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1.1 2.4, page 55

Table 1.1: Lookup table for all problems in current section

ID problem ODE

4077 1 5yx+ 4y2 + 1 + (x2 + 2yx) y′ = 0

4078 2 2x tan (y) + (x− x2 tan (y)) y′ = 0

4079 3 y2(x2 + 1) + y + (2yx+ 1) y′ = 0

4080 4 4xy2 + 6y + (5x2y + 8x) y′ = 0

4081 5 5x+ 2y + 1 + (2x+ y + 1) y′ = 0

4082 6 3x− y + 1− (6x− 2y − 3) y′ = 0

4083 7 x− 2y − 3 + (2x+ y − 1) y′ = 0

4084 8 6x+ 4y + 1 + (4x+ 2y + 2) y′ = 0

4085 9 3x− y − 6 + (x+ y + 2) y′ = 0

4086 10 2x+ 3y + 1 + (4x+ 6y + 1) y′ = 0
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2.1.1 problem 1

Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 9
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 13
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 14
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 14

Internal problem ID [4077]
Book : Differential equations, Shepley L. Ross, 1964
Section : 2.4, page 55
Problem number : 1
Date solved : Tuesday, December 17, 2024 at 06:21:25 AM
CAS classification : [_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

Solve

5xy + 4y2 + 1 +
(
x2 + 2xy

)
y′ = 0

Solved as first order Exact ode

Time used: 0.392 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x2 + 2xy
)
dy =

(
−5xy − 4y2 − 1

)
dx(

5xy + 4y2 + 1
)
dx+

(
x2 + 2xy

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 5xy + 4y2 + 1
N(x, y) = x2 + 2xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
5xy + 4y2 + 1

)
= 5x+ 8y

And
∂N

∂x
= ∂

∂x

(
x2 + 2xy

)
= 2x+ 2y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (x+ 2y)((5x+ 8y)− (2x+ 2y))

= 3
x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 3

x
dx

The result of integrating gives

µ = e3 ln(x)

= x3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x3(5xy + 4y2 + 1
)

=
(
5xy + 4y2 + 1

)
x3

And

N = µN

= x3(x2 + 2xy
)

= x4(x+ 2y)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

5xy + 4y2 + 1
)
x3)+ (x4(x+ 2y)

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
5xy + 4y2 + 1

)
x3 dx

(3)φ = x5y + x4y2 + 1
4x

4 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x5 + 2y x4 + f ′(y)

= x4(x+ 2y) + f ′(y)

But equation (2) says that ∂φ
∂y

= x4(x+ 2y). Therefore equation (4) becomes

(5)x4(x+ 2y) = x4(x+ 2y) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x5y + x4y2 + 1
4x

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = x5y + x4y2 + 1
4x

4

Solving for y gives

y = −x3 −
√
x6 − x4 + 4c1
2x2

y = −x3 +
√
x6 − x4 + 4c1
2x2
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Figure 2.1: Slope field plot
5xy + 4y2 + 1 + (x2 + 2xy) y′ = 0

Summary of solutions found

y = −x3 −
√
x6 − x4 + 4c1
2x2

y = −x3 +
√
x6 − x4 + 4c1
2x2

Maple step by step solution

Let’s solve
5xy(x) + 4y(x)2 + 1 + (x2 + 2xy(x))

(
d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = −5xy(x)−4y(x)2−1

x2+2xy(x)
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Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
Maple dsolve solution

Solving time : 0.004 (sec)
Leaf size : 59� �
dsolve(5*x*y(x)+4*y(x)^2+1+(x^2+2*x*y(x))*diff(y(x),x) = 0,

y(x),singsol=all)� �
y(x) = −x3 −

√
x6 − x4 − 4c1
2x2

y(x) = −x3 +
√
x6 − x4 − 4c1
2x2

Mathematica DSolve solution

Solving time : 1.02 (sec)
Leaf size : 84� �
DSolve[{(5*x*y[x]+4*y[x]^2+1)+(x^2+2*x*y[x])*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −x5 +

√
x3
√
x7 − x5 + 4c1x
2x4

y(x) → −x

2 +
√
x3
√
x7 − x5 + 4c1x

2x4
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2.1.2 problem 2

Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 15
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 20
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Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 20
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Internal problem ID [4078]
Book : Differential equations, Shepley L. Ross, 1964
Section : 2.4, page 55
Problem number : 2
Date solved : Tuesday, December 17, 2024 at 06:21:27 AM
CAS classification : [[_1st_order, _with_exponential_symmetries]]

Solve

2x tan (y) +
(
x− x2 tan (y)

)
y′ = 0

Solved as first order Exact ode

Time used: 0.494 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−1 + x tan (y)) dy = (2 tan (y)) dx
(−2 tan (y)) dx+(−1 + x tan (y)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2 tan (y)
N(x, y) = −1 + x tan (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−2 tan (y))

= −2 sec (y)2

And

∂N

∂x
= ∂

∂x
(−1 + x tan (y))

= tan (y)
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−1 + x tan (y)
((
−2− 2 tan (y)2

)
− (tan (y))

)
= − sin (y)− 2 sec (y)

x sin (y)− cos (y)
Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= −cot (y)

2
(
(tan (y))−

(
−2− 2 tan (y)2

))
= − cot (y)− tan (y)− 1

2
Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− cot(y)−tan(y)− 1

2 dy

The result of integrating gives

µ = e−
y
2−ln(sin(y))+ln(cos(y))

= cos (y) e− y
2

sin (y)
M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= cos (y) e− y
2

sin (y) (−2 tan (y))

= −2 e−
y
2

And

N = µN

= cos (y) e− y
2

sin (y) (−1 + x tan (y))

= e−
y
2 (x− cot (y))
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−2 e−
y
2

)
+
(
e−

y
2 (x− cot (y))

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2 e−

y
2 dx

(3)φ = −2 e−
y
2x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−

y
2x+ f ′(y)

But equation (2) says that ∂φ
∂y

= e− y
2 (x− cot (y)). Therefore equation (4) becomes

(5)e−
y
2 (x− cot (y)) = e−

y
2x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −e−
y
2 cot (y)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−e−

y
2 cot (y)

)
dy

f(y) =
∫ y

−e− τ
2 cot (τ) dτ + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −2 e−
y
2x+

∫ y

−e− τ
2 cot (τ) dτ + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = −2 e−
y
2x+

∫ y

−e− τ
2 cot (τ) dτ

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.2: Slope field plot
2x tan (y) + (x− x2 tan (y)) y′ = 0

Summary of solutions found

−2 e−
y
2x+

∫ y

−e− τ
2 cot (τ) dτ = c1
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Maple step by step solution

Let’s solve
2x tan (y(x)) + (x− x2 tan (y(x)))

(
d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = − 2x tan(y(x))

x−x2 tan(y(x))

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
Maple dsolve solution

Solving time : 0.071 (sec)
Leaf size : 32� �
dsolve(2*x*tan(y(x))+(x-x^2*tan(y(x)))*diff(y(x),x) = 0,

y(x),singsol=all)� �
e

y(x)
2

(∫ y(x) cot (_a) e−_a
2 d_a

)
2 − e

y(x)
2 c1 + x = 0
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Mathematica DSolve solution

Solving time : 0.657 (sec)
Leaf size : 78� �
DSolve[{(2*x*Tan[y[x]])+(x-x^2*Tan[y[x]])*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
Solve

[
x = 1

34

(
(8− 2i)e2iy(x) Hypergeometric2F1

(
1, 1 + i

4 , 2 +
i

4 , e
2iy(x)

)
− 34iHypergeometric2F1

(
i

4 , 1, 1 +
i

4 , e
2iy(x)

))
+ c1e

y(x)
2 , y(x)

]
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2.1.3 problem 3

Maple step by step solution . . . . . . . . . . . . . . . . . . . . 22
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 23
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 24

Internal problem ID [4079]
Book : Differential equations, Shepley L. Ross, 1964
Section : 2.4, page 55
Problem number : 3
Date solved : Tuesday, December 17, 2024 at 06:21:29 AM
CAS classification : [_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

Solve

y2
(
x2 + 1

)
+ y + (2xy + 1) y′ = 0

Unknown ode type.

Maple step by step solution

Let’s solve
y(x)2 (x2 + 1) + y(x) + (1 + 2xy(x))

(
d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = −y(x)2

(
x2+1

)
+y(x)

1+2xy(x)

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
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trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : maple_leaf_size� �
dsolve(y(x)^2*(x^2+1)+y(x)+(2*x*y(x)+1)*diff(y(x),x) = 0,

y(x),singsol=all)� �
No solution found
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Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0� �
DSolve[{(y[x]^2*(x^2+1)+y[x])+(2*x*y[x]+1)*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
Not solved



chapter 2. book solved problems 25

2.1.4 problem 4

Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 25
Solved as first order isobaric ode . . . . . . . . . . . . . . . . . 30
Solved using Lie symmetry for first order ode . . . . . . . . . . 32
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 38
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 38
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 39

Internal problem ID [4080]
Book : Differential equations, Shepley L. Ross, 1964
Section : 2.4, page 55
Problem number : 4
Date solved : Tuesday, December 17, 2024 at 06:21:31 AM
CAS classification :
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

Solve

4xy2 + 6y +
(
5x2y + 8x

)
y′ = 0

Solved as first order Exact ode

Time used: 0.420 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

5x2y + 8x
)
dy =

(
−4y2x− 6y

)
dx(

4y2x+ 6y
)
dx+

(
5x2y + 8x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 4y2x+ 6y
N(x, y) = 5x2y + 8x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
4y2x+ 6y

)
= 8xy + 6

And
∂N

∂x
= ∂

∂x

(
5x2y + 8x

)
= 10xy + 8

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

5x2y + 8x((8xy + 6)− (10xy + 8))

= −2xy − 2
5x2y + 8x
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

4y2x+ 6y ((10xy + 8)− (8xy + 6))

= xy + 1
2y2x+ 3y

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (10xy + 8)− (8xy + 6)
x (4y2x+ 6y)− y (5x2y + 8x)

= −2xy − 2
xy (xy + 2)

Replacing all powers of terms xy by t gives

R = −2t− 2
t (t+ 2)

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (−2t−2

t(t+2)

)
dt

The result of integrating gives

µ = e− ln(t(t+2))

= 1
t (t+ 2)

Now t is replaced back with xy giving

µ = 1
xy (xy + 2)
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Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
xy (xy + 2)

(
4y2x+ 6y

)
= 4xy + 6

x (xy + 2)
And

N = µN

= 1
xy (xy + 2)

(
5x2y + 8x

)
= 5xy + 8

y (xy + 2)
A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

4xy + 6
x (xy + 2)

)
+
(

5xy + 8
y (xy + 2)

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 4xy + 6
x (xy + 2) dx

(3)φ = ln (xy + 2) + 3 ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

xy + 2 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 5xy+8
y(xy+2) . Therefore equation (4) becomes

(5)5xy + 8
y (xy + 2) = x

xy + 2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 4
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (4
y

)
dy

f(y) = 4 ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (xy + 2) + 3 ln (x) + 4 ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = ln (xy + 2) + 3 ln (x) + 4 ln (y)
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Figure 2.3: Slope field plot
4xy2 + 6y + (5x2y + 8x) y′ = 0
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Summary of solutions found

ln (xy + 2) + 3 ln (x) + 4 ln (y) = c1

Solved as first order isobaric ode

Time used: 0.260 (sec)

