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CHAPTER 1. LOOKUP TABLES FOR ALL PROBLEMS IN CURRENT BOOK

1.1 2.4, page 55

Table 1.1: Lookup table for all problems in current section

ID problem ODE

4077 1 Syz +4y* + 1+ (2® +2yz)y' =0
2 2z tan (y) + (z — z%tan (y))y' =0
3 P2 +1) +y+Quz+1)y =0
4 4zy? + 6y + (5z°y + 8z)y' =0

5 5e+2y+1+ @2z +y+1)y =0
6 3z —y+1—(6z—2y—3)y =0
4083 7 r—2y—3+2z+y—1)y =0
4084 8 6r+4y+1+(4x+2y+2)y =0
4085 9 3t—y—6+(z+y+2)y =0
4086 10 2% +3y+1+ (4o +6y+1)y =0
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CHAPTER 2. BOOK SOLVED PROBLEMS 8

2.1 2.4, page 55

2.1.1 problem 1 . . . . . . . . . .. e )
2.1.2 problem 2 . . . . ... e e 151
213 problem 3 . . . . .. 22]
214 problem 4 . . . ... 251
2.1.5 problem 5 . . . ... e 40}
2.1.6 problem 6 . . . . . ... e 60]
2.1.7 problem 7 . . . ... 701
2.1.8 problem 8 . . . ... 82
2.1.9 problem 9 . . . ... 104

2.1.10 problem 10 . . . . . . . . . .. e 118



CHAPTER 2. BOOK SOLVED PROBLEMS 9

2.1.1 problem 1

Solved as first order Exactode . . . . . ... ... ....... )
Maple step by step solution . . . . ... ... ... ... .... 13
Maple trace . . . . . . . . . . . e 14
Maple dsolve solution . . . . . .. ... ... ... ... ..., 14
Mathematica DSolve solution . . . . . ... ... ........ 14

Internal problem ID [4077]

Book : Differential equations, Shepley L. Ross, 1964

Section : 2.4, page 55

Problem number : 1

Date solved : Tuesday, December 17, 2024 at 06:21:25 AM

CAS classification : [_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

Solve

5ry +4y* + 1+ (° + 2zy) y =0

Solved as first order Exact ode
Time used: 0.392 (sec)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 96d
Yy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that

09
8_:c_M
0p
3_y_N
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But since aa g = then for the above to be valid, we require that

OM ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = aay 55 is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

By(')

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(z2 + 2zy) dy = (—5xy — 4g? — 1) dx
(5zy +4y® + 1) dz+(2* + 2zy) dy = 0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) =bzy + 4> + 1
N(z,y) = z* + 2zy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
—=—(5 42 +1
o 8y( zy +4y° + 1)
=5z + 8y
And

ON 0
57 =~ B2 (:c2 + 2xy)

=2z + 2y

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

oM ON
A= (a—y‘a—x)

_ ﬁ((fm +8y) — (22 +20))

&IOOH
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

p=e JAdz
— ef % dz
The result of integrating gives
©= 63111( )
= x3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

= 2°(5zy + 4y> + 1)
= (boy +4y* +1) 2°
And

= 1°(z* + 2zy)
= a'(z + 2y)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N%=0
dx
d
((bzy +4y* +1)2°) + (x4(x + 2y)) % =0
The following equations are now set up to solve for the function ¢(z,y)
0 —
Y =M 1
ox (1)
0 —
T =N 2
o ®)

Integrating (1) w.r.t. = gives

%dxz /Mdz
or

%dx:/(5xy+4y2+1)x3dx

b=y +o'y + 7t + F) )
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Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o = 2yt ) (@

=a'(z +2y) + f'(y)
But equation (2) says that g—Z’ = z*(x + 2y). Therefore equation (4) becomes
iz +2y) = '(z +29) + f'() (5)

Solving equation (5) for f'(y) gives
f'ly)=0
Therefore
fly)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

1
¢ = oy + zhy? + Zm“ +c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and c; constants into the constant c; gives the solution as

1
c = w5y + x4y2 + ZlA

Solving for y gives
—x3 — /26 — x1 + 4c;
2x2

—2% + /26 — ¥ + 4,
222

y:
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Summary of solutions found

2% — 1t 4+ 4¢;

212

-

212

y(z)) =0

d
dx

Highest derivative means the order of the ODE is 1

d

5zy(z) + 4y(z)” + 1 + (22 + 2zy(z)) (

=i

[e}
2 @
(@) wn
@L
=
n
iy .
(=R
Q
4
n
Q
p—
[«
S

y(z)
Solve for the highest derivative

—5zy(z)—4y(x)®—1
z24-2zy(z)

y(z) =

d
dx
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Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

<- exact successful’

Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 59

‘ dsolve (5*x*y (x) +4*y (x) ~2+1+(x"2+2*x*y (x) ) *diff (y(x) ,x) = 0,
‘ y(x) ,singsol=all)

—x3 — /26 — x1 — 4c;

y(x) = 21:2
() —x3 + /26 — 11 — 4c;
xTr) =

Y 222

Mathematica DSolve solution

Solving time : 1.02 (sec)
Leaf size : 84

‘ DSolve [{(5*x*y [x]+4*y [x] ~2+1)+(x~2+2*x*y [x] ) *D [y [x] ,x]1==0,{}},
L y[x],x,IncludeSingularSolutions->True]

2% + V32T — 15 + deyz
y(x) - = 2t

z Va3\/xT — x® + 4deix
2 2z4

y(z) -
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2.1.2 problem 2

Solved as first order Exactode . . . . . ... ... ....... 151
Maple step by step solution . . . . ... ... ... ... .... 201
Mapletrace . . . . . . . . . . . ... 201
Maple dsolve solution . . . .. .. ... ... ... ....... 201
Mathematica DSolve solution . . . . . ... ... ........ 211

Internal problem ID [4078]

Book : Differential equations, Shepley L. Ross, 1964

Section : 2.4, page 55

Problem number : 2

Date solved : Tuesday, December 17, 2024 at 06:21:27 AM

CAS classification : [[_1st_order, _with_exponential_symmetries]]

Solve

2ztan (y) + (z — z°tan(y)) y' =0

Solved as first order Exact ode
Time used: 0.494 (sec)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 96d
Yy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that

09
8_:c_M
0p
3_y_N



CHAPTER 2. BOOK SOLVED PROBLEMS 16

But since % = % then for the above to be valid, we require that
Y yox
oM _ ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
(96;: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(—1+ztan(y))dy = (2tan (y))dz
(—2tan (y))dz+(—1+ztan(y))dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —2tan (y)
N(z,y) = —1+ xtan (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz

Using result found above gives

oM 0

£ 6_y(_2 tan (y))

= —2sec(y)?
And
ON 0

B = %(—1 + ztan (y))

— tan (y)
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Smce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an 1ntegrat1ng factor to make it exact. Let
anL(om _on
Oy ox
1 2
—2-—2t —(t
T+ ztan(y) (( an (y)”) — (tan (y)))
_ —sin(y) — 2sec (y)
~ xsin (y) — cos (y)
Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

ON OM
B=u (%‘a—y)

=_C°t2(y)( ~(~2—2tan (y)?))
1

= —cot (y) —tan(y) - 5

Since B does not depend on z, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

,u:edey

_ ef — cot(y)—tan(y)—1 dy

The result of integrating gives

— ¥ —In(sin(y))+1n(cos(y))

y

p=e
__cos(y)e 2
sin (y)
M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

M = uM

_ cos (v)
sin (y)

_Y
2

<d

W 2 (_gtan (y))

=—2e"
And
N = uN
__cos(y)e 2
sin (y)
= e (z — cot (y))

<

(=14 ztan (y))
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M+N%=O
dz

(—2 e_%> + (e_%(w — cot (y))) % =0

The following equations are now set up to solve for the function ¢(z,y)

1)

0p —
g_x_
¢_—N

Integrating (1) w.r.t. = gives

0 . [+
%dx—/de

0¢p _y
adm—/—Qe dzx

¢=—2e"%z+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and

y. Taking derivative of equation (3) w.r.t y gives

0 y y
5 =<t £ @

= e~ 2(z — cot (y)). Therefore equation (4) becomes

But equation (2) says that gi

e 3 (z —cot (y)) = e 2z + f'(y) (5)

Solving equation (5) for f'(y) gives
f'(y) = —e "% cot (y)

Integrating the above w.r.t y gives

[rway=[ (- teotw)ay

fly) = / —e "2 cot (7)dr + ¢
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CHAPTER 2.

Where ¢; is constant of integration. Substituting result found above for f(y) into

equation (3) gives ¢

t (1) dr + ¢

Y
_T
—€ 2CO

/

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and

y
combining ¢; and ¢y constants into the constant c; gives the solution as

¢=—-2e 2+

t(7)dr

2 Co

Y
= —2e_ga:+/ —e
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Figure 2.2: Slope field plot

2z tan (y) + (z — z? tan (y)) v’

0

Summary of solutions found

Y
—2e_3x+/ —e 2 cot (1) dr = ¢;
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Maple step by step solution

Let’s solve

2z tan (y(z)) + (z — 22 tan (y(z))) (Ly(z)) =0
° Highest derivative means the order of the ODE is 1

=y(@)

° Solve for the highest derivative
d _ 2z tan(y(z))
%y(x) — T a2 taf(y(a:))

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

<- 1st order linear successful

<- inverse linear successful’

Maple dsolve solution

Solving time : 0.071 (sec)
Leaf size : 32

‘ dsolve (2*x*tan(y(x))+(x-x"2*tan(y(x)))*diff(y(x),x) = 0,
‘ y(x) ,singsol=all)

e’ (fy(m) cot (__a) e~ d_a)
2

y(=)

—e2c+z=0
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Mathematica DSolve solution

Solving time : 0.657 (sec)
Leaf size : 78

‘/DSolve [{(2*x*Tan [y [x]])+(x-x~2*Tan[y[x]]1)*D [y [x] ,x]==0,{}},
‘ y[x],x,IncludeSingularSolutions->True]

1 . .
Solve {x =3 ((8 — 22’)62“’(”) Hypergeometric2F1 (1, 1+ %, 2
— 341 Hypergeometric2F'1 (i, 1,1+ %7 e%y(m))) + CleyTz) LY
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2.1.3 problem 3
Maple step by step solution . . . .. ... ... .. ......
Maple trace . . . . . . . . . .. e
Maple dsolve solution . . . . ... ... ... ... ...... 23]
Mathematica DSolve solution . . . . . ... ... ....... 24]

Internal problem ID [4079]

Book : Differential equations, Shepley L. Ross, 1964

Section : 2.4, page 55

Problem number : 3

Date solved : Tuesday, December 17, 2024 at 06:21:29 AM

CAS classification : [_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

Solve

V(@ +1)+y+ (2zy+1)y =0
Unknown ode type.
Maple step by step solution

Let’s solve

y(@)® (2® + 1) +y(z) + (1 + 22y(z)) (Ly(2)) =0
° Highest derivative means the order of the ODE is 1

=y(2)

° Solve for the highest derivative
d _ _ y@*(@®+1)+y(2)
%y(.'li) - 1+2zy(xz)

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:
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trying Chini

differential order: 1; looking for linear symmetries
trying exact

trying Abel

Looking for potential symmetries

Looking for potential symmetries

Looking for potential symmetries

trying inverse_Riccati

trying an equivalence to an Abel ODE

differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation

--- Trying Lie symmetry methods, 1st order ---

*, ~—> Computing symmetries using: way = 3
, —> Computing symmetries using: way = 4
, —> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs

~

~

-> trying a symmetry pattern of the form [F(x)*G(y), O]

-> trying a symmetry pattern of the form [0, F(x)*G(y)]

-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
symmetry pattern of the form [F(x),G(x)]

symmetry pattern of the form [F(y),G(y)]

-> trying a
a
-> trying a symmetry pattern of the form [F(x)+G(y), O]
a
a
a

-> trying

-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

-> trying a symmetry pattern of conformal type"

Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : maple_leaf size

e

dsolve (y(x) 2% (x~2+1) +y (x) +(2*x*y (x) +1) *diff (y(x) ,x) = O,
y(x) ,singsol=all)

No solution found
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Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0

' DSolve [{ (y [x] 2% (x"2+1) +y [x])+ (2xx*y [x] +1)*D [y [x] ,x]==0,{}},
‘ y[x],x,IncludeSingularSolutions->True]

Not solved
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2.1.4 problem 4
Solved as first order Exactode . . . . . ... ... ....... 25
Solved as first order isobaricode . .. .. ... ... ... ... 30
Solved using Lie symmetry for first orderode . . . .. .. . ..
Maple step by step solution . . . . . .. ... ... ... .. ..
Maple trace . . . . . . . . . ..
Maple dsolve solution . . . .. ... ... ... .. .......
Mathematica DSolve solution . . . . .. .. ... ... ..... 39

Internal problem ID [4080]

Book : Differential equations, Shepley L. Ross, 1964

Section : 2.4, page 55
Problem number : 4

Date solved : Tuesday, December 17, 2024 at 06:21:31 AM

CAS classification :

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

Solve

4zy® + 6y + (5z’y +8z)y' =0

Solved as first order Exact ode

Time used: 0.420 (sec)

