 12

4972

S
o

OQ+
(':Q|

pole ¢ location pole order
0 2 0

SIS
e

Order of 7 at 00 [VT]eo ol «
2 0 7

g1

[V

Now that the all [/7]. and its associated af have been determined for all the poles in
the set I' and [\/T] and its associated a have also been found, the next step is to
determine possible non negative integer d from these using

d= s> — Z s
cel

Where s(c) is either + or — and s(oc0) is the sign of aZ. This is done by trial over all
set of families s = (8(¢))ceruso until such d is found to work in finding candidate w.
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Trying ag, = 2 then

d=ag — (o)
-(7)

Since d an integer and d > 0 then it can be used to find w using

s(c)

= ) + 5(00) [V7loo

(0%
3
o7
0

w= Z (s(c)[\/F]c +

-
cel

The above gives

Q.

)+ OV

o= ((—)[mcl T
3
-2 00
3

T
3

T
Now that w is determined, the next step is find a corresponding minimal polynomial
p(7) of degree d = 0 to solve the ode. The polynomial p(7) needs to satisfy the equation

T —

p'+2wp + (W 4w —r)p=0 (1A)
Let
p(r) =1 (24)

Substituting the above in eq. (1A) gives

@oa(3)we () (2)- () -

0=0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode 2" =rzis

Zl(T) :pefwdT
:ef%dr

— 37
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The first solution to the original ode in z(7) is found from

71 =zl T22N
Since B = 0 then the above reduces to
I =z
— 3/7
Which simplifies to
1 =T 3/7

The second solution x5 to the original ode is found using reduction of order

ef_%dq-
To = T 3 dr
T

1

Since B = 0 then the above becomes

1
xzle/PdT
1

1
3/7
=T / T dr

— 37 (771/7)

Therefore the solution is

.’E(T) = C1T1 + C2Xo

- () + e (7))

Will add steps showing solving for IC soon.

The above solution is now transformed back to z using (6) which results in

e T4 (47 3/7
L

Will add steps showing solving for IC soon.

Summary of solutions found

e TAT(#7 3/7
=7 7( ) + e (1)
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Solved as second order ode using change of variable on x method 1
Time used: 0.136 (sec)

In normal form the ode

t’z" — 6ta’ + 122 =0 (1)
Becomes
" +plt)z +qt)xz =0 (2)
Where
6
p(t) =—3
qt) = 1—3

Applying change of variables 7 = g(t) to (2) results

;—;x(T) + (%ﬂﬂ) +qz(r) =0 (3)

Where 7 is the new independent variable, and

7"(t) + p(t) 7'(1)

T) = 4
pir) =L @
q(t)
T) = 5)
a(r) = 1 )
Let q; = ¢® where c is some constant. Therefore from (5)
, 1
T = E\/a
2v3./%
- VZ 6
. (©
23

c t%t?’
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Substituting the above into (4) results in
T'(t) + p(t) T'()
T (t)*
2 623k
B c\/ti2 3 t ¢
()

_70\/3
6

p(r) =

Therefore ode (3) now becomes

2(1)" + pra(r) + quz(r) = 0
d? 7cV/3 (La(7))
arz() — 6

The above ode is now solved for z(7). Since the ode is now constant coefficients, it can
be easily solved to give

z(T) = e (cl cosh <\/1§2CT> + icy sinh <\/1§2CT> )

Now from (6)

+cz(t) =0 (7)

Substituting the above into the solution obtained gives

(o () o ()

Will add steps showing solving for IC soon.

Summary of solutions found

(o (20) i ()
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Solved as second order ode using change of variable on y method 1

Time used: 0.169 (sec)

In normal form the given ode is written as

" +pt)z +qt)z =0

Where
6
p(t) = —
12
q(t) = =

p P
Q=0-9"7%
12_ (=9 (=9
2 2 4
12 () (%)

(2)

Since the Liouville ode invariant does not depend on the independent variable ¢ then

the transformation

x = v(t) 2(t)

3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term

z(t) is given by

z(t) = o= [Pt
6
fry e_th

Hence (3) becomes

Applying this change of variable to the original ode results in

5" (t) = 0

()

(4)
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Which is now solved for v(t).

The above ode can be simplified to
V() =0
Integrating twice gives the solution
v(t) =it + ¢
Will add steps showing solving for IC soon.
Now that v(t) is known, then

x = v(t) 2(t)
= (a1t + ¢2) (2(t))

But from (5)
2(t) =t
Hence (7) becomes
T = (cit +c)t°
Will add steps showing solving for IC soon.

Summary of solutions found

T = (cit +cp)t3

Solved as second order ode using change of variable on y method 2

Time used: 0.119 (sec)

In normal form the ode

22" —6tr’ +122 =0

Becomes
" +pt)z’ +q(t)z =0
Where

6
t)=——
p(t) ;
12
qt) = —

(7)

1)

2)
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Applying change of variables on the depndent variable z = v(t)t"™ to (2) gives the
following ode where the dependent variables is v(t) and not z.

2 -1
v%®+(%Luovﬁy+<ﬂ%;l+f?+q)Mﬂzo 3)
Let the coefficient of v(t) above be zero. Hence
nn—1) mnp
- =0 4
a Tt (4)

Substituting the earlier values found for p(¢) and ¢(¢) into (4) gives

n(n—1) 6n 12
e T epte? (5)

Solving (5) for n gives

Substituting this value in (3) gives

v'(t) + @ =0
v+ 228~ ™)
Using the substitution
u(t) = v'(t)
Then (7) becomes
w(t)+ 20— ®)

The above is now solved for u(t). In canonical form a linear first order is
w'(t) + q(t)u(t) = p(t)
Comparing the above to the given ode shows that

ﬁﬂ=%
p(t) =0
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The integrating factor u is

The ode becomes

Integrating gives
ut? = / 0dt + c;
= Cl

Dividing throughout by the integrating factor ¢? gives the final solution

C1
Now that u(t) is known, then
V'(t) = u(t)
o(t) = /u( ) dt + c3
c
= —?1 + Co

Hence

e

= (Cgt — Cl) t3

Will add steps showing solving for IC soon.

Summary of solutions found

T = <—ﬁ +c2> t
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Solved as second order ode using Kovacic algorithm
Time used: 0.048 (sec)
Writing the ode as
t*z” — 6tz’ + 122 =0 (1)

A" + B +Cxz =0

Comparing (1) and (2) shows that

A=t
B = —6t
C =12

Applying the Liouville transformation on the dependent variable gives
z(t) = zel zxdt
Then (2) becomes
2" (t) = rz(t)

Where r is given by

s
r=-
t
_ 2AB' —2BA' 4+ B? — 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
r = 9
1
Comparing the above to (5) shows that
s=0
t=1
Therefore eq. (4) becomes
2'(t) =0

(3)

(4)

(5)

(6)

(7)

Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-

formation

z = 2z(t) e~ ) 2xadt
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a87"°} {"'7_67_47_27(),2’37475,6,"'}
2 Need to have at least one pole that no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 2.27: Necessary conditions for each Kovacic case

The order of r at co is the degree of ¢ minus the degree of s. Therefore
O(00) = deg(t) — deg(s)
=0—-—o00
= 00
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=11

Since r = 0 is not a function of ¢, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

21 (t) =1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from

1B
T, = zel 2ad

1 -6t
- zle_fitTdt
— zle3ln(t)

=2 (¢)
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Which simplifies to

.’L'1:t3

The second solution zs to the original ode is found using reduction of order

Substituting gives

Therefore the solution is

T = C1X1 + C2Z2

=1 (2%) + c2(2%(2))

Will add steps showing solving for IC soon.

Summary of solutions found

x=@#+qﬁ

Solved as second order ode adjoint method
Time used: 0.154 (sec)

In normal form the ode
22" —6tr’ + 122 =0
Becomes

" +pt)z +q(t)x =r(t)

(1)

(2)
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Where
6
)= ——
p(t) =~
12
at) =5
r(t)=0
The Lagrange adjoint ode is given by
€ —(€p) +€4=0

¢ (50 + (PR =
66(t)  6£'(2)

§'(t)+ 5 + >, =0

Which is solved for £(t). This is Euler second order ODE. Let the solution be & = ¢",
then & = rt"~! and £ = r(r — 1)¢"~2. Substituting these back into the given ODE gives

(r(r— 1))t 2+ 6trt" "+ 6" =0

Simplifying gives
r(r—1)t"+6rt"+6t"=0

Since t" # 0 then dividing throughout by ¢" gives
r(r—1)+6r+6=0

Or
r?+5r+6=0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

7”1:—3

o = -2
Since the roots are real and distinct, then the general solution is

§ =i+ b

Where & =t and & = t™. Hence

C1 Co
tEte
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Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

£(t) 2’ — 2€'(t) + £(t) p(t) « = /6

z'-l—x( g) t) dt

Which is now a first order ode. This is now solved for z. In canonical form a linear first
order is

7'+ q(t)x = p(t)

Comparing the above to the given ode shows that

(t) _ 402t + 301
1 t(cot + 1)
p(t) =0
The integrating factor u is
p=e Jqdt
of iz
B 1
t3 (Czt + Cl)
The ode becomes
d
ahr ="

af_ =z \_y
dt t3 (Czt+01) a

Integrating gives

T
—— = [ 0dt
t3 (CQt + Cl) / + Cs

=C3
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Dividing throughout by the integrating factor m gives the final solution
=1t (cot+c1)es

Hence, the solution found using Lagrange adjoint equation method is

r=t(ct+c1)cs

The constants can be merged to give

=1t (cot + c1)

Will add steps showing solving for IC soon.

Summary of solutions found

T = t*(cot + c1)

Maple step by step solution

Let’s solve
22" —6tx’ +120 =0
° Highest derivative means the order of the ODE is 2
xll
° Isolate 2nd derivative
g = 1% 4 6o
° Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
x” —_ 6_1:/ + 12z =
¢ ¢
° Multiply by denominators of the ODE
t2z" — 6tz' + 120 =0
° Make a change of variables
s=In(t)

U Substitute the change of variables back into the ODE
o Calculate the 1st derivative of x with respect to t , using the chain rule

a = (La(s)) s'(¢)
o Compute derivative

d
T = gﬂ;(s)

o Calculate the 2nd derivative of x with respect to t , using the chain rule
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2 2
" = (%x(s)) s'(t)" + §"(t) (%w(s))
o Compute derivative
"o__ diszfg”(s) _ sLa(s)
= e 2

Substitute the change of variables back into the ODE

ix(s) lx(s)
t? ( e — deg ) —647(s) + 12z(s) = 0

° Simplify
%x(s) — 74 3(s) +12z(s) = 0

° Characteristic polynomial of ODE
r2—Tr+12=0

° Factor the characteristic polynomial
(r—=3)(r—4)=0

° Roots of the characteristic polynomial
r=(3,4)

° 1st solution of the ODE
z1(s) = €%

° 2nd solution of the ODE
To(s) = e

° General solution of the ODE
z(s) = Clzy1(s) + C2xz5(s)

° Substitute in solutions
z(s) = C1 e + C2¢e*

o Change variables back using s = In (¢)
r=C2t"+C1¢3

° Simplify

z=t3(C2t+ C1)

Maple trace

"Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

<- LODE of Euler type successful"
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Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 13

‘dsolve(t’“2*diff(diff(x(t),t),t)-6*t*diff(x(t),t)+12*x(t) =0,
‘ x(t) ,singsol=all)

r = t*(cat + c1)

Mathematica DSolve solution

Solving time : 0.017 (sec)
Leaf size : 16

'DSolve [{t~2#D[x[t],{t,2}]-6+t*D[x[t],t]+12+x[t]==0,{}},
‘ x[t],t,IncludeSingularSolutions->True]

z(t) — t3(cot + c1)
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2.2 Chapter 4. Autonomous systems. Exercises at

page 69
221 problem 1 . . . . . .. 328
222 problem 2 . . . ... 340
223 problem 3 . . . ... 348
224 problem 5 (1) . . . . ... 374
225 problem 5 (i) . . . . . ... 3851
226 problem 5 (iil=i) . . .. ... ... ... . ...
227 problem 5 (iv) . . . . ... 408
228 problem 6 (I) . . . . . ... . 27
229 problem 6 (i) . . . . . . ... 439
2.2.10 problem 6 (ili) . . . . . . . .. ... 53]
(

2.2.11 problem 6 (iv) . . . . . . . ... 160
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2.2.1 problem 1

Solved as first order autonomousode . . . . . .. ... ... .. 328}
Solved as first order homogeneous class D2 ode . ... ... .. 330
Solved as first order Exactode . . .. ... ... ........ 3311
Solved using Lie symmetry for first orderode . . ... ... .. [3341
Maple step by step solution . . . . . ... ... ... ... ...
Maple trace . . . . . . . . .. 339
Maple dsolve solution . . . .. ... ... ... ......... 339
Mathematica DSolve solution . . . . .. ... ... .......

Internal problem ID [18190]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 4. Autonomous systems. Exercises at page 69

Problem number : 1

Date solved : Thursday, December 19, 2024 at 06:17:48 PM

CAS classification : [_quadrature]

Solve

=\

Solved as first order autonomous ode
Time used: 0.148 (sec)

Integrating gives

1
In (z
- )(\)=t+cl

Singular solutions are found by solving
A =0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

=0
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The following diagram is the phase line diagram. It classifies each of the above equilib-
rium points as stable or not stable or semi-stable.

Figure 2.69: Phase line diagram

Solving for z gives

xr=
T = e—C1)\—t)\
Summary of solutions found
Tr=
—Cc1A—tA
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Solved as first order homogeneous class D2 ode
Time used: 0.121 (sec)

Applying change of variables x = u(t) ¢, then the ode becomes

u'(t)t 4+ u(t) = —du(t)t

Which is now solved The ode v/(t) = —w is separable as it can be written as
1
PIRCICES
= f(t)g(u)
Where
tA+1
fiy =21
g(u) =u

Integrating gives

/ﬁdu=/f(t)dt
/%w:/—”:ldt

In (u(t)) = —tA +In (%) ta

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u = 0 for u(t)
gives

u(t) =0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (u(t)) = —tA + In (%) to
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Solving for u(t) gives

Converting u(t) = 0 back to z gives

=0

e—t>\+cl
t

Converting u(t) = back to z gives

Summary of solutions found

Solved as first order Exact ode
Time used: 0.106 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p

9 = M

o¢

YN

Oy

But since % = aa_ig)_ then for the above to be valid, we require that

oM _ oN
oy Oz
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘?: ;’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)
Therefore
dz = (—Az)dt
(Az)dt+dz =0 (2A)

Comparing (1A) and (2A) shows that

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oxr Ot
Using result found above gives
oM 0
o~ oY
And
ON 0
Bt o)
=0

Since %ij %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A= L(OM _ON
N\ 0z ot

((A) —(0))

1
A
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Since A does not depend on z, then it can be used to find an integrating factor. The
integrating factor u is

p=e JAdt
_ ol At

The result of integrating gives
o= e
tA

=e
M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.
M = uM
= e*(\2)
= Az et
And
N =uN
— et)\(l)
2y

=e€

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

—  —dz
M+ N— =
+ 7 0
dx
tA ) 4 _
()\xe )—I—(e )dt 0
The following equations are now set up to solve for the function ¢(¢,x)
0p —
— =M 1
0p —
=N 2
5 (2)

Integrating (2) w.r.t. z gives

/%dm=/ﬁdr

06 . [
&Edw—/e dz

¢ =€z + f(t) (3)
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Where f(t) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t ¢ gives

2 e+ 110 @

But equation (1) says that 32 = Az e'*. Therefore equation (4) becomes

Az et = Are + f/(t) (5)

Solving equation (5) for f’(t) gives
fle)y=0
Therefore
ft)=a
Where ¢, is constant of integration. Substituting this result for f(¢) into equation (3)
gives ¢

d=erz+c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

c1 = ez
Solving for = gives
r=cqC e
Summary of solutions found
r=c e

Solved using Lie symmetry for first order ode
Time used: 0.349 (sec)
Writing the ode as

==\

' =w(t,x)
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The condition of Lie symmetry is the linearized PDE given by
e+ w(ne — &) — W€ — wi —wen =0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

£ = tas + za3 + a; (1E)
n= tbz + .'I?bg + b1 (QE)

Where the unknown coeflicients are
{a1,as,a3,b1,b9,b3}
Substituting equations (1E,2E) and w into (A) gives
by — Az (b3 — az) — N2x2az + A(thy + zb3 + b)) =0 (5E)
Putting the above in normal form gives
222203 + Atby + Azas + Aby + by =0
Setting the numerator to zero gives
—2N22%a3 + Atbs + Azas + Aby + by =0 (6E)
Looking at the above PDE shows the following are all the terms with {¢,z} in them.
{t,z}
The following substitution is now made to be able to collect on all terms with {¢,z} in
them
{t =v1,2 = o}
The above PDE (6E) now becomes

—X2azv2 + Aagvy + Abyuy + Aby 4+ by = 0 (7TE)
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Collecting the above on the terms v; introduced, and these are
{v1,v2}
Equation (7E) now becomes
—Xazv2 + Aagvy + Abouy + Aby 4+ by = 0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

Aay =0

Abs =0
—Aa3=0
Aby + by =0

Solving the above equations for the unknowns gives

ay=a
a; =10
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

§€=0
n=z
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (t,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
& _do _
£

The above comes from the requirements that (§ % + n%) S(t,x) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

ds (1)

R=t
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S is found from

S= [ —-dy
n
T
Which results in
S =1In(z)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS Sy +w(t,x)Se )
dR  R;+w(t,z)R,

Where in the above Ry, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

w(t,x) = —Ix

Evaluating all the partial derivatives gives

R =1
R,=0
S;=0

1
=32

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
= 2A
IR (24)
We now need to express the RHS as function of R only. This is done by solving for t,
in terms of R, S from the result obtained earlier and simplifying. This gives

S
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

—-A
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Since the ode has the form -%S(R) = f(R), then we only need to integrate f(R).
/ ds = / —AdR
=-)AR +co

To complete the solution, we just need to transform the above back to t, x coordinates.
This results in

In(z) = —tA+ ¢y

Which gives

— e—t)\-l-cz

Summary of solutions found

— —tA+tco

Maple step by step solution

Let’s solve
' =-\z
° Highest derivative means the order of the ODE is 1

/

x
° Solve for the highest derivative
¥ =-\x
° Separate variables
= _\

° Integrate both sides with respect to ¢
[Zdt = [ —\dt+ C1

° Evaluate integral
In(z) = —tA+ C1
° Solve for x
—tA+C1

r=e€
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

Maple dsolve solution

Solving time : 0.002 (sec)
Leaf size : 11

-

dsolve(diff(x(t),t) = -lambda*x(t),
L x(t) ,singsol=all)

r=ce

Mathematica DSolve solution

Solving time : 0.021 (sec)
Leaf size : 18

tA

‘DSolve[{D[x[t],t]==\[Lambda] *x[t] , {}},

L x[t],t,IncludeSingularSolutions->True]

z(t) = cre™
z(t) = 0
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2.2.2 problem 2

Solution using Matrix exponential method . . . . . .. ... ..
Solution using explicit Eigenvalue and Eigenvector method . . . 341
Maple step by step solution . . . . .. ... ... ... .....
Maple dsolve solution . . . . . .. ... ... ... ... ..., 347
Mathematica DSolve solution . . . . .. .. ... ... ..... [347]

Internal problem ID [18191]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 4. Autonomous systems. Exercises at page 69

Problem number : 2

Date solved : Thursday, December 19, 2024 at 06:17:49 PM

CAS classification : system_of_0DEs

=z

y=z+2y

Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential e? allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

HERIH

For the above matrix A, the matrix exponential can be found to be
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Therefore the homogeneous solution is

fh(t) = 6At5

et 0 Cq 1
o2t _ ot o2t ¢ |
ele;
(e* —e') c; + e?cy

_ [ etcl
| (e + ) ¥ —eley

Since no forcing function is given, then the final solution is Z(t) above.

Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

HERIH

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det (A — ) =0
(18] 03 2]
o170

Since the matrix A is triangular matrix, then the determinant is the product of the
elements along the diagonal. Therefore the above becomes

Expanding gives

Therefore

1-XN)(2=))=0
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The roots of the above are the eigenvalues.

A =1
Ay =2
This table summarises the above result

eigenvalue algebraic multiplicity =type of eigenvalue
1 1 real eigenvalue
2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue A\; =1

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

10 10 vy 0
—(1 =
(L 2]-ole T [0 ]-1o
00 vi| |0
1 1|][v| |0
Now forward elimination is applied to solve for the eigenvector ¥. The augmented
0 0/0
1 1(0
Since the current pivot A(1,1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

1 1(0
0 0]0

Therefore the system in Echelon form is

11 V1 . 0
00][w] [0
The free variables are {ve} and the leading variables are {v;}. Let vy = t. Now we start

back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = —t}

matrix is

Hence the solution is
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

=T

Let t = 1 the eigenvector becomes

Considering the eigenvalue Ay = 2

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes
10 10 vu| |0
(1 2)-elo ) [2] =[]
-1 0 U1 . 0
1 0f[w] [0

Now forward elimination is applied to solve for the eigenvector ¥. The augmented
-1 010
1 0/0

Ry =Ry + R — [

matrix is

-1 00
0 00

Therefore the system in Echelon form is

-1 0 V1 _ 0

0 0 Va2 o 0
The free variables are {vs} and the leading variables are {v;}. Let vy = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free

variables gives equation {v; = 0}
v1 o 0
t ] [t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

=]

Hence the solution is
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Let t = 1 the eigenvector becomes

=1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity
eigenvalue algebraic m geometric £ defective? eigenvectors
-1
1 1 1 No
1
2 1 1 No [ 0 ]
1

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

Therefore the final solution is
fh(t) = lel(t) + CQ.’fQ(t)

Which is written as
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Which becomes
[y] - [clet+c2e2t]
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Figure 2.70: Phase plot

Maple step by step solution

Let’s solve
[ =z,y =z + 2y
° Define vector
— T
z(t) =
-7
° Convert system into a vector equation

?@:{12?Z@+{3

° System to solve
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() = “ g] )

Define the coefficient matrix

10
A=
1)
Rewrite the system as
—/

Z(t)=A-Z(t)
To solve the system, find the eigenvalues and eigenvectors of A
Eigenpairs of A

113 ]

Consider eigenpair

dil

Solution to homogeneous system from eigenpair

-1
i

Consider eigenpair

0
2
2 (1]
Solution to homogeneous system from eigenpair
5)2 = ezt . |: 0 :|
General solution to the system of ODEs

Substitute solutions into the general solution

5)=01et~[_11]+0262t-[(1)1

Substitute in vector of dependent variables

T —C1ét
[y] B [ C’]et—i-C,?th]
Solution to the system of ODEs
{z=—-C1¢e,y=Clé + C2e*}
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Maple dsolve solution

Solving time : 0.081 (sec)
Leaf size : 23

‘dsolve([diff (x(t),t) = x(t), diff(y(t),t) = x(t)+2*y ()]
| Aop([x(£), y(©)DI)

x = elcy
y = —e'cy + c; %
Mathematica DSolve solution

Solving time : 0.009 (sec)
Leaf size : 33

\ DSolve [{{D[x[t],t]l==x[t],D[y[t],t]l==x[t]1+2xy[t]1},{}},
‘ {x[t],y[t]},t,IncludeSingularSolutions->True]

z(t) = ci€
y(t) = ' (ci(e" — 1) + c2€f)
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2.2.3 problem 3

Solved as second order Euler typeode . . ... ... ......
Solved as second order solved by an integrating factor . . . . . 349
Solved as second order ode using change of variable on

xmethod2 . . . ... ... ... ... .. ..., 350
Solved as second order ode using change of variable on

xmethod 1 . .. ... ... .. ... .......... 357
Solved as second order ode using change of variable on

ymethod1 . . . ... ... ... ... ... ..., 359
Solved as second order ode using change of variable on

ymethod2 . . .. .. ... ... oo
Solved as second order ode using non constant coeff trans-

formation on Bmethod . . . . ... ... ... . ...
Solved as second order ode using Kovacic algorithm . . . . . . . 365
Solved as second order ode adjoint method . . . . . . . ... .. 368]
Maple step by step solution . . . . ... ... ... ... .... Byal
Maple trace . . . . . . . . ..
Maple dsolve solution . . . ... ... ... ... ........ B73
Mathematica DSolve solution . . . . .. .. ... ... .....