Solving for y′ gives

(1)y′ = −2y(2xy + 3)
x (5xy + 8)

Each of the above ode’s is now solved An ode y′ = f(x, y) is isobaric if

f(tx, tmy) = tm−1f(x, y) (1)

Where here
f(x, y) = −2y(2xy + 3)

x (5xy + 8) (2)

m is the order of isobaric. Substituting (2) into (1) and solving for m gives

m = −1

Since the ode is isobaric of order m = −1, then the substitution

y = uxm

= u

x

Converts the ODE to a separable in u(x). Performing this substitution gives

−u(x)
x2 + u′(x)

x
= −2u(x) (2u(x) + 3)

x2 (5u (x) + 8)

The ode u′(x) = u(x)(u(x)+2)
x(5u(x)+8) is separable as it can be written as

u′(x) = u(x) (u(x) + 2)
x (5u (x) + 8)

= f(x)g(u)

Where

f(x) = 1
x

g(u) = u(u+ 2)
5u+ 8
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Integrating gives ∫ 1
g(u) du =

∫
f(x) dx∫ 5u+ 8

u (u+ 2) du =
∫ 1

x
dx

ln
(
(u(x) + 2)u(x)4

)
= ln (x) + c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u(u+2)

5u+8 = 0 for
u(x) gives

u(x) = −2
u(x) = 0

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln
(
(u(x) + 2)u(x)4

)
= ln (x) + c1

u(x) = −2
u(x) = 0

Converting ln
(
(u(x) + 2)u(x)4

)
= ln (x) + c1 back to y gives

ln
(
(xy + 2)x4y4

)
= ln (x) + c1

Converting u(x) = −2 back to y gives

xy = −2

Converting u(x) = 0 back to y gives

xy = 0

Solving for y gives
ln
(
(xy + 2)x4y4

)
= ln (x) + c1

y = 0

y = −2
x
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Figure 2.4: Slope field plot
4xy2 + 6y + (5x2y + 8x) y′ = 0

Summary of solutions found

ln
(
(xy + 2)x4y4

)
= ln (x) + c1

y = 0

y = −2
x

Solved using Lie symmetry for first order ode

Time used: 0.927 (sec)

Writing the ode as

y′ = −2y(2xy + 3)
x (5xy + 8)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
2y(2xy + 3) (b3 − a2)

x (5xy + 8) − 4y2(2xy + 3)2 a3
x2 (5xy + 8)2

−
(
− 4y2
x (5xy + 8) +

2y(2xy + 3)
x2 (5xy + 8) +

10y2(2xy + 3)
x (5xy + 8)2

)
(xa2 + ya3 + a1)

−
(
− 2(2xy + 3)
x (5xy + 8) −

4y
5xy + 8 + 10y(2xy + 3)

(5xy + 8)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

45x4y2b2 − 36x2y4a3 + 20x3y2b1 − 20x2y3a1 + 144x3yb2 + 2x2y2a2 + 2x2y2b3 − 108x y3a3 + 64x2yb1 − 60x y2a1 + 112b2x2 − 84y2a3 + 48xb1 − 48ya1
x2 (5xy + 8)2

= 0

Setting the numerator to zero gives

(6E)45x4y2b2 − 36x2y4a3 + 20x3y2b1 − 20x2y3a1 + 144x3yb2 + 2x2y2a2 + 2x2y2b3
− 108x y3a3 + 64x2yb1 − 60x y2a1 + 112b2x2 − 84y2a3 + 48xb1 − 48ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−36a3v21v42+45b2v41v22−20a1v21v32+20b1v31v22+2a2v21v22−108a3v1v32+144b2v31v2
+ 2b3v21v22 − 60a1v1v22 + 64b1v21v2 − 84a3v22 + 112b2v21 − 48a1v2 + 48b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)45b2v41v22 + 20b1v31v22 + 144b2v31v2 − 36a3v21v42 − 20a1v21v32 + (2a2 + 2b3) v21v22
+64b1v21v2 +112b2v21 − 108a3v1v32 − 60a1v1v22 +48b1v1 − 84a3v22 − 48a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−60a1 = 0
−48a1 = 0
−20a1 = 0
−108a3 = 0
−84a3 = 0
−36a3 = 0
20b1 = 0
48b1 = 0
64b1 = 0
45b2 = 0
112b2 = 0
144b2 = 0

2a2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−2y(2xy + 3)

x (5xy + 8)

)
(−x)

= y2x+ 2y
5xy + 8

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2x+2y
5xy+8

dy

Which results in

S = ln (xy + 2) + 4 ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2y(2xy + 3)
x (5xy + 8)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

xy + 2

Sy =
x

xy + 2 + 4
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −3

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 3

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
− 3
R

dR

S(R) = −3 ln (R) + c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (xy + 2) + 4 ln (y) = −3 ln (x) + c2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2y(2xy+3)
x(5xy+8)

dS
dR

= − 3
R

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = ln (xy + 2) + 4 ln (y)
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0
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S(R)

–4 –2 2 4

R

–3

–2

–1

0

1

2

3

y(x)
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Figure 2.5: Slope field plot
4xy2 + 6y + (5x2y + 8x) y′ = 0

Summary of solutions found

ln (xy + 2) + 4 ln (y) = −3 ln (x) + c2
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Maple step by step solution

Let’s solve
4xy(x)2 + 6y(x) + (5x2y(x) + 8x)

(
d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = −4xy(x)2−6y(x)

5x2y(x)+8x

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.051 (sec)
Leaf size : 23� �
dsolve(4*y(x)^2*x+6*y(x)+(5*x^2*y(x)+8*x)*diff(y(x),x) = 0,

y(x),singsol=all)� �
y(x) = RootOf (− ln (x) + c1 + ln (_Z+ 2) + 4 ln (_Z))

x
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Mathematica DSolve solution

Solving time : 2.933 (sec)
Leaf size : 156� �
DSolve[{(4*x*y[x]^2+6*y[x])+(5*x^2*y[x]+8*x)*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → Root

[
−#15 − 2#14

x
+ ec1

x4 &, 1
]

y(x) → Root
[
−#15 − 2#14

x
+ ec1

x4 &, 2
]

y(x) → Root
[
−#15 − 2#14

x
+ ec1

x4 &, 3
]

y(x) → Root
[
−#15 − 2#14

x
+ ec1

x4 &, 4
]

y(x) → Root
[
−#15 − 2#14

x
+ ec1

x4 &, 5
]
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2.1.5 problem 5

Solved as first order homogeneous class Maple C ode . . . . . . 41
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 46
Solved using Lie symmetry for first order ode . . . . . . . . . . 49
Solved as first order ode of type dAlembert . . . . . . . . . . . 54
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 57
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 59
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 59

Internal problem ID [4081]
Book : Differential equations, Shepley L. Ross, 1964
Section : 2.4, page 55
Problem number : 5
Date solved : Tuesday, December 17, 2024 at 06:21:33 AM
CAS classification :
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

Solve

5x+ 2y + 1 + (2x+ y + 1) y′ = 0

Summary of solutions found

y = −2x− 1−
√

− (x− 1)2 + e2c1

y = −2x− 1 +
√

− (x− 1)2 + e2c1

y = −ix− 2x+ i− 1
y = ix− 2x− i− 1
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Solved as first order homogeneous class Maple C ode

Time used: 0.813 (sec)

Let Y = y − y0 and X = x− x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −2Y (X) + 2y0 + 5x0 + 5X + 1

2x0 + 2X + Y (X) + y0 + 1

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 1
y0 = −3

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −2Y (X) + 5X

2X + Y (X)

In canonical form, the ODE is

Y ′ = F (X,Y )

= −2Y + 5X
2X + Y

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −2Y − 5X and N = 2X + Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −2u− 5

u+ 2
du
dX =

−2u(X)−5
u(X)+2 − u(X)

X
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Or
d

dX
u(X)−

−2u(X)−5
u(X)+2 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X) + 2

(
d

dX
u(X)

)
X + u(X)2 + 4u(X) + 5 = 0

Or
X(u(X) + 2)

(
d

dX
u(X)

)
+ u(X)2 + 4u(X) + 5 = 0

Which is now solved as separable in u(X).

The ode d
dX

u(X) = −u(X)2+4u(X)+5
X(u(X)+2) is separable as it can be written as

d

dX
u(X) = −u(X)2 + 4u(X) + 5

X (u (X) + 2)
= f(X)g(u)

Where

f(X) = − 1
X

g(u) = u2 + 4u+ 5
u+ 2

Integrating gives ∫ 1
g(u) du =

∫
f(X) dX∫

u+ 2
u2 + 4u+ 5 du =

∫
− 1
X

dX

ln
(
u(X)2 + 4u(X) + 5

)
2 = ln

(
1
X

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u2+4u+5

u+2 = 0 for
u(X) gives

u(X) = −2− i

u(X) = −2 + i

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.
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Therefore the solutions found are

ln
(
u(X)2 + 4u(X) + 5

)
2 = ln

(
1
X

)
+ c1

u(X) = −2− i

u(X) = −2 + i

Solving for u(X) gives
u(X) = −2− i

u(X) = −2 + i

u(X) = −2X −
√
−X2 + e2c1
X

u(X) = −2X +
√
−X2 + e2c1
X

Converting u(X) = −2− i back to Y (X) gives

Y (X) = (−2− i)X

Converting u(X) = −2 + i back to Y (X) gives

Y (X) = (−2 + i)X

Converting u(X) = −2X−
√

−X2+e2c1
X

back to Y (X) gives

Y (X) = −2X −
√
−X2 + e2c1

Converting u(X) = −2X+
√

−X2+e2c1
X

back to Y (X) gives

Y (X) = −2X +
√
−X2 + e2c1

Using the solution for Y (X)

Y (X) = (−2− i)X (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0
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Or

Y = y − 3
X = x+ 1

Then the solution in y becomes using EQ (A)

y + 3 = (−2− i) (x− 1)

Using the solution for Y (X)

Y (X) = (−2 + i)X (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 3
X = x+ 1

Then the solution in y becomes using EQ (A)

y + 3 = (−2 + i) (x− 1)

Using the solution for Y (X)

Y (X) = −2X −
√
−X2 + e2c1 (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 3
X = x+ 1

Then the solution in y becomes using EQ (A)

y + 3 = −2x+ 2−
√

− (x− 1)2 + e2c1
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Using the solution for Y (X)

Y (X) = −2X +
√
−X2 + e2c1 (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 3
X = x+ 1

Then the solution in y becomes using EQ (A)

y + 3 = −2x+ 2 +
√
− (x− 1)2 + e2c1

Solving for y gives

y = −2x− 1−
√

− (x− 1)2 + e2c1

y = −2x− 1 +
√

− (x− 1)2 + e2c1

y = −ix− 2x+ i− 1
y = ix− 2x− i− 1
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Figure 2.6: Slope field plot
5x+ 2y + 1 + (2x+ y + 1) y′ = 0
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Solved as first order Exact ode

Time used: 0.192 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2x+ y + 1) dy = (−2y − 5x− 1) dx
(2y + 5x+ 1) dx+(2x+ y + 1) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2y + 5x+ 1
N(x, y) = 2x+ y + 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(2y + 5x+ 1)