To solve an ode of the form

Hence

Comparing (A,B) shows that

d
M(x,y)+N(w,y)£=0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t.  gives

d
0p L 0bdy _
ox  Oydr

04 _
T —M
_6¢_N

0

(A)
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But since % = % then for the above to be valid, we require that
Y yox
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

gj gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy=0 (1A)
Therefore
(52°y + 8z) dy = (—4y’z — 6y) dz
(49 + 6y) dz +(52°y + 8z) dy = 0 (2A)
Comparing (1A) and (2A) shows that
M (z,y) = 4y°z + 6y
N(z,y) = 52’y + 8z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON
oy Oz
Using result found above gives
oM 0
— = (4% +6
Oy 3y< yo+ y)
=8zy+6
And
ON 0 9
= 10zy + 8

Since %i; F# %—]:, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

e 1(6M 8N>

“ N\dy Oz

=—((8 6) — (10 8
o (B +6) — (102y +8))
_ —2zy—2
 ba2y + 8z
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

g 1(ON _om
- M\ 0z Oy

= ———((10 8) — (8 6
i, (1004 8) = (ay+6)
_oxy+1
2%z + 3y
Since B depends on z, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

ON oM

R= M —yN
R is now checked to see if it is a function of only ¢ = xy. Therefore
2 g

_ (10zy +8) — (8zy +6)
"~z (4y2x + 6y) — y (5z%y + 8x)

. —2zy—2
 zy(ay +2)
Replacing all powers of terms zy by t gives
=22
Ct(t+2)

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be u then

p=e JRdt
= ef(%> dt
The result of integrating gives
[y = e~ n(t(t+2)
1
Ct(t+2)
Now ¢t is replaced back with xy giving
1

H= oy ey +2)
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Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = uM
1
=— (42246
xy(my+2)(yx y)
4zy + 6
z (zy + 2)

And

_ 2
= @i (5z%y + 8z)

ory + 8
y(zy +2)
A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

. _dy
M+Ng =0

<4a:y—|—6 )+( Szy + 8 )%_0
z (zy + 2) y(zy+2)) doe

The following equations are now set up to solve for the function ¢(z,y)

0p —
b _~

Integrating (1) w.r.t. = gives

0¢p —
adx=/de
op ., 4zy + 6
a_mdx_/—x(xy+2)dx
¢=In(zy+2)+3n(z)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0p «z
oy zy+2

+ () (4)
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5zy+8

Syt Therefore equation (4) becomes

But equation (2) says that ?)_(lys =

oxy+8 oz
y(ry+2) zy+2

+ f'(y) (5)
Solving equation (5) for f’'(y) gives
4
4 —_— =
e ”
Integrating the above w.r.t y gives
, 4
flyydy= [ (- )dy
Y
fly) =4In(y) +c

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢=In(zy+2)+3n(z) +4ln(y) +

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into the constant c; gives the solution as

ci=In(zy+2)+3ln(z)+4In(y)

3] 7711 1\ \
7101 VN
77— j‘v v\
2 / / / A “‘v \ \
S—7 17 V N\
J 77 1\ NN
— = / /// \\c \ NS
o AN
S _
y(X) 0 R N
—~— N\ J
: N T T T e
] NN\ TS
\\\\\/ ‘\‘v 7/’7"///// —
NN\ VT 7S
2]~ NNN V1 TS
NNV V=T s
\NNN VT 7SS
-3 \NN V1YY Sm”
2 4

Figure 2.3: Slope field plot
4zy® + 6y + (5z%y + 8z)y' =0
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Summary of solutions found

In(zy+2)+3n(z) +4ln(y) =c

Solved as first order isobaric ode
Time used: 0.260 (sec)

Solving for y' gives
o 2y(2zy +3)
~ z(5zy+8)

Each of the above ode’s is now solved An ode y' = f(z,y) is isobaric if

fltz, t™y) =" f(z,y)

Where here 2(2 3)
_ _ylery +9)
f(@,y) = z (5zy + 8)
m is the order of isobaric. Substituting (2) into (1) and solving for m gives
m=—1
Since the ode is isobaric of order m = —1, then the substitution
y=uz"
u
oz

Converts the ODE to a separable in u(z). Performing this substitution gives

u(z) + w(r) _ 2u(z) (2u(z) +3)
z2 T z? (5u (z) + 8)

The ode v/'(z) = % is separable as it can be written as

o) = 12 @) +2)
z (5u (z) + 8)
= f(z)g(u)

Where

(1)

(2)
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Integrating gives

Su + 8 1
/—u(u+2) du=/§da:
In ((u(z) +2) u(z)*) = In(z) +

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or “5(5—1? =0 for
u(z) gives

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In ((u(z) +2)u(z)?) =In(z) + &
u(z) = -2
u(z) =0

Converting In ((u(z) + 2) u(z)*) = In () + ¢1 back to y gives
In ((zy 4+ 2) z'y*) =In(z) + &1
Converting u(z) = —2 back to y gives
Ty = —2
Converting u(x) = 0 back to y gives
zy =10

Solving for y gives

In((zy+2)z'y") =ln(z) + 1

Ned ~—
Il
o

<
|
|
SR
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Figure 2.4: Slope field plot
4zy® + 6y + (5z%y + 8z)y' =0

Summary of solutions found

In ((zy +2)z*y*) =In(z) + &1
0

Y

2
y —
x
Solved using Lie symmetry for first order ode
Time used: 0.927 (sec)
Writing the ode as

J = 2y(2zy + 3)
z (5zy + 8)

Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - fz) - w2€y - wx€ — Wy = 0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

§ =zaz +yas + a (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

_ 2y(2zy +3) (b3 —ay)  4y*(2xy + 3)° as

by

z (5zy + 8) 22 (5zy + 8)°
42 2y(2zy +3) 1042 (2zy + 3)) (5E)
— | = xas + yas + a
( z (5zy +8) x2(5zy +8) z (bzy + 8)2 (zaz +yas + a1)

2(2zy + 3) 4y 10y(2zy + 3))
N — + by +ybs+b) =0
( z(5zy+8) bSxy+8  (5zy+8)° (22 +ybs +b1)

Putting the above in normal form gives

45x*y%by — 362%y%as + 2023y?b, — 20x2y3a; + 144x3yby + 22%y2as + 222y%bs — 108z y3as + 64x%yb; — 6(
22 (5zy + 8)°

=0
Setting the numerator to zero gives

45x*y%by — 362y as + 2023y%b; — 2027y a; + 144x3yby + 22%y2ay + 22°y?bs (6E)
— 108z y3a3 + 64x2yb1 — 60z y2a1 + 112by2% — 84y2a3 + 48xby; — 48ya; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}

in them

{z=v,y =02}

The above PDE (6E) now becomes

—36a3v3v5 +45byv vs —20a; V3V +20b; V3 V3 +2a5v7v3 — 108azv;vs +144byvivy (7E)
+ 2b3v3v3 — 60a,v1v3 + 64byv2vy — 84a3vs + 112byv7 — 48a,v; + 48b1v; = 0
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Collecting the above on the terms v; introduced, and these are
{v1, v2}

Equation (7E) now becomes

45byv3 02 + 20510302 + 144byv3vy — 36a3v3vs — 20010203 + (2a0 + 2b3) v20?2  (8E)
+ 64b1v2v5 + 112by07 — 108a3v1vs — 60a,v,v5 + 48byv; — 84asvs — 48a,v; =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—60a; =0
—48a; =0
—20a; =0
—108asz =0
—84a3 =0
—36a3 =0
200, =0
48b =0
64b; =0
45b, =0
1126, =0
144b, =0
2a5 +2b5 =0

Solving the above equations for the unknowns gives

a; =0
az = —b3
a3 =0
by =0
by =0
bs = b

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

=2
n=y
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(,y)¢
2y(2zy + 3
gy (P2 ()
z (bzy + 8)
Y42
~ bry+8
£€=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

Sz/ldy
n
_ 1

o / y2x+2ydy

5zy+8

S is found from

Which results in
S=In(zy+2)+4In(y)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S+ w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2y(2zy + 3)

w(zy) = - z (5zy + 8)
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Evaluating all the partial derivatives gives

R, =1
Ry =0
__ Y
T ozy+2
x 4

S, = —
Yooy +2 + Y
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dsS 3

-~ -2 2A

dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 3

dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).
3
as= [ -2
[as= [ ~an
S(R) = —-3In(R) + ¢

To complete the solution, we just need to transform the above back to x,y coordinates.
This results in

In(zy+2)+4ln(y) = —-3In(x) + ¢
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . ) . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _ 2yQ2zy+3) s _ _ 3
dz z(5zy+8) dR =~ R
R==z

S=In(zy+2)+4In(y)

LR R IR IR R R R TR SR SRR}
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Figure 2.5: Slope field plot
4zy? + 6y + (52%y +8z)y =0

Summary of solutions found

In(zy+2)+4In(y) = =3In(z) + ¢
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Maple step by step solution

Let’s solve
4zy(z)® + 6y(z) + (5a?y(z) + 8z) (Ly(z)) = 0
° Highest derivative means the order of the ODE is 1

=Y(@)
° Solve for the highest derivative
—4zy(z)?—6y(z
%y(m) = 5xy2(y()x)+8yx( :

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous G

<- homogeneous successful”

N\

Maple dsolve solution

Solving time : 0.051 (sec)
Leaf size : 23

‘ dsolve (4xy (x) ~2*x+6%y (x)+(5*x~ 2%y (x) +8*x) *diff (y(x) ,x) = 0,
‘ y(x) ,singsol=all)

RootOf (—In(z) + 1 +In(_Z+2) +4In(_2))

y(z) =




\/DSolve [{ (4*xxy [x] ~2+6*y [x] )+ (5*x~2*y [x] +8*x) *D [y [x] ,x]==0,{}},
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Mathematica DSolve solution

Solving time : 2.933 (sec)

Leaf size : 156

y[x],x,IncludeSingularSolutions->True]

y(xz) — Root [
y(z) — Root _
y(z) — Root [
y(xz) — Root _

y(xz) — Root | —

4
415 _ 2;@;1
e - 2L
20
e - 2L
21

c1 1
+ 2—4&, 1

c1 T
+51&,2
x -

el 1
+ F&’ 3
et 7
+ —4&:,4

T

et
+

&,5

rd



CHAPTER 2. BOOK SOLVED PROBLEMS 40

2.1.5 problem 5

Solved as first order homogeneous class Maple Code . . . . . . 4T]
Solved as first order Exactode . . . .. ... ... ... .... 6]
Solved using Lie symmetry for first orderode . . . .. .. . .. 49|
Solved as first order ode of type dAlembert . . .. .. ... .. 54
Maple step by step solution . . . . . ... ... ... ... ... ¥
Maple trace . . . . . . . . .. 8]
Maple dsolve solution . . . .. ... ... ... ......... HOl
Mathematica DSolve solution . . . . .. ... ... ....... O

Internal problem ID [4081]

Book : Differential equations, Shepley L. Ross, 1964

Section : 2.4, page 55

Problem number : 5

Date solved : Tuesday, December 17, 2024 at 06:21:33 AM

CAS classification :

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

Solve

5t+2y+1+2x+y+1)y =0

Summary of solutions found

y:—2x—1—\/—(x—1)2+62°1

y:—2a:—1—|—\/—(w—1)2+ezcl
y=—tx—2x+1i—1

y=tx—2xr—1—1
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Solved as first order homogeneous class Maple C ode
Time used: 0.813 (sec)

Let Y =y —yo and X = = — x( then the above is transformed to new ode in Y (X)

iY(X) _2Y/(X) +2yo + 570 +5X +1
dX 220+ 2X+Y (X)+y+1

Solving for possible values of xy and yo which makes the above ode a homogeneous ode
results in

.’13():1
Yo = —3

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes
d _2Y(X)+5X

ax X =—9x +Y (X)

In canonical form, the ODE is

Y'=F(X,Y)
2Y 45X
=T 1
2X +Y (1)

An ode of the form Y’ = %(())S,/)) is called homogeneous if the functions M (X,Y’) and
N(X,Y) are both homogeneous functions and of the same order. Recall that a function

f(X,Y) is homogeneous of order n if
fE"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = —2Y — 5X and N = 2X + Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since

this ode is homogeneous, it is converted to separable ODE using the substitution u = %,
or Y =uX. Hence
¥ _du
dX dX
Applying the transformation Y = uX to the above ODE in (1) gives
du —2u—95
X 7
dX tu u+2
du 2 u(X)

dx X
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Or —2u(X)—5
A - e T
dX X
Or
(diXu(X)) Xu(X) +2 (diXU(X)) X +u(X)? +4u(X) +5 =0
Or

X (u(X) +2) ( di( (X)) w(X)? + 4u(X) +5=0

Which is now solved as separable in u(X).