Internal problem ID [18192]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 4. Autonomous systems. Exercises at page 69

Problem number : 3

Date solved : Thursday, December 19, 2024 at 06:17:50 PM

CAS classification :

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

Solve

2z —2%x' +22 =0
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Solved as second order Euler type ode
Time used: 0.090 (sec)

This is Euler second order ODE. Let the solution be = ", then 2’ = rt"~! and
z” = r(r — 1)t"~2. Substituting these back into the given ODE gives

r(r— 1))t 2 = 2trt" 426" = 0

Simplifying gives
r(r—1Dt" —2rt"+2t"=0

Since t" # 0 then dividing throughout by t" gives
rr—1)—2r+2=0

Or
r’—3r+2=0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

T =

9 = 2
Since the roots are real and distinct, then the general solution is
T = C1T1 + Coxo
Where 21 = t™ and z, = t"2. Hence
T =cCy 2+ cit

Will add steps showing solving for IC soon.

Summary of solutions found

x=czt2+clt

Solved as second order solved by an integrating factor
Time used: 0.029 (sec)
The ode satisfies this form

=’ +p(t) 2’ + = f(t)
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Where p(t) = —2. Therefore, there is an integrating factor given by

M(x):e%f”dw

— ef—%dw

Multiplying both sides of the ODE by the integrating factor M (z) makes the left side

of the ODE a complete differential

(M(z)x)" =0

Integrating once gives

Integrating again gives

Hence the solution is

T = t2c; + cot

Will add steps showing solving for IC soon.

Summary of solutions found

T = t201 + cot

Solved as second order ode using change of variable on x method 2
Time used: 0.335 (sec)

In normal form the ode
2z —2x' + 22 =0
Becomes

=’ +p(t) ' +q(t)z =0

1)

2)
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Where
2
t)=-2
p(t) =~
2
at) =
Applying change of variables 7 = g(t) to (2) gives
d? d
wm(T) +p 520(7') + qz(r) =0 (3)
Where 7 is the new independent variable, and
T"(t) + p(t) T'(t)
T) = 4
pl( ) - (t)2 ( )
q(t)
T) = )
a(r) = o )
Let p; = 0. Eq (4) simplifies to
() +pt)T'(t) =0
This ode is solved resulting in
T= /e_fp(t)dtdt
— /e2ln(t) dt
= / t2dt
t3
S 6
d ©
Using (6) to evaluate ¢; from (5) gives
q(t)
T) =
a(7) - (t)z
2
_z
t4
2
-2 @
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Substituting the above in (3) and noting that now p; = 0 results in

d—2x(T) +qz(r)=0

dr?
d? 2x(T)
g™+ = =0
But in terms of 7
2_2
6 972
Hence the above ode becomes
d? 2z (1)
a1+ g =0

d? 2z(T)

a2+ g =0

Ad—Qx(T) + Bix(T) +Cz(1) =0
dr? dr B
Comparing (1) and (2) shows that
A=1
B=0
2
C=o2

Applying the Liouville transformation on the dependent variable gives

2(r) = z(r) el 2
Then (2) becomes
2"(1) = rz(r)

Where 7 is given by

AB' —2BA' + B? — 4AC
4A?

1)
2)

3)

(4)

(5)
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Substituting the values of A, B, C from (3) in the above and simplifying gives

-2
e )
Comparing the above to (5) shows that
§=-2
t = 972

Therefore eq. (4) becomes

20 = (~ o) #0) )

Equation (7) is now solved. After finding z(7) then z(7) is found using the inverse
transformation

z(1) = 2(71) e~/ zadr

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(o0)
1 {Oa1727476a87”'} {'"7_67_47_27072a3747576a"'}
2 Need to have at least one pole that no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2, 5}.
3 {1,2} {2,3,4,5,6,7,"'}

Table 2.31: Necessary conditions for each Kovacic case

The order of r at co is the degree of ¢ minus the degree of s. Therefore
O(00) = deg(t) — deg(s)

=2-0
=2
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The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of ¢ = 972. There is a pole at 7 = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at co is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at oo is 2 then the necessary conditions
for case three are met. Therefore

L=][1,2,4,6,12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

2

r=———

972

For the pole at 7 = 0 let b be the coefficient of }2 in the partial fractions decomposition
of r given above. Therefore b = —%. Hence

[\/F]c =0

1 2
a:r=§+\/1+4b=§
ac_zé—vl—l—élb:%

Since the order of r at co is 2 then [/T]c = 0. Let b be the coefficient of Z in
the Laurent series expansion of r at co. which can be found by dividing the leading
coefficient of s by the leading coefficient of ¢ from

s 2
r=-=———
t

972

Since the ged(s,t) = 1. This gives b = —2. Hence

1 2
a:o=§+\/1+4b=§
1 1
=-—V1+4b="_
Qoo = 3 =3

The following table summarizes the findings so far for poles and for the order of r at

oo where r is 9

972
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pole c location pole order [/r]. of a
0 2 0o |21

Order of r at 00 [VT]ee af  ag

2 0 2

1
3
Now that the all [1/7]. and its associated o have been determined for all the poles in

the set I and [\/T]« and its associated aX have also been found, the next step is to
determine possible non negative integer d from these using

d= > — Z as©

cel

Where s(c) is either + or — and s(oc0) is the sign of aZ. This is done by trial over all
set of families s = ($(c))ceruso until such d is found to work in finding candidate w.
Trying o = % then

Since d an integer and d > 0 then it can be used to find w using

as(c)
w=Y (s<c>[ﬁ]c . o ) +5(00) VA

T —_—
cel

The above gives

o

o= (A +

1
-+
1

e
1

T3

Now that w is determined, the next step is find a corresponding minimal polynomial
p(7) of degree d = 0 to solve the ode. The polynomial p(7) needs to satisfy the equation

)+ )1V

T—0C

p'+2wp + (W 4w —7)p=0 (1A)
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Let
p(r) =1 (2A)

Substituting the above in eq. (1A) gives

0s() 0 ((o5)+ () - (o) -0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode 2" =rzis

z(1) = pel @9
_ ef %dr
_ /3

The first solution to the original ode in z(7) is found from

1B
T, = zel "2a9

Since B = 0 then the above reduces to

1 = 21
— ;13
Which simplifies to
T = 7'1/3

The second solution z5 to the original ode is found using reduction of order

ef—%dT
To = X1 5— dr
1

Since B = 0 then the above becomes

1
.’L'2=.'E1/—2d7'
x7

1
— +1/3
=T /7_2/3 dr

— 71/3 (371/3)
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Therefore the solution is

z(T) = 121 + 2o

=q (7’1/3) + ¢ (7'1/3 (37'1/3))

Will add steps showing solving for IC soon.

The above solution is now transformed back to x using (6) which results in

32/3(43 1/3
p=20" ") ; RSP (£3)°
Will add steps showing solving for IC soon.
Summary of solutions found
32/3 (43 1/3
xTr = —61 3( ) + 6231/3 (t3)2/3

Solved as second order ode using change of variable on x method 1
Time used: 0.116 (sec)

In normal form the ode

2z —2x' +2x =0

Becomes
" +pt)z +qt)z =0
Where
2
) =—=
p(t) .
2
q(t) = 2

Applying change of variables 7 = g(t) to (2) results

d2

Frale) +pu (a(r)) + dua(r) = 0

(1)
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Where 7 is the new independent variable, and

_ ') +p(t) T'(2)
pl(T) - ! (t)2

-y 1)
ql( ) ! (t)2

Let q; = ¢® where c is some constant. Therefore from (5)

4)

T = ! q
c
v2y/a
- ©
. B
cy/ 3t
Substituting the above into (4) results in

N2 2 ‘/5\/72
c t%t?’ t ¢
()
_ _30\/§
2
Therefore ode (3) now becomes

()" + p1a(1) + qua(r) =0
d? 3cv2 (Lx(7))
=™~

5 +cz(1) =0
be easily solved to give

(7)
The above ode is now solved for z(7). Since the ode is now constant coefficients, it can

z(7) = e ™A <01 cosh (X/iCT> + ico sinh <€0T> )
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Now from (6)
1
[va[adt
- c
_V2n(2)
N c
Substituting the above into the solution obtained gives
In (¢ In (¢
z = t3/?( ¢; cosh ﬂ + icy sinh &
2 2
Will add steps showing solving for IC soon.
Summary of solutions found
In (¢ In (¢
z =t ¢y cosh i) + ¢y sinh ﬂ
2 2
Solved as second order ode using change of variable on y method 1
Time used: 0.063 (sec)
In normal form the given ode is written as
" +plt)z +qt)z =0 (2)

Where

q(t) = t%

Calculating the Liouville ode invariant ) given by
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Since the Liouville ode invariant does not depend on the independent variable ¢ then
the transformation

z = v(t) 2(t) 3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(t) is given by

2(t)=e/ SR
_e
=t (5)
Hence (3) becomes
z=0o(t)t 4)
Applying this change of variable to the original ode results in
t3"(t) =0
Which is now solved for v(t).
The above ode can be simplified to
V' (t) =0

Integrating twice gives the solution

v(t) =cit + ¢
Will add steps showing solving for IC soon.
Now that v(t) is known, then

x = v(t) z(t)

= (art +¢) (2(2)) (7)

But from (5)
z(t) =1t

Hence (7) becomes

z=(at+c)t
Will add steps showing solving for IC soon.

Summary of solutions found

z=(ct+co)t
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Solved as second order ode using change of variable on y method 2
Time used: 0.227 (sec)

In normal form the ode

t’z" —2tx' + 22 =0 (1)
Becomes
" +plt)z +qt)xz =0 (2)
Where
2
p(t) =—3
qt) = t%

Applying change of variables on the depndent variable x = v(t)t" to (2) gives the
following ode where the dependent variables is v(t) and not z.

2 -1
V'(t) + (T” + p) v(t) + (% + 2+ q) v(t) =0 3)
Let the coefficient of v(t) above be zero. Hence
-1
% + nTp +q=0 (4)

Substituting the earlier values found for p(¢) and ¢(t) into (4) gives

nn—1) 2n 2

g ptp=! )
Solving (5) for n gives
n=2 (6)
Substituting this value in (3) gives
v"(t) + %(t) =0
o)+ 220 ™)

t
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Using the substitution

u(t) = v'(t)
Then (7) becomes
u(t)+ 20— ®

The above is now solved for u(t). In canonical form a linear first order is

u'(t) + q(t)u(t) = p(t)

Comparing the above to the given ode shows that

2
) ==
q(t) = 5
p(t) =0
The integrating factor u is
p=e J[qdt
— e 24t
_ t2
The ode becomes
d
S u=0
ath
< (wt?) =0

Integrating gives
ut? = / 0dt +c;
= C].

Dividing throughout by the integrating factor ¢? gives the final solution

c
u(t) = t—;
Now that wu(t) is known, then
v'(t) = u(t)
o(t) = / w(t) dt + ¢
- —2 + Co
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Hence

z=uv(t)t"

=(—= t
< + + co

= (Cgt — Cl) t

Will add steps showing solving for IC soon.

Summary of solutions found

z= (—% +02> #

Solved as second order ode using non constant coeff transformation on B
method

Time used: 0.059 (sec)

Given an ode of the form
Azx" + Bx' + Cz = F(t)
This method reduces the order ode the ODE by one by applying the transformation
x = Buv
This results in

' =Bv+vB
$” — B”’U+BI’UI+'U”B+’U,B,
=v"B+2v+ B + B"v

And now the original ode becomes

A(W'B+2v'B'+ B"v) + B(Bv+v'B)+ CBv =0
ABvY" + (2AB' + B*)v' + (AB"+ BB'+ CB)v =0 (1)

If the term AB” + BB’ + CB is zero, then this method works and can be used to solve
ABv" + (2AB'+ B*)v' =0
By Using u = v’ which reduces the order of the above ode to one. The new ode is

ABY + (2AB'+ B*)u =0
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The above ode is first order ode which is solved for u. Now a new ode v’ = u is solved
for v as first order ode. Then the final solution is obtain from z = Bw.

This method works only if the term AB” + BB’ + CB is zero. The given ODE shows
that

A=t
B = -2t
C=2
F=0

The above shows that for this ode

AB" + BB+ CB = () (0) + (=2¢) (—2) + (2) (—2t)
=0

Hence the ode in v given in (1) now simplifies to
—2t%" 4+ (0)v' =0
Now by applying v" = u the above becomes
—2t%/(t) = 0

Which is now solved for . Since the ode has the form «'(t) = f(t), then we only need

to integrate f(t).
/ du = / 0dt + c;

The ode for v now becomes

Which is now solved for v. Since the ode has the form v'(t) = f(t), then we only need

to integrate f(t).
/ dv = / c dt

v(t) =cit + ¢
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Replacing v(t) above by —7, then the solution becomes

z(t) = Bv
= —2(01t + Cz) t
Will add steps showing solving for IC soon.

Summary of solutions found

z=-2(cit+c)t

Solved as second order ode using Kovacic algorithm
Time used: 0.044 (sec)

Writing the ode as

2z —2x' + 2z =0
A"+ Bx' +Cz =0

Comparing (1) and (2) shows that

A=t
B= -2t
CcC=2

Applying the Liouville transformation on the dependent variable gives
2(t) = zel 22 %t
Then (2) becomes
2"(t) = rz(t)

Where r is given by
s
r=-
t
2AB' —2BA’ + B? — 4AC

4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

T:I

1)
2)

(4)

(6)
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Comparing the above to (5) shows that

Therefore eq. (4) becomes
Z'(t) =0 (7)

Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-
formation

z=2(t)e 2

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a8""} {"'7_67_47_27(),2’3?475,6,"'}
2 Need to have at least one pole that no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 2.32: Necessary conditions for each Kovacic case

The order of r at co is the degree of ¢ minus the degree of s. Therefore
O(00) = deg(t) — deg(s)
=0—-—o00
= 00
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=1]
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Since r = 0 is not a function of ¢, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

21 (t) =1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from

1B
xr, = zlef_izdt

1-2t
= zle—f 72 dt

=2 eln(t)

=2z (t)

Which simplifies to
r1 = t

The second solution z5 to the original ode is found using reduction of order

ef_%dt
To = T 1,'2 dt

1

Substituting gives

ef——t—gtdt
To = T1 ﬁdt
x1

Therefore the solution is

T = C1%1 + C2T2

= a(t) + e (t(?))

Will add steps showing solving for IC soon.

Summary of solutions found

.’IJZCgt2+Clt
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Solved as second order ode adjoint method
Time used: 0.276 (sec)

In normal form the ode

t’z" —2tx' + 22 =0 (1)
Becomes
=" +p(t) '+ q(t) z = r(?) (2)
Where
p(t) = —%
q(t) = t%
r(t) =
The Lagrange adjoint ode is given by
£ —(Ep) +€g=0
() (5
£"(t) + @ =0

Which is solved for £(t). This is second order ode with missing dependent variable £.
Let

p(t) =¢
Then
o) =¢"
Hence the ode becomes
p(t)+ 20 _g

t

Which is now solve for p(t) as first order ode. In canonical form a linear first order is

P'(t) + q(t)p(t) = p(t)
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Comparing the above to the given ode shows that

2
t) ==
q(t) =
p(t) =0
The integrating factor u is
p=e [qdt
= ef %dt
= ¢2
The ode becomes
d
0
q tﬂp
d
a Pt =0

Integrating gives

pt2=/0dt-|—cl

:cl

Dividing throughout by the integrating factor #? gives the final solution

C1

p(t) = 2

For solution (1) found earlier, since p = £’ then we now have a new first order ode to
solve which is

!
=

Since the ode has the form ¢’ = f(¢), then we only need to integrate f(t).

fe= ]

§= —% +c
Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

£(t) 2’ — 2€'(t) + £(t) p(t) © = /sraﬁ

< +2{o0-£3) -
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/ _E_ 2! _
z +x< : t2(—%+cz)> =0

Which is now a first order ode. This is now solved for z. In canonical form a linear first
order is

' +q(t)z = p(t)

Comparing the above to the given ode shows that

_202t +c
t)=——F""7"—
q( ) t (—Czt + Cl)
p(t) =0
The integrating factor u is
L= efth
— ol — eyt
_ 1
o (Cgt — Cl) t
The ode becomes
d
E =0
df_ . \_,
dt¢ (62t — Cl) t
Integrating gives
x
—— = [ 0dt
(Cgt — Cl) t / + €3
= 03
Dividing throughout by the integrating factor —2— gives the final solution

(Cgt—cl)t

z = (cot — 1) tes
Hence, the solution found using Lagrange adjoint equation method is

z = (cot — 1) tes
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The constants can be merged to give

= (ct—cy)t

Will add steps showing solving for IC soon.

Summary of solutions found

x=(ct—cy)t
Maple step by step solution

Let’s solve
t2z" — 2tx’' + 22 =10

° Highest derivative means the order of the ODE is 2
ml/

° Isolate 2nd derivative
v= g

. Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
x’ — QT”CI +2=0

° Multiply by denominators of the ODE
2" — 2tx’ + 22 =0

° Make a change of variables
s=1In(t)

OJ Substitute the change of variables back into the ODE
o Calculate the 1st derivative of x with respect to t , using the chain rule

r' = (Lz(s)) §'(¢)
o Compute derivative

= a(s)
t

o Calculate the 2nd derivative of x with respect to t , using the chain rule
2" = (La(s)) ) +5"(1) (£a(s))

o Compute derivative

T =

a2
"no__ ﬁ‘”(s) d%m(s)
=% e

Substitute the change of variables back into the ODE

of Lyals)  La(s) d
2| 4 — & —25x(s) +2x(s) =0

t2 t2
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° Simplify
%x(s) - S%w(s) +2z(s) =0

° Characteristic polynomial of ODE
r?—3r+2=0

° Factor the characteristic polynomial
(r—1)(r—2)=0

° Roots of the characteristic polynomial
r=(1,2)

° 1st solution of the ODE
z1(s) = ¢€°

° 2nd solution of the ODE
To(s) = €%

° General solution of the ODE
z(s) = Clzy1(s) + C2xz5(s)

° Substitute in solutions
z(s) = Cle* + C2e*

o Change variables back using s = In (¢)
z=C2¢+ CIt

° Simplify

z=1t(C2t+ C1)

Maple trace

-

"Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

<- LODE of Euler type successful”
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Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 11

‘dsolve(t"2*diff(diff(x(t),t),t)-2*t*diff(x(t),t)+2*x(t) =0,
‘ x(t) ,singsol=all)

T =t(ct + 1)

Mathematica DSolve solution

Solving time : 0.16 (sec)
Leaf size : 133

‘ DSolve[{t~2*xD[x[t],{t,2}]-2«D[x[t],t]+2*x[t]==0,{3}},
‘ x[t],t,IncludeSingularSolutions->True]

(A=) 1 , ) 1 /7 ) 2
z(t) = 2 (V7 )té ¥ (@t’ﬁ HypergeometriclF1 <—§ — %, 1—iV7, —¥>
+ 2"V'c; HypergeometriclF1 52 (z + \/7) , 1+ 2\/_, —3
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2.2.4 problem 5 (i)

Solved as second order linear constant coeffode . . . . . . . .. [374]
Solved as second order ode using Kovacic algorithm . . . . . . . 376}
Solved as second order ode adjoint method . . . . . .. ... .. 379
Maple step by step solution . . . . . .. ... ... ... .. .. 383
Mapletrace . . . . . . . . . . .. 384
Maple dsolve solution . . . .. ... ... ... .. .......
Mathematica DSolve solution . . . . .. .. ... ... .....

Internal problem ID [18193]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 4. Autonomous systems. Exercises at page 69

Problem number : 5 (i)

Date solved : Thursday, December 19, 2024 at 06:17:52 PM

CAS classification : [[_2nd_order, _missing x]]

Solve

2" =5z +6x=0

Solved as second order linear constant coeff ode
Time used: 0.059 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Az"(t) + Bz'(t) + Cz(t) = 0

Where in the above A = 1, B = —5,C = 6. Let the solution be z = e*. Substituting
this into the ODE gives
Mer — 5 et + 66 =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
N —5A+6=0 (2)
Equation (2) is the characteristic equation of the ODE. Its roots determine the general

solution form.Using the quadratic formula

—B 1
= — _— 2 _
)\1,2 A 94 B 4AC
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Substituting A =1, B = —5,C = 6 into the above gives

5 1
Ao = + —52—(4)(1) (6
5 1
=3%3
Hence
5 1
M=5t0
5 1
A=5735
Which simplifies to
A =3
Ay =2

Since roots are real and distinct, then the solution is

T = cieMt + cpe™

z = c;e® 4 cpe®?

Or

r=cC et + ¢y e?t

Will add steps showing solving for IC soon.