= 2

And
∂N

∂x
= ∂

∂x
(2x+ y + 1)

= 2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2y + 5x+ 1dx

(3)φ = x(4y + 5x+ 2)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2x+ y + 1. Therefore equation (4) becomes

(5)2x+ y + 1 = 2x+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = y + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y + 1) dy

f(y) = 1
2y

2 + y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x(4y + 5x+ 2)
2 + y2

2 + y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 =
x(4y + 5x+ 2)

2 + y2

2 + y

Solving for y gives

y = −2x− 1−
√
−x2 + 2c1 + 2x+ 1

y = −2x− 1 +
√
−x2 + 2c1 + 2x+ 1
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Figure 2.7: Slope field plot
5x+ 2y + 1 + (2x+ y + 1) y′ = 0
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Summary of solutions found

y = −2x− 1−
√
−x2 + 2c1 + 2x+ 1

y = −2x− 1 +
√
−x2 + 2c1 + 2x+ 1

Solved using Lie symmetry for first order ode

Time used: 0.533 (sec)

Writing the ode as

y′ = −2y + 5x+ 1
2x+ y + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(2y + 5x+ 1) (b3 − a2)

2x+ y + 1 − (2y + 5x+ 1)2 a3
(2x+ y + 1)2

−
(
− 5
2x+ y + 1 + 4y + 10x+ 2

(2x+ y + 1)2
)
(xa2 + ya3 + a1)

−
(
− 2
2x+ y + 1 + 2y + 5x+ 1

(2x+ y + 1)2
)
(xb2 + yb3 + b1) = 0
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Putting the above in normal form gives

10x2a2 − 25x2a3 + 3x2b2 − 10x2b3 + 10xya2 − 20xya3 + 4xyb2 − 10xyb3 + 2y2a2 − 3y2a3 + y2b2 − 2y2b3 + 10xa2 − 10xa3 − xb1 + 5xb2 − 7xb3 + ya1 + 3ya2 − ya3 + 2yb2 − 2yb3 + 3a1 + a2 − a3 + b1 + b2 − b3

(2x+ y + 1)2
= 0

Setting the numerator to zero gives

(6E)10x2a2 − 25x2a3 + 3x2b2 − 10x2b3 + 10xya2 − 20xya3 + 4xyb2 − 10xyb3
+ 2y2a2 − 3y2a3 + y2b2 − 2y2b3 + 10xa2 − 10xa3 − xb1 + 5xb2 − 7xb3
+ ya1 + 3ya2 − ya3 + 2yb2 − 2yb3 + 3a1 + a2 − a3 + b1 + b2 − b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)10a2v21 + 10a2v1v2 + 2a2v22 − 25a3v21 − 20a3v1v2 − 3a3v22 + 3b2v21 + 4b2v1v2
+ b2v

2
2 − 10b3v21 − 10b3v1v2 − 2b3v22 + a1v2 + 10a2v1 + 3a2v2 − 10a3v1 − a3v2

− b1v1 + 5b2v1 + 2b2v2 − 7b3v1 − 2b3v2 + 3a1 + a2 − a3 + b1 + b2 − b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(10a2 − 25a3 + 3b2 − 10b3) v21 + (10a2 − 20a3 + 4b2 − 10b3) v1v2
+ (10a2 − 10a3 − b1 + 5b2 − 7b3) v1 + (2a2 − 3a3 + b2 − 2b3) v22
+ (a1 + 3a2 − a3 + 2b2 − 2b3) v2 + 3a1 + a2 − a3 + b1 + b2 − b3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

2a2 − 3a3 + b2 − 2b3 = 0
10a2 − 25a3 + 3b2 − 10b3 = 0
10a2 − 20a3 + 4b2 − 10b3 = 0
a1 + 3a2 − a3 + 2b2 − 2b3 = 0

10a2 − 10a3 − b1 + 5b2 − 7b3 = 0
3a1 + a2 − a3 + b1 + b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = −a3 − b3

a2 = 4a3 + b3

a3 = a3

b1 = 5a3 + 3b3
b2 = −5a3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 1
η = y + 3

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 3−
(
−2y + 5x+ 1

2x+ y + 1

)
(x− 1)

= 5x2 + 4xy + y2 + 2x+ 2y + 2
2x+ y + 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

5x2+4xy+y2+2x+2y+2
2x+y+1

dy

Which results in

S = ln (5x2 + 4xy + y2 + 2x+ 2y + 2)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2y + 5x+ 1
2x+ y + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2y + 5x+ 1
5x2 + (4y + 2)x+ y2 + 2y + 2

Sy =
2x+ y + 1

y2 + (4x+ 2) y + 5x2 + 2x+ 2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
0 dR + c2

S(R) = c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (5x2 + (4y + 2)x+ y2 + 2y + 2)
2 = c2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2y+5x+1
2x+y+1

dS
dR

= 0

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = ln (5x2 + (4y + 2)x+ y2 + 2y + 2)
2

–4

–2

0

2

4

S(R)

–4 –2 2 4

R

Solving for y gives

y = −2x− 1−
√
−x2 + e2c2 + 2x− 1

y = −2x− 1 +
√
−x2 + e2c2 + 2x− 1
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Figure 2.8: Slope field plot
5x+ 2y + 1 + (2x+ y + 1) y′ = 0

Summary of solutions found

y = −2x− 1−
√
−x2 + e2c2 + 2x− 1

y = −2x− 1 +
√
−x2 + e2c2 + 2x− 1

Solved as first order ode of type dAlembert

Time used: 0.399 (sec)

Let p = y′ the ode becomes

5x+ 2y + 1 + (2x+ y + 1) p = 0

Solving for y from the above results in

(1)y = −(2p+ 5)x
2 + p

− p+ 1
2 + p

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved.
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Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −2p− 5
2 + p

g = −p− 1
2 + p

Hence (2) becomes

p− −2p− 5
2 + p

=
(
− 2x
2 + p

+ 2xp
(2 + p)2

+ 5x
(2 + p)2

− 1
2 + p

+ p

(2 + p)2
+ 1

(2 + p)2
)
p′(x)

(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− −2p− 5
2 + p

= 0

Solving the above for p results in

p1 = −2 + i

p2 = −2− i

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y = (−2 + i)x− 1− i

y = (−2− i)x− 1 + i

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− −2p(x)−5

2+p(x)

− 2x
2+p(x) +

2xp(x)
(2+p(x))2 +

5x
(2+p(x))2 −

1
2+p(x) +

p(x)
(2+p(x))2 +

1
(2+p(x))2

(3)

This ODE is now solved for p(x). No inversion is needed. The ode p′(x) =
(2+p(x))

(
p(x)2+4p(x)+5

)
x−1

is separable as it can be written as

p′(x) =
(2 + p(x))

(
p(x)2 + 4p(x) + 5

)
x− 1

= f(x)g(p)
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Where

f(x) = 1
x− 1

g(p) = (2 + p)
(
p2 + 4p+ 5

)
Integrating gives ∫ 1

g(p) dp =
∫

f(x) dx∫ 1
(2 + p) (p2 + 4p+ 5) dp =

∫ 1
x− 1 dx

ln

 2 + p(x)√
p (x)2 + 4p (x) + 5

 = ln (x− 1) + c1

We now need to find the singular solutions, these are found by finding for what values
g(p) is zero, since we had to divide by this above. Solving g(p) = 0 or (2 + p) (p2 + 4p+ 5) =
0 for p(x) gives

p(x) = −2
p(x) = −2− i

p(x) = −2 + i

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln

 2 + p(x)√
p (x)2 + 4p (x) + 5

 = ln (x− 1) + c1

p(x) = −2
p(x) = −2− i

p(x) = −2 + i

Substituing the above solution for p in (2A) gives

y =
x
(
−2x ec1

√
− 1

x2e2c1−2x e2c1+e2c1−1 + 2 ec1
√

− 1
x2e2c1−2x e2c1+e2c1−1 − 1

)
x ec1

√
− 1

x2e2c1−2x e2c1+e2c1−1 − ec1
√

− 1
x2e2c1−2x e2c1+e2c1−1

+
−x ec1

√
− 1

x2e2c1−2x e2c1+e2c1−1 + ec1
√
− 1

x2e2c1−2x e2c1+e2c1−1 + 1

x ec1
√

− 1
x2e2c1−2x e2c1+e2c1−1 − ec1

√
− 1

x2e2c1−2x e2c1+e2c1−1

y = (−2− i)x− 1 + i

y = (−2 + i)x− 1− i
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Figure 2.9: Slope field plot
5x+ 2y + 1 + (2x+ y + 1) y′ = 0

Summary of solutions found

y = (−2− i)x− 1 + i

y = (−2 + i)x− 1− i

y =
x
(
−2x ec1

√
− 1

x2e2c1−2x e2c1+e2c1−1 + 2 ec1
√
− 1

x2e2c1−2x e2c1+e2c1−1 − 1
)

x ec1
√

− 1
x2e2c1−2x e2c1+e2c1−1 − ec1

√
− 1

x2e2c1−2x e2c1+e2c1−1

+
−x ec1

√
− 1

x2e2c1−2x e2c1+e2c1−1 + ec1
√
− 1

x2e2c1−2x e2c1+e2c1−1 + 1

x ec1
√

− 1
x2e2c1−2x e2c1+e2c1−1 − ec1

√
− 1

x2e2c1−2x e2c1+e2c1−1

Maple step by step solution

Let’s solve
5x+ 2y(x) + 1 + (2x+ y(x) + 1)

(
d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

d
dx
F (x, y(x)) = 0

◦ Compute derivative of lhs
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∂
∂x
F (x, y) +

(
∂
∂y
F (x, y)

) (
d
dx
y(x)

)
= 0

◦ Evaluate derivatives
2 = 2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = C1 ,M(x, y) = ∂
∂x
F (x, y) , N(x, y) = ∂

∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(5x+ 2y + 1) dx+ _F1(y)

• Evaluate integral
F (x, y) = 5x2

2 + 2xy + x+ _F1(y)
• Take derivative of F (x, y) with respect to y

N(x, y) = ∂
∂y
F (x, y)

• Compute derivative
2x+ y + 1 = 2x+ d

dy
_F1(y)

• Isolate for d
dy
_F1(y)

d
dy
_F1(y) = y + 1

• Solve for _F1(y)
_F1(y) = 1

2y
2 + y

• Substitute _F1(y) into equation for F (x, y)
F (x, y) = 5

2x
2 + 2xy + x+ 1

2y
2 + y

• Substitute F (x, y) into the solution of the ODE
5
2x

2 + 2xy + x+ 1
2y

2 + y = C1
• Solve for y(x){

y(x) = −1− 2x−
√
−x2 + 2C1 + 2x+ 1, y(x) = −1− 2x+

√
−x2 + 2C1 + 2x+ 1

}
Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
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trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.395 (sec)
Leaf size : 32� �
dsolve(5*x+2*y(x)+1+(2*x+y(x)+1)*diff(y(x),x) = 0,

y(x),singsol=all)� �
y(x) =

−
√

− (x− 1)2 c21 + 1 + (−2x− 1) c1
c1

Mathematica DSolve solution

Solving time : 0.219 (sec)
Leaf size : 53� �
DSolve[{(5*x+2*y[x]+1)+(2*x+y[x]+1)*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −

√
−x2 + 2x+ 1 + c1 − 2x− 1

y(x) →
√

−x2 + 2x+ 1 + c1 − 2x− 1
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Internal problem ID [4082]
Book : Differential equations, Shepley L. Ross, 1964
Section : 2.4, page 55
Problem number : 6
Date solved : Tuesday, December 17, 2024 at 06:21:36 AM
CAS classification :
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

Solve

3x− y + 1− (6x− 2y − 3) y′ = 0

Solved using Lie symmetry for first order ode

Time used: 0.659 (sec)

Writing the ode as

y′ = y − 3x− 1
2y − 6x+ 3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(y − 3x− 1) (b3 − a2)

2y − 6x+ 3 − (y − 3x− 1)2 a3
(2y − 6x+ 3)2

−
(
− 3
2y − 6x+ 3 + 6y − 18x− 6

(2y − 6x+ 3)2
)
(xa2 + ya3 + a1)

−
(

1
2y − 6x+ 3 − 2(y − 3x− 1)

(2y − 6x+ 3)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−18x2a2 + 9x2a3 − 36x2b2 − 18x2b3 − 12xya2 − 6xya3 + 24xyb2 + 12xyb3 + 2y2a2 + y2a3 − 4y2b2 − 2y2b3 − 18xa2 + 6xa3 + 41xb2 + 3xb3 + ya2 − 17ya3 − 12yb2 + 4yb3 − 15a1 − 3a2 + a3 + 5b1 − 9b2 + 3b3
(−2y + 6x− 3)2

= 0

Setting the numerator to zero gives

(6E)−18x2a2 − 9x2a3 + 36x2b2 + 18x2b3 + 12xya2 + 6xya3 − 24xyb2 − 12xyb3
− 2y2a2 − y2a3 + 4y2b2 + 2y2b3 + 18xa2 − 6xa3 − 41xb2 − 3xb3 − ya2
+ 17ya3 + 12yb2 − 4yb3 + 15a1 + 3a2 − a3 − 5b1 + 9b2 − 3b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−18a2v21 + 12a2v1v2 − 2a2v22 − 9a3v21 + 6a3v1v2 − a3v
2
2 + 36b2v21 − 24b2v1v2

+ 4b2v22 + 18b3v21 − 12b3v1v2 + 2b3v22 + 18a2v1 − a2v2 − 6a3v1 + 17a3v2
− 41b2v1 + 12b2v2 − 3b3v1 − 4b3v2 + 15a1 + 3a2 − a3 − 5b1 + 9b2 − 3b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)(−18a2 − 9a3 + 36b2 + 18b3) v21 + (12a2 + 6a3 − 24b2 − 12b3) v1v2
+ (18a2 − 6a3 − 41b2 − 3b3) v1 + (−2a2 − a3 + 4b2 + 2b3) v22
+ (−a2 + 17a3 + 12b2 − 4b3) v2 + 15a1 + 3a2 − a3 − 5b1 + 9b2 − 3b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−18a2 − 9a3 + 36b2 + 18b3 = 0
−2a2 − a3 + 4b2 + 2b3 = 0

−a2 + 17a3 + 12b2 − 4b3 = 0
12a2 + 6a3 − 24b2 − 12b3 = 0
18a2 − 6a3 − 41b2 − 3b3 = 0

15a1 + 3a2 − a3 − 5b1 + 9b2 − 3b3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 2b2

a3 = −2b2
3

b1 = 3a1 +
10b2
3

b2 = b2

b3 = −b2
3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 3

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 3−
(

y − 3x− 1
2y − 6x+ 3

)
(1)

= −5y + 15x− 10
−2y + 6x− 3

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−5y+15x−10
−2y+6x−3

dy

Which results in

S = 2y
5 − ln (−3x+ y + 2)

5
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y − 3x− 1
2y − 6x+ 3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 3
−5y + 15x− 10

Sy =
2
5 + 1

−5y + 15x− 10
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

5 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

5

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫ 1
5 dR

S(R) = R

5 + c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

2y
5 − ln (−3x+ y + 2)

5 = x

5 + c2

Which gives

y = −LambertW (−2 e5x−4−5c2)
2 + 3x− 2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y−3x−1
2y−6x+3

dS
dR

= 1
5

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = 2y
5 − ln (−3x+ y + 2)

5
–4

–2

0

2

4

S(R)

–4 –2 2 4

R
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y(x)
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x

Figure 2.10: Slope field plot
3x− y + 1− (6x− 2y − 3) y′ = 0

Summary of solutions found

y = −LambertW (−2 e5x−4−5c2)
2 + 3x− 2

Solved as first order ode of type dAlembert

Time used: 0.335 (sec)

Let p = y′ the ode becomes

3x− y + 1− (−2y + 6x− 3) p = 0

Solving for y from the above results in

(1)y = (6p− 3)x
−1 + 2p + −3p− 1

−1 + 2p

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved.
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Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = 3

g = −3p− 1
−1 + 2p

Hence (2) becomes

p− 3 =
(
− 3
−1 + 2p + 6p

(−1 + 2p)2
+ 2

(−1 + 2p)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 3 = 0

Solving the above for p results in

p1 = 3

Substituting these in (1A) and keeping singular solution that verifies the ode gives

y = 3x− 2

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x)− 3
− 3

−1+2p(x) +
6p(x)

(−1+2p(x))2 +
2

(−1+2p(x))2
(3)

This ODE is now solved for p(x). No inversion is needed. Integrating gives∫ 5
(p− 3) (−1 + 2p)2

dp = dx

ln (p− 3)
5 + 1

−1 + 2p − ln (−1 + 2p)
5 = x+ c1

Singular solutions are found by solving

(p− 3) (−1 + 2p)2

5 = 0
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for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = 3

p(x) = 1
2

Substituing the above solution for p in (2A) gives

y = 3x+ −3 eRootOf
(
2 ln
(
2 e_Z+5

)
e_Z+10c1 e_Z−2_Z e_Z+10x e_Z+5 ln

(
2 e_Z+5

)
+25c1−5_Z+25x−5

)
− 10

2 eRootOf(2 ln(2 e_Z+5)e_Z+10c1 e_Z−2_Z e_Z+10x e_Z+5 ln(2 e_Z+5)+25c1−5_Z+25x−5) + 5
y = 3x− 2

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.11: Slope field plot
3x− y + 1− (6x− 2y − 3) y′ = 0

Summary of solutions found

y = 3x− 2

y = 3x+ −3 eRootOf
(
2 ln
(
2 e_Z+5

)
e_Z+10c1 e_Z−2_Z e_Z+10x e_Z+5 ln

(
2 e_Z+5

)
+25c1−5_Z+25x−5

)
− 10

2 eRootOf(2 ln(2 e_Z+5)e_Z+10c1 e_Z−2_Z e_Z+10x e_Z+5 ln(2 e_Z+5)+25c1−5_Z+25x−5) + 5
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Maple step by step solution

Let’s solve
3x− y(x) + 1− (6x− 2y(x)− 3)

(
d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = −−3x+y(x)−1

6x−2y(x)−3

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = 3, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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Maple dsolve solution

Solving time : 0.024 (sec)
Leaf size : 23� �
dsolve(3*x-y(x)+1-(6*x-2*y(x)-3)*diff(y(x),x) = 0,

y(x),singsol=all)� �
y(x) = −LambertW (−2 e5x−4−5c1)

2 + 3x− 2

Mathematica DSolve solution

Solving time : 4.378 (sec)
Leaf size : 35� �
DSolve[{(3*x-y[x]+1)-(6*x-2*y[x]-3)*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → −1

2W
(
−e5x−1+c1

)
+ 3x− 2

y(x) → 3x− 2
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2.1.7 problem 7

Solved as first order homogeneous class Maple C ode . . . . . . 70
Solved using Lie symmetry for first order ode . . . . . . . . . . 75
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 80
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 80
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 81

Internal problem ID [4083]
Book : Differential equations, Shepley L. Ross, 1964
Section : 2.4, page 55
Problem number : 7
Date solved : Tuesday, December 17, 2024 at 06:21:38 AM
CAS classification :
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

Solve

x− 2y − 3 + (2x+ y − 1) y′ = 0

Summary of solutions found

ln
(

(y+1)2+(x−1)2

(x−1)2

)
2 + 2 arctan

(
y + 1
x− 1

)
= ln

(
1

x− 1

)
+ c1

y = −ix+ i− 1
y = ix− i− 1

Solved as first order homogeneous class Maple C ode

Time used: 0.601 (sec)

Let Y = y − y0 and X = x− x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = 2Y (X) + 2y0 − x0 −X + 3

2x0 + 2X + Y (X) + y0 − 1

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 1
y0 = −1
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Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = 2Y (X)−X

2X + Y (X)

In canonical form, the ODE is

Y ′ = F (X,Y )

= 2Y −X

2X + Y
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 2Y − X and N = 2X + Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 2u− 1

u+ 2
du
dX =

2u(X)−1
u(X)+2 − u(X)

X

Or
d

dX
u(X)−

2u(X)−1
u(X)+2 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X) + 2

(
d

dX
u(X)

)
X + u(X)2 + 1 = 0

Or
X(u(X) + 2)

(
d

dX
u(X)

)
+ u(X)2 + 1 = 0

Which is now solved as separable in u(X).
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The ode d
dX

u(X) = − u(X)2+1
X(u(X)+2) is separable as it can be written as

d

dX
u(X) = − u(X)2 + 1

X (u (X) + 2)
= f(X)g(u)

Where

f(X) = − 1
X

g(u) = u2 + 1
u+ 2

Integrating gives ∫ 1
g(u) du =

∫
f(X) dX∫

u+ 2
u2 + 1 du =

∫
− 1
X

dX

ln
(
u(X)2 + 1

)
2 + 2 arctan (u(X)) = ln

(
1
X

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u2+1

u+2 = 0 for
u(X) gives

u(X) = −i

u(X) = i

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln
(
u(X)2 + 1

)
2 + 2 arctan (u(X)) = ln

(
1
X

)
+ c1

u(X) = −i

u(X) = i

Converting
ln
(
u(X)2+1

)
2 + 2arctan (u(X)) = ln

( 1
X

)
+ c1 back to Y (X) gives

ln
(

Y (X)2+X2

X2

)
2 + 2 arctan

(
Y (X)
X

)
= ln

(
1
X

)
+ c1
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Converting u(X) = −i back to Y (X) gives

Y (X) = −iX

Converting u(X) = i back to Y (X) gives

Y (X) = iX

Using the solution for Y (X)

ln
(

Y (X)2+X2

X2

)
2 + 2 arctan

(
Y (X)
X

)
= ln

(
1
X

)
+ c1 (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 1
X = x+ 1

Then the solution in y becomes using EQ (A)

ln
(

(y+1)2+(x−1)2

(x−1)2

)
2 + 2 arctan

(
y + 1
x− 1

)
= ln

(
1

x− 1

)
+ c1

Using the solution for Y (X)

Y (X) = −iX (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 1
X = x+ 1

Then the solution in y becomes using EQ (A)

y + 1 = −i(x− 1)
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Using the solution for Y (X)

Y (X) = iX (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 1
X = x+ 1

Then the solution in y becomes using EQ (A)

y + 1 = i(x− 1)