The ode J&u(X) = —% is separable as it can be written as
X)? + 4u(X
iu(X):—u( )Y +4u(X)+5
X X (u(X)+2)
= f(X)g(w)
Where
1
X)=——
FX) =5
(u) = u?+4u+5
U= u+2

Integrating gives

/ﬁdu:/f(X dx

u+ 2
du = ——dX
/u2+4u—|—5 v= /

In (u(X)® +4u(X) +5) _ (i) te

2 X

We now need to find the singular solutions, these are found by finding for what values
. . oo . . . uw2+4ut+5

g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or ZT; =0 for

u(X) gives

wX)=-2—1
w(X)=-2+1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.
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Therefore the solutions found are

In (u(X) +4u(X) +5) _ ( ! ) ter

2 X
wX)=-2—-1
uw(X)=-2+1

Solving for u(X) gives

w(X)=-2—1
w(X)=-2+1

—2X —vV/—-X?2+ e
w(X) =

X

—2X +V-X?%+ e

u(X) = e

Converting u(X) = —2 — i back to Y(X) gives
Y(X)=(-2-49)X

Converting u(X) = —2 + 4 back to Y (X) gives
Y(X) = (-2+1i) X

Converting u(X) = =2X=V_ X241 b to V(X))

gives
Y(X)=-2X— V=X? + e

—2X+\/)—W back to Y (X) gives
Y(X)=-2X+ V=X?+ e

Using the solution for Y'(X)

Converting u(X) =

Y X)=(-2-9)X
And replacing back terms in the above solution using

Y =y+uyo
X=$+CL'0
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Y=9y-3
X=x+1

Then the solution in y becomes using EQ (A)
y+3=(-2—-14)(z—1)
Using the solution for Y (X)
Y(X)=(=2+i) X

And replacing back terms in the above solution using

Y=y+uw
X=£13+$0
Or
Y=y-—-3
X=z+1

Then the solution in y becomes using EQ (A)
y+3=(-2+40)(z—-1)
Using the solution for Y (X)
Y(X)=—2X —vV-X%2+ e

And replacing back terms in the above solution using

Y =y+uyo

X=xz+2x
Or

Y=y-3

X=z+1

Then the solution in y becomes using EQ (A)

y+3=—2x+2—\/—(a:—1)2+e201
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Using the solution for Y (X)

_X2 _|_ e201

Y(X) = —2X +

And replacing back terms in the above solution using

=Y+ %

Y
X

T+ g

Or

y—3
rz+1

Y
X

Then the solution in y becomes using EQ (A)

Solving for y gives

y=—2x—1—\/—(33—1)2+e201

y:—2x—1+\/—(x—1)2+e2cl

y=—ir—2x+1—1

x—2xr—1—1

y:
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Figure 2.6: Slope field plot
S5r+2y+1+2z+y+1)y =0
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Solved as first order Exact ode
Time used: 0.192 (sec)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

2z+y+1)dy=(—2y—5z—1)dz
Qy+5z+1)dz+2x+y+1)dy=0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =2y+5z+1
N(z,y) =2z +y+1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
0 0
=22 1
By 8y( Y+ 5z + 1)
=2
And
ON 0
— = —(2 1
o a:( z+y+1)
=2

Since %i; = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)
¢ _

p M (1)
09
- N (2)

Integrating (1) w.r.t. z gives

%dx:/de
or

%dx=/2y+5x+1dx
¢:x(4y+25x+2)+f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o ,
= 2z + f'(y) (4)

But equation (2) says that g—Z’ = 2z + y + 1. Therefore equation (4) becomes

2r+y+1=2z+ f(y) (5)
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Solving equation (5) for f'(y) gives

flly) =y+1

Integrating the above w.r.t y gives

= %)
= Lun
+
= +
N—r (o]
/ )
Il I
g 3
= T
3

1
2
Where c¢; is constant of integration. Substituting result found above for f(y) into

equation (3) gives ¢

2
Y
9 +yt+a

_|_

z(4y + 5z + 2)

¢ =

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining ¢; and cy constants into the constant c; gives the solution as

z(4y + 5z + 2)

C1

y=-2r—1—+/—224+2c;+ 2z +1

Solving for y gives

y=—20—1+\/—22+2c;+2c+1

P A S A A e e e

S s s s
SN
P O O A A
S]] N~
7/ \ , N~ , R T e g g gy

/ N> > > > > > > >~ > > > > > >

B B S TP ol

P i g e S S O

\v\w\«\\\\w\\w\\\‘\‘\‘\wx‘y\‘\‘\‘V
e -
P S L L L L L
o 3 = 5 = o o
=
x
g
>

Figure 2.7: Slope field plot
S5r+2y+1+2z+y+1)y =0
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Summary of solutions found

y=—-2x—1—+/—22+2c;+22+1

y=—-20—1+\/—22+2c;+2c+1

Solved using Lie symmetry for first order ode
Time used: 0.533 (sec)
Writing the ode as

, 2y+dz+1
2 4y+1

y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — W2§y —wz —wyn =0 (A)

To determine &,n then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

§ = zaz + yas + a (1E)
n = xbs +ybs + by (2E)

Where the unknown coefficients are

{(11, a2, as, b17 b2, b3}

Substituting equations (1E,2E) and w into (A) gives

(2y+5z+1)(bs—a2) (2y+5z+1)"as

by —

2z +y+1 2z +y+1)°
5 4y—|—10x+2> (5E)
— | - xas + yas + a
( 20+y+1 (2c4y+1)> (zaz +yas + a1)
2 2y+ 5z +1
I bo +ybs+b) =0
( 2% +y+1 (23:—|—y+1)2>(x2 ybs +b)
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Putting the above in normal form gives

10x%ay — 25x%a3 + 3x2by — 1022b3 + 10zyay — 20zyas + 4xyby — 10zybs + 2y%as — 3y%as + y2by — 2y%bs
(2z +y

=0

Setting the numerator to zero gives

10z%ay — 252%a3 + 3z2by — 102%b3 + 10zyas — 20xyas + 4xybs — 102ybs (6E)
+ 2y2as — 3y%as + y2by — 2y2bs + 10zay — 10zas — xby + Saby — Txbs
+ya1+3ya2—ya3+2yb2—2yb3+3a1+a2—a3+b1+bg—b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

1Oa2vf + 10aqv1v9 + 2a2v§ — 25a3vf — 20a3v1v9 — 3a3v§ + 3b2vf + 4byv1v9 (TE)
+ bg’U% - ].Obg’l)% — 10b3’01’l)2 - 2b3’U§ + a1v0 + 10&2’01 + 3&2’[)2 - 10(1,3’01 — a3V
— b11)1 + 5b2’U1 + 2b2’l}2 — 7b3’l)1 — 2b31)2 + 3&1 + a9 — as -+ b1 + b2 — b3 =0

Collecting the above on the terms v; introduced, and these are
{v1,v2}

Equation (7E) now becomes

(10&2 — 25(13 + 3b2 — 10b3) U% + (10@2 — 20(13 + 4b2 — 10b3) V1V (SE)
+ (100,2 - 100,3 — b1 + 5b2 - 7b3) U1 + (2(12 — 3a3 + bz - 2b3) 'Ug
+(a1+3a2—a3+2b2—2b3)v2+3a1+a2—a3+b1+b2—b3=0



CHAPTER 2. BOOK SOLVED PROBLEMS 51

Setting each coefficients in (8E) to zero gives the following equations to solve

2a9 — 3az + by — 2b3 =0

10as — 25a3 + 3by — 10b3 =0
10ay — 20a3 + 4by — 10b3 = 0

a1 + 3as —az + 2by —2b3 =0
10a; — 10as — by + 5by — 7bs = 0
3a1+ay—as+b;+by—b3=0

Solving the above equations for the unknowns gives

a3 = —asz — b
as = 4as + b3
as = as

b, = Sa3 + 3bs3
by = —bas

bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=z2-1
n=y+3

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n="1n-wzy)

2y+ 5z +1
—y+3— (YT
v+t (2x+y+1)(w )
bl dry+yP + 22+ 2y 42
N 2r+y+1

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

F=, = 1)
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The above comes from the requirements that (£ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

Sz/ldy
n

L d
- 522 4+4zy+y2+2z+2y+2 Yy
2a+y+1

S is found from

Which results in
In (522 + 4zy + y2 + 2z + 2y + 2)
2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S =

aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z )__2y—|—5x—|—1

= T y+1

Evaluating all the partial derivatives gives

&
Il

T

1
0

v
<
|

_ 2y + 5z +1
522 4+ (4y + 2) x + y% + 2y + 2

2r+y+1

Sy = — 2
y2+ (4o +2)y + 522 + 22 + 2

N

T

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

R=
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

0 (2A)

0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

R) = Cy
To complete the solution, we just need to transform the above back to x,y coordinates.
This results in

In (522 + (dy +2) z + y* + 2y + 2)
2

:c2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . )
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _ 2y+5z+l as _
dx 2z+y+1 dR —
EQ)
R==z

In (522 + (4y +2) z - :

q
2

Solving for y gives

y=—-2r—1—+v—-a2+e2 42z —1

y=—-2r—1+V—-12+e> +2z—1
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Figure 2.8: Slope field plot
5r+2y+1+2x+y+1)y =0

Summary of solutions found

y=-2z—-1-vV—22+ e +2z— 1

y=-2z—14+vV—-12+e>2+2z—1

Solved as first order ode of type dAlembert

Time used: 0.399 (sec)

y' the ode becomes

Let p

5t +2y+1+(2z4+y+1)p=0

Solving for y from the above results in

\}
=
— | 8
+ |+
SR Na\|
|
8
o &
+ |+

(@]
)

|

Il
N

This has the form

)

*

(
Where f, g are functions of p = y/(x). The above ode is dAlembert ode which is now

solved.

zf(p) +9(p)

y:
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Taking derivative of (*) w.r.t. z gives

d
p=1f+(@f +9)5

dp
/ /
_f— b 2
p—f=@f+9) (2)
Comparing the form y = zf + g to (1A) shows that
—2p—5
f = 2
+p
_—p-1
9= 94

Hence (2) becomes

_—2p—5_(_ 2z + 2xp + 5z 1 I 1 )p’(z)
2+p 2+p  (2+p)° (2+p)° 2+p (2+p)° (2+p)’

(24)

The singular solution is found by setting fl—’m’ = 0 in the above which gives

—2p—5
=0
24+p

Solving the above for p results in

p2=-2—1

Substituting these in (1A) and keeping singular solution that verifies the ode gives

(—2+i)z—1—14

Y
y=(-2—-d)z—1+1

The general solution is found when $ # 0. From eq. (2A). This results in

—2p(x)—5
p(z) - 45

2zp(z) 52 1 p(z) 1
D T @) T Eh@? @ T @) T @@

3)

p(z)=—F
T 24p(

(2+p(2)) (p(2)*+4p(2)+5)

This ODE is now solved for p(z). No inversion is needed. The ode p/(z) =
is separable as it can be written as

_ 2+p()) (p()” + 4p(z) +5)
z—1

z—1

P ()
= f(z)g(p)
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Where

flo) = =

9(p) =2+p) (P +4p+5)

/ﬁdp=/f(x)dw
/(2+p)(p21+4p+5)dp:/xi1dx
2+ p(z)

\/p(x)2+4p(x)+5

We now need to find the singular solutions, these are found by finding for what values
g(p) is zero, since we had to divide by this above. Solving g(p) = 0or (2 + p) (p* + 4p +5) =
0 for p(x) gives

Integrating gives

In

=ln(z—-1)+¢

p(z) = =2
p(z) =-2—1
p(x) =—-2+1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In 2+p(@) =ln(z—-1)+¢
VP (@ +4p (@) +5

p(z) = =2

p(r) =-2—1

p(x) =—-2+1

Substituing the above solution for p in (2A) gives

_ c1 _ 1 Cc1 _ 1 _ — C1 — 1
x( 21; e \/ $262°1 —92 e2¢:1 +e201 -1 + 2 e \/ m2(3201 —2 e201 +e2°1 -1 1) + re \/ m2e2cl —92 e2°1 +6201 -1

1 1 1
C1 — — eC1 — C1 —
ze \/ x2e2°1 —2x e2°1 +e2¢1 -1 € \/ x2e2°1 —2x e2°1+e2°1—1 ze \/ x2e2°1 —27 €2°1+-e2°1 —

y:
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Figure 2.9: Slope field plot
5r+2y+1+2x+y+1)y =0

Summary of solutions found

y=(-2—-4d)z—1+1
y=(—2+d)r—1—1

x<_2x et \/_ m2e2C1—2w(31201+e2C1—1 +2e \/_ z2e2cl—2:v(312cl+e2°1—1 o 1>
y =

1 1

C1 — — €1 J—

ze \/ x2e2°1 —2x 21 4e2¢1 -1 € \/ x2e2°1 —2x 21 4e2¢1 -1

—zet,/— : +et, /— : +1
x2e261 —2x e2¢14e2¢1 -1 x2e2¢1 —2x 21 4e2¢1 -1

1 1
C1 — — €1 —
ze \/ r2e2¢1 — 2z e2¢1 4e2c1—1 € \/ z2e2¢1 — 2z e2¢1 4e2c1—1

_|_

Maple step by step solution

Let’s solve
524 2y(z) + 1+ (2z 4+ y(z) + 1) (Ly(z)) =0

° Highest derivative means the order of the ODE is 1

Ly(x)

OJ Check if ODE is exact
o ODE is exact if the lhs is the total derivative of a C? function
LF(z,y(z)) =0
o Compute derivative of lhs
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2F(y)+ (2F(y) (L) =0

o Evaluate derivatives

2=2
o Condition met, ODE is exact
° Exact ODE implies solution will be of this form
|F(z,y) = C1, M(z,y) = £F(2,9), N(2,9) = $F(z,9)|
° Solve for F(z,y) by integrating M (x,y) with respect to x
F(z,y)= [(bz+2y+1)dz +_FI1(y)
° Evaluate integral
F(z,y) = % + 2y + o+ _FI(y)
° Take derivative of F(z,y) with respect to y
N(z,y) = £ F(z,y)
° Compute derivative
2r+y+1=2z+ L Fi(y)
o Isolate for d%_F 1(y)
a_Fl(y) =y +1
o Solve for _ F1(y)
_Fi(y) = 34" +y
) Substitute _ F1(y) into equation for F'(z,y)
F(z,y) =32’ +2zy + 2+ 35" +y
o Substitute F'(z,y) into the solution of the ODE
22 +2zy+z+ 3yt +y=CI
o Solve for y(z)