Summary of solutions found

r=qC et + ¢ e?t
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Figure 2.71: Slope field plot

' —5x' +6x=0

Solved as second order ode using Kovacic algorithm

Time used: 0.055 (sec)

Writing the ode as

0
0

x” — bx' + 6z
Ax" + Bz + Czx

Comparing (1) and (2) shows that

(3)

Applying the Liouville transformation on the dependent variable gives

B
54 dt

2(t) = zel

Then (2) becomes

(4)

2"(t) = rz(t)
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Where r is given by

s
r=-

¢
2AB' —2BA' 4+ B? — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

1
r=-
Comparing the above to (5) shows that
s=1
t=4
Therefore eq. (4) becomes
np) = 20

(5)

(7)

Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-

formation

x = 2z(t) e~/ 2xdt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There

are 3 cases depending on the order of poles of 7 and the order of r at co. The following

table summarizes these cases.

Case Allowed pole order for r Allowed value for O(o0)
1 {0’1)274,6a8>"'} {"'a_67_47_270,2’37475a6a"'}
2 Need to have at least one pole that no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,- -}

Table 2.34: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(00) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = }1 is not a function of ¢, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

Nl

z1(t) =e”

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from

Which simplifies to

7, = e

The second solution x5 to the original ode is found using reduction of order

Substituting gives

=1 (e5te—4t)



379

=c (eZt) + Cy (62t (e5te—4t))
z=c e’ +cye®

T = C1Z1 + Caxo

BOOK SOLVED PROBLEMS

Will add steps showing solving for IC soon.

Summary of solutions found

Therefore the solution is
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Figure 2.72: Slope field plot
2" —52'+6x=0
2" —5x +6x=0

Solved as second order ode adjoint method

Time used: 0.293 (sec)
In normal form the ode
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Becomes
2" +p@) ' + q(t) z = r(t) (2)
Where
p(t) = =5
q(t) =6
r(t) =0

The Lagrange adjoint ode is given by
£ —(Ep) +€4=0
€' — (=5¢(t)) + (6£(t)) = 0
¢"(t) +5¢'(t) +6£(t) =0

Which is solved for £(¢). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Ag"(t) + BE'(t) + CE(t) = 0

Where in the above A =1, B = 5,C = 6. Let the solution be £ = e**. Substituting this
into the ODE gives
e 4 5 e + 66 =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
AN 4+5A4+6=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

B 1

- 4+ /B2
12 2A:|:2A B? —4AC
Substituting A =1, B =5,C = 6 into the above gives
-5 1
AL = + V52— (4) (1) (6)
SOOI (
5 1
=4
22
Hence
5 1
M=ot
5 1
=572
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Which simplifies to

Since roots are real and distinct, then the solution is

é' — cle/\1t + cze)\gt

¢ = c1el2 + cpel=

E=cre? fcpe

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

5(t>x’—z§'()+ft)pt>x—/§ r(t ) dt
s ) _ [E0)
* (p“) ()) §<t>

—2c1e7 % — 3¢y e 0
—2t -3t -
cie“t4+cye

x'+x(—5—

Which is now a first order ode. This is now solved for z. In canonical form a linear first
order is

o' +q(t)z = p(t)

Comparing the above to the given ode shows that

ot) = — 2coe7t + 3¢y
e t+c
p(t) =
The integrating factor u is
p= efth
= ef 22 Z—tiifl dé
o3t

coet+ ¢
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The ode becomes

. _
a”
d T e—3t _
dt\coet+e )
Integrating gives
—3t
# = /0 dt + C3
e '+
= C3

e—3t

o etre glves the final solution

Dividing throughout by the integrating factor
z=e*(cief+¢)cs

Hence, the solution found using Lagrange adjoint equation method is

z=e*(c1e' +c)cs

The constants can be merged to give

z =e* (01 el + 02)

Will add steps showing solving for IC soon.

Summary of solutions found

z=e*(c1e' + )
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Figure 2.73: Slope field plot

' —5x' +6x=0

Maple step by step solution

Let’s solve

0

" — bz’ + 6z

Highest derivative means the order of the ODE is 2

xl/
Characteristic polynomial of ODE

r>—5r+6=0

Factor the characteristic polynomial
(r—2)(r—3)

0

Roots of the characteristic polynomial

(2,3)
1st solution of the ODE

r

— o2

.’El(t)

2nd solution of the ODE

— ot

(1)

General solution of the ODE
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° Substitute in solutions
x=C1e*+4+ C2e%

Maple trace

-

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful’

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 17

e

dsolve(diff (diff (x(t),t),t)-5*diff (x(t),t)+6*x(t) = O,
L x(t) ,singsol=all)

z=c et +cye®

Mathematica DSolve solution

Solving time : 0.013 (sec)
Leaf size : 20

p
'DSolve[{D[x[t],{t,2}]-5*D[x[t],t]+6*x[t]==0,{}},
x[t],t,IncludeSingularSolutions->True]

z(t) = e*(cae’ + 1)
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2.2.5 problem 5 (ii)

Solved as second order linear constant coeffode . . . . . . . ..
Solved as second order solved by an integrating factor . . . . .
Solved as second order ode using Kovacic algorithm . . . . . . .
Solved as second order ode adjoint method . . . . . . . ... .. 3911
Maple step by step solution . . . . . .. ... ... ... ...,
Maple trace . . . . . . . . ..
Maple dsolve solution . . . .. ... ... ... .........
Mathematica DSolve solution . . . . .. ... ... .......

Internal problem ID [18194]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 4. Autonomous systems. Exercises at page 69

Problem number : 5 (ii)

Date solved : Thursday, December 19, 2024 at 06:17:52 PM

CAS classification : [[_2nd_order, _missing x]]

Solve

2 —4x' +4x =0

Solved as second order linear constant coeff ode
Time used: 0.061 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Az"(t) + Bz'(t) + Cz(t) = 0

Where in the above A = 1, B = —4,C = 4. Let the solution be z = e*. Substituting
this into the ODE gives

Me* —4)e* + 46 =0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
M —4A+4=0 (2)
Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—B 1
— /B2 —
/\1’2 = 9 9 B 4AC
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4 into the above gives

Substituting A =1,B = —4,C

N (—4) — (4) (1) (4)

2

@O

A2

Hence this is the case of a double root ;3 = —2. Therefore the solution is

1)

T = cle2t + cot et

Will add steps showing solving for IC soon.

Summary of solutions found

T = ¢y €%t + cot e
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Figure 2.74: Slope field plot

' — 4z +4x =0
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Solved as second order solved by an integrating factor
Time used: 0.033 (sec)

The ode satisfies this form

2" +p(t) =’ + (p(®) +2p @) _ f)

Where p(t) = —4. Therefore, there is an integrating factor given by

M (x) = ez /rd
:ef—4dx

— e—2t

Multiplying both sides of the ODE by the integrating factor M (z) makes the left side
of the ODE a complete differential

(M(z)x)" =0
(e—th) " _ 0

Integrating once gives
Integrating again gives

Hence the solution is

T = cite® + cye?

Will add steps showing solving for IC soon.

Summary of solutions found

T = cite® + cy e
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Figure 2.75: Slope field plot

' — 42 +4x =0

Solved as second order ode using Kovacic algorithm

Time used: 0.047 (sec)

Writing the ode as

0
0

' — 4z’ + 4z =

Ax" + Bz + Czx

Comparing (1) and (2) shows that

=1

A
B

(3)

—4

C=14

Applying the Liouville transformation on the dependent variable gives

B
54 dt

2(t) = zel

Then (2) becomes

(4)

2"(t) = rz(t)
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Where r is given by

s
r=-

¢
2AB' —2BA' 4+ B? — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

r= 9
1
Comparing the above to (5) shows that
s=0
t=1
Therefore eq. (4) becomes
2'(t) =0

(5)

(7)

Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-

formation

z=2(t)e S ead

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following

table summarizes these cases.

Case Allowed pole order for r Allowed value for O(o0)
1 {0’192a4,6a8)"'} {"'a_6a_4a_2a0,2’3’4a576a"'}
2 Need to have at least one pole that no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2, 5}.
3 {1,2} {2,3,4,5,6,7,- -}

Table 2.36: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0—-—o00
= 00
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=11

Since r = 0 is not a function of ¢, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

Z1 (t) =1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from

1B
T = Zlef_iidt

Which simplifies to

2, = e

The second solution x5 to the original ode is found using reduction of order

ef—%dt
1722171/ dt

Ty

Substituting gives
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Therefore the solution is

T = C1Z1 + Caxo

=C (e2t) + co (e2t (t))

Will add steps showing solving for IC soon.

Summary of solutions found

T =c e +cyte?
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Figure 2.76: Slope field plot

' — 42 +4x =0

Solved as second order ode adjoint method

Time used: 0.148 (sec)

In normal form the ode

(1)

2 —4x' +4x =0
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Becomes
" +p@) 2 + q(t) z = r(t) (2)
Where
p(t) = —4
q(t) = 4
r(t) =0

The Lagrange adjoint ode is given by

¢ — (&p) +¢q
¢ — (—4€(1) + (4£(1))
&'(t) +4€'(t) + 4£(t)

0
0
0

Which is solved for £(t). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

AE"(t) + BE'(t) + CE(t) = 0

Where in the above A = 1, B = 4, C' = 4. Let the solution be £ = e*. Substituting this
into the ODE gives
Aer 44 e + 46 =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
N4+4r+4=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
— /B2 —
)\1,2 = 9 9 B 4AC

Substituting A = 1, B = 4, C = 4 into the above gives

—4 1
“O0 0
= -2

Az V@ = (@) (1) (4)

Hence this is the case of a double root A 2 = 2. Therefore the solution is

E=cie 2 fcte™ (1)
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Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

£(t)a — 2€/(t) + E() plt) o = /s
z'-l—x( g) t) dt

—2cie7 % 4 cpe —2cpte™ 0
cre 2 4+ cote™2t

x'+x(—4—

Which is now a first order ode. This is now solved for z. In canonical form a linear first
order is

7' +q(t)z = p(t)

Comparing the above to the given ode shows that

2Czt + 261 + Co

t) = —
q(t) cot+ ¢
p(t) =0
The integrating factor u is
p= efth
= e‘[ m‘gfijcllwdt
o2t
- Czt +c
The ode becomes
d .
at”
d T e—2t _
dt Cgt +c N
Integrating gives
—2t
Lo / 0 dt + C3
cot+ ¢
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gives the final solution

e72t
cat+c

(Cgt + Cl) 62t03
(cat + c1) €*cs
(cat +c1) e
(cat +c1) e

T
T

T
T

BOOK SOLVED PROBLEMS

Hence, the solution found using Lagrange adjoint equation method is

Dividing throughout by the integrating factor
The constants can be merged to give

Will add steps showing solving for IC soon.
Summary of solutions found
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Figure 2.77: Slope field plot
2 —4r' +4x =0
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Maple step by step solution

Let’s solve
' —4x' +4x =0
° Highest derivative means the order of the ODE is 2

7

x
. Characteristic polynomial of ODE
r2—4r+4=0
° Factor the characteristic polynomial
(r—27%=0
° Root of the characteristic polynomial
r=2
° 1st solution of the ODE
71(t) = e?
° Repeated root, multiply z1(¢) by ¢ to ensure linear independence
To(t) =te*

° General solution of the ODE
xz = Clz;(t) + C2x4(t)

° Substitute in solutions
x = C1e* + Cote?

Maple trace

"Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

<- constant coefficients successful"

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 14

‘ dsolve(diff (diff (x(t),t),t)-4*xdiff(x(t),t)+4*x(t) = 0,
‘ x(t) ,singsol=all)

T = (cot +c1)e*
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Mathematica DSolve solution

Solving time : 0.013 (sec)
Leaf size : 18

'DSolve[{D[x[t],{t,2}]-4*D[x[t],t]+4*x[t]==0,{}},
‘ x[t],t,IncludeSingularSolutions->True]

z(t) — e*(cot + 1)
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2.2.6 problem 5 (iil=i)

Solved as second order linear constant coeffode . . . . . . . ..
Solved as second order ode using Kovacic algorithm . . . . . . . 399
Solved as second order ode adjoint method . . . . . .. ... .. 403l
Maple step by step solution . . . . . .. ... ... ... .. .. 406
Maple trace . . . . . . . . . .. 407
Maple dsolve solution . . . .. ... ... ... .. ....... 407
Mathematica DSolve solution . . . . .. .. ... ... ..... 407

Internal problem ID [18195]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 4. Autonomous systems. Exercises at page 69

Problem number : 5 (iil=i)

Date solved : Thursday, December 19, 2024 at 06:17:53 PM

CAS classification : [[_2nd_order, _missing x]]

Solve

2" — 4z +5x =0

Solved as second order linear constant coeff ode
Time used: 0.090 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Az"(t) + Bz'(t) + Cz(t) = 0

Where in the above A = 1, B = —4,C = 5. Let the solution be z = e*. Substituting
this into the ODE gives
Mer —4ref* +5e* =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives

N —4\+5=0 (2)
Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—B 1
= — _— 2 _
)\1,2 A 94 B 4AC
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Substituting A = 1, B = —4,C = 5 into the above gives

4 1
Ao = + —42 — (4) (1) (5
=2+1

Hence

Ao=2—1
Which simplifies to

M=2+1

Ao =2—1

Since roots are complex conjugate of each others, then let the roots be

)\1’2 = :]:’L,B

Where a = 2 and 8 = 1. Therefore the final solution, when using Euler relation, can
be written as
z = e*(c; cos(Bt) + ¢y sin(Bt))

Which becomes
z = €*(cy cos (t) + cy sin (t))

Will add steps showing solving for IC soon.

Summary of solutions found

x = e*(c; cos (t) + ¢y sin (t))
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Figure 2.78: Slope field plot

' — 42 + 52 =0

Solved as second order ode using Kovacic algorithm

Time used: 0.105 (sec)

Writing the ode as

0
0

"’ — 42’ + 5z
Ax" + Bz + Czx

Comparing (1) and (2) shows that

(3)

Applying the Liouville transformation on the dependent variable gives

B
54 dt

2(t) = zel

Then (2) becomes

(4)

2"(t) = rz(t)
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Where r is given by

s
r=-

¢
2AB' —2BA' 4+ B? — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

-1
r=—

1
Comparing the above to (5) shows that

s=-1
t=1

Therefore eq. (4) becomes

2" (t) = —2(t)

(5)

(7)

Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-

formation

z=2(t)e S ead

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following

table summarizes these cases.

Case Allowed pole order for r Allowed value for O(o0)
1 {0’192a4,6a8)"'} {"'a_6a_4a_2a0,2’3’4a576a"'}
2 Need to have at least one pole that no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2, 5}.
3 {1,2} {2,3,4,5,6,7,- -}

Table 2.38: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(o0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=11

Since r = —1 is not a function of ¢, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(t) = cos (t)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from

1B
T = Zlef_iidt

Which simplifies to

z1 = e* cos (t)

The second solution x5 to the original ode is found using reduction of order

ef—%dt
1722171/ dt

Ty

Substituting gives
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Therefore the solution is

T = C1Z1 + Caxo

= c1(e* cos (t)) + c2(€* cos (t) (tan (1))

Will add steps showing solving for IC soon.

Summary of solutions found

T = c; e* cos (t) + cy e* sin (t)
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Figure 2.79: Slope field plot

' — 42’ +52 =0
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Solved as second order ode adjoint method
Time used: 0.615 (sec)

In normal form the ode

" — 4z’ + 52 =0 (1)
Becomes
2" +pi) 2 + q(t) z = r(t) (2)
Where
p(t) = —4
q(t) =5
r(t) =0

The Lagrange adjoint ode is given by
£ —(€p) +&g=0
€ — (~4(t)) + (5(t)) = 0
§"(t) + 4¢'(t) + 5¢(t) = 0

Which is solved for £(t). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

AL"(t)+ BE'(t) + CE(t) =0

Where in the above A = 1, B = 4,C = 5. Let the solution be £ = e**. Substituting this
into the ODE gives
A +4re + 5 =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
N 4+4+5=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — e 2 _
)\172 2A + 24 B 4AC
Substituting A = 1, B =4,C = 5 into the above gives

—4 1 2 _
M= E Ve - @6

=—-2=%1
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Hence
A1=—-2+41
Ao=—-2—1
Which simplifies to
A =—-2+1
Ao =—2—1

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :]:’L,B

Where oo = —2 and B = 1. Therefore the final solution, when using Euler relation, can
be written as

£ = e*(cy cos(Bt) + cysin(fBt))

Which becomes
¢ = e *(cy cos (t) + cysin (t))

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode
§t) ' —xg'(t) + () pt)z = [ £(F)
' +z (p(t) (t; ) J&®)

£(t 3 (t)
Or
ol —a (—2e72(cy cos (t) + cosin (t)) + €72 (—cy sin () + co cos (t))) €* _
+ ( 4 c1 cos (t) + ¢y sin (t) ) 0

Which is now a first order ode. This is now solved for z. In canonical form a linear first
order is

' +q(t)z = p(t)
Comparing the above to the given ode shows that

_ (2¢1 + cp) cos (t) —sin (¢) (1 — 2¢2)
c1 cos (t) + ¢ sin (2)
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The integrating factor u is

'u:efth

(2¢1 +ep) cos(t) —sin(t) (c; —2¢p)
S = e T ey (e~ dt

=e€

In(14tan(t)2
—e ln(tan(t)02+cl)+W—2t

The ode becomes

a
dt”

i re 1n(tan(t)cz+cl)+w—2t —

dit

Integrating gives
n an 2
re ln(tan(t)cz—l—cl)-l—w—% — 0dt+ cs
= C3

In(1+tan(t)?
Dividing throughout by the integrating factor e~ m(tan(t)ezt+ei)+ ( 2 ) gives the

final solution
In 1> +2t
T = (tan (t) co + Cl) e (\/1+tan(t)2 c3

Hence, the solution found using Lagrange adjoint equation method is
In 1>+2t
T = (tan (t) cy + Cl) e (\/1+tan(t)2 c3
The constants can be merged to give

In 1>+2t
x = (tan (t)ca +c1)e <¢m

Will add steps showing solving for IC soon.

Summary of solutions found

In 1>+2t
z = (tan (t) e +c1)e <\/m
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r2—d4r+5=0

Use quadratic formula to solve for r

Roots of the characteristic polynomial

r

(2-1,241)
1st solution of the ODE

e? cos (t)

2nd solution of the ODE

.’El(t)

e sin (t)

General solution of the ODE

Ta(t)
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) Substitute in solutions
z = C1e* cos(t) + C2 e*sin (¢)

Maple trace

/

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful”

Maple dsolve solution

Solving time : 0.001 (sec)
Leaf size : 18

e

L x(t) ,singsol=all)

dsolve(diff (diff(x(t),t),t)-4*diff (x(t),t)+5*x(t) = 0,

x = e*(cy sin (t) + ¢z cos (1))

Mathematica DSolve solution

Solving time : 0.015 (sec)
Leaf size : 22

p
\ DSolve [{D[x[t],{t,2}]1-4*D[x[t],t]+5*x[t]==0,{}},
L x[t],t,IncludeSingularSolutions->True]

z(t) — €*(cy cos(t) + c; sin(t))
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2.2.7 problem 5 (iv)

Solved as second order linear constant coeffode . . . . . . . .. 408]
Solved as second order linear exactode . . . . . . ... ... .. AT0)
Solved as second order missing yode . . . ... ... ... ... 412
Solved as second order integrable asisode . . . . ... ... .. 415
Solved as second order integrable as is ode (ABC method) . . . HI6I
Solved as second order ode using Kovacic algorithm . . . . . . . 4T8]
Solved as second order ode adjoint method . . . . . . ... ... 421
Maple step by step solution . . . . ... ... ... ... ..., 425
Maple trace . . . . . . . . . .. 425
Maple dsolve solution . . . .. ... ... ... .. ....... 425
Mathematica DSolve solution . . . . . ... ... ........ 4206

Internal problem ID [18196]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 4. Autonomous systems. Exercises at page 69

Problem number : 5 (iv)

Date solved : Thursday, December 19, 2024 at 06:17:54 PM

CAS classification : [[_2nd_order, _missing_x]]

Solve

2" +32x' =0

Solved as second order linear constant coeff ode
Time used: 0.065 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Az"(t)+ Bx'(t) + Cz(t) =0

Where in the above A =1, B = 3,C = 0. Let the solution be z = e**. Substituting this
into the ODE gives
Mer +3\e" =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives

M +32=0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — 4+ 2 _
12 54 T o4 B? —4AC
Substituting A =1, B = 3,C = 0 into the above gives
Mo = o /3 (@) (1) 0)
PO @0
3. 3
= - 4=
2 2
Hence
3 3
M=Tpty
3 3
M=
Which simplifies to
A1=0
A2 =-3

Since roots are real and distinct, then the solution is

T = 1M + cpe™

z = c;e0 4 cpe=3

Tr=c +cy e 3t

Will add steps showing solving for IC soon.

Summary of solutions found

r=c +cy e 3t
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Figure 2.81: Slope field plot
.,L.// + 3x/

Solved as second order linear exact ode

Time used: 0.125 (sec)

An ode of the form

p(t)z" + q(t) ' +r(t) z = s(t)

is exact if

(1)

p'(t) -4 ) +r(t) =0

For the given ode we have

— Mn O O

Hence
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Therefore (1) becomes
0—-(0)+(0)=0
Hence the ode is exact. Since we now know the ode is exact, it can be written as
(p(t) 2" + (q(t) — P'(t)) )’ = s(z)
Integrating gives
PO + () - P O)z = [ o) dt

Substituting the above values for p, q,r, s gives

2 +3z=c
We now have a first order ode to solve which is

2 +3z=c
Integrating gives

1
/ ————dz=dt
=3+
In(=3z+ac)

3
Applying the exponential to both sides gives

=t+c

In{ ——
en((—3z+cl)1/3> — et+c2

1 ¢

——=¢€c
(=3z 4 ¢;)? ’
Singular solutions are found by solving
—3r+c,=0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
T3

Solving for z gives
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Will add steps showing solving for IC soon.

Summary of solutions found
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Figure 2.82: Slope field plot

0

" + 3z

Solved as second order missing y ode

Time used: 0.260 (sec)

This is second order ode with missing dependent variable z. Let

p(t) =2

Then

p/(t) — x//
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Hence the ode becomes
p'(t)+3pt) =0

Which is now solve for p(t) as first order ode. Integrating gives

1
——dp =dt
(/ %p
In

Applying the exponential to both sides gives

1
eln(p1/3 ) — et+c1

]‘ _ t
p

Singular solutions are found by solving
—3p=0

for p(t). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(t) =0
Solving for p(t) gives
p(t) =0
p(t) =cre™

For solution (1) found earlier, since p = z’ then we now have a new first order ode to
solve which is

=0

Since the ode has the form 2’ = f(t), then we only need to integrate f(t).