Solving for y gives

ln
(

(y+1)2+(x−1)2

(x−1)2

)
2 + 2 arctan

(
y + 1
x− 1

)
= ln

(
1

x− 1

)
+ c1

y = −ix+ i− 1
y = ix− i− 1
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Figure 2.12: Slope field plot
x− 2y − 3 + (2x+ y − 1) y′ = 0
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Solved using Lie symmetry for first order ode

Time used: 0.669 (sec)

Writing the ode as

y′ = 2y − x+ 3
2x+ y − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(2y − x+ 3) (b3 − a2)

2x+ y − 1 − (2y − x+ 3)2 a3
(2x+ y − 1)2

−
(
− 1
2x+ y − 1 − 2(2y − x+ 3)

(2x+ y − 1)2
)
(xa2 + ya3 + a1)

−
(

2
2x+ y − 1 − 2y − x+ 3

(2x+ y − 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x2a2 − x2a3 − x2b2 − 2x2b3 + 2xya2 + 4xya3 + 4xyb2 − 2xyb3 − 2y2a2 + y2a3 + y2b2 + 2y2b3 − 2xa2 + 6xa3 − 5xb1 + xb2 + 7xb3 + 5ya1 − ya2 − 7ya3 − 2yb2 + 6yb3 + 5a1 + 3a2 − 9a3 + 5b1 + b2 − 3b3
(2x+ y − 1)2

= 0
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Setting the numerator to zero gives

(6E)2x2a2 − x2a3 − x2b2 − 2x2b3 + 2xya2 + 4xya3 + 4xyb2 − 2xyb3 − 2y2a2
+ y2a3 + y2b2 + 2y2b3 − 2xa2 + 6xa3 − 5xb1 + xb2 + 7xb3 + 5ya1
− ya2 − 7ya3 − 2yb2 + 6yb3 + 5a1 + 3a2 − 9a3 + 5b1 + b2 − 3b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)2a2v21 + 2a2v1v2 − 2a2v22 − a3v
2
1 + 4a3v1v2 + a3v

2
2 − b2v

2
1 + 4b2v1v2 + b2v

2
2

− 2b3v21 − 2b3v1v2 + 2b3v22 + 5a1v2 − 2a2v1 − a2v2 + 6a3v1 − 7a3v2 − 5b1v1
+ b2v1 − 2b2v2 + 7b3v1 + 6b3v2 + 5a1 + 3a2 − 9a3 + 5b1 + b2 − 3b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(2a2 − a3 − b2 − 2b3) v21 + (2a2 + 4a3 + 4b2 − 2b3) v1v2
+ (−2a2 + 6a3 − 5b1 + b2 + 7b3) v1 + (−2a2 + a3 + b2 + 2b3) v22
+ (5a1 − a2 − 7a3 − 2b2 + 6b3) v2 + 5a1 + 3a2 − 9a3 + 5b1 + b2 − 3b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a2 + a3 + b2 + 2b3 = 0
2a2 − a3 − b2 − 2b3 = 0

2a2 + 4a3 + 4b2 − 2b3 = 0
5a1 − a2 − 7a3 − 2b2 + 6b3 = 0

−2a2 + 6a3 − 5b1 + b2 + 7b3 = 0
5a1 + 3a2 − 9a3 + 5b1 + b2 − 3b3 = 0
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Solving the above equations for the unknowns gives

a1 = −b2 − b3

a2 = b3

a3 = −b2

b1 = −b2 + b3

b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 1
η = y + 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 1−
(
2y − x+ 3
2x+ y − 1

)
(x− 1)

= x2 + y2 − 2x+ 2y + 2
2x+ y − 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2+y2−2x+2y+2
2x+y−1

dy
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Which results in

S = ln (x2 + y2 − 2x+ 2y + 2)
2 + 2 arctan

(
2y + 2
2x− 2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2y − x+ 3
2x+ y − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2y + x− 3
x2 + y2 − 2x+ 2y + 2

Sy =
2x+ y − 1

x2 + y2 − 2x+ 2y + 2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
0 dR + c2

S(R) = c2
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To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (y2 + x2 + 2y − 2x+ 2)
2 + 2 arctan

(
y + 1
x− 1

)
= c2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2y−x+3
2x+y−1

dS
dR

= 0

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = ln (x2 + y2 − 2x+ 2y + 2)
2 + 2 arctan

(
y + 1
x− 1

)
–4

–2

0

2

4

S(R)

–4 –2 2 4

R
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Figure 2.13: Slope field plot
x− 2y − 3 + (2x+ y − 1) y′ = 0

Summary of solutions found

ln (y2 + x2 + 2y − 2x+ 2)
2 + 2 arctan

(
y + 1
x− 1

)
= c2
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Maple step by step solution

Let’s solve
x− 2y(x)− 3 + (2x+ y(x)− 1)

(
d
dx
y(x)

)
= 0

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = −x+2y(x)+3

2x+y(x)−1

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.034 (sec)
Leaf size : 31� �
dsolve(x-2*y(x)-3+(2*x+y(x)-1)*diff(y(x),x) = 0,

y(x),singsol=all)� �
y(x) = −1− tan

(
RootOf

(
−4_Z+ ln

(
sec (_Z)2

)
+ 2 ln (x− 1) + 2c1

))
(x− 1)
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Mathematica DSolve solution

Solving time : 0.091 (sec)
Leaf size : 66� �
DSolve[{(x-2*y[x]-3)+(2*x+y[x]-1)*D[y[x],x]==0,{}},

y[x],x,IncludeSingularSolutions->True]� �
Solve

[
32 arctan

(
2y(x)− x+ 3
y(x) + 2x− 1

)
+ 8 log

(
x2 + y(x)2 + 2y(x)− 2x+ 2

5(x− 1)2

)
+ 16 log(x− 1) + 5c1 = 0, y(x)

]
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2.1.8 problem 8

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 82
Solved as first order homogeneous class Maple C ode . . . . . . 83
Solved as first order Exact ode . . . . . . . . . . . . . . . . . . 89
Solved using Lie symmetry for first order ode . . . . . . . . . . 92
Solved as first order ode of type dAlembert . . . . . . . . . . . 98
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 101
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 103
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 103

Internal problem ID [4084]
Book : Differential equations, Shepley L. Ross, 1964
Section : 2.4, page 55
Problem number : 8
Date solved : Tuesday, December 17, 2024 at 06:21:40 AM
CAS classification :
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

Solve

6x+ 4y + 1 + (4x+ 2y + 2) y′ = 0

With initial conditions

y

(
1
2

)
= 3

Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= − 4y + 6x+ 1
2 (2x+ y + 1)

The x domain of f(x, y) when y = 3 is

{x < −2∨−2 < x}

And the point x0 = 1
2 is inside this domain. The y domain of f(x, y) when x = 1

2 is

{y < −2∨−2 < y}
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And the point y0 = 3 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
− 4y + 6x+ 1
2 (2x+ y + 1)

)
= − 2

2x+ y + 1 + 4y + 6x+ 1
2 (2x+ y + 1)2

The x domain of ∂f
∂y

when y = 3 is

{x < −2∨−2 < x}

And the point x0 = 1
2 is inside this domain. The y domain of ∂f

∂y
when x = 1

2 is

{y < −2∨−2 < y}

And the point y0 = 3 is inside this domain. Therefore solution exists and is unique.

Summary of solutions found

y = −2x− 1 +

√(
x+ 3

2

)2

+ eln(3)+ln(7)

Solved as first order homogeneous class Maple C ode

Time used: 1.074 (sec)

Let Y = y − y0 and X = x− x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = − 4Y (X) + 4y0 + 6x0 + 6X + 1

2 (2x0 + 2X + Y (X) + y0 + 1)

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = −3
2

y0 = 2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = − 4Y (X) + 6X

2 (2X + Y (X))
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −2Y + 3X
2X + Y

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −2Y − 3X and N = 2X + Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −2u− 3

u+ 2
du
dX =

−2u(X)−3
u(X)+2 − u(X)

X

Or
d

dX
u(X)−

−2u(X)−3
u(X)+2 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X) + 2

(
d

dX
u(X)

)
X + u(X)2 + 4u(X) + 3 = 0

Or
X(u(X) + 2)

(
d

dX
u(X)

)
+ u(X)2 + 4u(X) + 3 = 0

Which is now solved as separable in u(X).

The ode d
dX

u(X) = −u(X)2+4u(X)+3
X(u(X)+2) is separable as it can be written as

d

dX
u(X) = −u(X)2 + 4u(X) + 3

X (u (X) + 2)
= f(X)g(u)
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Where

f(X) = − 1
X

g(u) = u2 + 4u+ 3
u+ 2

Integrating gives ∫ 1
g(u) du =

∫
f(X) dX∫

u+ 2
u2 + 4u+ 3 du =

∫
− 1
X

dX

ln
(
u(X)2 + 4u(X) + 3

)
2 = ln

(
1
X

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u2+4u+3

u+2 = 0 for
u(X) gives

u(X) = −3
u(X) = −1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln
(
u(X)2 + 4u(X) + 3

)
2 = ln

(
1
X

)
+ c1

u(X) = −3
u(X) = −1

Solving for u(X) gives
u(X) = −3

u(X) = −1

u(X) = −2X −
√
X2 + e2c1

X

u(X) = −2X +
√
X2 + e2c1

X
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Converting u(X) = −3 back to Y (X) gives

Y (X) = −3X

Converting u(X) = −1 back to Y (X) gives

Y (X) = −X

Converting u(X) = −2X−
√

X2+e2c1
X

back to Y (X) gives

Y (X) = −2X −
√
X2 + e2c1

Converting u(X) = −2X+
√

X2+e2c1
X

back to Y (X) gives

Y (X) = −2X +
√
X2 + e2c1

Using the solution for Y (X)

Y (X) = −3X (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 2

X = x− 3
2

Then the solution in y becomes using EQ (A)

y − 2 = −3x− 9
2

Using the solution for Y (X)

Y (X) = −X (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0
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Or

Y = y + 2

X = x− 3
2

Then the solution in y becomes using EQ (A)

y − 2 = −x− 3
2

Using the solution for Y (X)

Y (X) = −2X −
√
X2 + e2c1 (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 2

X = x− 3
2

Then the solution in y becomes using EQ (A)

y − 2 = −2x− 3−

√(
x+ 3

2

)2

+ e2c1

Using the solution for Y (X)

Y (X) = −2X +
√
X2 + e2c1 (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 2

X = x− 3
2
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Then the solution in y becomes using EQ (A)

y − 2 = −2x− 3 +

√(
x+ 3

2

)2

+ e2c1

Solving for the constant of integration from initial conditions, the solution becomes

y − 2 = −2x− 3−

√(
x+ 3

2

)2

+ 21

Solving for the constant of integration from initial conditions, the solution becomes

y − 2 = −2x− 3 +

√(
x+ 3

2

)2

+ eln(3)+ln(7)

Solving for y gives

y − 2 = −3x− 9
2

y − 2 = −x− 3
2

y − 2 = −2x− 3−

√(
x+ 3

2

)2

+ 21

y = −2x− 1 +

√(
x+ 3

2

)2

+ eln(3)+ln(7)