{y(z)=-1-20—v-224+2C1 + 22+ 1,y(z) = -1 — 22+ V-2 +2C1 + 2z + 1}

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable
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trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful”

Maple dsolve solution

Solving time : 0.395 (sec)
Leaf size : 32

e

L y(x) ,singsol=all)

dsolve (5*x+2*y (x)+1+(2*x+y(x)+1) *diff (y(x) ,x) = O,

_\/_ (z-12E+1+(-22—1)c;

y(z) =

Mathematica DSolve solution

Solving time : 0.219 (sec)
Leaf size : 53

‘ DSolve [{(5*x+2xy [x]+1)+(2*x+y [x]+1)*D [y [x] ,x]1==0,{3}},

y[x],x,IncludeSingularSolutions->True]

yx) = —/—22+2z+1+¢ — 20 —1
yx) = V—22 42 +1+¢ -2z —1
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2.1.6 problem 6

Solved using Lie symmetry for first orderode . . . .. ... .. 601
Solved as first order ode of type dAlembert . . ... ... ... 651
Maple step by step solution . . . . . ... ... ... ... .. 68}
Mapletrace . . . . . . . . . . ... 68]
Maple dsolve solution . . . . . ... ... ... L. 60]
Mathematica DSolve solution . . . . . ... ... ... ..... 69

Internal problem ID [4082]

Book : Differential equations, Shepley L. Ross, 1964

Section : 2.4, page 55

Problem number : 6

Date solved : Tuesday, December 17, 2024 at 06:21:36 AM

CAS classification :

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

Solve

3t—y+1—(6z—2y—3)y' =0

Solved using Lie symmetry for first order ode
Time used: 0.659 (sec)

Writing the ode as

, y—3r—1
Y=oy _6zr+3
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ﬂy - 5:1:) - w2€y —we€ — Wyl = 0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

é' = zay + yas +a (1E)
n = xbs +ybs + by (2E)
Where the unknown coefficients are

{(11, a2, as, bl) b2, b3}
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Substituting equations (1E,2E) and w into (A) gives

(y—3z—1)(bs—as) (y—3z—1)as

by + -
? 2y —6x+3 (2y — 6z + 3)°
_(_ 3 +6y—181’—6)($a+ as + ay) (5E)
2 — 62+ 3 (2y—6x+3)2 2 T Yas 1

—( L 2<y_3x_1)>(xb2+yb3+b1)=0

2y —62+3 (2y— 6z +3)°
Putting the above in normal form gives

18x2%ay + 97%a3 — 36x2by — 182%b3 — 12xyay — 6xyas + 24zyby + 12xybs + 2y%ay + y2as — 4y?by — 2y
(—2y +6

=0

Setting the numerator to zero gives

—18z%a, — 92%a3 + 362%b, + 182%b5 + 12zyas + 6zyas — 24zyb, — 12xybs (6E)
— 2y%as — y2as + 4y?by + 2y%bs + 18zay — 6zasz — 41xby — 3zbs — yas
+ 17yaz + 12yby — 4ybs + 15a; + 3a; — az — 5b; + 9bs — 3b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{x =v1,y = v}

The above PDE (6E) now becomes

—180,2’0% + 12(12’1)1’()2 — 2021)3 - 9&3’0% + 6(131)1’()2 — agvg + 36b2’U% - 24[)2’()1’02 (7E)
+ 4b2’U§ + 18[)3’0% — 12b3’01’l}2 + 2b3’U§ + 18&2’01 — Q9Vy — 6@3’01 + 17&3’02
— 41bovy + 12bgvg — 3bgv; — 4bsvy + 15a; + 3as — a3 — 5by + 9by — 3bs = 0

Collecting the above on the terms v; introduced, and these are

{vl’ 1)2}
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Equation (7E) now becomes

(—18&2 - 9&3 + 36b2 + 18b3) ’U% + (12&2 + 6&3 — 24b2 - 12b3) V1V (SE)
+ (18ay — 6az — 41by — 3b3) v1 + (—2ay — az + 4by + 2b3) v3
+ (—a2 + 17@3 + 12b2 - 4b3) Vg + 15a1 + 3(12 — as — 5b1 + 9b2 - 3b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—18ay — 9a3 + 36b, + 18b3 = 0

—2as — a3z + 4by +2b3 =0

—ag + 17a3 + 12by — 4b3 = 0

12a5 + 6a3 — 24by — 12b3 =0

18as — 6a3z — 41by — 3b3 =0

15a; + 3a; — a3 — 5by +9b; — 3b3 =0

Solving the above equations for the unknowns gives

a; = ay
a9 = 2b2
a —_— _2_b2
T3
10b
by = 3a; + T2
by = by
b
by =

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

£=1
n=3
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n—wxy)
y—3z—1

=3—-(— (1
(2y—6x+3>()

by +15z— 10

- —2y+62—3

§=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

S is found from

1
:/ —5y+15:1:—10dy

—2y+6z—3

Which results in

o 2y In(—3z+y+2)
5 5
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S+ w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

_y—3z—-1
W@ Y) = o 613

Evaluating all the partial derivatives gives

R,=1
R,=0
. 3
* —by+ 15z — 10
2 1
S, =<+

5 ' —5y+ 15z — 10
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
R 2A
dR 5 (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _1
dR 5
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

1
/dS—/ng
R

S (R) = g + Co
To complete the solution, we just need to transform the above back to x,y coordinates.
This results in
2y In(-3z+y+2) =

B 5 5t

Which gives

L bert -9 5x—4—5¢2
Y= amerW(2 e )-|—3x—2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
Original ode in z,y coordinates coordinates
transformation

ODE in canonical coordinates

(R, S)
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Figure 2.10: Slope field plot
3r—y+1—(6z—2y—3)y =0
Summary of solutions found
LambertW (—2 e5®—4-5¢2
Yy=— ( ) +3r—2
2
Solved as first order ode of type dAlembert
Time used: 0.335 (sec)
Let p = ¢ the ode becomes
3zr—y+1—(—2y+62—-3)p=0
Solving for y from the above results in
6p—3)r —3p-—1
y=%2-9 (1)
—1+2p —1+2p
This has the form
y =z f(p) +9(p) (*)

Where f, g are functions of p = y/(x). The above ode is dAlembert ode which is now
solved.
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Taking derivative of (*) w.r.t. z gives

dp
_ !/ !
dp

! /
— f = = 2
p—f=@f+g) (2)
Comparing the form y = zf + g to (1A) shows that
f=3
_ —3p-1
I= 152

Hence (2) becomes

_(_ 3 6p 2 .
p-3= (-t ot )P 24)

The singular solution is found by setting 3—5 = 0 in the above which gives
p—3=0
Solving the above for p results in
p1=3
Substituting these in (1A) and keeping singular solution that verifies the ode gives

y=3z—2

The general solution is found when 2 # 0. From eq. (2A). This results in

p(z) —3
pl(x) = 3 + 6p(z)
—1+2p(z) ' (—1+2p(z))*

2
* T

This ODE is now solved for p(z). No inversion is needed. Integrating gives

5
/ =31+ ="

111(p—3)+ 1 In(-1+2p)
5 1+ 2p 5

=+

Singular solutions are found by solving

(p—3) (=1+2p)" _
5

0
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for p(z). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

Substituing the above solution for p in (2A) gives

—3 gRootOf (2In(2e—7+5)e—7+10c1 e~7—2_Ze—“+10ze—7+51n(2e—7+5)+25c1—5_Z+252—5) _ 1()

y= 3z + 2 eRootOf(21n(2 e~Z+5)e—7+10c1 e~Z—2_ Ze—?+10x e—Z+51In(2e—Z+5)+25¢1 —5_Z+252—5) +5

y=3x—2
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Figure 2.11: Slope field plot
3z—y+1—(6z—2y—3)y =0

Summary of solutions found

y=3zr—2

— 3 gRootOf (2In(2e—7+5)e—7+10c1 e-#—2_Ze—“+10z e—7+51n(2e—7+5)+25c1 —5_Z+252—5) _ 1()

y= 3z + 2 eRootOf(21n(2 e~Z+5)e—7+10c1 e~Z~2_ Ze—?+10x e—Z+51n(2e—Z+5)+25¢1 —5_Z+252—5) +5
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Maple step by step solution

Let’s solve
3z —y(z) + 1 — (6 — 2y(z) — 3) (Ly(z)) =0

° Highest derivative means the order of the ODE is 1
2y(z)

° Solve for the highest derivative

d . =3zty(x)-1
wy(@) =— 6:1:—25(.%)—3

Maple trace

"Methods for first order ODEs:
-—- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
-> Calling odsolve with the ODE™, diff(y(x), x) = 3, y(x)°
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- 1st order, canonical coordinates successful
<- homogeneous successful”

**% S

ublevel 2 *xx*
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Maple dsolve solution

Solving time : 0.024 (sec)
Leaf size : 23

‘dsolve(3*x—y(x)+1-(6*x-2*y(x)—3)*diff(y(x),x) =0,
‘ y(x) ,singsol=all)

L _2 5r—4—5c1
y(z) = — ambertW (2 e ) 43z 9

Mathematica DSolve solution

Solving time : 4.378 (sec)
Leaf size : 35

‘ DSolve [{(3%x-y[x]+1) - (6%x-2*y[x]-3)*D [y [x],x]==0,{}},
‘ y[x],x,IncludeSingularSolutions->True]

y(z) — —%W(—em_l“l) +3z -2
y(z) = 3z — 2
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2.1.7 problem 7

Solved as first order homogeneous class Maple Code . . . . . . 70
Solved using Lie symmetry for first orderode . . . .. ... .. 75
Maple step by step solution . . . . . ... ... ... ... .. 801
Mapletrace . . . . . . . . . . ... 801
Maple dsolve solution . . . . . ... ... ... L. 01
Mathematica DSolve solution . . . . .. ... ... ....... [T

Internal problem ID [4083]

Book : Differential equations, Shepley L. Ross, 1964

Section : 2.4, page 55

Problem number : 7

Date solved : Tuesday, December 17, 2024 at 06:21:38 AM

CAS classification :

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

Solve
z—2y—3+R2z+y—1)y =0

Summary of solutions found

In ((y+1>2+<w—1)2>
(z-1)°

1 1
5 +Qarctan(zi—1)=ln(x_l)+cl

y=—tz+1—1

y=1txr—1—1
Solved as first order homogeneous class Maple C ode

Time used: 0.601 (sec)

Let Y =y — yo and X = x — x then the above is transformed to new ode in Y(X)

iY( )= 2Y(X)+2yo—z0— X +3
dX S22 +2X+Y (X)+y—1

Solving for possible values of xy and yo which makes the above ode a homogeneous ode
results in
To = 1

Yo

I
|
—



CHAPTER 2. BOOK SOLVED PROBLEMS 71

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d 2Y(X) - X

EYHXFEX+YM)

In canonical form, the ODE is

Y' =F(X,Y)
2Y — X
= 1
2X +Y (1)

An ode of the form Y’ = %g}}:)) is called homogeneous if the functions M(X,Y) and
N(X,Y) are both homogeneous functions and of the same order. Recall that a function
f(X,Y) is homogeneous of order n if

fE"X,1"Y) =t"f(X,Y)

In this case, it can be seen that both M = 2Y — X and N = 2X + Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since

this ode is homogeneous, it is converted to separable ODE using the substitution u = )Z(,
or Y =uX. Hence

dY du
axX Taxxte
Applying the transformation Y = uX to the above ODE in (1) gives
du 2u—1
X T
a9 ()
dx X
Or 2u(X)—1
Ay - wom H _
dX X o
Or d d
2 —_—
(d—Xu(X)) Xu(X) + 2(d—Xu(X)> X+uX)+1=0
Or p
X(u(X)+2) (EU(X)) +u(X)?4+1=0

Which is now solved as separable in u(X).
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d _ w(X)?41 . . .
The ode JFu(X) = — X(u(X) 1) 1S separable as it can be written as
d w(X)® +1
X)) =——2 T
x"X) = xum 19
= f(X)g(u)
Where
1
fX)=-+
u? +1
glu) =~ ——

Integrating gives

/ﬁdu:/f(X)dX
———du= | ——dX
Jasio= [ %

In (u(X)” +1) + 2arctan (u(X)) = In (l) +a

2

X

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or ’fj_;l = 0 for
u(X) gives

w(X) = —i
uw(X) =1
Now we go over each such singular solution and check if it verifies the ode itself and

any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (U(X;z +1) + 2arctan (u(X)) = In (%) o
w(X) = —i
uw(X) =1

. ln(u(X)2+1) 1 X
Converting ————= + 2arctan (u(X)) = In (%) + ¢1 back to Y/(X) gives

In <Y(X)2+X2

2 Y (X 1
2X ) + 2arctan (%) =1In (Y) +c




CHAPTER 2. BOOK SOLVED PROBLEMS 73

Converting u(X) = —i back to Y(X) gives
Y(X) = —iX

Converting u(X) = ¢ back to Y(X) gives

Y(X)=1iX

Using the solution for Y (X)
Y (X)2+X2
1n< i >+2arctan Yx) =In E +c (A)
2 x ) T \x) "7

And replacing back terms in the above solution using

Y=y+uy

X =z+x
Or

Y=y-—-1

X=x+1

Then the solution in y becomes using EQ (A)
In ((y+1)2+(z—1)2

z—1)2 1 1
(@=1) ) + 2arctan y+- =In +c
2 z—1 z—1

Using the solution for Y'(X)

Y(X) = —iX (A)