/dx—/Odt—i—cQ

r = Co

For solution (2) found earlier, since p = z’ then we now have a new first order ode to
solve which is

x=ce”
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f(t), then we only need to integrate f(t).

[

Will add steps showing solving for IC soon.

Since the ode has the form z’

= / cre 3t dt

+c3

cpe3t

Summary of solutions found
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Figure 2.83: Slope field plot
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.,L.// + 3.7;/
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Solved as second order integrable as is ode
Time used: 0.061 (sec)
Integrating both sides of the ODE w.r.t ¢ gives

/ (2" +32') dt = 0
2 +3z=c
Which is now solved for x. Integrating gives

/ ;dz =dt
—3x+c;
In(=3z+a)

3
Applying the exponential to both sides gives

=t+co

Im{ —1
en((—3z+cl)1/3> — et+c2

1 ¢

—— =¢€'c
(=3 +¢1)"?
Singular solutions are found by solving
—3x + Cc = 0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

r=2
3
Solving for z gives
1
xr=—
3
_ (a edlcs — 1) e 3
3c3

Will add steps showing solving for IC soon.

Summary of solutions found




416

BOOK SOLVED PROBLEMS

CHAPTER 2.

i o]

P L L B L B i i

\\\\1\\\\1\\\\\\\\\\\\.
P P L P e e i

R i

T T T T T T T T e e e e e — |
— = 7 T T T T T e e — |

R i

T T T T T e e e — |
R i

R i

e e e e e e — |

P L L B L B i i

o e — |
B e B e e S e e |

T e e e e e o

— T T T T e e e — [
R i

R i

— T T T T T e e e — — |

e ¥ a4 & AT ¢

x'(2)

=0

Figure 2.84: Slope field plot
.,L.// + 3x/

Solved as second order integrable as is ode (ABC method)

Time used: 0.056 (sec)

Writing the ode as

2" +32 =0

Integrating both sides of the ODE w.r.t ¢ gives

/(z” +32)dt =0

2+3x=¢

Which is now solved for x. Integrating gives

1 dr =dt

=3+

/

t+02

In (=32 + ¢;)

3
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)
3c3

1
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for z. This is because we had to divide by this in the above step. This gives the following

singular solution(s), which also have to satisfy the given ODE.

Applying the exponential to both sides gives
Will add steps showing solving for IC soon.

Singular solutions are found by solving

CHAPTER 2.
Solving for x gives

© ¥ a o & T s 0

x'(2)
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Solved as second order ode using Kovacic algorithm
Time used: 0.054 (sec)
Writing the ode as
"+ 32" =0 (1)
Az"+ B+ Cz =0 (2)

Comparing (1) and (2) shows that

Q T =
|
o w =

Applying the Liouville transformation on the dependent variable gives
2(t) = ze/ 24 dt
Then (2) becomes
2" (t) = rz(t)

Where r is given by
s
r=-
t
2AB' —2BA’ + B? — 4AC

4A?

Substituting the values of A, B, C from (3) in the above and simplifying gives

r= 9
4
Comparing the above to (5) shows that
S =
t =
Therefore eq. (4) becomes
9z(t
o = &0

(3)

(7)
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Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-
formation

z = z(t) e~ )2t

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(o0)
1 {Oa1727476a8""} {'"7_67_47_27072a3747576a"'}
2 Need to have at least one pole that no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2, 5}.
3 {1,2} {2,3,4,5,6,7,"'}

Table 2.40: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢t minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = % is not a function of ¢, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z” = rz as one solution is



CHAPTER 2. BOOK SOLVED PROBLEMS 420

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from

1B
Ty = zlef_ixdt

Which simplifies to

T =e%

The second solution x5 to the original ode is found using reduction of order

ef_%dt
To = Tq 3 dt
1

Substituting gives

Therefore the solution is

T = C1X1 + C2Z2
e3t
=c(e™) 4+ (e_3lt (?>)

Will add steps showing solving for IC soon.

Summary of solutions found

_ &)
r=ce 3t+§
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=0

.,L.// + 3x/

Solved as second order ode adjoint method

Time used: 0.267 (sec)

In normal form the ode

(1)

2" +32x' =0

Becomes

(2)

' +p(t) 2’ +q(t) z = r(t)

Where

The Lagrange adjoint ode is given by

0

¢ —(€p) +¢&q
¢ — (3¢(t)) +(0)=0

0

§"(t) — 3¢'(2)
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Which is solved for £(¢). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

AE"(t) + BE'(t) + C&(t) =0

Where in the above A =1, B = —3,C = 0. Let the solution be ¢ = e*. Substituting
this into the ODE gives
Mer —3xef* =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
M —-31=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= —+—+VB2—4A
A12 54 + 54 B C
Substituting A =1, B = —3,C = 0 into the above gives
Mz = oo & L\ /287~ (@) (1) (0)
PO @0
_3,3
2 2
Hence
3 3
M=)
3 3
=575
Which simplifies to
A1=3
=0

Since roots are real and distinct, then the solution is

A1t

E=ce™" + coe?t

€ = c1e® + el

§=01€3t+02
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Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

£(t) 2’ — 2€'(t) + £(t) p(t) « = /s

z'-l—x( g) t) dt

3 3t
dra3o 3 ) g
cle3t—|—02

Which is now a first order ode. This is now solved for z. In canonical form a linear first

order is
'+ q(t)z = p(t)

Comparing the above to the given ode shows that

302
c1 €3 + ¢

p(t)=0

The integrating factor u is

o= efth
3co
_ e

o3t
c1 €3 + ¢y

The ode becomes

Integrating gives

3t
L:/Odt+03

c1e3t 4 ¢y

=03
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gives the final solution

&3t
c1 e3t4co

_3t
C3 (01 +coe 3 )
c1+ cye 3
c1 + cpe 3
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Hence, the solution found using Lagrange adjoint equation method is

Dividing throughout by the integrating factor
The constants can be merged to give

Will add steps showing solving for IC soon.
Summary of solutions found

CHAPTER 2.

e ¥ & & A& T s ¢

x'(2)
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Maple step by step solution

Let’s solve
2’ +32' =0

° Highest derivative means the order of the ODE is 2
xll

. Characteristic polynomial of ODE
r2+3r=0

° Factor the characteristic polynomial
r(r+3)=0

° Roots of the characteristic polynomial
r=(-3,0)

° 1st solution of the ODE
z1(t) =73

° 2nd solution of the ODE
zo(t) =1

° General solution of the ODE
x = Clz;1(t) + C2x4(t)

° Substitute in solutions
z=Cle 3+ (C2

Maple trace

"Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful’

Maple dsolve solution

Solving time : 0.003 (sec)
Leaf size : 12

‘dsolve(diff (diff (x(t),t),t)+3*diff (x(t),t) = O,
‘ x(t) ,singsol=all)

T=c+cpe
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Mathematica DSolve solution

Solving time : 0.015 (sec)
Leaf size : 19

‘DSolve [{D[x[t],{t,2}]+3+D[x[t],t]==0,{}},
‘ x[t],t,IncludeSingularSolutions->True]

1
z(t) = co — gcle_‘%
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2.2.8 problem 6 (i)
Existence and uniqueness analysis . . . . . . ... ... ... .. 427
Solved as second order linear constant coeffode . . . . . . . .. 428]
Solved as second order ode using Kovacic algorithm . . . . . . . 430
Solved as second order ode adjoint method . . . . . .. ... .. 433l
Maple step by step solution . . . . ... ... ... ....... 437

Maple trace . . . . . . . .. ...
Maple dsolve solution . . . ... ... .......
Mathematica DSolve solution . . . . ... ... ..

Internal problem ID [18197]

433
433
438

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 4. Autonomous systems. Exercises at page 69
Problem number : 6 (i)

Date solved : Thursday, December 19, 2024 at 06:17:55 PM
CAS classification : [[_2nd_order, _missing x]]

Solve
2 =32 +2x =0

With initial conditions

Z'(0)=1

Existence and uniqueness analysis
This is a linear ODE. In canonical form it is written as
" +pt)z' + q(t)z = F

Where here

=
—~
S N
o
o N

w

Hence the ode is

2 =32 +2x =0
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The domain of p(t) = —3 is
{—00 <t < o0}

And the point to = 0 is inside this domain. The domain of ¢(t) = 2 is

{—o0 <t < o0}

And the point £y = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode
Time used: 0.111 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ax"(t) + Bx'(t) + Cz(t) = 0

Where in the above A = 1, B = —3,C = 2. Let the solution be z = e*. Substituting
this into the ODE gives
M —3)e* 4+ 26 =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
N —3\+2=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—-B 1

= — 4+ 2 _
A12 2A:I:ZAB 4AC
Substituting A = 1, B = —3,C = 2 into the above gives
M= s o F (@) (D) ()
PTO T @0
3.1
=273
Hence
3 1
M=ot
3 1
=575
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Which simplifies to
A =2

A =1
Since roots are real and distinct, then the solution is
T = cieM 4 et

z = c1e®! + cpe®’

Tr=cC et + etCQ

Will add steps showing solving for IC soon.

Summary of solutions found

r=¢e—¢
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JI177777)7777777rrs——
10000 5. x10°4 /777 )7 777 NNNANN\
177 /777 7==~=~NNNNNN N
77/77==~~NANNNV VL
7/7=5NNNV VAV VLY
01 O ER LR R R R
—-10 —IS —I6 _'4 _'2 (') ﬁ 2‘ é 0 2. x10° 6. % 10° 1. % 10°
t x(1)
(a) Solution plot (b) Slope field plot

x=e% —¢t 2" —32'+2x=0
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Solved as second order ode using Kovacic algorithm
Time used: 0.062 (sec)
Writing the ode as
" =3z +2x=0 (1)
Az"+ B+ Cz =0 (2)

Comparing (1) and (2) shows that

A=1
B=-3
C=2

Applying the Liouville transformation on the dependent variable gives
2(t) = ze/ 24 dt
Then (2) becomes
2" (t) = rz(t)

Where r is given by
s
r=-
t
2AB' —2BA’ + B? — 4AC

4A?

Substituting the values of A, B, C from (3) in the above and simplifying gives
1

r =

Comparing the above to (5) shows that

Therefore eq. (4) becomes

(3)

(7)
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Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-
formation

z = z(t) e~ )2t

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(o0)
1 {Oa1727476a8""} {'"7_67_47_27072a3747576a"'}
2 Need to have at least one pole that no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2, 5}.
3 {1,2} {2,3,4,5,6,7,"'}

Table 2.42: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢t minus the degree of s. Therefore
O(00) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = }1 is not a function of ¢, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

Nl

z1(t) =e”
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from

_1B
T = zlef 2adt
1-3
:zle_f§Tdt
3¢
:zlez

Which simplifies to

z, =¢e'

The second solution zs to the original ode is found using reduction of order

ef_%dt
To = T :1,'2 dt

1

Substituting gives

ef_?dt
.%'2:.’31/—(:61)2 dt

Therefore the solution is

T = C1T1 + Ca2Z2

= 1) + e (e"e™))

Will add steps showing solving for IC soon.

Summary of solutions found
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433
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(a) Solution plot

x=e% —¢t

Solved as second order ode adjoint method
Time used: 0.311 (sec)

In normal form the ode

2 =32 +2x =0

Becomes
" +p(t)x +qt)z =r(t)
Where
p(t) = -3
q(t) =2
r(t) =0

The Lagrange adjoint ode is given by
€ — (€)' +&

3
¢ — (=3¢6(t)) + (2(0))
¢'(t) +3¢'(t) + 26 (1)

0
0
0

0 2.x10°

|
D 6.x10° 1x100
x(t)

(b) Slope field plot
2’ -3z +2x=0
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Which is solved for £(¢). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

AE"(t) + BE'(t) + C&(t) =0

Where in the above A = 1, B = 3,C = 2. Let the solution be £ = e*. Substituting this
into the ODE gives
Ae* 4 3\e™ + 26 =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
N 4+32+2=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — 4+ —vB2—-4A
A12 54 + 54 B C
Substituting A =1, B = 3,C = 2 into the above gives
Mo = ook B (@) (1) @)
EEOTORNOT0
_ 3,1
272
Hence
3 1
M=t
3 1
=570
Which simplifies to
A =-1
Ao =—2

Since roots are real and distinct, then the solution is

£ =c1eM + e

¢ = cel7V + cpel =21

E=cie i+ e %
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Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

£(t)a — 2€/(t) + E() plt) o = /s
z'-l—x( g) t) dt

—C1 et — 2¢o e 2t
— 2t =0
ciret+coe

x'+x(—3—

Which is now a first order ode. This is now solved for z. In canonical form a linear first
order is

7' +q(t)z = p(t)

Comparing the above to the given ode shows that

coet+2¢
o) = -2 12
c2e '+
p(t) =0
The integrating factor u is
b= efth
o2t
- coet+ ¢
The ode becomes
d .
at”
d xe 2 _
dt\cpet+¢ /)

Integrating gives

—2t
= foae
e '+
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872t

coe~t4cy

Dividing throughout by the integrating factor gives the final solution
z=¢é(ce'+c)cs

Hence, the solution found using Lagrange adjoint equation method is
z=¢e(ce+c)cs
The constants can be merged to give
z=¢e(c1e’ + )

Will add steps showing solving for IC soon.

Summary of solutions found
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Maple step by step solution

Let’s solve

z" — 3z + 2z =0,2(0) =0,z

wll

Characteristic polynomial of ODE
r?—3r+2=0

Factor the characteristic polynomial
(r—1)(r—2)=0

Roots of the characteristic polynomial
r=(1,2)

1st solution of the ODE

z1(t) = €

2nd solution of the ODE

To(t) = e

General solution of the ODE

z = Clzy(t) + C2z5(t)

Substitute in solutions

z=Cle + C2e*

Check validity of solution z = _ Clet +__ C2%*

Use initial condition z(0) = 0
0=_Ci1+_0C2

Compute derivative of the solution
¥ =_Clet+2 (2%

Use the initial condition z’ 1

{t=0} B
1=_C1+2 (C2

Solve for Cland C2
{_C1=-1,_C2=1}

Substitute constant values into general solution and simplify

r=e—¢

Solution to the IVP

x=e% —¢t

- 1]
{t=0}

Highest derivative means the order of the ODE is 2
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Maple trace

“Methods for second order ODEs:

-—- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful”

Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 13

e hY

dsolve([diff (diff (x(t),t),t)-3*diff (x(t),t)+2*x(t) = 0,
L op([x(0) = 0, D(x)(0) = 11)],x(t),singsol=all) J

Mathematica DSolve solution

Solving time : 0.018 (sec)
Leaf size : 14

‘ DSolve [{D[x[t],{t,2}]1-3*D[x[t],t]+2*x[t]1==0,{x[0]==0,Derivative[1] [x] [0] == 1}} ,
L x[t],t,IncludeSingularSolutions->True] J

z(t) = e'(ef — 1)
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2.2.9 problem 6 (ii)
Existence and uniqueness analysis . . . . . . ... ... ... .. 439
Solved as second order linear constant coeffode . . . . . . . .. 440
Solved as second order can be made integrable . . . . . . . . .. y)
Solved as second order ode using Kovacic algorithm . . . . . . . 444
Solved as second order ode adjoint method . . . . . . . ... .. 447
Maple step by step solution . . . . .. ... ... ... .. ... 451
Maple trace . . . . . . . . . L 452
Maple dsolve solution . . . .. ... ... ... ......... 452
Mathematica DSolve solution . . . . .. .. ... ... ..... 452

Internal problem ID [18198]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 4. Autonomous systems. Exercises at page 69
Problem number : 6 (ii)

Date solved : Thursday, December 19, 2024 at 06:17:56 PM
CAS classification : [[_2nd_order, _missing x]]

Solve
2 +z2=0
With initial conditions
z(0) =0
Z'(0)=1

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as
" +p(t)x +q(t)x =F
Where here
p(t) =0

q(t) =
F=0
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Hence the ode is
2 +zx=0

The domain of p(t) =0 is
{—o0 <t < o0}

And the point ¢ty = 0 is inside this domain. The domain of ¢(t) =1 is

{—00 <t < o0}
And the point ¢, = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode
Time used: 0.097 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Az"(t)+ Bx'(t) + Cz(t) =0

Where in the above A =1, B =0,C = 1. Let the solution be z = €. Substituting this
into the ODE gives
N 4+ e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
M+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

A2 = g i B? —4AC
Substituting A =1, B = 0,C =1 into the above gives
Mo = o /B (@) (1) (D)
T @0 @@)
=31
Hence
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Which simplifies to

Since roots are complex conjugate of each others, then let the roots be
ALQZ(Xiiﬁ
Where oo = 0 and 8 = 1. Therefore the final solution, when using Euler relation, can
be written as
T = e*(c; cos(Bt) + ¢y sin(Bt))
Which becomes
z = €°(c; cos (t) + cysin (t))

x = ¢ cos (t) + ¢ sin (¢)

Will add steps showing solving for IC soon.

Summary of solutions found

x = sin (¢)

1 H/77-7- 7 7 = S NN

777NN\
J 777~
J 77—~ N\ \
J 7 7=\ \{

0.5 0.5

x(t) 0 X't o

~
N
Ve
-
N~——
N~ ——
NN ————
NN N ———— — ~

N\
7 \
/7 \
17 \
11 \
1 |
i J
\ A /
A\ /
AN\ /
NNNNS~~——— /)
NN\ \N\~———rrr s/ /

—0.5' — 05_

T T s~

— I NN S oSS

2 2 > -1 —05 0 0.5 1
t x(2)
(a) Solution plot (b) Slope field plot
x = sin (t) ' +z=0
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Solved as second order can be made integrable
Time used: 0.879 (sec)
Multiplying the ode by z’ gives

'’ +3'z=0
Integrating the above w.r.t t gives

/( 2" +2'z)dt =

2
x° 2

gty Ta

Which is now solved for x. Solving for the derivative gives these ODE’s to solve

' =/ —z%+2¢ (1)
' =—\/—12+42¢ (2)
Now each of the above is solved separately.

Solving Eq. (1)

Integrating gives

1
— dx =dt
/\/—x2+201 v

x
arctan | ————— | =t+c¢
(\/ —z2 + 2¢ ) :
Singular solutions are found by solving

vV—x24+2c;=0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

r=v2c
T =—V24/c

Solving for z gives

T=v2,/c1
z = tan (t + ) \/_\/

tan(t—|—02 ) +1
r=—V2c
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Solving Eq. (2)

Integrating gives

1
e dr=dt
/ V —x2 + 201 o

x
—arctan | ————= | =t +c¢
( V=22 4+ 2c; ) °
Singular solutions are found by solving

—\ —z2 +2Cl =0

for x. This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.

=2,/
T =—V2,/c

Solving for = gives
z =2/
r=—V2c
:—tan t—|—03 \/_\/

tan ( t+03) +1

Will add steps showing solving for IC soon.

Summary of solutions found

r = tan (¢ _
(¥ 1 + tan (t)°
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(a) Solution p1<1>t (b) Slope field plot
a::tan(t) m ' +x=0

Solved as second order ode using Kovacic algorithm
Time used: 0.077 (sec)

Writing the ode as

" +2=0 (1)
Az"+ B+ Cz =0 (2)
Comparing (1) and (2) shows that
A=1
B=0 (3)
Cc=1

Applying the Liouville transformation on the dependent variable gives
z(t) = el 2 dt
Then (2) becomes
2'(t) = ra(t) (4)
Where r is given by

r= 5)
2AB' — 2BA' + B?> — 4AC
4A2
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Substituting the values of A, B, C from (3) in the above and simplifying gives

-1
=1 (6)
Comparing the above to (5) shows that
s=-—1
t=1
Therefore eq. (4) becomes
2'(t) = —z(t) (7)

Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-
formation

z = 2(t) e~ S aad

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of 7 and the order of r at co. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(o0)
1 {Oa1727476a87"'} {'"7_67_47_27072a3747576a"'}
2 Need to have at least one pole that no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2, 5}.
3 {1,2} {2,3,4,5,6,7,"'}

Table 2.44: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢t minus the degree of s. Therefore
O(o0) = deg(t) — deg(s)

=0-0
=0
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There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=11

Since r = —1 is not a function of ¢, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(t) = cos (t)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from

1B
T, =z zad

Since B = 0 then the above reduces to

r1 =z
= cos (t)
Which simplifies to
x1 = cos (t)

The second solution x5 to the original ode is found using reduction of order

ef_%dt
To = 1'1/ 3 dt

Ty
Since B = 0 then the above becomes
1
To = T1 ) dt
7y
1
= cos (t) / 5 dt

cos (t)

= cos (t) (tan (t))

Therefore the solution is
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T = C1X1 + CoZo

= cy(cos (t)) + cz(cos (t) (tan (¢)))

Will add steps showing solving for IC soon.