The solution

y − 2 = −3x− 9
2

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y − 2 = −x− 3
2

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y − 2 = −2x− 3−

√(
x+ 3

2

)2

+ 21
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was found not to satisfy the ode or the IC. Hence it is removed.
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(a) Solution plot
y = −2x− 1 +

√(
x+ 3

2
)2 + eln(3)+ln(7)
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(b) Slope field plot
6x+ 4y + 1 + (4x+ 2y + 2) y′ = 0

Solved as first order Exact ode

Time used: 0.110 (sec)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(4x+ 2y + 2) dy = (−4y − 6x− 1) dx
(4y + 6x+ 1) dx+(4x+ 2y + 2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 4y + 6x+ 1
N(x, y) = 4x+ 2y + 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(4y + 6x+ 1)

= 4

And

∂N

∂x
= ∂

∂x
(4x+ 2y + 2)

= 4

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
4y + 6x+ 1dx

(3)φ = x(3x+ 4y + 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 4x+ f ′(y)

But equation (2) says that ∂φ
∂y

= 4x+ 2y + 2. Therefore equation (4) becomes

(5)4x+ 2y + 2 = 4x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2y + 2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(2y + 2) dy

f(y) = y2 + 2y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x(3x+ 4y + 1) + y2 + 2y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into the constant c1 gives the solution as

c1 = x(3x+ 4y + 1) + y2 + 2y
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Solving for the constant of integration from initial conditions, the solution becomes

x(3x+ 4y + 1) + y2 + 2y = 89
4

Solving for y gives

y = −2x− 1 +
√
4x2 + 12x+ 93

2
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(a) Solution plot
y = −2x− 1 +

√
4x2+12x+93

2
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(b) Slope field plot
6x+ 4y + 1 + (4x+ 2y + 2) y′ = 0

Summary of solutions found

y = −2x− 1 +
√
4x2 + 12x+ 93

2

Solved using Lie symmetry for first order ode

Time used: 0.966 (sec)

Writing the ode as

y′ = − 4y + 6x+ 1
2 (2x+ y + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(4y + 6x+ 1) (b3 − a2)

2 (2x+ y + 1) − (4y + 6x+ 1)2 a3
4 (2x+ y + 1)2

−
(
− 3
2x+ y + 1 + 4y + 6x+ 1

(2x+ y + 1)2
)
(xa2 + ya3 + a1)

−
(
− 2
2x+ y + 1 + 4y + 6x+ 1

2 (2x+ y + 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

24x2a2 − 36x2a3 + 20x2b2 − 24x2b3 + 24xya2 − 48xya3 + 16xyb2 − 24xyb3 + 8y2a2 − 20y2a3 + 4y2b2 − 8y2b3 + 24xa2 − 12xa3 + 4xb1 + 22xb2 − 16xb3 − 4ya1 + 10ya2 + 8yb2 − 4yb3 + 8a1 + 2a2 − a3 + 6b1 + 4b2 − 2b3
4 (2x+ y + 1)2

= 0

Setting the numerator to zero gives

(6E)24x2a2 − 36x2a3 + 20x2b2 − 24x2b3 + 24xya2 − 48xya3 + 16xyb2 − 24xyb3
+ 8y2a2 − 20y2a3 + 4y2b2 − 8y2b3 + 24xa2 − 12xa3 + 4xb1 + 22xb2 − 16xb3
− 4ya1 + 10ya2 + 8yb2 − 4yb3 + 8a1 + 2a2 − a3 + 6b1 + 4b2 − 2b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)24a2v21 +24a2v1v2+8a2v22 −36a3v21 −48a3v1v2−20a3v22 +20b2v21 +16b2v1v2
+4b2v22−24b3v21−24b3v1v2−8b3v22−4a1v2+24a2v1+10a2v2−12a3v1+4b1v1
+ 22b2v1 + 8b2v2 − 16b3v1 − 4b3v2 + 8a1 + 2a2 − a3 + 6b1 + 4b2 − 2b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(24a2 − 36a3 + 20b2 − 24b3) v21 + (24a2 − 48a3 + 16b2 − 24b3) v1v2
+ (24a2 − 12a3 + 4b1 + 22b2 − 16b3) v1 + (8a2 − 20a3 + 4b2 − 8b3) v22
+ (−4a1 + 10a2 + 8b2 − 4b3) v2 + 8a1 + 2a2 − a3 + 6b1 + 4b2 − 2b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 + 10a2 + 8b2 − 4b3 = 0
8a2 − 20a3 + 4b2 − 8b3 = 0

24a2 − 48a3 + 16b2 − 24b3 = 0
24a2 − 36a3 + 20b2 − 24b3 = 0

24a2 − 12a3 + 4b1 + 22b2 − 16b3 = 0
8a1 + 2a2 − a3 + 6b1 + 4b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 4a3 +
3b3
2

a2 = 4a3 + b3

a3 = a3

b1 = −9a3
2 − 2b3

b2 = −3a3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x+ 3
2

η = y − 2
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y − 2−
(
− 4y + 6x+ 1
2 (2x+ y + 1)

)(
x+ 3

2

)
= 12x2 + 16xy + 4y2 + 4x+ 8y − 5

8x+ 4y + 4
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

12x2+16xy+4y2+4x+8y−5
8x+4y+4

dy

Which results in

S = ln (12x2 + 16xy + 4y2 + 4x+ 8y − 5)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 4y + 6x+ 1
2 (2x+ y + 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
2x+ 2y − 1 + 3

6x+ 2y + 5

Sy =
1

2x+ 2y − 1 + 1
6x+ 2y + 5

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
0 dR + c2

S(R) = c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (2x+ 2y − 1)
2 + ln (6x+ 2y + 5)

2 = c2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 4y+6x+1
2(2x+y+1)

dS
dR

= 0

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = ln (2x+ 2y − 1)
2 + ln (6x+ 2y + 5)

2
–4

–2

0

2

4

S(R)

–4 –2 2 4

R

Solving for the constant of integration from initial conditions, the solution becomes
ln (2x+ 2y − 1)

2 + ln (6x+ 2y + 5)
2 = ln (2) + ln (3)

2 + ln (7)
2

Solving for y gives

y = −2x− 1 +
√
4x2 + 12x+ 93
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y = −2x− 1 +
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(b) Slope field plot
6x+ 4y + 1 + (4x+ 2y + 2) y′ = 0

Summary of solutions found

y = −2x− 1 +
√
4x2 + 12x+ 93

2
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Solved as first order ode of type dAlembert

Time used: 0.613 (sec)

Let p = y′ the ode becomes

6x+ 4y + 1 + (4x+ 2y + 2) p = 0

Solving for y from the above results in

(1)y = −(4p+ 6)x
2 (2 + p) − 2p+ 1

2 (2 + p)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved.

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −2p− 3
2 + p

g = −2p− 1
4 + 2p

Hence (2) becomes

p− −2p− 3
2 + p

=
(
− 2x
2 + p

+ 2xp
(2 + p)2

+ 3x
(2 + p)2

− 2
4 + 2p + 4p

(4 + 2p)2
+ 2

(4 + 2p)2
)
p′(x)

(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− −2p− 3
2 + p

= 0

No valid singular solutions found.
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The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− −2p(x)−3

2+p(x)

− 2x
2+p(x) +

2xp(x)
(2+p(x))2 +

3x
(2+p(x))2 −

2
4+2p(x) +

4p(x)
(4+2p(x))2 +

2
(4+2p(x))2

(3)

This ODE is now solved for p(x). No inversion is needed. The ode p′(x) = −2(2+p(x))(p(x)+3)(p(x)+1)
2x+3

is separable as it can be written as

p′(x) = −2(2 + p(x)) (p(x) + 3) (p(x) + 1)
2x+ 3

= f(x)g(p)

Where

f(x) = − 2
2x+ 3

g(p) = (2 + p) (p+ 3) (p+ 1)

Integrating gives ∫ 1
g(p) dp =

∫
f(x) dx∫ 1

(2 + p) (p+ 3) (p+ 1) dp =
∫

− 2
2x+ 3 dx

ln
(√

p (x) + 3
√

p (x) + 1
2 + p (x)

)
= ln

(
1

2x+ 3

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(p) is zero, since we had to divide by this above. Solving g(p) = 0 or (2 + p) (p+ 3) (p+ 1) =
0 for p(x) gives

p(x) = −3
p(x) = −2
p(x) = −1

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln
(√

p (x) + 3
√

p (x) + 1
2 + p (x)

)
= ln

(
1

2x+ 3

)
+ c1

p(x) = −3
p(x) = −2
p(x) = −1
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Substituing the above solution for p in (2A) gives

y =
x
(

−8x2−24x+2 e2c1−18+2
√

16x4−4 e2c1x2+96x3−12 e2c1x+216x2−9 e2c1+216x+81
−4x2+e2c1−12x−9 − 1

)
−−4x2+

√
16x4−4 e2c1x2+96x3−12 e2c1x+216x2−9 e2c1+216x+81+e2c1−12x−9

−4x2+e2c1−12x−9 + 1
+

−8x2−24x+2 e2c1−18+2
√

16x4−4 e2c1x2+96x3−12 e2c1x+216x2−9 e2c1+216x+81
−4x2+e2c1−12x−9 + 1

2−
2
(
−4x2+

√
16x4−4 e2c1x2+96x3−12 e2c1x+216x2−9 e2c1+216x+81+e2c1−12x−9

)
−4x2+e2c1−12x−9

y = −3x− 5
2

y = −x+ 1
2

Solving for the constant of integration from initial conditions, the solution becomes

y =
x
(

−8x2+2
√

16x4+4 e2 ln(2)+ln(3)+ln(7)x2+96x3+12 e2 ln(2)+ln(3)+ln(7)x+216x2+9 e2 ln(2)+ln(3)+ln(7)+216x+81−2 e2 ln(2)+ln(3)+ln(7)−24x−18
−4x2−e2 ln(2)+ln(3)+ln(7)−12x−9 − 1

)
−−4x2+

√
16x4+4 e2 ln(2)+ln(3)+ln(7)x2+96x3+12 e2 ln(2)+ln(3)+ln(7)x+216x2+9 e2 ln(2)+ln(3)+ln(7)+216x+81−e2 ln(2)+ln(3)+ln(7)−12x−9

−4x2−e2 ln(2)+ln(3)+ln(7)−12x−9 + 1
+

−8x2+2
√

16x4+4 e2 ln(2)+ln(3)+ln(7)x2+96x3+12 e2 ln(2)+ln(3)+ln(7)x+216x2+9 e2 ln(2)+ln(3)+ln(7)+216x+81−2 e2 ln(2)+ln(3)+ln(7)−24x−18
−4x2−e2 ln(2)+ln(3)+ln(7)−12x−9 + 1

2−
2
(
−4x2+

√
16x4+4 e2 ln(2)+ln(3)+ln(7)x2+96x3+12 e2 ln(2)+ln(3)+ln(7)x+216x2+9 e2 ln(2)+ln(3)+ln(7)+216x+81−e2 ln(2)+ln(3)+ln(7)−12x−9

)
−4x2−e2 ln(2)+ln(3)+ln(7)−12x−9

The solution

y = −3x− 5
2

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y = −x+ 1
2

was found not to satisfy the ode or the IC. Hence it is removed.
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–2