And replacing back terms in the above solution using

Y =y+yo

X =z+x
Or

Y=9y-1

X=z+1

Then the solution in y becomes using EQ (A)

y+1=—i(z—1)
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Using the solution for Y (X)

Y(X)=1iX

And replacing back terms in the above solution using

=Y+ %

Y
X

T+ Zo

Or

Y
X

rz+1

Then the solution in y becomes using EQ (A)

y+1l=i(z—1)

Solving for y gives

)-I—Cl

1
y=—ir+i—1

y+1 I
o r—1

r—1

) + 2arctan (

(z—1)

In <(y+1)2+(w—1)2
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Figure 2.12: Slope field plot
z—2y—3+2z+y—1)y =0
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Solved using Lie symmetry for first order ode
Time used: 0.669 (sec)

Writing the ode as

,=2y—x+3
Y o oryy—1
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — W2€y —wef —wyn =0 (A)

To determine &,n then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

£ =zax +yaz + a1 (1E)
1 = wby +ybs + by (2E)

Where the unknown coefficients are

{ala az, as, b17 b27 b3}

Substituting equations (1E,2E) and w into (A) gives

2y —z+3)(bs—a) 2y —z +3)° a3

by +

2z +y — 1 2z +y—1)?
1 2(2y—x+3)> (5E)
e - zas +yaz + a
( 20+y—1 (2z+y—1)° (w02 +yas + @)
2 2y —z+3
— - xby + ybs +b1) =0
(2x+y—1 (2m+y—1)2>( 2 T Y03 1)

Putting the above in normal form gives

2x2ay — x2as — 22by — 22%b3 + 2zyas + 4xyas + dxyby — 22ybs — 2y%as + y2as + y2by + 2y%bs — 279 +
2z+y—:

=0
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Setting the numerator to zero gives

21209 — T2a3 — 22by — 22203 + 2xyas + 4dxyas + dxybs — 2xybs — 2y2a2 (6E)
+ y2a3 + y2by + 2y%bs — 2zas + 6zas — 5y + xby + Txbs + Hyas
— yag — Tyaz — 2yby + 6ybs + 5a; + 3az — 9az + 5b; + by — 3b5 = 0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

2a2'vf + 2a9v1V9 — 2agv§ — agvf + 4azvive + a3v§ — bgvf + 4bsv1v9 + vag (TE)
— 2b3’U% - 2b3’01’02 + 2b3’Ug + 5(11’02 - 20,2’1)1 — QoUy + 6&3’01 - 7&3’02 - 5b1’01
+ bg’Ul — 2b2’U2 + 7b3’01 + 6b3'U2 + 5(1,1 + 3a2 — 9(13 + 5b1 + b2 - 3b3 =0

Collecting the above on the terms v; introduced, and these are
{’Ul, 1}2}

Equation (7E) now becomes

(2&2 — as — b2 - 2b3) ’U% + (20,2 + 4(13 + 4b2 - 2b3) V1V2 (8E)
+ (—2CL2 + 6a3 - 5b1 + b2 + 7b3) V1 + (—2a2 + as + b2 + 2b3) ’Ug
—|—(5a1 — Qo —7a3—2b2+6b3)v2+5a1—|—3a2—9a3+5b1+b2 —3b3=0

Setting each coefficients in (8E) to zero gives the following equations to solve

—2ay + ag + by + 2b5 = 0

2a9 —az — by —2b5 =0

2ay + 4az + 4by — 2b3 =0

5a; — ay — Taz — 2by + 6b3 =0
—2as + 6az — 5by + by + Tbs =0
5a; + 3a; — 9az + 5b; + by — 3b3 =0
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Solving the above equations for the unknowns gives

a3 = —by — b3
as = b3

a3 = —b,

by =—ba+bs3
by = by

bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=z-1
n=y+1
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(y)é

:y+1_(%—w+3)@_n

2r+y—1
_x2+y2—2x+2y+2
N 2z +y—1
£E=0

The next step is to determine the canonical coordinates R, .S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dz _dy _
& n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S is found from

1
:/z2+y2—2z+2y+2 dy

2z+y—1
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Which results in

1 2 2_9 2 2 2 2
S = n(@”+y i )+2arctan y+
2 2r — 2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ S+ w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by
_2y—xz+3

w(z,y) = 2w+y—1

Evaluating all the partial derivatives gives

R, =1
R,=0
. —2y+z—-3
a4y -2z + 2y +2
2r+y—1

VT 24y — 20+ 2y +2
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

0 (2A)

0

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

S(R) = C
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To complete the solution, we just need to transform the above back to x,y coordinates.
This results in

In (y? 242y —2 2 1
n(y +z —|—2y Tt )+2arctan<y+ )202
a‘;_

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . .
. . ) . . ODE in canonical coordinates
Original ode in x,y coordinates coordinates (R,S)
transformation ’
dy _ 2y—z+3 ﬁ—O
da dR —
Lt
g 7
®
~ R=z
_In(@+y*—-22+2 : : §
= 5 :
ssNNNNN NNV
NNNNNNVAVY TS S m s
NNNNNNN VY Y s s
ANNNNNN NV V117
NNNNNN NN LT s
NONNN N NV Y L 177 777
dNNNNNNNN VYV S
NNNNNNNN NNV s - ~
NNNNNNNNN VLT
A ol NNNNNNNNN VLTS
y(x) NONNNNNNNNN N T s
SONCNONNNNNNN N S ~ s
N N N e N N
S IR N U N N NN
N I e C s 2 W I WU N N N
e e R A TR T N
R e A B EINRRNR
e et A A S SR
——— 7 7 L VNN
S~~~ 7 7 1LV N NN
= > B 3 p

Figure 2.13: Slope field plot
z—2y—3+2z+y—1)y =0

Summary of solutions found

1
+ 2 arctan (&> =y
r—1

In (y? + 2% + 2y — 2z + 2)
2
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Maple step by step solution

Let’s solve
z—2y(z) —3+ (2z+y(z) — 1) (Ly(z)) =0

° Highest derivative means the order of the ODE is 1
=Y(@)

° Solve for the highest derivative

d _ —z+2y(z)+3
%y(x) - 2ac+ylécc)—1

Maple trace

"Methods for first order ODEs:
-—- Trying classification methods ---
trying a quadrature

trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:
trying homogeneous C

trying homogeneous types:
trying homogeneous D

<- homogeneous successful

<- homogeneous successful”

N

Maple dsolve solution

Solving time : 0.034 (sec)
Leaf size : 31

-

dsolve (x-2*y(x) -3+ (2*x+y(x)-1) *diff (y(x) ,x) = O,
L y(x) ,singsol=all)

y(z) = —1 — tan (RootOf (—4_Z+In (sec(_2)*) +2In(z — 1) +2¢1)) (z — 1)
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Mathematica DSolve solution

Solving time : 0.091 (sec)
Leaf size : 66

‘ DSolve [{(x-2*y[x]-3)+(2*x+y[x]-1)*D [y [x],x]==0,{}},
‘ y[x],x,IncludeSingularSolutions->True]

Solve {32 arctan ( M)

y(r)+2z -1
22 + y(x)? + 2y(z) — 2z + 2
5(z —1)?

+ 8log ( ) + 16log(z — 1) + 5¢1 = 0,y(z)
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2.1.8 problem 8

Existence and uniqueness analysis . . . . . . ... ... ... .. 821
Solved as first order homogeneous class Maple Code . . . . . . 83
Solved as first order Exactode . . . .. ... ... . ... ... 89
Solved using Lie symmetry for first orderode . . ... ... .. 92]
Solved as first order ode of type dAlembert . .. ... ... .. O8]
Maple step by step solution . . . . .. ... ... ... .. ... [10T1]
Maple trace . . . . . . . . . L 102
Maple dsolve solution . . . . . .. ... .. .. .. ... ..., 103
Mathematica DSolve solution . . . . .. .. ... ... ..... 103l

Internal problem ID [4084]

Book : Differential equations, Shepley L. Ross, 1964

Section : 2.4, page 55

Problem number : 8

Date solved : Tuesday, December 17, 2024 at 06:21:40 AM

CAS classification :

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

Solve
6r+4y+1+ (4x+2y+2)y =0

With initial conditions

Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y = f(z,y)
_ 4y +6z+1
22z +y+1)

The z domain of f(x,y) when y =3 is
{r<-2Vv-2<z}

And the point z¢ = % is inside this domain. The y domain of f(z,y) when z = % is

{ly<-2Vv-2<y}
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And the point yo = 3 is inside this domain. Now we will look at the continuity of

g_g(_ dy+ 6z + 1 )
oy Oy\ 2Q2z+y+1)

_ 2 4y + 6241

20+y+1 20Q2z+y+1)°

The z domain of g—f when y = 3 is
Y
{r<-2Vv-2<z}
And the point z¢ = % is inside this domain. The y domain of g—i when z = % is

{ly<—-2v-2<y}

And the point yy = 3 is inside this domain. Therefore solution exists and is unique.

Summary of solutions found

2
y=-—-2x—1+ \/(.’E + g) + eln(3)+n(7)

Solved as first order homogeneous class Maple C ode

Time used: 1.074 (sec)

Let Y =y — yo and X = x — z then the above is transformed to new ode in Y (X)

iY(X)—— 4Y(X)+4y0+6x0—|—6X+1
dX 22z +2X +Y (X) +yo+ 1)

Solving for possible values of xg and yo which makes the above ode a homogeneous ode
results in

oo 3
07 79

Yo =2
Using these values now it is possible to easily solve for Y (X). The above ode now

becomes

d 4Y (X) +6X
axY X)=—3 2X +Y (X))
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In canonical form, the ODE is

Y'=F(X,Y)
2Y 43X
=_Z T2 1
2X +Y (1)

An ode of the form Y’ = %g;:)) is called homogeneous if the functions M(X,Y) and
N(X,Y) are both homogeneous functions and of the same order. Recall that a function

f(X,Y) is homogeneous of order n if
fE"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = —2Y — 3X and N = 2X 4+ Y are both

homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since

this ode is homogeneous, it is converted to separable ODE using the substitution v = ¥

X
or Y =uX. Hence

dY du
axX “axxte
Applying the transformation Y = uX to the above ODE in (1) gives
du —2u—3
ax Xt
du _ Son — )
dx X
Or —2u(X)—3
dX X B
Or p p
2 e
(d—Xu(X)) Xu(X) + 2<d—Xu(X)) X+uX) +4u(X)+3=0
Or

X (u(X) +2) <diXu(X)) +u(X)? + du(X) +3 =0

Which is now solved as separable in u(X).

The ode J&u(X) = —% is separable as it can be written as
X)? + 4u(X
iu(X):—u( ) +4u(X)+3
dX X (u(X)+2)

= f(X)g(w)
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Where
1
f(X)——}
(w) w+4u+3
g u+ 2

Integrating gives

u—+2
- [ —Zdx
/u2+4u+3du / d

In (u(X)" +4u(X) +3) _ (X) te

2

We now need to find the singular solutions, these are found by finding for what values
. . .. . . u“+4u _

g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or +T2+3 0 for

u(X) gives

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

In (w(X)*+4u(X)+3) = (1

B =In (}) + C1

u(X)=-3

u(X)=-1

Solving for u(X) gives
w(X)=-3
uw(X)=-1
)= X = VETEEn

X
22X 4+ VX4l
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Converting u(X) = —3 back to Y (X) gives

Y(X) = —3X
Converting u(X) = —1 back to Y(X) gives

Y(X)=-X

Converting u(X) = —2X=VXTte™ Vxx2+e2cl back to Y (X)

gives

Y(X)=—2X — VX% + e

Converting u(X)

22Xty X te R VXXQJFG%I back to Y (X) gives

Y(X)=-2X+VX2+e2a
Using the solution for Y'(X)

Y(X)=-3X

And replacing back terms in the above solution using

Y =y+yo
X=xz+2x
Or

Using the solution for Y'(X)

Y(X)=-X

And replacing back terms in the above solution using

Y=y+y
X =z+x

86
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Using the solution for Y (X)

Y(X) = —2X — VX2 + e

And replacing back terms in the above solution using

Y=y+uw
X =z+x
Or

Then the solution in y becomes using EQ (A)

y—2

3 2
—2r—3— (a:+§) + e2a

Y(X) =

Using the solution for Y (X)

—2X + VX2 4 e2a
And replacing back terms in the above solution using

Y =y+yo
X=xz+2x
Or

<
[l I
<

_|_

O N

8
|

87
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Then the solution in y becomes using EQ (A)

3\ 2
y—2=—2x—3—|—\/<x+§) + e?a

Solving for the constant of integration from initial conditions, the solution becomes

3 2
y—2=-27—3— <x+§) +21

Solving for the constant of integration from initial conditions, the solution becomes

3\ 2
y—2=-2r—3+ \/(35 + 5) + eln(®)+n(7)

Solving for y gives

3\ 2
y—2=-2r—-3— <w+§) +21
3\ 2
y=—-2x—1+ (x + 5) + eln(3)+1In(7)

9
—9=_3z—=
] 3z 5

The solution

was found not to satisfy the ode or the IC. Hence it is removed. The solution

—29=_zg_=
Yy =3

was found not to satisfy the ode or the IC. Hence it is removed. The solution

3\ 2
y—2=-2z—-3— (x+§) +21
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was found not to satisfy the ode or the IC. Hence it is removed.

v N\
204 ) NN
|

y(x) 107 N
y(x) 101 .