Summary of solutions found

x = sin (¢)

1 H/ 77777 SR 2 D N
VNP S N D N 2
VNS dddammn 2 N\
/ \
0.5- / J 777~ \
] 05717 ] 77—\ \
/ /7777~ \
/ 1777 7=~=~NN\N\ N\ \

psill

x(6) o X o PANANNZ

AANNNS~S—2/ /) )
\ ANNNNN~—-// /)] /
A\ NANNNSN——— /) /
—0.51 —os4\ NNNNs~———cs /L] ]
\ NANNN S S /
\ /
\ NN\~~~ S S S
NANANANN NS TP P YV
— 14 r T T NN NN eSS
-z = 0 w© ® 3n 2= , , , . ,
Y o N -1 —0.5 0 0.5 1

¢t x(1)
(a) Solution plot (b) Slope field plot
x = sin (t) ' +z=0

Solved as second order ode adjoint method
Time used: 0.393 (sec)

In normal form the ode

" +x=0 (1)
Becomes
"+ pt)z +q(t)x =r(t) (2)
Where
p(t) =0
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The Lagrange adjoint ode is given by

¢ —(Ep) +€&¢=0
g —(0)+ (&) =0
¢'(t)+£@) =0

Which is solved for £(¢). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

AL"(t)+ BE'(t) + CE(t) =0

Where in the above A =1, B = 0,C = 1. Let the solution be £ = e**. Substituting this
into the ODE gives
Mt + et =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
M4+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—-B 1
_ 2 _
=3 :|:2 VB 4AC

Substituting A =1, B =0,C =1 into the above gives

A2

0 1

Ao = + 02— (4)(1)(1
= =3
Hence
A=+
)\2 = —Z
Which simplifies to
)\1 =1
)\2 = —1

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = a:i:zﬂ
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Where a = 0 and 8 = 1. Therefore the final solution, when using Euler relation, can
be written as

£ = e*(cy cos(Bt) + cysin(fBt))
Which becomes
6 = 60 (Cl COS (t) + Co sin (t))
& = cycos (t) + cosin (t)

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode
§t) e’ —xg'(t) + () p(t)z = [ £(F)
' +z (p(t) (t; ) J4®)

£(t 3 (t)

, _ @(—cisin(t) + cacos (t))

=0
c1 cos (t) + ¢ sin (2)

T

Which is now a first order ode. This is now solved for z. In canonical form a linear first
order is

z' +q(t)z = p(t)
Comparing the above to the given ode shows that

—cy sin (t) + ¢ cos (t)
c1 cos (t) + ¢ sin (2)

The integrating factor u is

M=efth

- ®+ (@)
f_ cilcilsn(t)-fc(;zs?g?t) dt

1
"~ c1cos (t) + cysin (t)
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The ode becomes

d
a,ux—o

a : o
dt \ cicos (t) + cosin (¢) )

Integrating gives

& —/0dt+c
¢ cos (t) + cosin (t) ’

203

Dividing throughout by the integrating factor ) gives the final solution

1

c1 cos(t)+co sin(t
x = (c1 cos (t) + cosin (t)) cs

Hence, the solution found using Lagrange adjoint equation method is

z = (1 cos (t) + cosin (t)) cs

The constants can be merged to give

x = ¢ cos (t) + ¢ sin (¢)

Will add steps showing solving for IC soon.

Summary of solutions found

x = sin (¢)

1 H/77-7- 7 7 = S NN

777NN\
J 777~
J 77—~ N\ \
J 7 7=\ \{

0.5 0.5

x(t) 0 X't o

N~ ———
NN ————
NN NN———— —

N\
7 \
/7 \
17 \
11 \
1 |
i J
\ A /
A\ /
AN\ /
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t x(2)
(a) Solution plot (b) Slope field plot
x = sin (t) ' +z=0



CHAPTER 2. BOOK SOLVED PROBLEMS 451

Maple step by step solution

Let’s solve
2’ +z=0,z(0)=0,2 =1}
{t=0}
° Highest derivative means the order of the ODE is 2
wll
° Characteristic polynomial of ODE
r’+1=0
° Use quadratic formula to solve for r
_ 0% (v/—4)
2
° Roots of the characteristic polynomial
r=(-LI)
° 1st solution of the ODE
x1(t) = cos (t)
° 2nd solution of the ODE
zo(t) = sin (t)
° General solution of the ODE
z = Clzy(t) + C2z5(t)
° Substitute in solutions

z = C1 cos (t) + C2sin (t)
O Check validity of solution x = __C1cos (t) +__C2sin (¢)

o Use initial condition z(0) = 0

0=_0C1
o Compute derivative of the solution
' = —_ C1sin (t) +_C2cos (t)

o Use the initial condition z’ 1

{t=0} N
1=_02
o Solve for Cland C2
{C1=0,_C2=1}
o Substitute constant values into general solution and simplify
x = sin (¢)
° Solution to the IVP
x = sin (¢)
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Maple trace

“Methods for second order ODEs:

-—- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful”

Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 6

-

dsolve([diff (diff(x(t),t),t)+x(t) = O,
L op([x(0) = 0, D(x)(0) = 11)],x(t),singsol=all)

x = sin (¢)

Mathematica DSolve solution

Solving time : 0.01 (sec)
Leaf size : 7

‘ DSolve [{D[x[t],{t,2}]+x[t]==0,{x[0]==0,Derivative([1] [x] [0] == 1}},
L x[t],t,IncludeSingularSolutions->True]

z(t) — sin(t)
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2.2.10 problem 6 (iii)
Existence and uniqueness analysis . . . . . . ... ... ... .. 453]
Solved as second order linear constant coeffode . . . . . . . .. 4541
Solved as second order solved by an integrating factor . . . . . 455
Solved as second order ode using Kovacic algorithm . . . . . . . 457
Solved as second order ode adjoint method . . . . . . . ... .. 460
Maple step by step solution . . . . .. ... ... ... .. ... 463
Maple trace . . . . . . . . . L 4641
Maple dsolve solution . . . .. ... ... ... ......... 464
Mathematica DSolve solution . . . . .. .. ... ... ..... 465

Internal problem ID [18199]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 4. Autonomous systems. Exercises at page 69
Problem number : 6 (iii)

Date solved : Thursday, December 19, 2024 at 06:17:59 PM
CAS classification : [[_2nd_order, _missing x]]

Solve
2 +2¢ +x=0

With initial conditions

Existence and uniqueness analysis
This is a linear ODE. In canonical form it is written as
" +p(t)x +q(t)x =F
Where here
p(t) =2

q(t) =
F=0
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Hence the ode is
2 +2¢ +x=0

The domain of p(t) = 2 is
{—o0 <t < o0}

And the point ¢ty = 0 is inside this domain. The domain of ¢(t) =1 is

{—o0 <t < o0}

And the point ty = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode
Time used: 0.098 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Az"(t) + Bz'(t) + Cz(t) = 0

Where in the above A =1, B =2,C = 1. Let the solution be z = e. Substituting this
into the ODE gives
Mer 420 e™ + et =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
N 42X+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B, 1
= — e 2 _
12 = g H g VB 440

Substituting A =1, B = 2,C =1 into the above gives

A

-2 1 2
M=t mmV e - @O0

=-1

Hence this is the case of a double root A; 2 = 1. Therefore the solution is

T=ce ' +cyte’ (1)



CHAPTER 2. BOOK SOLVED PROBLEMS 455

Will add steps showing solving for IC soon.

Summary of solutions found

r=te
o 90001 NAARAARARRARN
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80007 ARARARRRRARRAR
—200+ AV T YT VI N N N O A FR N
7000 NONNAN NN NN
— 4001 NOANNNNNN VNN
6000+ NANNNNNN NN
— 600] N NN
, SOSOSONONONONONONONNY NN NN
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— 10007 B S SO O O VAR R R R
3000 7 m s SSOONUOONN LNNNN
— 1200 J 7777 m s~
20000 77777777 mmassSSNAN NN
— 12004 11711777777 7===~N\\\ N\
10001 [ (1 /111717777 77==~\\\
T1I1IT0 1 7777=\\
— 1600 0 T I A A B
6 4 -2 0 2 4 6 % 10 7000  —5000  —3000  —1000 0
t x(1)
(a) Solution plot (b) Slope field plot
r=tet 2+ 22 +x=0

Solved as second order solved by an integrating factor
Time used: 0.197 (sec)
The ode satisfies this form

=’ +p(t) ' + (p(®) +2p @) _ f@)

Where p(t) = 2. Therefore, there is an integrating factor given by

M(z) = ez/pde
— ef2d:z

:et

Multiplying both sides of the ODE by the integrating factor M (x) makes the left side
of the ODE a complete differential

(M(z)x)" =0
(e'z)" =0



CHAPTER 2. BOOK SOLVED PROBLEMS 456
Integrating once gives
(etx)l =
Integrating again gives
(e'z) = at + ¢
Hence the solution is
cit +co
rT = ———
ot
Or
_ —t —t
r=cte +cye
Will add steps showing solving for IC soon.
Summary of solutions found
r=te’
N 90007 NAAAL NN NN
AR AR RRRRRRRR
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— 1000 30000 77NN NN VNN
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— 12004 7777 =SSN\ NN
1200 20009 7 777 777 mmm——=~nN\N N\
L400) 111177777 7=\
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Tttt 1000077 77~=\\
— 16007 0% T I A A B
"6 Z4 2 0 > 6 8 10 —7000  —5000  —3000 —1000 0
t x(1)

(a) Solution plot
rx=te?

(b) Slope field plot
2" +22'+x=0
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Solved as second order ode using Kovacic algorithm
Time used: 0.049 (sec)

Writing the ode as

2 +2c +x=0
A"+ Bx' +Cxz =0

Comparing (1) and (2) shows that

QT =
I
— N

Applying the Liouville transformation on the dependent variable gives
z(t) = gel 2t
Then (2) becomes
2" (t) = rz(t)
Where r is given by

S

r=-—

t

2AB' —2BA' + B? — 4AC
4A?

Substituting the values of A, B, C from (3) in the above and simplifying gives
0

r=—

1

Comparing the above to (5) shows that

Therefore eq. (4) becomes

2'(t) =0

(3)

(4)

(5)

(6)

(7)

Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-

formation

z = 2z(t) e~ ) 2xadt
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(o0)
1 {0’1’274a6a87"'} {'"7_67_47_27072’3747576a"'}
2 Need to have at least one pole that no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273a4a57677a"'}

Table 2.46: Necessary conditions for each Kovacic case

The order of r at co is the degree of ¢ minus the degree of s. Therefore
O(00) = deg(t) — deg(s)
=0—-—o00
= 00
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=

Since r = 0 is not a function of ¢, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

21 (t) =1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from

_1B
T = zel "zad
12
= zle_fffdt
= zle_t

= a1(e7)
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Which simplifies to

z,=¢e"

The second solution x5 to the original ode is found using reduction of order

el — 5 dt
IL‘2=IL'1/ B dt
T

1

Substituting gives

/ ef_%dt &t
To =T
2 1 (,’1,'1)2

Therefore the solution is
T = C1X1 + C2Z2

=c1(e™) + c2(e7(2))

Will add steps showing solving for IC soon.

Summary of solutions found
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(a) Solution plot
r=te?

2

Solved as second order ode adjoint method

Time used: 0.143 (sec)

In normal form the ode

Becomes

Where

The Lagrange adjoint ode is given by

£ —(¢&p)
5—(25())

2 +22 +x=0

" +pit)x +qt)z =

p(t) =2
q(t) =
r(t) =0
+&q
(£(2))
28'(t) +£(¢)

—7000  —5000 —3000  —1000 0
x(t)
(b) Slope field plot

2 +22 +x=0

r(t)

=0
=0
0

(1)

(2)
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Which is solved for £(¢). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Ag"(t) + BE'(t) + CE(t) =

Where in the above A =1, B = —2,C = 1. Let the solution be ¢ = e*. Substituting
this into the ODE gives
Mer — 21t + e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
N —22+1=0 (2)
Equation (2) is the characteristic equation of the ODE. Its roots determine the general

solution form.Using the quadratic formula

B 1
_ 2 _
M=y &5 VB —4AC

Substituting A = 1, B = —2,C =1 into the above gives

M= o /(22— (4 (1) ()

21 @2@Q)
=1
Hence this is the case of a double root A = —1. Therefore the solution is

£ =cie' +cyte (1)
Will add steps showing solving for IC soon.

The original ode now reduces to first order ode

5@f—ﬁ®+fmmn=/£r@ﬁ
x'—l—x( 2)

cir el +efecyg + cot et
R P +eco+ e —0
ciet + cotet

Which is now a first order ode. This is now solved for z. In canonical form a linear first
order is

o' +q(t)z = p(t)
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462

Comparing the above to the given ode shows that

—cot — c1 + ¢

q(t) = -

CQt +c
p(t) =0
The integrating factor u is
p= e adt
= o) L R
ot
N CQt +c
The ode becomes
d
—pz =0
at”
d zet B
dt Czt +c N
Integrating gives
zet
= [ 0dt
cot + ¢ / o
= C3

Dividing throughout by the integrating factor ﬁ gives the final solution
= (cot+ci1)ees

Hence, the solution found using Lagrange adjoint equation method is

T = (cot+c1)ees

The constants can be merged to give

T=(ct+c)e’

Will add steps showing solving for IC soon.

Summary of solutions found




Highest derivative means the order of the ODE is 2
xll

Characteristic polynomial of ODE

r?+2r+1=0

Factor the characteristic polynomial
(r+1)?%=0

Root of the characteristic polynomial
r=-—1

1st solution of the ODE

z1(t) = et
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¢ x(1)
(a) Solution plot (b) Slope field plot
x=tet 2 +2¢ +z=0
Maple step by step solution
Let’s solve
" +2x' +x=0,2(0) =0,z =1]
{t=0}

Repeated root, multiply z;(¢) by ¢ to ensure linear independence

zo(t) =te?

General solution of the ODE
xz = Clzy(t) + C2xz5(1)
Substitute in solutions
z=Clet+ C2te?
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O Check validity of solution x = _ Cle™t +__ C2te™*

o Use initial condition z(0) =0

0=_0C1
o Compute derivative of the solution
=— Clet+ C%2 t—_ (Co%e?

o Use the initial condition z’ =1
{t=0}
1=—_Ci1+_0C2
o Solve for Cland_ C2
{ Ci=0,_C2=1}

o Substitute constant values into general solution and simplify

r=te?
° Solution to the IVP
x=te?t

Maple trace

-

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful”

Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 10

e

dsolve ([diff (diff (x(t),t),t)+2*diff (x(t),t)+x(t) = 0,
L op([x(0) = 0, D(x)(0) = 11)1,x(t),singsol=all)

x=te?
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Mathematica DSolve solution

Solving time : 0.013 (sec)
Leaf size : 12

N

‘/DSolve [{D[x[t],{t,2}]+2*D[x[t],t]+x[t]==0,{x[0]==0,Derivative[1] [x] [0] == 1}}L
‘ x[t],t,IncludeSingularSolutions->True] ‘

z(t) — et
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2.2.11 problem 6 (iv)

Existence and uniqueness analysis . . . . . . ... ... ... .. 466]
Solved as second order linear constant coeffode . . . . . . . .. 467
Solved as second order ode using Kovacic algorithm . . . . . . . 469
Maple step by step solution . . . . . .. ... ... ... .. .. 472
Mapletrace . . . . . . . . . . .. 473
Maple dsolve solution . . . .. ... ... ... .. ....... 473
Mathematica DSolve solution . . . . .. .. ... ... ..... Lyg!

Internal problem ID [18200]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 4. Autonomous systems. Exercises at page 69

Problem number : 6 (iv)

Date solved : Thursday, December 19, 2024 at 06:18:00 PM

CAS classification : [[_2nd_order, _missing x]]

Solve
2 =22 +2x =0

With initial conditions

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as
' +p(t)z’ +q(t)x = F

Where here

Hence the ode is

2 =22 +2x =0
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The domain of p(t) = —2 is
{—00 <t < o0}

And the point ¢, = 0 is inside this domain. The domain of ¢(t) = 2 is

{—00 <t < o0}
And the point £y = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode
Time used: 0.116 (sec)

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ax"(t) + Bz'(t) + Cz(t) = 0

Where in the above A = 1, B = —2,C = 2. Let the solution be z = e*. Substituting
this into the ODE gives
Aer —2) et 4+ 26 =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
M —2X1+2=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—-B 1
= — —_ 2 _
12 54 Yo B? —4AC
Substituting A = 1, B = —2,C = 2 into the above gives
2 1
ALz = + V=22~ (4) (1) (2)
YT OT @0
=1%41
Hence
)\2 =1-—3
Which simplifies to
AM=1+4+1
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Since roots are complex conjugate of each others, then let the roots be

AL2=(liiB

Where a = 1 and 8 = 1. Therefore the final solution, when using Euler relation, can
be written as

T = e*(c; cos(Bt) + co sin(Bt))

Which becomes
z = €e'(c; cos () + cysin (2))

Will add steps showing solving for IC soon.

Summary of solutions found

x = e’sin (t)

0 SO0 /S ST TSI IS
FIIII IS s
— 20 VPP PP Peey o4

a7 f s
VNP /o
SIS
3o0 /ST TSI ST
VNN PP rooald
J7 7777777777777

j— 40.

— 60

x(t) —80] ) JI7IIPI SIS IS
(1) X 20 s
— 1007 T II IS
1004 g7 7SS
— 1207 J/ 777
SIS
— 140 o 177777=
NNN~—7
— 160 AR i
NN NS S —— P4
T T T T T T T T — 100 DN PPV P 2y 2P 4P A4
—-2n - n 0 wm =®m 3m 2=n —
Y > > —140 —100 —60—40—20 0
t x(1)
(a) Solution plot (b) Slope field plot

x = e'sin (t) " -2z +2x=0
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Solved as second order ode using Kovacic algorithm
Time used: 0.067 (sec)

Writing the ode as

2 =22 +2x =0
A"+ Bx' +Cxz =0

Comparing (1) and (2) shows that

A=1
B=-2
C=2

Applying the Liouville transformation on the dependent variable gives
z(t) = zel zxdt
Then (2) becomes
2" (t) = rz(t)

Where r is given by

s
r=-
t
_ 2AB' —2BA' 4+ B? — 4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
r = __1
1
Comparing the above to (5) shows that
s=-—1
t=1

Therefore eq. (4) becomes

2" (t) = —2(t)

(3)

(4)

(5)

(6)

(7)

Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-

formation

z = 2z(t) e~ ) 2xadt
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(o0)
1 {0’1727476a87'”} {'"7_67_47_27072’3747576a"'}
2 Need to have at least one pole that no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,"'}

Table 2.48: Necessary conditions for each Kovacic case

The order of r at co is the degree of ¢ minus the degree of s. Therefore
O(00) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —1 is not a function of ¢, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(t) = cos (t)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from

_1B
T = zlef 2adt
1-2
= zle_fﬁTdt
= zlet
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Which simplifies to

z1 = e’ cos (t)

The second solution x5 to the original ode is found using reduction of order

el — 5 dt
IL‘2=IL'1/ B dt
T

1

Substituting gives

ef——Tz dt
xzz.’lil/—(xl)Q dt

Therefore the solution is

T = C1T1 + C2Zo

= c1 (e’ cos (t)) + c2 (e cos () (tan (t)))

Will add steps showing solving for IC soon.

Summary of solutions found

T = e’ sin (t)



CHAPTER 2. BOOK SOLVED PROBLEMS 472

01 50/ /77T 7
ST
—20 VNP OO O OO /oo ald

4o0H S S ST ST S S S
— 401 SIS Y
ST TS
—60- 300.//////// S
VNN /PP ool
J7 7777 7777777777777

t) —80 ' JITIPI T I 777777777
x() X)) 2001
— 1007 J77 /7777777777777
1004 77777
— 1201 SIS
J77 7777
— 1401 o 1717777=
NN~—7
— 1601 N ==
T T T T T T T T — 1007 ~ T —— S
—-2r - n 0 ®© ® 3m 2=n ————————————
-5 5 -5 —140  —100 —60—40—20 0
t x(1)
(a) Solution plot (b) Slope field plot
x = e’sin (t) ' —22' +2x =0
Maple step by step solution
Let’s solve
" — 22" + 2z =0,2(0) = 0,2’ = 1]
{t=0}
° Highest derivative means the order of the ODE is 2
xl/
° Characteristic polynomial of ODE
r?—2r+2=0
° Use quadratic formula to solve for r
. 2i(\2/?4)
° Roots of the characteristic polynomial
r=(1-L1+41)
° 1st solution of the ODE
z1(t) = €' cos (t)
° 2nd solution of the ODE
zo(t) = €' sin (t)
° General solution of the ODE

xz = Clzy(t) + C2xz5(t)
° Substitute in solutions



CHAPTER 2. BOOK SOLVED PROBLEMS

z = C1 e'cos (t) + C2 e'sin (t)

O Check validity of solution x = __C1e’ cos (t) +__C2%"sin (t)

o Use initial condition z(0) =0
0=_20C1
o Compute derivative of the solution

' =_Cle'cos(t) —_Cle'sin (t) + _C2e'sin (t) +__C2€ cos (1)

o Use the initial condition z’ 1

{t=0} -
1=_C1+_0C2

o Solve for Ciland C2
{_C1=0,_C2=1}

o Substitute constant values into general solution and simplify

z = e'sin (t)
° Solution to the IVP
z = e'sin (t)

Maple trace

"Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful’

Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 9

-

dsolve([diff (diff (x(t),t),t)-2xdiff(x(t),t)+2*xx(t) = O,
‘ op([x(0) = 0, D(x)(0) = 11)],x(t),singsol=all)

T = e’ sin (t)
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Mathematica DSolve solution

Solving time : 0.012 (sec)
Leaf size : 11

‘/DSolve [{D[x[t],{t,2}]-2*D[x[t],t]+2*x[t]==0,{x[0]==0,Derivative[1] [x] [0] == 1\}} s
‘ x[t],t,IncludeSingularSolutions->True] ‘

z(t) — e’ sin(t)
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2.3 Chapter 5. Linear equations. Exercises at page
85

231 problem 7 (i) . . . . .. 476l
232 problem 7 (i) . . . . ... 488
233 problem 7 (ili) . . .. .. ... 5051
234 problem 7 (iv) . ... .. BIT
235 problem 7 (V) . . ... 530
236 problem 7 (Vi) . ... 542
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2.3.1 problem 7 (i)

Existence and uniqueness analysis . . . . .
Solved as second order linear constant coeff ode

Solved as second order ode using Kovacic algorithm . . . . . . .

Maple step by step solution . . .. .. ..
Mapletrace . . . . . . ... ... ... ...
Maple dsolve solution . . . ... ... ...
Mathematica DSolve solution . . . ... ..

Internal problem ID [18201]

476l

4301
48]
436!

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 5. Linear equations. Exercises at page 85

Problem number : 7 (i)

Date solved : Thursday, December 19, 2024 at 06:18:01 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve
g —x =12
With initial conditions
z(0) =0
Z'(0) =1

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

"+ p(t)z' + q(t)z = F

Where here
p(t)=0
q(t)=-1
F =1t?

Hence the ode is
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The domain of p(t) = 0 is
{—00 <t < o0}

And the point ¢y = 0 is inside this domain. The domain of ¢(t) = —1 is

{—o0 <t < o0}

And the point t, = 0 is also inside this domain. The domain of F' = #? is

{—o0 <t < o0}

And the point ¢, = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode
Time used: 0.288 (sec)

This is second order non-homogeneous ODE. In standard form the ODE is
Az"(t) + Bz'(t) + Cz(t) = f(t)
Where A=1,B =0,C = —1, f(t) = t>. Let the solution be
T=Tp+ Ty

Where zj, is the solution to the homogeneous ODE Ax”(t) + Bz'(t) + Cz(t) = 0, and z,,
is a particular solution to the non-homogeneous ODE Ax”(t) + Bz'(t) + Cz(t) = f(t).
x, is the solution to

2 —z=0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ax"(t) + Bz'(t) + Cz(t) = 0

Where in the above A = 1, B = 0,C = —1. Let the solution be z = e*. Substituting
this into the ODE gives
e — e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives

M—-1=0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — 4+ 2 _
A2 o4 T o4 B2 —4AC
Substituting A = 1, B =0,C = —1 into the above gives
M = e o O (@) (1) (1)
N OTORRON
= =1

Hence

A =+1

A =—1
Which simplifies to

=1

)\2 == —1

Since roots are real and distinct, then the solution is
Aot

T = cle)‘lt + coe

z = creM? 4 oVt

z=cre +cye?