0

2

4

6

8

y(x)
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x

(a) Solution plot

y =
x

(
−8x2+2

√
16x4+4 e2 ln(2)+ln(3)+ln(7)x2+96x3+12 e2 ln(2)+ln(3)+ln(7)x+216x2+9 e2 ln(2)+ln(3)+ln(7)+216x+81−2 e2 ln(2)+ln(3)+ln(7)−24x−18

−4x2−e2 ln(2)+ln(3)+ln(7)−12x−9
−1
)

−−4x2+
√

16x4+4 e2 ln(2)+ln(3)+ln(7)x2+96x3+12 e2 ln(2)+ln(3)+ln(7)x+216x2+9 e2 ln(2)+ln(3)+ln(7)+216x+81−e2 ln(2)+ln(3)+ln(7)−12x−9
−4x2−e2 ln(2)+ln(3)+ln(7)−12x−9

+1
+

−8x2+2
√

16x4+4 e2 ln(2)+ln(3)+ln(7)x2+96x3+12 e2 ln(2)+ln(3)+ln(7)x+216x2+9 e2 ln(2)+ln(3)+ln(7)+216x+81−2 e2 ln(2)+ln(3)+ln(7)−24x−18
−4x2−e2 ln(2)+ln(3)+ln(7)−12x−9

+1

2−
2
(
−4x2+

√
16x4+4 e2 ln(2)+ln(3)+ln(7)x2+96x3+12 e2 ln(2)+ln(3)+ln(7)x+216x2+9 e2 ln(2)+ln(3)+ln(7)+216x+81−e2 ln(2)+ln(3)+ln(7)−12x−9

)
−4x2−e2 ln(2)+ln(3)+ln(7)−12x−9

–8

–6

–4

–2

0

2

4

6

8

10

y(x)
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(b) Slope field plot
6x+ 4y + 1 + (4x+ 2y + 2) y′ = 0
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Summary of solutions found

y

=
x
(

−8x2+2
√

16x4+4 e2 ln(2)+ln(3)+ln(7)x2+96x3+12 e2 ln(2)+ln(3)+ln(7)x+216x2+9 e2 ln(2)+ln(3)+ln(7)+216x+81−2 e2 ln(2)+ln(3)+ln(7)−24x−18
−4x2−e2 ln(2)+ln(3)+ln(7)−12x−9 − 1

)
−−4x2+

√
16x4+4 e2 ln(2)+ln(3)+ln(7)x2+96x3+12 e2 ln(2)+ln(3)+ln(7)x+216x2+9 e2 ln(2)+ln(3)+ln(7)+216x+81−e2 ln(2)+ln(3)+ln(7)−12x−9

−4x2−e2 ln(2)+ln(3)+ln(7)−12x−9 + 1

+
−8x2+2

√
16x4+4 e2 ln(2)+ln(3)+ln(7)x2+96x3+12 e2 ln(2)+ln(3)+ln(7)x+216x2+9 e2 ln(2)+ln(3)+ln(7)+216x+81−2 e2 ln(2)+ln(3)+ln(7)−24x−18

−4x2−e2 ln(2)+ln(3)+ln(7)−12x−9 + 1

2−
2
(
−4x2+

√
16x4+4 e2 ln(2)+ln(3)+ln(7)x2+96x3+12 e2 ln(2)+ln(3)+ln(7)x+216x2+9 e2 ln(2)+ln(3)+ln(7)+216x+81−e2 ln(2)+ln(3)+ln(7)−12x−9

)
−4x2−e2 ln(2)+ln(3)+ln(7)−12x−9

Maple step by step solution

Let’s solve[
6x+ 4y(x) + 1 + (4x+ 2y(x) + 2)

(
d
dx
y(x)

)
= 0, y

(1
2

)
= 3
]

• Highest derivative means the order of the ODE is 1
d
dx
y(x)

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

d
dx
F (x, y(x)) = 0

◦ Compute derivative of lhs
∂
∂x
F (x, y) +

(
∂
∂y
F (x, y)

) (
d
dx
y(x)

)
= 0

◦ Evaluate derivatives
4 = 4

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = C1 ,M(x, y) = ∂
∂x
F (x, y) , N(x, y) = ∂

∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(6x+ 4y + 1) dx+ _F1(y)

• Evaluate integral
F (x, y) = 3x2 + 4xy + x+ _F1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
4x+ 2y + 2 = 4x+ d

dy
_F1(y)

• Isolate for d
dy
_F1(y)
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d
dy
_F1(y) = 2y + 2

• Solve for _F1(y)
_F1(y) = y2 + 2y

• Substitute _F1(y) into equation for F (x, y)
F (x, y) = 3x2 + 4xy + y2 + x+ 2y

• Substitute F (x, y) into the solution of the ODE
3x2 + 4xy + y2 + x+ 2y = C1

• Solve for y(x){
y(x) = −1− 2x−

√
x2 + C1 + 3x+ 1, y(x) = −1− 2x+

√
x2 + C1 + 3x+ 1

}
• Use initial condition y

(1
2

)
= 3

3 = −2−
√

C1 + 11
4

• Solve for _C1
C1 = ()

• Solution does not satisfy initial condition
• Use initial condition y

(1
2

)
= 3

3 = −2 +
√

C1 + 11
4

• Solve for _C1
C1 = 89

4

• Substitute _C1 = 89
4 into general solution and simplify

y(x) = −1− 2x+
√
4x2+12x+93

2

• Solution to the IVP
y(x) = −1− 2x+

√
4x2+12x+93

2

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
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trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.211 (sec)
Leaf size : 23� �
dsolve([6*x+4*y(x)+1+(4*x+2*y(x)+2)*diff(y(x),x) = 0,

op([y(1/2) = 3])],y(x),singsol=all)� �
y(x) = −2x− 1 +

√
4x2 + 12x+ 93

2

Mathematica DSolve solution

Solving time : 0.189 (sec)
Leaf size : 28� �
DSolve[{(6*x+4*y[x]+1)+(4*x+2*y[x]+2)*D[y[x],x]==0,y[1/2]==3},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

2

(√
4x2 + 12x+ 93− 4x− 2

)
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2.1.9 problem 9

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 104
Solved as first order homogeneous class Maple C ode . . . . . . 105
Solved using Lie symmetry for first order ode . . . . . . . . . . 110
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 115
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 116
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 117

Internal problem ID [4085]
Book : Differential equations, Shepley L. Ross, 1964
Section : 2.4, page 55
Problem number : 9
Date solved : Tuesday, December 17, 2024 at 06:21:44 AM
CAS classification :
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

Solve

3x− y − 6 + (x+ y + 2) y′ = 0

With initial conditions

y(2) = −2

Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= y − 3x+ 6
x+ y + 2

The x domain of f(x, y) when y = −2 is

{x < 0∨ 0 < x}

And the point x0 = 2 is inside this domain. The y domain of f(x, y) when x = 2 is

{y < −4∨−4 < y}
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And the point y0 = −2 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
y − 3x+ 6
x+ y + 2

)
= 1

x+ y + 2 − y − 3x+ 6
(x+ y + 2)2

The x domain of ∂f
∂y

when y = −2 is

{x < 0∨ 0 < x}

And the point x0 = 2 is inside this domain. The y domain of ∂f
∂y

when x = 2 is

{y < −4∨−4 < y}

And the point y0 = −2 is inside this domain. Therefore solution exists and is unique.

Summary of solutions found

√
3
(√

3 ln
(

(y+3)2+3(x−1)2

(x−1)2

)
+ 2arctan

(
(y+3)

√
3

3x−3

))
6 = ln

(
1

x− 1

)
+
√
3
(
6
√
3 ln (2) + π

)
18

Solved as first order homogeneous class Maple C ode

Time used: 1.641 (sec)

Let Y = y − y0 and X = x− x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = Y (X) + y0 − 3x0 − 3X + 6

x0 +X + Y (X) + y0 + 2

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 1
y0 = −3

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = Y (X)− 3X

X + Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= Y − 3X
X + Y

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = Y − 3X and N = X + Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = u− 3

u+ 1
du
dX =

u(X)−3
u(X)+1 − u(X)

X

Or
d

dX
u(X)−

u(X)−3
u(X)+1 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X) +

(
d

dX
u(X)

)
X + u(X)2 + 3 = 0

Or
X(u(X) + 1)

(
d

dX
u(X)

)
+ u(X)2 + 3 = 0

Which is now solved as separable in u(X).

The ode d
dX

u(X) = − u(X)2+3
X(u(X)+1) is separable as it can be written as

d

dX
u(X) = − u(X)2 + 3

X (u (X) + 1)
= f(X)g(u)
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Where

f(X) = − 1
X

g(u) = u2 + 3
u+ 1

Integrating gives ∫ 1
g(u) du =

∫
f(X) dX∫

u+ 1
u2 + 3 du =

∫
− 1
X

dX

ln
(
u(X)2 + 3

)
2 +

√
3 arctan

(
u(X)

√
3

3

)
3 = ln

(
1
X

)
+ c1

We now need to find the singular solutions, these are found by finding for what values
g(u) is zero, since we had to divide by this above. Solving g(u) = 0 or u2+3

u+1 = 0 for
u(X) gives

u(X) = −i
√
3

u(X) = i
√
3

Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

ln
(
u(X)2 + 3

)
2 +

√
3 arctan

(
u(X)

√
3

3

)
3 = ln

(
1
X

)
+ c1

u(X) = −i
√
3

u(X) = i
√
3

Converting
ln
(
u(X)2+3

)
2 +

√
3 arctan

(
u(X)

√
3

3

)
3 = ln

( 1
X

)
+ c1 back to Y (X) gives

√
3
(√

3 ln
(

Y (X)2+3X2

X2

)
+ 2arctan

(
Y (X)

√
3

3X

))
6 = ln

(
1
X

)
+ c1

Converting u(X) = −i
√
3 back to Y (X) gives

Y (X) = −iX
√
3
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Converting u(X) = i
√
3 back to Y (X) gives

Y (X) = iX
√
3

Using the solution for Y (X)
√
3
(√

3 ln
(

Y (X)2+3X2

X2

)
+ 2arctan

(
Y (X)

√
3

3X

))
6 = ln

(
1
X

)
+ c1 (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 3
X = x+ 1

Then the solution in y becomes using EQ (A)
√
3
(√

3 ln
(

(y+3)2+3(x−1)2

(x−1)2

)
+ 2arctan

(
(y+3)

√
3

3x−3

))
6 = ln

(
1

x− 1

)
+ c1

Using the solution for Y (X)

Y (X) = −iX
√
3 (A)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 3
X = x+ 1

Then the solution in y becomes using EQ (A)

y + 3 = −i(x− 1)
√
3

Using the solution for Y (X)

Y (X) = iX
√
3 (A)
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And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 3
X = x+ 1

Then the solution in y becomes using EQ (A)

y + 3 = i(x− 1)
√
3

Solving for the constant of integration from initial conditions, the solution becomes
√
3
(√

3 ln
(

(y+3)2+3(x−1)2

(x−1)2

)
+ 2arctan

(
(y+3)

√
3

3x−3

))
6 = ln

(
1

x− 1

)
+

√
3
(
6
√
3 ln (2) + π

)
18

The solution
y + 3 = −i(x− 1)