5 (b) Slope field plot
= 20— 14/(z+3)> +eB@RO 6y dy 14 (dr+2+2)y =0

(a) Solution plot
Yy

Solved as first order Exact ode
Time used: 0.110 (sec)
To solve an ode of the form

dy
x
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

d

. (z,y) =0

Hence 06 06 d
o9 oJ9ady _
Or Oydx 0 (B)

Comparing (A,B) shows that

0p
or - M
0p
oy

8¢ 8¢

Buy = byds then for the above to be valid, we require that

But since

oM _ oN
oy Oz



CHAPTER 2. BOOK SOLVED PROBLEMS 90

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘?: ;’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

4z +2y+2)dy = (—4y — 6z — 1)dx
(dy+6zx+1)de+(4z+2y+2)dy=0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =4y +6x+1
N(z,y) =4z +2y +2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
—=—4 1
ay ay( y+ 6z + 1)
=4
And
ON 0
=4

Since %’I = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

3(;5_
a—M (1)

3(]5_
8—y—N (2)
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Integrating (1) w.r.t. z gives

op .
%dx—/de

%dx=/4y+6x+1dm
ox

¢=zBr+4y+1)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o )
= 4z + f'(y) (4)

But equation (2) says that g—i = 4z + 2y + 2. Therefore equation (4) becomes
4z + 2y + 2 =4z + f'(y) (5)
Solving equation (5) for f’(y) gives
fly)=2y+2
Integrating the above w.r.t y gives
[rwa= [ ev+2ay
fW)=v+2y+a

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

p=zBz+4y+1)+y"+2y+a

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into the constant c; gives the solution as

ca=z(3x+4y+1)+y*+2y
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Solving for the constant of integration from initial conditions, the solution becomes

89
r(Bx+4y+1)+y* +2y=—

4
Solving for y gives
422 + 12x + 93
y=—-2zx—-1+ Vi ks
2
AN
5] N\
AN
20 \\ v\
\\\ 204 )
15 AN
N N
v ! AN Yo o
(a) Solution plot (b) Slope field plot
y=—2x—1+7"4“’2+212m+93 6rx+4y+1+ (4 +2y+2)y =0

Summary of solutions found

VAaz? + 12z + 93
2

y=—-2z—-1+

Solved using Lie symmetry for first order ode
Time used: 0.966 (sec)
Writing the ode as

r_ Ayt6z+1
22z +y+1)

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

UE + W(ﬂy - gx) - w2€y - wx€ - Wyﬂ =0
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To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

§ = zaz +yaz + a (1E)
1 = xby + ybs + by (2E)

Where the unknown coefficients are

{ala az, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

_ (Ay+6z+1)(bs—as) (4y + 62+ 1)* as

b
: 22z +y+1) 42z +y+1)°
_<_ 3 4y+6x+1>(m+a+a) (5E)
2wty +1l Quryt1)?) T YRTE
2 dy + 6+ 1 )
— (= xby +ybs +b1) =0
< 20 +y+1 220 +y+1)° (wbe +bs + 1)

Putting the above in normal form gives

24z%ay — 36x2%a3 + 202%by — 24x2bs + 24xyay — 48zxyas + 16zyby — 24xybs + 8y?ay — 20y%asz + 4y%by — &
4(2

=0

Setting the numerator to zero gives

247%ay — 362%as + 2022by — 242%bs + 24xya, — 48xyas + 16zyby — 24xybs (6E)
+ 8y2a2 — 2Oy2a3 + 4y2b2 — 8y2b3 + 24xay — 12xas + 4xb; + 22xby — 16xbs
- 4ya1 + 10ya2 + 8yb2 - 4yb3 + 8@1 + 2&2 —as + 6b1 =+ 4b2 - 2b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z, v}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{r =v1,y = v}
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The above PDE (6E) now becomes

24a2vf + 24a9v1v5 + 8a2v§ — 36a3vf —48a3v1v9 — 20a3v§ + 20621)% + 16byv1v9 (TE)
+4b2’l)% - 24b3’l)% - 24b3’01’l}2 - 8b3’l)% - 40/1’02 + 24&2’01 + 10a2v2 - 12(13’01 +4b1’l)1
+ 22[)2’01 + 8b2’U2 - 16b31]1 - 4b3’02 + 8&1 + 2a2 —as + 6b1 + 4b2 - 2b3 =0

Collecting the above on the terms v; introduced, and these are
{v1,v2}

Equation (7E) now becomes

(24&2 — 360,3 + 20b2 - 24b3) ’U% =+ (24@2 - 48(13 + 16b2 — 24b3) V1V (8E)
+ (24ay — 12a3 + 4b; + 22b, — 16b3) v; + (8az — 20as + 4by — 8b3) v3
+ (—40,1 + 10as + 8by — 4b3) vy + 8ay + 2a3 — ag + 6b; + 4bs — 2b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—4a; + 10as + 8by — 4b3 = 0

8as — 20a3 + 4by — 8b3 =0

24a5 — 48a3 + 16by — 24b3 = 0

24a5 — 36a3 + 20by — 24b3 =0

2409 — 12a3 + 4b; + 22by — 16b3 = 0
8aq + 2a3 — a3z + 6by + 4by — 2b3 =0

Solving the above equations for the unknowns gives

3bs
a; = 4as + >
as = 4as + b3
as = as
b, = —% — 2bs
by = —3as
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives



CHAPTER 2. BOOK SOLVED PROBLEMS 95

Shifting is now applied to make & = 0 in order to simplify the rest of the computation
n=n-w(,y)¢

y_g_ [ fwtbetl N[ 3
—Y 202z +y+1) 2

1222 + 162y + 4y% + 4z + 8y — 5
8r+4y+4

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
3 n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

n

1 d
- 12224+-16zy+4y%+4x+8y—5 Y
8z+4y+4

S is found from

Which results in
_ In(122” + 16y + 4y* + 4z + 8y — 5)
B 2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S

as _ S+ w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

4y + 6z + 1

SO = Sty
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Evaluating all the partial derivatives gives

R, =1
R, =0
o 3
z_2x—|—2y—1+6m+2y+5
1 1

YT or 2oy —1 + 6x + 2y +5
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
>0 2A
IR (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

0

Since the ode has the form ;%S(R) = f(R), then we only need to integrate f(R).

S (R) = C
To complete the solution, we just need to transform the above back to x,y coordinates.
This results in

In(2x+2y—1) In(6z+2y+5)
2 * 2 -

C2
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0

(R,5)
das

ODE in canonical coordinates
dR

Canonical
coordinates
transformation

6z +4y+1+ 4r+2y+2)y =0

(b) Slope field plot

VAaz? + 12z + 93

y=—-2x—-1+

BOOK SOLVED PROBLEMS

CHAPTER 2.

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

4y+6z+1
2(2z+y+1)

dy
dx

422412493

o
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) +
N o] m =] (o]
+ . |
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8
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S O
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—
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s, S,
wn wn

—2x—1+

(a) Solution plot

2

y_

Summary of solutions found
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Solved as first order ode of type dAlembert
Time used: 0.613 (sec)
Let p = ¢ the ode becomes

6r+4y+1+ (4z+2y+2)p=0

Solving for y from the above results in

__(“dp+6)z  2p+1
 2(2+p 2(2+p)

This has the form

y = zf(p) + g(p) *)

Where f, g are functions of p = ¢/(x). The above ode is dAlembert ode which is now
solved.

Taking derivative of (*) w.r.t. z gives
dp
/ /
p=f+(zf +g)d:r
dp
/! /
—f= + 4= 2
p—f=(@xf+g )d:L' (2)
Comparing the form y = zf 4+ g to (1A) shows that

—2p—3
f=
2+p
_ —2p-—1
4+ 2p
Hence (2) becomes
—2p—3 ( 2z 2xp 3z 2 4p 2 > ,

—~ = (- + + - + + (e
2+p 2+p  (2+p)? (2+p)? 4+20 (4+2p)°  (4+2p)° )

The singular solution is found by setting j—ﬁ = 0 in the above which gives

—9p —
D 3=0
2+p

No valid singular solutions found.



CHAPTER 2. BOOK SOLVED PROBLEMS 99

The general solution is found when 2 # 0. From eq. (2A). This results in

—2p(z)—3
p (‘T) T T24p(x
Pla)=—f 20p(2) o 1p(z) 3)
70 ¥ G T @@ @ T @@l T @ mer
This ODE is now solved for p(z). No inversion is needed. The ode p/(z) = — 2242 (z))(’;(;lf)(p (2)+1)

is separable as it can be written as
224+ p(z)) (p(x) +3) (p(x) + 1

2x + 3
= f(z)g(p)

Where

fl@) = _2x2-|— 3

glp)=2+p)(p+3)(p+1)

/—dp /f ) dz
/(2+p)(p41r3)(p+1)d / 2z+3d‘v
) (\/p (:c)2++3p\{5)(:c) +1> . (2x1+ 3) e

We now need to find the singular solutions, these are found by finding for what values
g(p) is zero, since we had to divide by this above. Solving g(p) =0or (2+p)(p+3) (p+1) =
0 for p(x) gives

Integrating gives

p(z) =3
p(z) = -2
p(z) = -1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

Vo (@) +3yvp(@)+1\ 1
ln< 2+p(x) >_1n(2x+3)+cl

p(z) = -3
p(z) = -2
p(z) =~1
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Substituing the above solution for p in (2A) gives

z ( —82%—24x+2e2°1 —18+2+/1624 _i eii 93226-11-9619523—192 e2°1z+216z2—92°1 42162481 _ 1) —872—247+2e2°1 —18+2+/1624—4
—4T € —lzx— —4

y= _ 4z /1624 —462°1 3249623 —12 €2°1 £+ 21622 —9 €2°1 +216z+81+e2°1 —122—9 +1

2 (—41:2-I— 16z4—4 6214249
—4x24e2c1—122—9

2 —

Solving for the constant of integration from initial conditions, the solution becomes

—8$2+2\/16$4+462 1n(2)+ln(3)+ln(7)x2+96x3+12 e2 1n(2)+1n(3)+ln(7)x+216x2+9 e2 1n(2)+1n(3)+1n(7)+216x+81_2 e21n(2)+In(3)+In(7) _
T 422 — o2 (D) +In(3)Hn(7) —127—9

y - _ —4x2+\/16z4+4 e2In(2)+1n(3)+1In(7) o2 +9623+12¢e2 1n(2)+1n(3)+1n(7)$+216x2 +9e2 In(2)+In(3)+In(7) +216x+81—e? In(2)+1n(3)+In(7) _

422 _e2In(2)+In(3)+In(7) _1924—9

The solution

5
y——3x—§

was found not to satisfy the ode or the IC. Hence it is removed. The solution

+1
= —XI —_
y 2

was found not to satisfy the ode or the IC. Hence it is removed.

] . \
YO o AN
\\ 10
2] \

NN — )\ SNNNNNN NN N
AN ol NN NN MR
% N NONON NN MR
NONONCNCNCN - NNV NN NN N NN
- NN N N AR R RRRRY
NN NN NN N NN NONONCN N
81 N NONN NN NN NN NONCNNC N
2N N NNNCN N NN NONCNCN N
3 iy 4 2 [) 2 4 [ [ 1 RSN N RN RSN
NN NN NN NN NONON NN
X R NONONCNONCN N
. NONN NN N N NONCONON N
(a) Solution plot 2NN NN NN N AN
NN NNN NN NN NN

—82242\/1604 4420+ HIn(7) 22 1o6a3 112 <] % N N NN NN ~ NONONN L2e2In(@2)+HIn(3)+HIn(T) Loy
x NNV NN NN SN NN N
AR SN

= NN NN N NN ~ O\ -

Y —10241/1604 1462 WD HRE)HR() o2 1068112 5\ L L L L LN [_e21n(2)+1n(3)+In(7) _ 195 g

-10 -5 0 5 10
—80242y/1604 4402 10(2)+10(3) +10(7) 12, 963 4 12 62 I(D)+1 . +1n(3)+1n(7) _o4p 18

—422_2In(2)+In(3)+In(7) _12; ¢ +1
2(_4702_,_\/160044_462 In(2)+1n(3)+1n(7) 42 | 9653 412 €2 1n(!zp-)1nal)QB@7)1}§_lﬂ691_9&ez 1n(2)+1n(3)+1n(7) 4 21644+81— 2 ln(2)+ln(3)+ln(7)_12$_9)
2= — Sz riynbridr 2y +2)y =10
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Summary of solutions found

Y

—8$2+2\/16!E4+462 1n(2)+1n(3)+1n(7)x2+96$3+12 e2 1n(2)+1n(3)+1n(7)x+216x2+9 e2 ln(2)+ln(3)+ln(7)+216w+81_2 e21n(2)+In(3)+In(7) _gy.
z 12?2 — 2@+ (3)Hn(7) —125—9

_ —4w2+\/16z4+4 e21n(2)+In(3)+1In(7) 1249623 +12 e2 In(2)+In(3)+In(7) +21622+9 e2 In(2)+In(3)+In(7) +216x+81—e? In(2)+1n(3)+1In(7) _19;
— 422 _e2In(2)+In(3)+In(7) _194—9

—8:1:2+2\/16:L'4+462 ln(2)+ln(3)+ln(7)x2+96x3+12 e2 ln(2)+ln(3)+ln(7)x+216x2+9 e2 1n(2)+1n(3)+1n(7)+216x+81_2 e21n(2)+1n(3)+In(7) _9y,
— 432 _e2In(2)+In(3)+In(7) _124,—9

2(—4x2+\/16x4+4e2 1n(2)+1n(3)+1n(7)z2+96$3+12 e2 1“(2)+1"<3)+1“<7)z+216x2+9e2 ln(2>+ln(3>+ln(7)-|—216:L‘+81—82 In(2)+1n(3)+1n(7)
2 — —4z2—e2m(@)+ @) +In(7) _127—9