Therefore the homogeneous solution xj, is

xp =cre +coe?

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

t2

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1,2,4}]
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While the set of the basis functions for the homogeneous solution found earlier is
{e',e™}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

CL'p = A3t2 + Agt —|— A1

The unknowns {A;, A, A3} are found by substituting the above trial solution z, into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—A3t2 - Azt - A1 + 2A3 == t2

Solving for the unknowns by comparing coefficients results in

[Al == —2,A2 - O, A3 == —1]

Substituting the above back in the above trial solution z,, gives the particular solution
T, =—t"—2

Therefore the general solution is

T=xp+Tp

= (ae+ce™)+ (—t* —2)

Will add steps showing solving for IC soon.

Summary of solutions found
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(a) Solution plot (b) Slope field plot
t —t
x=—t2—2+37e+67 ' —x =1t

Solved as second order ode using Kovacic algorithm
Time used: 0.085 (sec)
Writing the ode as

' —z=0
Az"+ B +Cz =0
Comparing (1) and (2) shows that

A=1
B=0
C=-1

Applying the Liouville transformation on the dependent variable gives
2(t) = zel 22
Then (2) becomes
2" (t) = rz(t)

Where r is given by
s
r=-
t
2AB' —2BA’ + B? — 4AC

4A?

(1)
(2)

3)

(4)

(5)
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Substituting the values of A, B, C from (3) in the above and simplifying gives
1
=1 (6)

Comparing the above to (5) shows that

s=1
t=1
Therefore eq. (4) becomes
2"(t) = 2(t) (7)

Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-
formation

z = 2(t) e~ S aad

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of 7 and the order of r at co. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(o0)
1 {Oa1727476a87"'} {'"7_67_47_27072a3747576a"'}
2 Need to have at least one pole that no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2, 5}.
3 {1,2} {2,3,4,5,6,7,"'}

Table 2.50: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢t minus the degree of s. Therefore
O(o0) = deg(t) — deg(s)

=0-0
=0
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There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=11

Since r = 1 is not a function of ¢, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(t) =e"

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from
Bat

_1
T = zlef 2

Since B = 0 then the above reduces to

Ir1 =z
= e_t

Which simplifies to
ry = e_t

The second solution x5 to the original ode is found using reduction of order

ef—%dt
o = T 3 dt

Ty

Since B = 0 then the above becomes

1
Jizle/—zdt
Z7
1
_ .t
2t
— ot &

Therefore the solution is
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T = C1X1 + C2Z2

o) vafer(2)

This is second order nonhomogeneous ODE. Let the solution be

T=Th+ T,

Where z, is the solution to the homogeneous ODE Az"(t) + Bz'(t) + Cz(t) = 0, and z,,
is a particular solution to the nonhomogeneous ODE Az"(t) + Bx'(t) + Cz(t) = f(t).
xp, is the solution to

r —x=0

The homogeneous solution is found using the Kovacic algorithm which results in

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

t2

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{1,t,£°}]

While the set of the basis functions for the homogeneous solution found earlier is

t
('}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

Ty = A3t2 + Agt + A1

The unknowns {A;, A, A3} are found by substituting the above trial solution z, into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—Ast? — Aot — Ay + 245 =2
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Solving for the unknowns by comparing coefficients results in
[A; = —2,A5, =0,A3 = —1]

Substituting the above back in the above trial solution z,, gives the particular solution
Ty = —t2 -2

Therefore the general solution is

T=2xp+ Ty

Will add steps showing solving for IC soon.

Summary of solutions found
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Maple step by step solution

Let’s solve
" —z =1t*z(0) =0,z = 11
{t=0}
° Highest derivative means the order of the ODE is 2
xll
° Characteristic polynomial of homogeneous ODE
r?—1=0
° Factor the characteristic polynomial
(r—=1)(r+1)=0
° Roots of the characteristic polynomial
r=(-1,1)
° 1st solution of the homogeneous ODE
z1(t) = et
° 2nd solution of the homogeneous ODE
zo(t) = €
° General solution of the ODE
z = Clzi(t) + C2z4(t) + zp(t)
° Substitute in solutions of the homogeneous ODE

z=Cle "+ 02+ z,(t)
O Find a particular solution z,(¢) of the ODE

o Use variation of parameters to find z, here f(¢) is the forcing function
_ z2(t) f(t) 21 (8) f(t) _
[a:p(t) —z1(2) (f Wios (),03®) ) + z5(t (f W @23 0) xz(t))dt> () = tﬂ
o Wronskian of solutions of the homogeneous equation

e—t

W(@a(9), 2a(t) = [ Ll ]

o Compute Wronskian
W(z1(t) , 22(t)) = 2
o Substitute functions into equation for z, (%)

.’L'p(t) _ _e_t (f;?etdt) + et(f tze_tdt)

o Compute integrals
z,(t) = -t — 2
° Substitute particular solution into general solution to ODE
z=¢eC2+ Clet —t2—2
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O Check validity of solution z = ¢! C2+__Cle ™t —t> — 2
o Use initial condition z(0) =0
0=_0C2+_C1-2
o Compute derivative of the solution
=e C2— C(Clet—2t

=1

o Use the initial condition z’ ey =
t=0

l1=—_C1+4+_02

o Solve for Cland C2
{_Ci=3,_C2=3}

29—
o Substitute constant values into general solution and simplify

=124 3 4
° Solution to the IVP
=12 —243 4

Maple trace

"Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful”

Maple dsolve solution

Solving time : 0.014 (sec)
Leaf size : 21

e B

dsolve([diff (diff (x(t),t),t)-x(t) = t72,
op([x(0) = 0, D(x)(0) = 1])],x(t),singsol=all)

3et et
— 24224
x + 2 + 9



CHAPTER 2. BOOK SOLVED PROBLEMS 487

Mathematica DSolve solution

Solving time : 0.013 (sec)
Leaf size : 27

DSolve [{D[x[t],{t,2}]-x[t]==t"2, {x[0]==0,Derivative [1] [x] [0] == 1}},
‘ x[t],t,IncludeSingularSolutions->True]

z(t) = %(—2(t2 +2)+e "+ 3¢
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2.3.2 problem 7 (ii)

Existence and uniqueness analysis . . . . . . ... ... ... .. 488]
Solved as second order linear constant coeffode . . . . . . . .. 489
Solved as second order ode using Kovacic algorithm . . . . . . . 492
Solved as second order ode adjoint method . . . . . . . ... .. 498]
Maple step by step solution . . . . . .. ... ... ... ..., 502
Maple trace . . . . . . . . .. H04]
Maple dsolve solution . . . .. ... ... ... ......... 04
Mathematica DSolve solution . . . . .. ... ... ....... 504l

Internal problem ID [18202]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 5. Linear equations. Exercises at page 85

Problem number : 7 (ii)

Date solved : Thursday, December 19, 2024 at 06:18:03 PM

CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve
' —z=¢
With initial conditions
z(0) =0
Z'(0)=1

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

" +pt)z' + q(t)z = F

Where here
p(t)=0
q(t) = —1
F=¢

Hence the ode is
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The domain of p(t) = 0 is
{—00 <t < o0}

And the point ¢y = 0 is inside this domain. The domain of ¢(t) = —1 is

{—o0 <t < o0}

And the point ¢y = 0 is also inside this domain. The domain of F' = €' is

{—o0 <t < o0}

And the point ¢, = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode
Time used: 0.301 (sec)

This is second order non-homogeneous ODE. In standard form the ODE is
Az"(t) + Bz'(t) + Cz(t) = f(t)
Where A =1,B =0,C = —1, f(t) = e'. Let the solution be
T=Tp+ Ty

Where zj, is the solution to the homogeneous ODE Ax”(t) + Bz'(t) + Cz(t) = 0, and z,,
is a particular solution to the non-homogeneous ODE Ax”(t) + Bz'(t) + Cz(t) = f(t).
x, is the solution to

2 —z=0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ax"(t) + Bz'(t) + Cz(t) = 0

Where in the above A = 1, B = 0,C = —1. Let the solution be z = e*. Substituting
this into the ODE gives
e — e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives

M—-1=0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — 4+ 2 _
A2 o4 T o4 B2 —4AC
Substituting A = 1, B =0,C = —1 into the above gives
M = e o O (@) (1) (1)
N OTORRON
= =1

Hence

A =+1

A =—1
Which simplifies to

=1

)\2 == —1

Since roots are real and distinct, then the solution is

T = cle)‘lt + CQ@Azt

z = creM? 4 oVt

z=cre +cye?

Therefore the homogeneous solution xj, is

xp =cre +coe?

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

et

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{eH
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While the set of the basis functions for the homogeneous solution found earlier is
{e',e™}

Since €' is duplicated in the UC_set, then this basis is multiplied by extra t. The
UC__set becomes

[{te'}]

Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

T, = Aite

The unknowns {A; } are found by substituting the above trial solution z, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

24A,et = ¢t

Solving for the unknowns by comparing coefficients results in

=

Substituting the above back in the above trial solution z,, gives the particular solution

Therefore the general solution is

T=2xp+Tp
t t
= (Cl et-I-Cz e_t) + (76)

Will add steps showing solving for IC soon.

Summary of solutions found
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Solved as second order ode using Kovacic algorithm
Time used: 0.155 (sec)
Writing the ode as

2 —z=0
A"+ B +Cz =0

Comparing (1) and (2) shows that

A=1
B=0
C=-1

Applying the Liouville transformation on the dependent variable gives
2(t) = zel 22
Then (2) becomes
2" (t) = rz(t)

Where r is given by
s
r=-
t
2AB' —2BA’ + B? — 4AC

4A?

(1)
(2)

3)

(4)

(5)
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Substituting the values of A, B, C from (3) in the above and simplifying gives
1
=1 (6)

Comparing the above to (5) shows that

s=1
t=1
Therefore eq. (4) becomes
2"(t) = 2(t) (7)

Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-
formation

z = 2(t) e~ S aad

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of 7 and the order of r at co. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(o0)
1 {Oa1727476a87"'} {'"7_67_47_27072a3747576a"'}
2 Need to have at least one pole that no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2, 5}.
3 {1,2} {2,3,4,5,6,7,"'}

Table 2.52: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢t minus the degree of s. Therefore
O(o0) = deg(t) — deg(s)

=0-0
=0
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There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=11

Since r = 1 is not a function of ¢, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(t) =e"

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from
Bat

_1
T = zlef 2

Since B = 0 then the above reduces to

Ir1 =z
= e_t

Which simplifies to
ry = e_t

The second solution x5 to the original ode is found using reduction of order

ef—%dt
o = T 3 dt

Ty

Since B = 0 then the above becomes

1
Jizle/—zdt
Z7
1
_ .t
2t
— ot &

Therefore the solution is
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T = C1X1 + C2Z2

o) vafer(2)

This is second order nonhomogeneous ODE. Let the solution be

T=x,+ T

Where zj, is the solution to the homogeneous ODE Ax”(t) + Bz'(t) + Cz(t) = 0, and z,,
is a particular solution to the nonhomogeneous ODE Az"(t) + Bx'(t) + Cz(t) = f(t).
xp, is the solution to

r —x=0

The homogeneous solution is found using the Kovacic algorithm which results in

The particular solution z, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on t as well. Let

Zp(t) = w11 + U2 (1)

Where u;,us to be determined, and z;,z, are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

xy=¢e"t

et
To = —
2
In the Variation of parameters u;, us are found using

$2f(t)
= / aW (%) @)

. z1f (t)
2= aw @) 3)
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Where W (t) is the Wronskian and a is the coefficient in front of z” in the given ODE.

1 T2
/ /
1 T2

The Wronskian is given by W = . Hence

Which gives

W = e %
Therefore
t t
(€ _ (€[ .t
W= (5)-(5)
Which simplifies to
W =ete
Which simplifies to
W=1
Therefore Eq. (2) becomes
e2t
Uy = — % dt
Which simplifies to
o2t
Uy = — 7dt
Hence
o2t
Uy = —Z

And Eq. (3) becomes
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Which simplifies to

’LL2=t

Hence

Therefore the particular solution, from equation (1) is

e?te™t tet
t) =— —
Which simplifies to
ef(—1+2t)
rplt) = S

Therefore the general solution is

T=Tp+ T

t t
. € e'(—1+ 2t)
=(aere )+ (T

Will add steps showing solving for IC soon.

Summary of solutions found
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Solved as second order ode adjoint method
Time used: 0.403 (sec)

In normal form the ode

' —z=¢ (1)

Becomes
" +pt)z +q(t)x =r(t) (2)

Where

p(t) =0

q(t) =-1

r(t) = €'
The Lagrange adjoint ode is given by

& —(Ep) +69=0

¢ —(0)+ (=€) =0
¢'(t)—€@) =0
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Which is solved for £(¢). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

AL"(t)+ BE'(t) + CE(t) =0

Where in the above A =1, B = 0,C = —1. Let the solution be ¢ = e*. Substituting
this into the ODE gives
Neh —er =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
M—-1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1

= — _ 2 _
12 54 Yo B2 —4AC
Substituting A =1, B = 0,C = —1 into the above gives
M = e o @) (1) ()
TR0 @0
==+l

Hence

A =+1

A =—1
Which simplifies to

)\1 = 1

A =-—1

Since roots are real and distinct, then the solution is

&= c1eMt + cpet?t

¢ = ceM! + coe V!

E=ciel +cye?

Will add steps showing solving for IC soon.
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The original ode now reduces to first order ode

£(t) 2’ — 2€'(t) + £(t) p(t) « = /s r(tdt

oo 55)-

2t
t —t c1e
, z(cef—ce™) ot + 95

cret +coet  cret+cyet
Which is now a first order ode. This is now solved for z. In canonical form a linear first
order is
' +q(t)z = p(t)
Comparing the above to the given ode shows that

. C1 th — Co
C1 et + co
et(cy e + 2cot
p(t) = ( o )
2c1 €%t + 2c¢9

The integrating factor u is

M:efth

f Cl e2t—C2 dt
=e cq e2t+cz

A /e2t

C1 et + co

The ode becomes

d
g ) = pp

:ft(ufv) (1) (et(cl s 2C2t)>

2c; et + 2¢o
df = o2t B Vet et(c; €% + 2cxt)
dt\ e +c ]  \cre?+c 2¢; et + 2¢o

af e2t B e'(c1 e? + 2cot) Vet &t
cie2 +cy ]\ (2c1€2 4 2¢y) (1 €2 + cy)
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Integrating gives

Ve e'(c1 €% + 2cyt) Vet

= dt
C1 et + co (261 et + 202) (Cl e2t + 62)
_ Vere™t  VereTley(—1+2t) .
2 4cy (¢ €% + ¢3) 3
Dividing throughout by the integrating factor % gives the final solution

()32 e~test + @ + 2c3c1(c1 €% + ¢3)

2 Vv e2t C1

Hence, the solution found using Lagrange adjoint equation method is

xr=

_ (e2t)3/2 e_tclt + @ + 20301 (Cl eZt + Cz)

T =
2ve?t ¢

The constants can be merged to give

(ezt)g/2 e teyt + —‘/ethe_tcz + 2¢1(c1 €¥ + ¢3)

2ve? ¢

Tr =

Will add steps showing solving for IC soon.

Summary of solutions found

(e2t)3/2e—tt /e e—t + ﬁ _
2 8 4

Vet

oo

xr=
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Maple step by step solution

Let’s solve
" —z=¢' z(0) =0,z = 1]
{t=0}
° Highest derivative means the order of the ODE is 2
2z
° Characteristic polynomial of homogeneous ODE
r?—1=0
° Factor the characteristic polynomial
(r—=1)(r+1)=0
° Roots of the characteristic polynomial
r=(-1,1)
° 1st solution of the homogeneous ODE
z1(t) =€t
° 2nd solution of the homogeneous ODE
zo(t) = €t
° General solution of the ODE

x = Clz1(t) + C2z5(t) + z,(2)
° Substitute in solutions of the homogeneous ODE
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z=Cle '+ 02+ z,(t)
O Find a particular solution z,(t) of the ODE

o Use variation of parameters to find z, here f(¢) is the forcing function
_ ®f() /(@) -
7p(t) = —0(t) (J el dt) +22(t) (f wilidmydt) . J(6) = ¢!
o Wronskian of solutions of the homogeneous equation
e—t et

W (z1(t) , 22(t)) = [ et o ]
o Compute Wronskian

W(z1(t),z2(t)) =2
o Substitute functions into equation for z,(t)

xp(t) _ _ et (f2e2tdt) + et (f21dt)

o Compute integrals
Jip(t) _ et(—i+2t)
° Substitute particular solution into general solution to ODE

z = Cl1 e‘t+et02+w
d Check validity of solution x = __Cle™t +e' C2+ w
o Use initial condition z(0) =0
0=_Ct+_C2—1
o Compute derivative of the solution

¥=—_Clet+e_C2+ —et(_i+2t) + Z—t

o Use the initial condition z’ =1

l1=—_Ci1+_C2+13
o Solvefor Cland C2
{ Ci=—-3,_C2=1}

47—
o Substitute constant values into general solution and simplify
et + (2t+1)et

== 4
° Solution to the IVP
Iy
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Maple trace

“Methods for second order ODEs:
-—- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful”

N

Maple dsolve solution

Solving time : 0.015 (sec)
Leaf size : 20

-

dsolve([diff (diff (x(t),t),t)-x(t) = exp(t),
‘ op([x(0) = 0, D(x)(0) = 11)],x(t),singsol=all)

et 2t +1) et
L@

Mathematica DSolve solution

Solving time : 0.033 (sec)
Leaf size : 27

‘ DSolve [{D[x[t],{t,2}]-x[t]1==Exp[t],{x[0]==0,Derivative[1] [x] [0] == 1}},
‘ x[t],t,IncludeSingularSolutions->True]

z(t) — ;Le_t (e (2t +1) — 1)
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2.3.3 problem 7 (iii)

Existence and uniqueness analysis . . . . . . ... ... ... .. 05
Solved as second order linear constant coeffode . . . . . . . .. 506
Solved as second order ode using Kovacic algorithm . . . . . . . 509
Maple step by step solution . . . . . .. ... ... ... .. .. (14
Mapletrace . . . . . . . . . . .. H16
Maple dsolve solution . . . .. ... ... ... .. ....... H16)
Mathematica DSolve solution . . . . .. .. ... ... ..... BY

Internal problem ID [18203]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 5. Linear equations. Exercises at page 85

Problem number : 7 (iii)

Date solved : Thursday, December 19, 2024 at 06:18:04 PM

CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

Solve
7" + 22" + 4z = €’ cos (2t)

With initial conditions

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as
' +p(t)z’ +q(t)x = F
Where here

p(t) =2
q(t) = 4
F = ¢’ cos (2t)

Hence the ode is

z" + 22’ + 4z = €’ cos (2t)
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The domain of p(t) =2 is
{—00 <t < o0}

And the point to = 0 is inside this domain. The domain of ¢(t) = 4 is

{—o0 <t < o0}

And the point to = 0 is also inside this domain. The domain of F' = €’ cos (2t) is

{—00 <t < o0}

And the point £y = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode
Time used: 0.376 (sec)

This is second order non-homogeneous ODE. In standard form the ODE is
Az"(t) + Bz'(t) + Cz(t) = f(t)
Where A =1,B =2,C =4, f(t) = e’ cos (2t). Let the solution be
T=2Tp+Tp

Where zj, is the solution to the homogeneous ODE Ax”(t) + Bz'(t) + Cz(t) = 0, and z,,
is a particular solution to the non-homogeneous ODE Ax”(t) + Bz'(t) + Cz(t) = f(t).
x, is the solution to

' +2r' +4x=0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Az"(t) + Bz'(t) + Cz(t) = 0

Where in the above A =1, B = 2, C = 4. Let the solution be z = e**. Substituting this
into the ODE gives
Me +2) e +4e* =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives

N4+2X+4=0 (2)



CHAPTER 2. BOOK SOLVED PROBLEMS 507

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

Ao = ;—f ZLA B? — 4AC
Substituting A = 1, B = 2,C = 4 into the above gives
M= o (@) (1) ()
T @M @@

— 1443

Hence

A\ =—1+iV3
A =—1—14V3

Which simplifies to
M =iv3—-1
Ao =—1-1iV3

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :]:’L,B

Where o = —1 and B = /3. Therefore the final solution, when using Euler relation,
can be written as

T = e*(c; cos(Bt) + co sin(Bt))

Which becomes
r=e"t <cl cos (\/gt) + co sin (ﬁt))

Therefore the homogeneous solution x;, is
xp=¢e"t (cl cos <\/§ t) + ¢y sin (\/§t>>

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e’ cos (2t)
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e’ cos (2t) , e’ sin (2t)}]

While the set of the basis functions for the homogeneous solution found earlier is
{e_t cos (\/§ t) ,e 'sin (\/5 t) }

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

T, = Ase’ cos (2t) + Aze’ sin (2t)

The unknowns {A;, A} are found by substituting the above trial solution z, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

3A; e’ cos (2t) — 8A; e sin (2t) + 3Aze” sin (2t) + 8 Aze’ cos (2t) = e cos (2t)

Solving for the unknowns by comparing coefficients results in

3 8
A1—ﬁ,A2—7—3

Substituting the above back in the above trial solution x,, gives the particular solution

— 3 e’ cos (2t) N 8 e’ sin (2t)
N 73

Therefore the general solution is

T=x,+ T

= (e (crcos (VBt) + cusin (v31)) ) + (250 4 S0

Will add steps showing solving for IC soon.

Summary of solutions found

oo 3 et cos (2t) N 8 el sin (2t) Lot _ 3cos (v3t) N 17+/3 sin (v/31t)
73 73 73 73
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xv(t) ANNNNNSN——2// 7001
N AMAANNNNSNS——— /7111
AANNANNNS——— /711
ANANNNNNSN S/ /)]
—30d \AANANNNNSN S/ /)
T T T T T T T '\\'\\'\
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a) wolution plo 0 100 200 300
3et cos(2 8 et sin(2
- LI )
et _3c°8(‘/§t> + 17v3 Sin(‘/gt) (b) Slope field plot
& 73 z" + 22" + 4z = €' cos (2t)

Solved as second order ode using Kovacic algorithm

Time used: 0.393 (sec)

Writing the ode as

2+ 22 +4x =0
A"+ B +Cz =0

Comparing (1) and (2) shows that

QW =
i

N T

Applying the Liouville transformation on the dependent variable gives

z(t) = pel zadt
Then (2) becomes

2" (t) = rz(t)

(1)
(2)

(3)

(4)
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Where r is given by

s
r=-

¢
2AB' —2BA' 4+ B? — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives
-3

r=—

1
Comparing the above to (5) shows that

s=-3
t=1

Therefore eq. (4) becomes

2"(t) = —3z(t)

(5)

(7)

Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-

formation

z=2(t)e S ead

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following

table summarizes these cases.

Case Allowed pole order for r Allowed value for O(o0)
1 {0’192a4,6a8)"'} {"'a_6a_4a_2a0,2’3’4a576a"'}
2 Need to have at least one pole that no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2, 5}.
3 {1,2} {2,3,4,5,6,7,- -}

Table 2.54: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(00) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —3 is not a function of ¢, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(t) = cos <\/§t>

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from

_1B

T = zlef 2adt
12

= zle_fifdt

= zet

= (™)

Which simplifies to

T = et cos <\/§ t)

The second solution x5 to the original ode is found using reduction of order

ef_%dt
To = T CL‘2 dt

1

Substituting gives

=$1<\/§ tar;(ﬁt))
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Therefore the solution is

T = C1X1 + C2Z2

— (e eos (V) ) +a (e_t cos (v/31) (\/3 tan (v/3t) >)

3

This is second order nonhomogeneous ODE. Let the solution be

T=Th+ T

Where zj, is the solution to the homogeneous ODE Ax”(t) + Bz'(t) + Cz(t) = 0, and z,,
is a particular solution to the nonhomogeneous ODE Az”(t) + Bz'(t) + Cz(t) = f(t).
xp, is the solution to

2" +22 +4x =0

The homogeneous solution is found using the Kovacic algorithm which results in

xp = cre b cos

(\/§t> N Cy Sin (\/it) e t/3

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e’ cos (2t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is
[{e’ cos (2t) , ' sin (2¢)}]

While the set of the basis functions for the homogeneous solution found earlier is

{e_t cos (\/§ t) , sin (v/31) e_t\/g}

3

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

T, = Ase’ cos (2t) + Aqe’ sin (2t)
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The unknowns {A;, A} are found by substituting the above trial solution z, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

3A;e’ cos (2t) — 8A; €’ sin (2t) + 3Aqe’ sin (2t) + 8 Aqe’ cos (2t) = e cos (2t)

Solving for the unknowns by comparing coefficients results in

3 8
Al—%,A2—7—3

Substituting the above back in the above trial solution z,, gives the particular solution

3e 2t 8¢’ sin (2t
2, = e’ cos ( )+ e’ sin (2t)

73 73
Therefore the general solution is
T=Tp+ T
. 4 Co sin (\/§ t) e t/3 3efcos (2t) 8elsin (2t)
= (cl et cos (V3t) + 3 T T

Will add steps showing solving for IC soon.

Summary of solutions found

e’ cos (V3t) N 17sin (v/3t) e7'/3 N 3et cos (2t) N 8 e’ sin (2t)
73 73 73 73

xr=
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(a) Solution plot 0 1(;?( ) 200 300
3e? cos(x/gt) 17sin<\/§t>e_t\/§
z N 73 + 73 1b) Slope field plot
3e %S(%) 4 8e s71:1)’1(2t) x” + 2z’ + 4z = e’ cos (2t)
Maple step by step solution
Let’s solve
z" + 2z’ + 4z = e’ cos (2t) ,z(0) = 0, 2’ o) 1}
t=0
. Highest derivative means the order of the ODE is 2
x//
° Characteristic polynomial of homogeneous ODE
r24+2r+4=0
° Use quadratic formula to solve for r
r = (DEV-12)
= 2
° Roots of the characteristic polynomial
r=(-1-1v3,Iv3-1)
° 1st solution of the homogeneous ODE
z1(t) = et cos (V/31)
° 2nd solution of the homogeneous ODE

z,(t) = e tsin (v/3¢)

) General solution of the ODE
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z = Clz1(t) + C2z5(t) + x,(t)
° Substitute in solutions of the homogeneous ODE
z = Cle*tcos (v3t) +etsin (vV3t) C2 + z,(t)
O Find a particular solution z,(t) of the ODE

o Use variation of parameters to find z, here f(¢) is the forcing function

[20(t) = —100) ( syt + 220 ([ wi@asadt) S (8) = cos (20)
o Wronskian of solutions of the homogeneous equation
W), 22(t) e~ cos (v/3t) e~tsin (v/31)
z1(t) ,x =
! 2 —e~tcos (V3t) —sin (v3t) e'V/3 —etsin (V3t) +e7t/3 cos (V3t)

o Compute Wronskian

W (z1(t),zo(t)) = V/3e 2

o Substitute functions into equation for z,(?)
V3e~t (— cos <\/§ t) (f sin <\/§ t) cos(2t)e2tdt) +sin (\/5 t) (f cos <\/§ t) cos(2t)e2tdt))
3

zp(t) =
o Compute integrals
z, (t) _ @ cos(2t7);—8 sin(2t))

° Substitute particular solution into general solution to ODE
z =e tsin (v3t) C2+ C1e*cos (V31) + et(3cos(2t7); 8sin(2t)
O Check validity of solution z = e~*sin (v/3t) _C2+ _Cle~*cos (v/3t) + et(3°°S(2t7)§r 8sin(2t)
o Use initial condition z(0) =0
0=2=+_0C1

o Compute derivative of the solution
z' = —etsin (V3t) _C2+e*V/3 cos (V3t) _C2— _Cletcos(v/3t) — _Cle *\/3 sin (V3¢

=1

o Use the initial condition z’

1=2++3_0C2—_C1
o Solve for Cland C2

{1%:—1_1w=%§}

73
o Substitute constant values into general solution and simplify

3e7? C°s<\/§t> 17Sil’l<\/3t)e_t\/§ 3et (cos(2t)+ssm(2t)>
r=- 73 T 73 + 73
° Solution to the IVP
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3e”? cos<\/§t) 17Sin(\/§t)e_t\/§ 3et (cos(2t)+85i%@ﬂ)
73 + 73 + 73

r=—

Maple trace

"Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful’

Maple dsolve solution

Solving time : 0.026 (sec)
Leaf size : 47

‘{dsolve( [diff (diff (x(t),t),t)+2*diff (x(t),t)+4*x(t) = exp(t)*cos(2*t), ‘
| op([x(0) = 0, D(x)(0) = 11)1,x(t),singsol=all) |

3etcos (\/gt) N 17 sin (\/gt) e t/3 N 3ef (COS (2t) + SS%(%))
73 73 73

T =—

Mathematica DSolve solution

Solving time : 1.045 (sec)
Leaf size : 62

N

‘(DSolve [{D[x[t],{t,2}]+2*D[x[t],t]+4*x[t]==Exp[t]*Cos[2*t] ,{x[0]==0,Derivative ‘[1] [x] [0] == 1}
L x[t],t,IncludeSingularSolutions->True] J

z(t) — %e‘t (8€2t sin(2t) + 17+/3 sin (\/§t> + 3e* cos(2t) — 3 cos (\/ﬁt»
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2.3.4 problem 7 (iv)

Existence and uniqueness analysis . . . . . .
Solved as second order linear constant coeff ode

Solved as second order ode using Kovacic algorithm . . . . . . .

Maple step by step solution . . . . ... ..
Mapletrace . . . . . . ... ... ... ...
Maple dsolve solution . . . ... ... ...
Mathematica DSolve solution . . . ... ..

Internal problem ID [18204]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 5. Linear equations. Exercises at page 85

Problem number : 7 (iv)

Date solved : Thursday, December 19, 2024 at 06:18:45 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

Solve
" — x' + x = sin (2t)

With initial conditions

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

"+ p(t)z' + q(t)z = F

Where here
p(t)=-1
q(t) =1
F = sin (2t)

Hence the ode is

" — z' + x = sin (2t)
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The domain of p(t) = —1 is
{—00 <t < o0}

And the point to = 0 is inside this domain. The domain of ¢(t) =1 is

{—o0 <t < o0}

And the point ¢, = 0 is also inside this domain. The domain of F' = sin (2t) is

{—00 <t < o0}

And the point £y = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode
Time used: 0.227 (sec)

This is second order non-homogeneous ODE. In standard form the ODE is
Az"(t) + Bz'(t) + Cz(t) = f(t)
Where A=1,B=-1,C =1, f(t) = sin (2t). Let the solution be
T=2Tp+Tp

Where zj, is the solution to the homogeneous ODE Ax”(t) + Bz'(t) + Cz(t) = 0, and z,,
is a particular solution to the non-homogeneous ODE Ax”(t) + Bz'(t) + Cz(t) = f(t).
x, is the solution to

-2 +z=0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Az"(t) + Bz'(t) + Cz(t) = 0

Where in the above A = 1, B = —1,C = 1. Let the solution be z = e*. Substituting
this into the ODE gives
)\261‘)\ _ )\et)\ + et)\ =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives

M=A+1=0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _— 2 _
A2 = oA + 2A\/B 4AC
Substituting A = 1, B = —1,C =1 into the above gives
A = : \/—12 1) (1)
(2) (1 )
1 \/_
= -4V
2 2
Hence
IERAVE]
A==+ —
1=t
1 /3
Ae=g -y
Which simplifies to
IR AVE]
M=ot
1 V3
A== ———
T2 2

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :l:’&ﬁ

Where a = 3 and B = Y3 Therefore the final solution, when using Euler relation, can
be written as

z = e*(c; cos(Bt) + ¢y sin(Bt))

t V3t . [/3t
T =e2 (cl Ccos (T) + cosin (T))

Therefore the homogeneous solution x;, is

Which becomes
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (2t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (2t) ,sin (2t) }]

While the set of the basis functions for the homogeneous solution found earlier is

t V3t . V3t
ez cos | —— |,eZsin | ——

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

xp = Aj cos (2t) + As sin (2¢)

The unknowns {A;, A} are found by substituting the above trial solution z, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—3A; cos (2t) — 3Aysin (2t) + 2A; sin (2t) — 24, cos (2t) = sin (2t)

Solving for the unknowns by comparing coefficients results in

2 3
A1_1_3’A2__E

Substituting the above back in the above trial solution x,, gives the particular solution

S 2cos (2t)  3sin (2t)
P 13 13

Therefore the general solution is

T=2Zp+Tp

(.t V3t . (/3¢ 2cos (2t)  3sin(2¢)
= (e (cl Ccos (T) 4+ ¢y 81n <T>>> + ( 13 — 3 >
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Will add steps showing solving for IC soon.

Summary of solutions found

2 cos <@> 404/3 sin (@)

2cos (2t) 3sin(2t) ¢
T = — +ez| — +
13 13 13 39
O.
STttt 1111111117777/~
ittt 401011117777 7-
Nttt 1011011117777 —
—107 1111111001100 171777-~
211100100ttt 77 z2=0\
x(2) EEERRRERRRRRERY A
AR EEAY
IBREEREEEEEERRRYEN
—207 P I I T I AN -
'(9) TYPP UV AANANAANANNN~~~/ /)]
* A AN A AANNN~—// [
—H AN ANANANANANNNNNS——/ /) ]
WA AL AVAAANNN <271
—30- =64 VL VAN Y/ /W,
A\ RN Vo N
- - gl VAN A NN /17
—2n —m_m 0 m =m 3m 2nm VNN /7777
2 2 2 1 AN\ YN
¢ 10NN /7777
()Sl 1 AN =7 // /)
a) Solution plot - - - - -
-20 —15 —10 —5 0
2 cos(2t 3sin(2t
z = 1?5) - 135) + x(t)
3t . 3t
o5 _2°°s(fT) +4O‘/§ sm<fT> (b) Slope field plot
13 39 z" — 2’ + x = sin (2t)

Solved as second order ode using Kovacic algorithm
Time used: 0.279 (sec)

Writing the ode as

' —'+x=0 (1)
Az"+ Bx' + Cx =0 (2)
Comparing (1) and (2) shows that
A=1
B=-1 (3)
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Applying the Liouville transformation on the dependent variable gives
2(t) = zel 22t
Then (2) becomes
2'(t) = ra(t) (4)
Where 7 is given by
r=2 (5)
_ 2AB'—2BA' 4+ B? — 4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
-3
T=" (6)
Comparing the above to (5) shows that
s=-3
t=14
Therefore eq. (4) becomes
2(t) = — 3z4(t) (7)

Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-

formation

z = 2(t) e~/ i

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

Case Allowed pole order for r Allowed value for O(o0)
1 {0’1’274a6a8)'”} {"'7_67_47_27(),2’3’475,6,"'}
2 Need to have at least one pole that no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 2.56: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(00) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —% is not a function of ¢, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(t) = cos (g)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from

_1B
T, =z zad
1-1
—ze ST
t
= zleZ

Which simplifies to
t < V3 t)
1 = €2 cos 5

The second solution x5 to the original ode is found using reduction of order

ef_%dt
To = 171/ ) dt

Ty
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Substituting gives

ef__Tldt
.’Egle/ﬁdt
z1

t
= $1/e—2dt
(1)
2\/5 tan (@)
3

=x1

Therefore the solution is

T = C1T1 + Coxo

oo (5 s (2 (5
=cy|ezcos | — + c2 | e2 cos 2

2 3

This is second order nonhomogeneous ODE. Let the solution be

T=2xp+Tp

Where zj, is the solution to the homogeneous ODE Ax”(t) + Bz'(t) + Cz(t) = 0, and z,,
is a particular solution to the nonhomogeneous ODE Az”(t) + Bz'(t) + Cxz(t) = f(t).
xy, is the solution to

-2 +x=0

The homogeneous solution is found using the Kovacic algorithm which results in

\ <\/§t> N 2¢, sin (@) e3/3
2

Xp = C1 €2 COS 3

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (2t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (2t) ,sin (2t) }]
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While the set of the basis functions for the homogeneous solution found earlier is

: V3t 2sin (@) e%\/g
€2 cos
2 )

3

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

z, = A; cos (2t) + As sin (2t)

The unknowns {4;, A} are found by substituting the above trial solution z, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—3A; cos (2t) — 3Aysin (2t) + 2A; sin (2t) — 24, cos (2t) = sin (2t)

Solving for the unknowns by comparing coefficients results in

2 3
A1_1_3’A2__E

Substituting the above back in the above trial solution x,, gives the particular solution

o = 2cos (2t)  3sin (2t)
P13 13

Therefore the general solution is

T=2p+Tp

2¢y sin ( 3t e3+/3 .
¢ t 2 2 2t 2t
= clezcos<\/2g >+ ( ’ ) +( cos ( )—38111( )>

3 13 13

Will add steps showing solving for IC soon.

Summary of solutions found

t \/g . \/g t
o _2e2 cos (Tt> s 40 sin (Tt) e2v/3 N 2cos (2t)  3sin (2t)
N 13 39 13 13
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(a) Solution plot -0 =B _;E ) -3 0
2e% cos(@) 405in(@)e%\/§
T = 13 39 + (b) Slope field plot
2001s3(2t) _ 3s1i1:§2t) 2" — '+ =sin (2t)
Maple step by step solution
Let’s solve
2’ — 2’ +z =sin(2t),z(0) = 0,2’ = 1}
{t=0}
. Highest derivative means the order of the ODE is 2
x//
° Characteristic polynomial of homogeneous ODE
r’—r+1=0
° Use quadratic formula to solve for r
_ 1£(V=3)
= T2
° Roots of the characteristic polynomial
_(1_1/3 1, /3
r= <§ 2o T T)
° 1st solution of the homogeneous ODE
z,(t) = 2 cos (@)
° 2nd solution of the homogeneous ODE

o(t) = e sin (@)
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° General solution of the ODE
z = Clzi(t) + C2z4(t) + z,(2)
° Substitute in solutions of the homogeneous ODE

z = C1 e cos (‘[t> + ez sin (@) C2 + z,(t)
O Find a particular solution z,(t) of the ODE

o Use variation of parameters to find z, here f(¢) is the forcing function

x2(t) f(t x1(t) f(t .
20(®) = —21(t) (/ w2yt ) +22(0) (] et ) , £(2) = sin (26)

o Wronskian of solutions of the homogeneous equation

e2 cos (‘[t> e’ sin (ft>
W(z:(t) ,22(t)) = heos(§1) am()ebvs eham(1) | ebveos(f)
2 o 2 2 2

o Compute Wronskian
W (@1(t) ,2a(t)) = Y3
o Substitute functions into equation for z,(t)
2\/§e% (cos(@) (f sin(@) sin(2t)e_%dt> —sin( ) (f cos( > sin(2t)e” ?dt)>
3

zp(t) = —
o Compute integrals
, (t) 2cos(2t)  3sin(2t)

13 13
o Substitute particular solution into general solution to ODE
T = e sin < ) C2 + C1 ez cos (ft> + 2C018352t) _ 3si11§2t)

O Check validity of solution z = e3 sin (‘[t) C2+ _Clez cos <‘[ > + 2°°15?f2t) - 3Sii‘§2t)

o Use initial condition z(0) =0
0=2+_0C1
o Compute derivative of the solution
e? sin(¥3)__C2 23 cos(¥3t)_C2 _Clet cos(¥31) _Clety3 sin(Y2Y)  gun(2)  6cos(@

,_ — — —
T = 2 + 2 + 2 2 13 13

o Use the initial condition z’ =1

1= _6 45 C2, CI
o Solve for Cland C2
{_o1=-%,_co=4p}

o Substitute constant values into general solution and simplify
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1 . t
T = _262 cos(@) 405”1(@)62\/‘5’ + 2cos(2t)  3sin(2t)

13 39 13 13
° Solution to the IVP
t . t
_ _262 cos(@) 405”1(@)62\/?’ + 2cos(2t)  3sin(2t)
T = 13 39 13 13

Maple trace

"Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful”

Maple dsolve solution

Solving time : 0.021 (sec)
Leaf size : 46

‘dsolve([diff (diff (x(t),t),t)-diff (x(t),t)+x(t) = sin(2xt),
‘ op([x(0) = 0, D(x)(0) = 11)],x(t),singsol=all)

t V3 . V3 t
o _2e2 cos (Tt> s 40 sin (Tt> e2v/3 N 2cos (2t)  3sin (2t)
N 13 39 13 13
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Mathematica DSolve solution

Solving time : 1.62 (sec)
Leaf size : 67

‘/DSolve [{D[x[t],{t,2}]-D[x[t],t]+x[t]==Sin[2*t],{x[0]==0,Derivative[1] [x] [0] =\{= 1}},
‘ x[t],t,IncludeSingularSolutions->True] ‘

2(t) = % <_gsm(2t) + 40/3¢!/% sin (g) + 6 cos(2t) — 6e'/2 cos (@))
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2.3.5 problem 7 (v)

Existence and uniqueness analysis . . . . . . ... ... ... .. 530
Solved as second order linear constant coeffode . . . . . . . .. B3]
Solved as second order ode using Kovacic algorithm . . . . . . . 634
Maple step by step solution . . . . . .. ... ... ... .. .. H39
Mapletrace . . . . . . . . . . .. 4Tl
Maple dsolve solution . . . .. ... ... ... .. ....... 4Tl
Mathematica DSolve solution . . . . .. .. ... ... ..... H4T]

Internal problem ID [18205]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.
London. First Edition (1969)

Section : Chapter 5. Linear equations. Exercises at page 85

Problem number : 7 (v)

Date solved : Thursday, December 19, 2024 at 06:20:09 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

Solve
z" + 42" + 3z = tsin (t)

With initial conditions

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Where here

Hence the ode is

z" + 4z’ + 3z = tsin (t)
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The domain of p(t) =4 is
{—00 <t < o0}

And the point to = 0 is inside this domain. The domain of ¢(t) = 3 is

{—o0 <t < o0}

And the point ¢y = 0 is also inside this domain. The domain of F' = tsin (¢) is

{—00 <t < o0}

And the point £y = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode
Time used: 0.519 (sec)

This is second order non-homogeneous ODE. In standard form the ODE is
Az"(t) + Bz'(t) + Cz(t) = f(t)
Where A=1,B =4,C =3, f(t) = tsin (t). Let the solution be
T=2Tp+Tp

Where zj, is the solution to the homogeneous ODE Ax”(t) + Bz'(t) + Cz(t) = 0, and z,,
is a particular solution to the non-homogeneous ODE Ax”(t) + Bz'(t) + Cz(t) = f(t).
x, is the solution to

' +42' +3z=0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Az"(t) + Bz'(t) + Cz(t) = 0

Where in the above A =1, B = 4,C = 3. Let the solution be z = e**. Substituting this
into the ODE gives
Me +4)e +3e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives

N 4+42+3=0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
- 4+ = 2 _
)\1,2 9 9 B 4AC

Substituting A = 1, B = 4,C = 3 into the above gives

—4 1
Ao = + 42 —(4)(1) (3
=-241
Hence
AM=-2+1
A=-2-1
Which simplifies to
Al=-1
)\2 = —3

Since roots are real and distinct, then the solution is
Aot

T = cleklt + coe

z = eVt 4 g3

z=cet+ce

Therefore the homogeneous solution xj, is

zp=cre t+cye

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

tsin (t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is
[{tsin (t),cos (t)t,cos(t),sin (¢)}]
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While the set of the basis functions for the homogeneous solution found earlier is
{7, e}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

xp = Ajtsin (t) + Aacos (t) t + Ascos (t) + Aysin (2)

The unknowns {4;, As, A3, A4} are found by substituting the above trial solution z,
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

2A; cos (t) + 2Agtsin (t) + 245 cos (t) t — 2A,sin (t)
+ 2A; cos (t) + 2A, sin (t) + 4A; sin (t) + 4A;t cos (¢)
—4A,sin (t)t + 4As cos (t) — 4Azsin (t) + 4A4 cos (t) = tsin (t)

Solving for the unknowns by comparing coefficients results in

1 1 11 1
A= — Ap=—= Ag=— A, = —
1710077 5% T 50" 25

Substituting the above back in the above trial solution x,, gives the particular solution

__tsin(t) cos(t)t  1lcos(t) , sin(t)
=0 5 50 2

Therefore the general solution is

T=2Zp+Tp

_ _ tsin(t) cos(t)t 1lcos(t) sin(?)
— t 3t _

=(ae"+oe )+( 10 5 50 ' 25
Will add steps showing solving for IC soon.