_|_

Maple step by step solution

Let’s solve
6z +4y(z) + 1 + (4z + 2y(z) +2) (Ly(z)) =0,y(3) = 3]
° Highest derivative means the order of the ODE is 1
Ly(z)
O Check if ODE is exact
o ODE is exact if the lhs is the total derivative of a C? function
LF(z,y(z)) =0
o Compute derivative of lhs
2F(,y)+ (2F (@) (Ly() =0

o Evaluate derivatives

4=14
o Condition met, ODE is exact
° Exact ODE implies solution will be of this form
|F(o,y) = C1, M(z,y) = £F(2,9), N(2,9) = $F(z,9)|
° Solve for F(z,y) by integrating M (x,y) with respect to x
F(z,y) = [(6z+ 4y +1)dz +_FI1(y)
° Evaluate integral
F(z,y) =3z* +4zy +z + _FIi(y)
° Take derivative of F'(x,y) with respect to y
N(z,y) = 5, F(z,y)
° Compute derivative
dr +2y+2=4r + d%_Fl(y)
o Isolate for d%_F] (v)
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4 Fi(y) =2y +2

dy—

o Solve for __F1(y)
_Fi(y) =y* +2y

o Substitute _ F1(y) into equation for F(z,y)
F(z,y) =3z +4zy +y* +z + 2y

o Substitute F'(z,y) into the solution of the ODE
3z? + 4zy +y* +x + 2y = C1

o Solve for y(z)

{y(@)=—-1-20 - V2> + C1 +3z+1Ly(z)=-1—-2z+ Va2 + C1 + 3z + 1}

o Use initial condition y(3) = 3

3=—2-,/c1+1

) Solve for  C1

c1 =)
° Solution does not satisfy initial condition
° Use initial condition y(%) =3
3=—2+,/C1+%
) Solve for _ C1
o1 =%
o Substitute _C1 = % into general solution and simplify
y(l') = —1-9¢ + \/4$2+2129:+93

° Solution to the IVP
_ VA4x? T
y(z) = —1 — 2g + YAzt 20493

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous C
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trying homogeneous types:
trying homogeneous D
<- homogeneous successful

L<- homogeneous successful”

‘dsolve( [6%x+4xy (x)+1+(4kx+2%y (x)+2)*diff (y(x),x) = 0,

‘ DSolve [{(6*x+4xy [x]+1)+(4d*x+2%y [x]+2)*D [y [x] ,x]==0,y[1/2]==3},

Maple dsolve solution

Solving time : 0.211 (sec)
Leaf size : 23

op([y(1/2) = 3]1)],y(x),singsol=all)

V4az? + 12z + 93

ylz) = -2z -1+ 5

Mathematica DSolve solution

Solving time : 0.189 (sec)
Leaf size : 28

y[x],x,IncludeSingularSolutions->True]

y(z) — %(\/4x2+12w+93—4x—2>



CHAPTER 2. BOOK SOLVED PROBLEMS 104

2.1.9 problem 9

Existence and uniqueness analysis . . . . . . ... ... ... .. 104
Solved as first order homogeneous class Maple Code . . . . . . 1051
Solved using Lie symmetry for first orderode . . . .. .. . .. 1101
Maple step by step solution . . . . . .. ... ... ... .. .. 115
Mapletrace . . . . . . . . . . .. 116
Maple dsolve solution . . . .. ... ... ... .. ....... 116
Mathematica DSolve solution . . . . ... ... ......... 117

Internal problem ID [4085]

Book : Differential equations, Shepley L. Ross, 1964

Section : 2.4, page 55

Problem number : 9

Date solved : Tuesday, December 17, 2024 at 06:21:44 AM

CAS classification :

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

Solve
3t—y—6+(z+y+2)y =0
With initial conditions

y(2) = -2

Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y = f(z,y)
_y—3z+6
oz ty+2

The = domain of f(z,y) when y = —2 is

{r<0VO0<z}

And the point zo = 2 is inside this domain. The y domain of f(z,y) when x = 2 is

{ly<—-4v-4<y}
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And the point yy = —2 is inside this domain. Now we will look at the continuity of
of _ 0o (y — 3z + 6)
oy oy\z+y+2
1 y—3x+6

Toty+2 (zty+2)?

The x domain of % when y = —2 is
{r<0VO0<uz}
And the point zy = 2 is inside this domain. The y domain of g—i when z = 2 is
{ly<—-4v-4<y}

And the point yy = —2 is inside this domain. Therefore solution exists and is unique.

Summary of solutions found

6 z—1 18

(B8 () o () (1) otevane) e

Solved as first order homogeneous class Maple C ode
Time used: 1.641 (sec)
Let Y =y —yo and X = = — x( then the above is transformed to new ode in Y (X)

d Y (X — —-3X
4y 2 YO0 =3y 4
o+ X +Y (X)+yo+2

dX

Solving for possible values of xy and yo which makes the above ode a homogeneous ode
results in

CL'O=1
Yo=—3

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d Y(X) - 3X
xYX =31y (X)
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In canonical form, the ODE is

Y' = F(X,Y)
Y —3X
T X+Y (1)

An ode of the form Y’ = %g;:)) is called homogeneous if the functions M(X,Y) and

N(X,Y) are both homogeneous functions and of the same order. Recall that a function
f(X,Y) is homogeneous of order n if

FEX,Y) = " (X, Y)

In this case, it can be seen that both M =Y — 3X and N = X + Y are both

homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since

this ode is homogeneous, it is converted to separable ODE using the substitution v = ¥

X
or Y =uX. Hence

dY du
axX “axxte
Applying the transformation Y = uX to the above ODE in (1) gives
du u—3
ax Xt
du _ ZEQI:I’ —u(X)
dx X
Or (x)-3
sl —u(X
dX X
Or p p
2 [r—
(d—Xu(X)> Xu(X) + (d—Xu(X)> X+ulX)"+3=0
Or

X(u(X) +1) (diXU(X)) b u(X)?43=0

Which is now solved as separable in u(X).

The ode J&u(X) = —% is separable as it can be written as
iu(X) _ u(X)*+3
dX X (u(X)+1)

= f(X)g(w)
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Where
1
f(X) = X
u?+3
glw) ="+
Integrating gives
/idu— /f(X)dX
9(u)
u+1 1
2 du= | ——dx
/ u?+3 du X d
u(X)V3
In (u(X)* +3) /3 arctan (%) 1
5 + 3 =In X +c

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or “—:_rf’ = 0 for
u(X) gives

u(X) = —iv3

u(X) = iV3

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are
w(X)V3

n(u 2 /3 arctan 3
n ()" +3) | 3( Lm(%)m

w(X) = —iv/3
w(X) =1iv3

n(u 2 arctan u(X)\/g
Converting in{ ();) +3) + Vet 3< ) =1In (%) + ¢1 back to Y (X) gives

V3 <\/_ 3 1In <Y(X) +3X2 ) + 2 arctan (Y(X)‘[» (l) N
x)"a

6
Converting u(X) = —iv/3 back to Y (X) gives

Y(X)=—iXV3
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Converting u(X) = i1/3 back to Y(X) gives
Y(X)=iXV3
Using the solution for Y'(X)

V3 (\/5 In (W?ﬁ + 2arctan (Y@ﬁ» —In (%) +a

And replacing back terms in the above solution using

Y =y+yo

X=£13+CL'0
Or

Y=9y-3

X=z+1

Then the solution in y becomes using EQ (A)

3 <\/§ In (%) + 2arctan <%@>>
— =ln(

! +c
6 z—1 !
Using the solution for Y (X)
Y(X)=—iXV3

And replacing back terms in the above solution using

Y =y+yo

X =z+x
Or

Y=y-3

X=z+1

Then the solution in y becomes using EQ (A)
y+3=—i(z—1)V3
Using the solution for Y'(X)
Y(X)=iXV3
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And replacing back terms in the above solution using

Y=y+uy
X=xz+x
Or
Y=y-3
X=z+1

Then the solution in y becomes using EQ (A)
y+3=i(z—1)V3

Solving for the constant of integration from initial conditions, the solution becomes

AR e (S2)) (1 Sl
=1in

6 z—1 18

The solution
y+3=—i(z—1)V3

was found not to satisfy the ode or the IC. Hence it is removed. The solution
y+3=iz—1)v3

was found not to satisfy the ode or the IC. Hence it is removed.

1111100077777
N T A A A A B A A A A ¢
N T A R A B A A A A g

A1 1111111717777
[ A A A v
A I I B A A A A

A A A A A
T R A A A A A A A g
R R
“V “/ “w “; v | A“ /“ 7 / /

A A A I B A A A \
2 T T T S A A R A A N
R T A T A A N

i R A A A A A A N
(2 T T T T T T T B A A \
\v \v \v \V ‘\‘/ ‘\‘/ ““/ “‘; “n /\‘ T /7 / \I

27 \V \\V \V \V \\V \J \/ ““/ “‘/ ‘\ ; //; / \l
\‘v \\V \\‘v \ \\V \\‘v \\‘v \‘v \ / 15 A e \\‘
N \\V Vo \\V Vo \\‘v \‘v \\‘v \ ‘\ - - \
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4 2 0 2 4

Figure 2.18: Slope field plot
3z—y—6+(z+y+2)y =0
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Solved using Lie symmetry for first order ode
Time used: 6.339 (sec)

Writing the ode as

, y—3cr+6
T+y+2
y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — W2€y —wef —wyn =0 (A)

To determine &,n then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

£ =zax +yaz + a1 (1E)
1 = wby +ybs + by (2E)

Where the unknown coefficients are

{ala az, as, b17 b27 b3}

Substituting equations (1E,2E) and w into (A) gives

(y — 3z +6) (b3 — az) (y—3w+6)2a3
bs + —

T+y+2 (z+y+2)°
3 y—3x+6) (5E)
— (= — zxaz + yaz + a
( THY+2 (z+y+2)> (waz Fya: +a1)

1 y—3x+6
— — xby +ybs +b;) =0
<w+y+2 (x+y+2)2)( 2+ ybs +b)

Putting the above in normal form gives

3x2ay — 97%a3 — 3x2by — 32%b3 + 6xyay + 6xyas + 2xyby — 6xybs — y2ay + 3y*as + y2by + y2bs + 12za; -
(z+y+2)

=0
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Setting the numerator to zero gives

3z2%as — 92%a3 — 32%by — 322bs + 6zxyas + 6xyas + 2xybs — 6Ybs3 (6E)
— y2as + 3y%as + y2by + y2bs + 12zay + 36zas — 4zby + 8xby + 4yay
— 8ya2 + 4yb2 + 12yb3 + 120/1 — 12&2 — 360/3 + 4b1 + 4b2 + 12b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

3a2'vf + 6aqv1v9 — a2v§ — 9a3'vf + 6asv vy + 3a3'v§ — 3b2vf + 2bovivg + b2v§ (TE)
— 3b3v% — 6bsvivy + b3v§ + 4a1v9 + 12a9v1 — 8asvy + 36asv; — 4bivq
+ 8b2’U1 + 4b2’02 + 12b3’02 + 12(11 - ].2(12 - 36(13 + 4b1 + 4b2 + 12b3 =0

Collecting the above on the terms v; introduced, and these are
{’Ul, 1}2}

Equation (7E) now becomes

(3&2 — 9(13 - 3b2 — 3b3) ’U% + (6&2 + 6(13 + 2b2 — 6b3) V1V (8E)
+ (12&2 + 36&3 — 4b1 + 8b2) U1 + (—a2 + 3&3 + bz + b3) ’Ug
+ (4&1 - 8(12 + 4b2 + 12b3) Vg + 12&1 - 12(12 - 36(13 + 4b1 + 4b2 + 12b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

4a; — 8ag + 4by + 1265 =0

—az +3a3z +by+b3=0

3as —9a3 — 3bs —3b3 =0

6ay + 6as + 2by — 6b3 = 0

12a, + 36a3 — 4b; + 8by =0

12a; — 12a, — 36a3 + 4b; + 4by + 12b3 = 0
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Solving the above equations for the unknowns gives

a1 = —bs + 3as
as = b3

as = as

by = 3as + 3bs3
by = —3as

bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=z-1
n=y+3
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(y)é

:y+3_(y—3x+6)@_d)

T+y+2
_3x2+y2—6x+6y+12
B T+y+2

£E=0

The next step is to determine the canonical coordinates R, .S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dz _dy _
& n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S is found from

1
= 322142 dy
2 +y?—6x+6y+12

T+y+2
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Which results in

(2y+6)V3
In (322 + y? — 6z + 6y + 12) N V3 arctan < 66 )

S = 2 3

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S,
dR R, +w(z,y)R,

(2)
Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

_y—3x+6
W(w,y)—m

Evaluating all the partial derivatives gives

R,=1
R,=0
. —y+3z—6
“ 3x2 4+ y2 — 62 + 6y + 12
T+y+2

S =
Y 322492 — 6z + 6y + 12
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

0 (2A)

0

Since the ode has the form ;%S(R) = f(R), then we only need to integrate f(R).

S(R) = C
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To complete the solution, we just need to transform the above back to x,y coordinates.