Summary of solutions found

. tsin(t) cos(t)¢ N 11 cos (t) N sin (t) N et A47e™™

10 5 50 25 4 100
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01
NONNNNNN
— 1000001 NNNNNNN
1 x 101 NN
NNNNNNN
—200000 NANNNNNN
S x 10°] NN
3000001 : NN
XU) NN
. NANNNN NN
— 400000 x'(z‘) 6. % 1077 NN NN N NN NN
A e R R R R R R
SOOI NN N NN
—500000 45 1064 NN NN Y
: RSN N R R R R R R
— 600000 OO N
o e oW\ VN
2.%10% /7NN N N NN\
—700000-— ; T T T T 177777777 —=——=~~NN\ N\
- _n 0 wm =w 31 2n 1110017177777 7=~x\\
2 2 2 CEEEREEEEEEREEERRREE
t —3.x10° —2.x10° —1.x 10° 0
(a) Solution plot x(1)
tsin(t cos(t)t 11 cos(t sin(t —t
:v=310()— EE) + 50()+ 2§)+eT— (b) Slope field plot
—3t
471%0 x" + 42’ + 3z = tsin (¢)

Solved as second order ode using Kovacic algorithm
Time used: 0.153 (sec)
Writing the ode as

2 +4x' +3z=0
A"+ B +Cz =0

Comparing (1) and (2) shows that

A=1
B=14
C=3

Applying the Liouville transformation on the dependent variable gives
z(t) = gel zadt
Then (2) becomes

2" (t) = rz(t)

(1)
(2)

3)

(4)
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Where r is given by

r== (5)

¢
2AB' —2BA' 4+ B? — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives
1
r=1q (6)

Comparing the above to (5) shows that

s=1
t=1
Therefore eq. (4) becomes
2'(t) = 2(t) (7)

Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-
formation

z=2(t)e S ead

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(o0)
1 {0’192a4,6a8)"'} {"'a_6a_4a_2a0,2’3’4a576a"'}
2 Need to have at least one pole that no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2, 5}.
3 {1,2} {2,3,4,5,6,7,- -}

Table 2.58: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(00) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = 1 is not a function of ¢, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z21 (t) = e_t

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from

1B
Ty = zlef_§Zdt

Which simplifies to

7y = e

The second solution x5 to the original ode is found using reduction of order

Substituting gives

—4t
(1)

e—4te6t
= 1'1 2
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Therefore the solution is

T = C1X1 + C2Z2
—4t 6t
=c(e™) 4+ <e_3t (e 2e ))

This is second order nonhomogeneous ODE. Let the solution be

T=Th+ T

Where zj, is the solution to the homogeneous ODE Ax”(t) + Bz'(t) + Cz(t) = 0, and z,,
is a particular solution to the nonhomogeneous ODE Az”(t) + Bz'(t) + Cxz(t) = f(t).
xy, is the solution to

2" +42' +3z =0

The homogeneous solution is found using the Kovacic algorithm which results in

Co et

Th = C e 3t + 2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

tsin (t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is
[{tsin (t),cos (t)t,cos(t),sin (t)}]

While the set of the basis functions for the homogeneous solution found earlier is

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

z, = Astsin (t) + Az cos (t) t + Az cos (t) + Aysin (t)
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The unknowns {4;, Az, A3, A4} are found by substituting the above trial solution z,
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

2A; cos (t) + 2A;tsin (t) + 2A; cos (t) t — 2A; sin (t)
+ 2A3cos (t) + 2A,sin (t) + 4A; sin (t) + 4A t cos (t)
—4Asin (t) t + 4 A cos (t) — 4A;sin () + 4A4 cos (t) = tsin (2)

Solving for the unknowns by comparing coefficients results in

1 1 11 1
A = — A = —— A = — A - —
1 107 2 5) 3 507 4 25

Substituting the above back in the above trial solution z,, gives the particular solution

tsin (¢ t)t 11 t in (¢
2, = sin (t)  cos(t) n cos()+s1n()

10 5 50 25
Therefore the general solution is

T=Tp+ Ty

(Cl o3ty 02_e_t> + (tsin (t) cos(t)t N 11 cos (t) N sin (t))

2 0 5 50 25

Will add steps showing solving for IC soon.

Summary of solutions found

e tsin(t) cos(t)t N 11 cos (t) N sin (t) N et 47e™™
10 5 50 25 4 100
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01
NANNNNNN
— 1000004 NN
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— 3000004 8. 10 NN
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2.x10™ /77 r e ssSNNAAN\ N
— 700000ttt 177777777 —==~~SN\ N
—r_x 0 = = 3m 2z L1110 1777777=~\\\
2 2 2 o1t 1ttt
t —3.x10° =2.x 106 —1.x10° 0
(a) Solution plot x(t)
. : —t
T =_;s1116(t) _ cosét)t + llz%s(t) + s1121§t) + eT i (b) Slope field plot
e z’ + 4z’ + 3z = tsin (t)
Maple step by step solution
Let’s solve
z" + 4z’ + 3z = tsin (t) ,2(0) = 0,2’ = 1]
{t=0}
° Highest derivative means the order of the ODE is 2
7
x
° Characteristic polynomial of homogeneous ODE
r>+4r+3=0
. Factor the characteristic polynomial
(r+3)(r+1)=0
° Roots of the characteristic polynomial
r=(-3,-1)
° 1st solution of the homogeneous ODE
z1(t) = e3¢
° 2nd solution of the homogeneous ODE
:Ez(t) =et
° General solution of the ODE

z = Clz1(t) + C2xz5(t) + z,(2)
° Substitute in solutions of the homogeneous ODE
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z=Cle+ C2et +x,(t)
O Find a particular solution z,(t) of the ODE

o Use variation of parameters to find z, here f(¢) is the forcing function

z2(t) f(T z1(t)f(t :
[p(t) = —21(0) ([ w2 5dt) + 22(t) ([ w25t ) , £(2) = tsin (1)

o Wronskian of solutions of the homogeneous equation

W), 22(6) = [ R ]

o Compute Wronskian
W (z1(t),zo(t)) =24
o Substitute functions into equation for z,(?)
e~ 3t ([ tsin(t)e3tdt e~ t([ tsin(t)etdt
z,(t) = — ( 2() )+ ( 2() )

o Compute integrals

10t+11) cos(t sin(t)(5t+2
zy(t) = CL0HDcos(t) | sin()(5t+2)

° Substitute particular solution into general solution to ODE
_ _ —3t , (—10t+11)cos(t) , sin(t)(5t+2)
z=C02e '+ Cle ™ + s+ TR
O Check validity of solution z = _ C%t 4+ _Cle™3 + (_1Ot+51(}) cos) 4 Sin(t)ég”z)
o Use initial condition z(0) =0
0=_0C2+_Cl+ 5

o Compute derivative of the solution

_ — — cos(t) (—10¢4+11) sin(t) cos(t)(5t+2) sin(t)
t'=—_C2e" -3 Cle™® — 222 — =5 + 50 +

=1
{t=0}

o Use the initial condition z’

1=— C2-3 C1- %
o Solve for Cland _C2
[Cl=—41 co=1)

100°
o Substitute constant values into general solution and simplify
et 4773t + (—10t+11) cos(t) + sin(¢)(5t+2)

T="2 " "100 50 50
° Solution to the IVP
T = e”t 473 + (= 10t+11)cos(t) + sin(t) (5t+2)

4 100 50
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Maple trace

“Methods for second order ODEs:
-—- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful”

N J

Maple dsolve solution

Solving time : 0.021 (sec)
Leaf size : 35

e hY

dsolve([diff (diff (x(t),t),t)+4*diff (x(t),t)+3*x(t) = t*sin(t),
‘ op([x(0) = 0, D(x)(0) = 11)],x(t),singsol=all) ‘

bo47e7% N (=10t + 11) cos (¢) N sin (t) (5t + 2)

o
4 100 50 50

Tr=

Mathematica DSolve solution

Solving time : 0.023 (sec)
Leaf size : 42

‘DSolve[{D[x[t],{t,2}]+4*D[x[t],t]+3+x [t]==t*Sin[t],{x[0]==0,Derivative[1] [x] [0] == 1}},
‘ x[t],t,IncludeSingularSolutions->True] ‘

z(t) — ﬁ (e7(25€* — 47) + 2(5¢t + 2) sin(t) + (22 — 20¢t) cos(t))
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2.3.6 problem 7 (vi)
Existence and uniqueness analysis . . . . . . ... ... ... .. H42]
Solved as second order linear constant coeffode . . . . . . . .. H43]
Solved as second order ode using Kovacic algorithm . . . . . . . 46
Solved as second order ode adjoint method . . . . . . . ... .. 551
Maple step by step solution . . . . . .. ... ... ... ..., %%
Maple trace . . . . . . . . .. H56)
Maple dsolve solution . . . .. ... ... ... ......... LYY
Mathematica DSolve solution . . . . .. ... ... ....... 5Tl

Internal problem ID [18206]

Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall.

London. First Edition (1969)

Section : Chapter 5. Linear equations. Exercises at page 85

Problem number : 7 (vi)

Date solved : Thursday, December 19, 2024 at 06:20:11 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

Solve
z" + z = cos (t)

With initial conditions

Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

"+ p(t)x + q(t)z =

Where here
p(t)=0
q(t) =1
F = cos (t)

Hence the ode is

F
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The domain of p(t) = 0 is
{—00 <t < o0}

And the point to = 0 is inside this domain. The domain of ¢(t) =1 is

{—o0 <t < o0}

And the point ¢, = 0 is also inside this domain. The domain of F' = cos (t) is

{—00 <t < o0}

And the point £y = 0 is also inside this domain. Hence solution exists and is unique.

Solved as second order linear constant coeff ode
Time used: 0.218 (sec)

This is second order non-homogeneous ODE. In standard form the ODE is
Az"(t) + Bz'(t) + Cz(t) = f(t)
Where A=1,B=0,C =1, f(t) = cos (t). Let the solution be
T=2Tp+Tp

Where zj, is the solution to the homogeneous ODE Ax”(t) + Bz'(t) + Cz(t) = 0, and z,,
is a particular solution to the non-homogeneous ODE Ax”(t) + Bz'(t) + Cz(t) = f(t).
x, is the solution to

' +zx=0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Az"(t) + Bz'(t) + Cz(t) = 0

Where in the above A =1, B = 0,C = 1. Let the solution be z = e**. Substituting this
into the ODE gives
N L etr =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives

M+1=0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
=—+ —VvB2—-4A
M2 =51 £ 94 ¢
Substituting A =1, B =0,C =1 into the above gives
0 1
A = + V02— (4) (1) (1)
N OTORNOT0
=43
Hence
A1 =+1
Ao = —1i
Which simplifies to
)\1 =1
)\2 = —1

Since roots are complex conjugate of each others, then let the roots be

)\1’2 = :|:’Lﬂ

Where a = 0 and 8 = 1. Therefore the final solution, when using Euler relation, can
be written as

T = e*(cy cos(Bt) + o sin(Bt))
Which becomes
x = €°(c; cos (t) + cysin (t))
x = ¢ cos (t) + co sin (¢)

Therefore the homogeneous solution x;, is

xp = ¢y cos (t) + ¢ sin (2)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos (t)
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (2) ,sin (2)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (t),sin (¢)}

Since cos (t) is duplicated in the UC__set, then this basis is multiplied by extra ¢. The
UC_set becomes

[{tsin (t),cos (t) t}]
Since there was duplication between the basis functions in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

x, = Ajtsin (t) + Az cos ()t

The unknowns {4;, A2} are found by substituting the above trial solution z, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2A; cos (t) — 2Aysin (t) = cos (t)

Solving for the unknowns by comparing coefficients results in
1
|:A1 = 5, A2 = O:|
Substituting the above back in the above trial solution z,, gives the particular solution

tsin (t)
=y

Therefore the general solution is

T=Tp+ T

= (c1cos () + cosin (£)) + <t sin (t))

2

Will add steps showing solving for IC soon.
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Summary of solutions found

tsin (¢
T = tsin (f) + sin ()
2
H/ 7777 7== =~
VP POP o NS RN
1 V7 PN N\ W
J 7777 ==\ N\
0.5 J 7777 m==~~N\ N\
0 17777 7==~NNN\N\ N\
177777==~NNN\N\
x(1) TV
-1 @ o NN
AANANNS=—// /)]
\ AANANNN——// /] ]
—2 \ ANANNNNSN——— S/ /)
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-3 NANNNN S S S/
NANANANON N SO P V4
S N AN NN = s/
-2 - =m O n wm 3m 2n : . : T T
T2 2 2 -1 —0.5 0 0.5 1
t x(1)
(a) Solution plot (b) Slope field plot
z = s Sl;‘(t) + sin (¢) 2"+ = cos(t)
Solved as second order ode using Kovacic algorithm
Time used: 0.094 (sec)
Writing the ode as
" +x=0 (1)
Az"+ B +Cz =0 (2)

Comparing (1) and (2) shows that

3)

QT =
I
— O

Applying the Liouville transformation on the dependent variable gives

2(t) = gel 2t
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547

Then (2) becomes
2" (t) = rz(t)

Where r is given by

s
r=-
t
_ 2AB' - 2BA'+ B? — 4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
r = __1
1
Comparing the above to (5) shows that
s=-—1
t=1

Therefore eq. (4) becomes

2"(t) = —2(t)

(4)

(5)

(6)

(7)

Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-

formation

z=2(t)e 2t

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

Case Allowed pole order for r Allowed value for O(o0)
1 {0’1’274a6a8)'”} {"'7_67_47_27(),2’3’475,6,"'}
2 Need to have at least one pole that no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 2.60: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(00) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=11

Since r = —1 is not a function of ¢, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(t) = cos (t)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from
Bat

_1
T = zlef 2

Since B = 0 then the above reduces to

r1 =21
= cos ()
Which simplifies to
x1 = cos (t)

The second solution x5 to the original ode is found using reduction of order

ef_%dt
To = 1171/ 2 dt

Ty

Since B = 0 then the above becomes

1
.’Ezle/gdt
1

1
= COS (t) / Wdt

= cos (t) (tan (t))
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Therefore the solution is

T = C1X1 + C2Z2

= ci1(cos (t)) + co(cos (t) (tan (t)))

This is second order nonhomogeneous ODE. Let the solution be

T=x,+ T

Where z;, is the solution to the homogeneous ODE Ax”(t) + Bz'(t) + Cz(t) = 0, and z,,
is a particular solution to the nonhomogeneous ODE Az"(t) + Bx'(t) + Cz(t) = f(t).
xp, is the solution to

2 +x=0

The homogeneous solution is found using the Kovacic algorithm which results in

xp, = ¢y cos (t) + ¢ sin (2)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos (t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (t),sin (¢)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (t),sin (t)}

Since cos (t) is duplicated in the UC__set, then this basis is multiplied by extra ¢. The
UC_set becomes

[{tsin (t),cos (t)t}]
Since there was duplication between the basis functions in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

xp, = Aitsin (t) + Az cos ()t
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The unknowns {A;, A} are found by substituting the above trial solution z, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

24, cos (t) — 2Azsin (t) = cos ()

Solving for the unknowns by comparing coefficients results in
1
{A1::§,A2::q
Substituting the above back in the above trial solution z,, gives the particular solution

tsin (t)
=

Therefore the general solution is

T=2xp+ Ty

= (c1cos (t) + czsin (¢)) + (

/ sig (t) )

Will add steps showing solving for IC soon.

Summary of solutions found
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Solved as second order ode adjoint method
Time used: 5.898 (sec)

In normal form the ode

z" + z = cos (t) (1)
Becomes
2" +pi) 2 + q(t) z = r(t) (2)
Where
p(t) =0
q(t) =1

r(t) = cos (t)
The Lagrange adjoint ode is given by
¢ —(Ep)+&g=0
& — (0 +(£@) =0
§'(t) +&(t) =0

Which is solved for £(t). This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

AL"(t)+ BE'(t) + CE(t) =0

Where in the above A =1, B = 0,C = 1. Let the solution be £ = e**. Substituting this
into the ODE gives
et + et =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
NM+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — e 2 _
)\172 2A + 24 B 4AC
Substituting A =1, B =0,C =1 into the above gives

0 1 2 _
Na = E V- OO0

=43
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Hence
)\1 =+
)\2 = —1
Which simplifies to
)\1 =1
)\2 = —1

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :]:’L,B

Where oo = 0 and 8 = 1. Therefore the final solution, when using Euler relation, can
be written as

£ = e*(cy cos(Bt) + ¢y sin(Bt))

Which becomes
¢ = €%(cy cos (t) + cysin (t))

€ = ¢y cos (t) + cosin (2)

Will add steps showing solving for IC soon.

The original ode now reduces to first order ode
§(t) 2" — z€'(t) +£(t) p(t) = =

&(t)
z' + x(p(t) Et; ) J€®)

§ (t)

cos(t)%c sin(t) cos(t)
,  z(—cisin(t) +cocos(t)) ~ 2 : +cl< 2 T %)
Tr — =
¢y cos (t) + ¢y sin (t) c1 cos (t) + ¢y sin (t)

Which is now a first order ode. This is now solved for z. In canonical form a linear first
order is

o' +q(t)z = p(t)



CHAPTER 2. BOOK SOLVED PROBLEMS 553

Comparing the above to the given ode shows that

—cy sin (t) + ¢ cos (t)

q(t) = - c1 cos (t) + ¢y sin (2)
__ —cCos (t)° c2 + cusin (¢) cos (t) + c1t
p(t) = 2¢1 cos (t) + 2c; sin (¢)

The integrating factor u is

’u:efth

—c1q sin(t)+cg cos(t)
— ef_ cllcos(t)+cz2sin(t) dt

1
¢y cos(t) + cysin (t)

The ode becomes

d
&(Nx) = kp

—cos (t)? ¢y + ¢y sin (t) cos (t) + eyt
E(,ux) = () ( 2c; cos (t) + 2¢cy sin (t) )

% <c1 cos (t) i casin (t)>

< 1 ) —cos (t)? ¢y + ¢y sin (t) cos (t) + eyt
c1 cos (t) + cosin (2) 2¢; cos (t) + 2¢cy sin (t)

d z B — cos (t)? ¢; + ¢y sin (t) cos (t) + ¢1t dt
cicos(t) +epsin(t) )\ (2¢1cos (t) + 2cysin (t)) (c; cos (t) + cysin (1))
Integrating gives
z B / —cos (t) ¢y + ¢ sin (t) cos () + ¢1t i@t
cicos (t) +cgsin(t) ) (2c1cos(t) + 2casin (t)) (ci cos (t) + casin (t))

_ —ttan (§) —2¢tan (§)° — ttan (£)° -} - tan(5)” 4 tan(y)? | ten(
2
(1 + tan (%)2> <cl tan (%)2 —2tan (£) cs — cl>

Dividing throughout by the integrating factor m gives the final solution

1 )’ t t
T=-3 + (2¢1¢3 + 1) cos <§> + sin <§> (2¢qc3 + t) cos (§> —cic3
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Hence, the solution found using Lagrange adjoint equation method is

1 t\? t t
T=—3 + (2c1¢3 + 1) cos (5) + sin (5) (2c2c3 + t) cos (5) —c1C3

The constants can be merged to give

——1+(2 + 1) cos EQ—!—S' ¢ (2¢c2 +t) cos £ _
xTr = 9 C1 9 1n 9 Cy 9 C1

Will add steps showing solving for IC soon.

Summary of solutions found
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Maple step by step solution

Let’s solve
" +x =cos(t),z(0) =0,z = 1]
{t=0}
° Highest derivative means the order of the ODE is 2
mll
° Characteristic polynomial of homogeneous ODE
r?+1=0
° Use quadratic formula to solve for r
r— Oi(\2/—7)
° Roots of the characteristic polynomial
r=(-LI)
° 1st solution of the homogeneous ODE
x1(t) = cos (t)
° 2nd solution of the homogeneous ODE
Zo(t) = sin (t)
° General solution of the ODE
z = Clz1(t) + C2z5(t) + x,(t)
° Substitute in solutions of the homogeneous ODE

xz = C1 cos (t) + C2sin (t) + zp(t)
O Find a particular solution z,(t) of the ODE

o Use variation of parameters to find z, here f(t) is the forcing function

_ (0 (2) 21 (B (8) _
[xp(t —a1(t (f Wiar(0,220) & >+x2 (f W(xll(tm(t))dt)’f (t) = cos ()

o Wronskian of solutions of the homogeneous equation
cos(t) sin(¢
W(er(0),22(6) =[ “ ”]

—sin (t) cos(t)
o Compute Wronskian
W (z1(t) , 22(t)) =1
o Substitute functions into equation for z,(?)
z,(t) = —w +sin (t) ([ cos (t)* dt)
o Compute integrals
CL'p(t) _ coz(t) + tsirzl(t)

° Substitute particular solution into general solution to ODE
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z = C1 cos () + C2sin (t) + 1 4 @)

O Check validity of solution x = __C1cos () +__C2sin (t) + Coiﬁ +

o Use initial condition z(0) =0

0=_Ci+1
o Compute derivative of the solution
¥’ = —_ Clsin (t) + C2cos (t) + Silll(t) + cosz(t)t

=1
{t=0}

o Use the initial condition z’

1=_C2
o Solve for Cland C2
{_ Ci=—-3,_C2=1}

o Substitute constant values into general solution and simplify

z=sin(t) (1+ %)
° Solution to the IVP
z=sin(t) (1+ %)

Maple trace

tsin(t)
2

N\

“Methods for second order ODEs:
-—- Trying classification methods ---
trying a quadrature

trying high order exact linear fully integrable

trying differential order: 2; linear nonhomogeneous with symmetry [0,1]

trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients

<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful”
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Maple dsolve solution

Solving time : 0.010 (sec)
Leaf size : 12

‘dsolve([diff (diff (x(t),t),t)+x(t) = cos(t),
‘ op([x(0) = 0, D(x)(0) = 11)],x(t),singsol=all)

r=$n@<1+%>

Mathematica DSolve solution

Solving time : 0.028 (sec)
Leaf size : 14

‘ DSolve[{D[x[t],{t,2}]+x[t]==Cos[t] ,{x[0]==0,Derivative[1] [x] [0] == 1}},
‘ x[t],t,IncludeSingularSolutions->True]

ﬂﬂﬁ%@+%ﬁﬂﬂ
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