This results in

(y+3)V3
In (y* + 32 + 6y — 6z + 12) N V3 arctan ( 503 >

2 3

=c2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . .
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ y—3z+46 das __ 0
dz +y+2 dR —
SR
R=zx
In (3% + 2 — 6z + € i -
S = 5 ]

Solving for the constant of integration from initial conditions, the solution becomes

(y+3)v3
In (y? + 3z® + 6y — 6z + 12) V'3 arctan < = ) V3m
: + 3 —1n(2)+ o0

18

Solving for y gives

y
= (tan (RootOf <6\/§ In (2)—3v/3 In (32% tan (_Z)>—6z tan (_2)*+3z>+3tan (_2)°—62+3)+1—6_

—tan (RootOf <6\/§ In (2)—3v/3 In (327 tan (_2)°— 6z tan (_2)°+322+3tan (_2)>—63+3)+7—6_
~V3) V3
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Figure 2.19: Slope field plot
3r—y—6+(z+y+2)y =0

Summary of solutions found

)
= (tan (RootOf <6\/§ In (2)—3v/3 In (32% tan (_Z)>—6ztan (_2)*+32z>+3tan (_2)°—62+3)+1—6_

—tan (RootOf <6\/§ In (2)—3v/3 In (327 tan (_2Z)*—6ztan (_2)°+32°+3tan (_Z)2—6x+3) +7T—6_
~V3) V3

Maple step by step solution

Let’s solve
3z —y(z) — 6 + (z +y(2) +2) (Fy(2) = 0,y(2) = —2]
° Highest derivative means the order of the ODE is 1

=Y(@)
° Solve for the highest derivative
&y(@) = LG
) Use initial condition y(2) = —2
0
° Solve for 0
0=0
° Substitute 0 = 0 into general solution and simplify

0
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° Solution to the IVP
0

Maple trace

"Methods for first order ODEs:
-—- Trying classification methods ---
trying a quadrature

trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:
trying homogeneous C

trying homogeneous types:
trying homogeneous D

<- homogeneous successful

<- homogeneous successful”

Maple dsolve solution

Solving time : 12.461 (sec)
Leaf size : 51

-

dsolve ([3*x-y(x)-6+(x+y(x)+2)*diff (y(x),x) = O,
L op(ly(2) = -2])]1,y(x),singsol=all)

y(x) = —3 —tan (RootOf <—3\/§ In (sec (27 (z— 1)2) —3v3In(3) +6v3 In(2)
+7r+6_Z)> \/g(x— 1)
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Mathematica DSolve solution

Solving time : 0.217 (sec)
Leaf size : 90

' DSolve [{(3*x-y [x]-6)+(x+y [x]+2)*D [y [x],x]==0,y [2] ==-2},
‘ y[x],x,IncludeSingularSolutions->True] ‘

—y(z)+3z—6 9 9
V3(y(z)+z+2) 3z* + y(x)* + 6y(z) — 62 + 12

N +log(2) = %log ( = )

+log(z — 1) + 1l8 (\/§7r + 181og(2) — 910g(4)> ,y(z)

arctan <

Solve
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2.1.10 problem 10

Existence and uniqueness analysis . . . . . . ... ... ... .. 18]
Solved using Lie symmetry for first orderode . . . .. ... .. 119
Solved as first order ode of type dAlembert . . . .. ... ... 124
Maple step by step solution . . . . . .. ... ... ... .. .. 127
Mapletrace . . . . . . . . . . .. 127
Maple dsolve solution . . . .. ... ... ... .. ....... 128
Mathematica DSolve solution . . . . ... ... ......... 128}

Internal problem ID [4086]

Book : Differential equations, Shepley L. Ross, 1964

Section : 2.4, page 55

Problem number : 10

Date solved : Tuesday, December 17, 2024 at 06:21:58 AM

CAS classification :

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

Solve
20 +3y+1+ 4z +6y+1)y =0
With initial conditions

y(=2) =2

Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

Y = f(z,9)
__3y+2x-|—1
C dr+6y+1

The z domain of f(z,y) when y =2 is

<2v- DB
T 1 1 T

And the point o = —2 is inside this domain. The y domain of f(z,y) when z = —2 is

<Ivic
y66y
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And the point yy = 2 is inside this domain. Now we will look at the continuity of

8f 8 ( 3y+2z+1
8_y_8_y(_4x+6y+1>
B 3 18y + 12z + 6
T 4z +6y+1 (4o +6y+ 1)

The z domain of % when y = 2 is

x<—EV—E<x
4 4

And the point £y = —2 is inside this domain. The y domain of g—£ when z = —2 is

< 7 V 7 <
And the point y, = 2 is inside this domain. Therefore solution exists and is unique.

Solved using Lie symmetry for first order ode
Time used: 0.796 (sec)
Writing the ode as

;o 3yt+2z+1
 dx+6y+1

Y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
N + W(ﬂy - gx) - w2€y - wxf — Wy = 0 (A)

To determine &, 7 then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

§ = zaz + yas + a (1E)
n = xbs +ybs + by (2E)
Where the unknown coefficients are

{al, a2, as, bl) b2, b3}
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Substituting equations (1E,2E) and w into (A) gives

(By+2r+1)(bs—a2) (By+2z+1)°as

bo —
2 4z + 6y + 1 (42 + 6y + 1)°
2 12y+8x+4) (5E)
— | = ras + yas +a
( Az +6y+1 " (4o + 6y + 1) (vaz +yas +a,)

3 18y + 12z + 6
S zby +ybs +b1) =0
( 4z + 6y +1 (4m—|—6y+1)2>( 2 ybatbr)
Putting the above in normal form gives

8x2ay — 42%a3 + 1622y — 82%b3 + 24xyay — 12xyas + 48xyby — 24xybs + 18y%ay — Yy2as + 36y%by — 18y
(4 + 6y +

=0

Setting the numerator to zero gives

8z2ay — 4x2as + 1622by — 822b3 + 24zyas — 12zyas + 48xyby — 24xybs (6E)
+ 18y%as — 9y%as + 36y2b, — 18y%bs + 4xas — 4zas + Sxby — 6bs
+ 9ya2 — 8ya3 + 12yb2 — 12yb3 — 2a1 + as —ag — 3b1 + b2 — b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{x =v1,y = v}

The above PDE (6E) now becomes

80,21)% + 24&2’011)2 + 18&2’03 — 4(13’1)% - 12(13'01’1)2 — 9(13’1)% + 16b2’U% + 48b2U1U2 (7E)
+ 36b2’Ug - 8b3’U% - 24b3’l}1’l)2 — 18b3’U% + 4&2’01 + 9a2v2 — 4(13’01 — 8&3’02
+ 5b2’01 + 12b2’l)2 — 6b3’l)1 — 12b3’l)2 — 2&1 +as —as — 3b1 + b2 — b3 =0

Collecting the above on the terms v; introduced, and these are

{vl’ 1)2}
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Equation (7E) now becomes

(8&2 - 4a3 + 16b2 - 8b3) ’U% + (24(1/2 — 12a3 + 48b2 - 24b3) V1V (8E)
+ (4(12 — 4a3 + 5b2 — 6b3) V1 + (18a2 — 9&3 + 36b2 — 18b3) Ug
+ (9&2 —8a3 + 12b2 - 12b3)’02 —2&1 + as — as —3b1 +b2 — b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

4a9 — 4a3 + Hby — 6b3 = 0

8as — 4a3z + 16b; — 8b3 = 0

9ay — 8az + 12b, — 12b5 =0

18ay — a3 + 36b; — 18bs =0

24ay — 12a3 + 48by — 24b3 =0
—2a1+ay —az —3b; +by—b3=0

Solving the above equations for the unknowns gives

a; = aq
a9 = —8(1,1 - 12b1
as = —12(11 - 18b1

by =b
b2 = 40,1 + 6b1
b3 = 6a1 + gbl

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

& =—-12x — 18y
n=6z+9%+1

Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(y)§

3y+2zx+1
=6rx4+9y+1——-L2——|(-122z—18
Ty (4x+6y+1>( = 18y)
2z -3y+1
4z +6y+1

£=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
3 n

The above comes from the requirements that <£ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==zx

1
S=/—dy

7

1
/mdy

4z+6y+1

S is found from

Which results in
S=-2y—In(2z+3y—1)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)Ry

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = 3y+2z+1

Y T e 6y + 1

Evaluating all the partial derivatives gives

R, =1
R,=0
_ 2
’ 2+ 3y — 1
3
S, =—
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

1 (2A)

1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S.

Since the ode has the form J%S(R) = f(R), then we only need to integrate f(R).

/dS=/1dR

S(fb :=}%4—02

To complete the solution, we just need to transform the above back to x,y coordinates.
This results in

—2y—In(2z+3y—1)=z+c
Which gives
z_2_.
9p LambertW <M> 1

3

3+ 2 +3

y:

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . )
. ) ) . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _ 3yt2z+1 s _q
z dz+6y+1 dR —
R=zx

S=-2y—In(2x+ 3y —
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Solving for the constant of integration from initial conditions, the solution becomes

x4
9g LambertW <@) 1

y:_g‘f‘ 2 +§

y(x)

y(x)

24

X AN N e N N Y N4 \\\ N \
(a) Solution plot 710 - , ’ .
x4
LambertW(zez’:—g> (b) Slope field plot
y=—-%+ 5 +1 22 +3y+1+ 4z +6y+1)y' =0

Summary of solutions found

x4
92 LambertW (2€§+§> 1

3
y=—3 2 T3

Solved as first order ode of type dAlembert
Time used: 0.420 (sec)
Let p = 3/ the ode becomes

20 +3y+1+4+(4z+6y+1)p=0

Solving for y from the above results in

__(Up+2)z p+1 1)
3(1+2p) 3(1+2p)

This has the form

y=zf(p) +9(p) *)
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Where f, g are functions of p = y/'(z). The above ode is dAlembert ode which is now
solved.

Taking derivative of (*) w.r.t. z gives

p=f+@af+9) L

dp
!/ /
— f= 2
p—f=@f+g) 2)
Comparing the form y = zf + g to (1A) shows that
2
f=-3
_—p-1
9= 3 6p
Hence (2) becomes
2 1 6p 6 ) ,
+o == + + x 2A
E ( 5460 Gropy  Grap)t 24)

The singular solution is found by setting j—i = 0 in the above which gives

2
g

No valid singular solutions found.

The general solution is found when g—z # 0. From eq. (2A). This results in

p(x) + % (3)
3+6p(z) ' (3+6p(z))®> ' (3+6p(x))’

p(r) =

This ODE is now solved for p(z). No inversion is needed. Integrating gives

1
/ 5dp = dx

(3p+2) (1+2p)
3ln(3p+2) —

—3In(1+2p) =
1+2p 3Il( + p) T+

Singular solutions are found by solving

(3p+2)(1+2p)° =0
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for p(z). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(z) = —g
p(z) = —%

Substituing the above solution for p in (2A) gives

5 eRom{H(6m<2i;Z—%)efz+&qefz—Q_Zefz+2zefz—3m<2%;2—%)—11+&_Z—z+3) )
_ T 3 —3
y= 3 + 2eRootOf<61n<2?Z—%>e—Z+201 e—Z—6_Ze—Z+2xe—Z—3ln<263*2—%)—014—3_2—364-3) _1
N
V=T8T

Solving for the constant of integration from initial conditions, the solution becomes

z z
RomOf(Mre727Mw76m(g%?ff%)efz+Q_Zefzf2mefzfl4efz+3m(2%§77%)7&_Z+m+4)

2z —¢

3

Wl

y=—%+

3

3 g JRootOf (6ime—Z—3ir—61n( 257~ 1 )e-2+6_ZeZ—2veZ—1de-7+31n(

The solution

was found not to satisfy the ode or the IC. Hence it is removed.

y(x) 01

-1

24

31 ™~
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Figure 2.21: Slope field plot
20 4+3y+1+(4z+6y+1)y =0

2e—
3

Z

—1)-8_Z+o+e) _ 1
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Summary of solutions found

2%

Y= 3

z z
RootOf (Gi-n- e—2_3im—6 1n(2% 7%)%Z+6_Z67Z72z 2146243 1n(2% 7%) 73_Z+z+4)

3
Z

g oROOLOF (6im o-Z—3in—6In (257§ Jo-746_Ze-Z~2we?—14o-243In(257 ~}) -3 Zta+ds) _ ¢

e

W=

Maple step by step solution

Let’s solve

2z + 3y(z) + 1 + (4z + 6y(z) + 1) (Ly(z)) =0,y(-2) = 2]
° Highest derivative means the order of the ODE is 1

=y(@)

° Solve for the highest derivative

d _ —2z-3y(z)-1
Ey(x) - 4m+6y?zz)+1

o Use initial condition y(—2) = 2

0
° Solve for 0
0=0
° Substitute 0 = 0 into general solution and simplify
0
° Solution to the IVP
0

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
-> Calling odsolve with the ODE™, diff(y(x), x) = -2/3, y(x)° *

*

* Sublevel 2 >
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Methods for first order ODEs:
-—- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- 1st order, canonical coordinates successful

<- homogeneous successful”

Maple dsolve solution

Solving time : 0.144 (sec)
Leaf size : 20

e

dsolve ([2*x+3*y (x) +1+(4*x+6%y (x)+1) *diff (y(x),x) = O,
L op([y(-2) = 2]1)],y(x),singsol=all)

x4
2 N LambertW (29?3)
3 2

1
y(x) = 3
Mathematica DSolve solution

Solving time : 5.576 (sec)
Leaf size : 30

‘ DSolve [{ (2*x+3*y [x]+1) +(4*x+6*y [x] +1) *D [y [x] ,x]==0,y[-2]==2},
y[x],x,IncludeSingularSolutions->True]

N

y(z) — é(3W(§em?>+4> — 4z + 2>
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