√
3

was found not to satisfy the ode or the IC. Hence it is removed. The solution

y + 3 = i(x− 1)
√
3

was found not to satisfy the ode or the IC. Hence it is removed.
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Figure 2.18: Slope field plot
3x− y − 6 + (x+ y + 2) y′ = 0
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Solved using Lie symmetry for first order ode

Time used: 6.339 (sec)

Writing the ode as

y′ = y − 3x+ 6
x+ y + 2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(y − 3x+ 6) (b3 − a2)

x+ y + 2 − (y − 3x+ 6)2 a3
(x+ y + 2)2

−
(
− 3
x+ y + 2 − y − 3x+ 6

(x+ y + 2)2
)
(xa2 + ya3 + a1)

−
(

1
x+ y + 2 − y − 3x+ 6

(x+ y + 2)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

3x2a2 − 9x2a3 − 3x2b2 − 3x2b3 + 6xya2 + 6xya3 + 2xyb2 − 6xyb3 − y2a2 + 3y2a3 + y2b2 + y2b3 + 12xa2 + 36xa3 − 4xb1 + 8xb2 + 4ya1 − 8ya2 + 4yb2 + 12yb3 + 12a1 − 12a2 − 36a3 + 4b1 + 4b2 + 12b3
(x+ y + 2)2

= 0



chapter 2. book solved problems 111

Setting the numerator to zero gives

(6E)3x2a2 − 9x2a3 − 3x2b2 − 3x2b3 + 6xya2 + 6xya3 + 2xyb2 − 6xyb3
− y2a2 + 3y2a3 + y2b2 + y2b3 + 12xa2 + 36xa3 − 4xb1 + 8xb2 + 4ya1
− 8ya2 + 4yb2 + 12yb3 + 12a1 − 12a2 − 36a3 + 4b1 + 4b2 + 12b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)3a2v21 + 6a2v1v2 − a2v
2
2 − 9a3v21 + 6a3v1v2 + 3a3v22 − 3b2v21 + 2b2v1v2 + b2v

2
2

− 3b3v21 − 6b3v1v2 + b3v
2
2 + 4a1v2 + 12a2v1 − 8a2v2 + 36a3v1 − 4b1v1

+ 8b2v1 + 4b2v2 + 12b3v2 + 12a1 − 12a2 − 36a3 + 4b1 + 4b2 + 12b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(3a2 − 9a3 − 3b2 − 3b3) v21 + (6a2 + 6a3 + 2b2 − 6b3) v1v2
+ (12a2 + 36a3 − 4b1 + 8b2) v1 + (−a2 + 3a3 + b2 + b3) v22
+ (4a1 − 8a2 + 4b2 + 12b3) v2 + 12a1 − 12a2 − 36a3 + 4b1 + 4b2 + 12b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

4a1 − 8a2 + 4b2 + 12b3 = 0
−a2 + 3a3 + b2 + b3 = 0

3a2 − 9a3 − 3b2 − 3b3 = 0
6a2 + 6a3 + 2b2 − 6b3 = 0

12a2 + 36a3 − 4b1 + 8b2 = 0
12a1 − 12a2 − 36a3 + 4b1 + 4b2 + 12b3 = 0
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Solving the above equations for the unknowns gives

a1 = −b3 + 3a3
a2 = b3

a3 = a3

b1 = 3a3 + 3b3
b2 = −3a3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 1
η = y + 3

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 3−
(
y − 3x+ 6
x+ y + 2

)
(x− 1)

= 3x2 + y2 − 6x+ 6y + 12
x+ y + 2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3x2+y2−6x+6y+12
x+y+2

dy
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Which results in

S = ln (3x2 + y2 − 6x+ 6y + 12)
2 +

√
3 arctan

(
(2y+6)

√
3

6x−6

)
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y − 3x+ 6
x+ y + 2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y + 3x− 6
3x2 + y2 − 6x+ 6y + 12

Sy =
x+ y + 2

3x2 + y2 − 6x+ 6y + 12

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
0 dR + c2

S(R) = c2
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To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

ln (y2 + 3x2 + 6y − 6x+ 12)
2 +

√
3 arctan

(
(y+3)

√
3

3x−3

)
3 = c2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y−3x+6
x+y+2

dS
dR

= 0

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = ln (3x2 + y2 − 6x+ 6y + 12)
2 +

√
3 arctan

(
(y+3)

√
3

3x−3

)
3

–4

–2

0

2

4

S(R)

–4 –2 2 4

R

Solving for the constant of integration from initial conditions, the solution becomes

ln (y2 + 3x2 + 6y − 6x+ 12)
2 +

√
3 arctan

(
(y+3)

√
3

3x−3

)
3 = ln (2) +

√
3 π
18

Solving for y gives

y

=
(
tan

(
RootOf

(
6
√
3 ln (2)−3

√
3 ln

(
3x2 tan (_Z)2−6x tan (_Z)2+3x2+3 tan (_Z)2−6x+3

)
+π−6_Z

))
x

−tan
(
RootOf

(
6
√
3 ln (2)−3

√
3 ln

(
3x2 tan (_Z)2−6x tan (_Z)2+3x2+3 tan (_Z)2−6x+3

)
+π−6_Z

))
−
√
3
)√

3
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–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.19: Slope field plot
3x− y − 6 + (x+ y + 2) y′ = 0

Summary of solutions found

y

=
(
tan

(
RootOf

(
6
√
3 ln (2)−3

√
3 ln

(
3x2 tan (_Z)2−6x tan (_Z)2+3x2+3 tan (_Z)2−6x+3

)
+π−6_Z

))
x

−tan
(
RootOf

(
6
√
3 ln (2)−3

√
3 ln

(
3x2 tan (_Z)2−6x tan (_Z)2+3x2+3 tan (_Z)2−6x+3

)
+π−6_Z

))
−
√
3
)√

3

Maple step by step solution

Let’s solve[
3x− y(x)− 6 + (x+ y(x) + 2)

(
d
dx
y(x)

)
= 0, y(2) = −2

]
• Highest derivative means the order of the ODE is 1

d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = −3x+y(x)+6

x+y(x)+2

• Use initial condition y(2) = −2
0

• Solve for 0
0 = 0

• Substitute 0 = 0 into general solution and simplify
0
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• Solution to the IVP
0

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 12.461 (sec)
Leaf size : 51� �
dsolve([3*x-y(x)-6+(x+y(x)+2)*diff(y(x),x) = 0,

op([y(2) = -2])],y(x),singsol=all)� �
y(x) = −3− tan

(
RootOf

(
−3

√
3 ln

(
sec (_Z)2 (x− 1)2

)
− 3

√
3 ln (3) + 6

√
3 ln (2)

+ π + 6_Z
))√

3 (x− 1)
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Mathematica DSolve solution

Solving time : 0.217 (sec)
Leaf size : 90� �
DSolve[{(3*x-y[x]-6)+(x+y[x]+2)*D[y[x],x]==0,y[2]==-2},

y[x],x,IncludeSingularSolutions->True]� �
Solve

arctan
(

−y(x)+3x−6√
3(y(x)+x+2)

)
√
3

+ log(2) = 1
2 log

(
3x2 + y(x)2 + 6y(x)− 6x+ 12

(x− 1)2

)

+ log(x− 1) + 1
18

(√
3π + 18 log(2)− 9 log(4)

)
, y(x)
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2.1.10 problem 10

Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 118
Solved using Lie symmetry for first order ode . . . . . . . . . . 119
Solved as first order ode of type dAlembert . . . . . . . . . . . 124
Maple step by step solution . . . . . . . . . . . . . . . . . . . . 127
Maple trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Maple dsolve solution . . . . . . . . . . . . . . . . . . . . . . . 128
Mathematica DSolve solution . . . . . . . . . . . . . . . . . . . 128

Internal problem ID [4086]
Book : Differential equations, Shepley L. Ross, 1964
Section : 2.4, page 55
Problem number : 10
Date solved : Tuesday, December 17, 2024 at 06:21:58 AM
CAS classification :
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

Solve

2x+ 3y + 1 + (4x+ 6y + 1) y′ = 0

With initial conditions

y(−2) = 2

Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −3y + 2x+ 1
4x+ 6y + 1

The x domain of f(x, y) when y = 2 is{
x < −13

4 ∨−13
4 < x

}

And the point x0 = −2 is inside this domain. The y domain of f(x, y) when x = −2 is{
y <

7
6 ∨ 7

6 < y

}
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And the point y0 = 2 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−3y + 2x+ 1
4x+ 6y + 1

)
= − 3

4x+ 6y + 1 + 18y + 12x+ 6
(4x+ 6y + 1)2

The x domain of ∂f
∂y

when y = 2 is

{
x < −13

4 ∨−13
4 < x

}

And the point x0 = −2 is inside this domain. The y domain of ∂f
∂y

when x = −2 is

{
y <

7
6 ∨ 7

6 < y

}

And the point y0 = 2 is inside this domain. Therefore solution exists and is unique.

Solved using Lie symmetry for first order ode

Time used: 0.796 (sec)

Writing the ode as

y′ = −3y + 2x+ 1
4x+ 6y + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of
degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(3y + 2x+ 1) (b3 − a2)

4x+ 6y + 1 − (3y + 2x+ 1)2 a3
(4x+ 6y + 1)2

−
(
− 2
4x+ 6y + 1 + 12y + 8x+ 4

(4x+ 6y + 1)2
)
(xa2 + ya3 + a1)

−
(
− 3
4x+ 6y + 1 + 18y + 12x+ 6

(4x+ 6y + 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

8x2a2 − 4x2a3 + 16x2b2 − 8x2b3 + 24xya2 − 12xya3 + 48xyb2 − 24xyb3 + 18y2a2 − 9y2a3 + 36y2b2 − 18y2b3 + 4xa2 − 4xa3 + 5xb2 − 6xb3 + 9ya2 − 8ya3 + 12yb2 − 12yb3 − 2a1 + a2 − a3 − 3b1 + b2 − b3

(4x+ 6y + 1)2
= 0

Setting the numerator to zero gives

(6E)8x2a2 − 4x2a3 + 16x2b2 − 8x2b3 + 24xya2 − 12xya3 + 48xyb2 − 24xyb3
+ 18y2a2 − 9y2a3 + 36y2b2 − 18y2b3 + 4xa2 − 4xa3 + 5xb2 − 6xb3
+ 9ya2 − 8ya3 + 12yb2 − 12yb3 − 2a1 + a2 − a3 − 3b1 + b2 − b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)8a2v21 + 24a2v1v2 + 18a2v22 − 4a3v21 − 12a3v1v2 − 9a3v22 + 16b2v21 + 48b2v1v2
+ 36b2v22 − 8b3v21 − 24b3v1v2 − 18b3v22 + 4a2v1 + 9a2v2 − 4a3v1 − 8a3v2
+ 5b2v1 + 12b2v2 − 6b3v1 − 12b3v2 − 2a1 + a2 − a3 − 3b1 + b2 − b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)(8a2 − 4a3 + 16b2 − 8b3) v21 + (24a2 − 12a3 + 48b2 − 24b3) v1v2
+ (4a2 − 4a3 + 5b2 − 6b3) v1 + (18a2 − 9a3 + 36b2 − 18b3) v22
+ (9a2 − 8a3 + 12b2 − 12b3) v2 − 2a1 + a2 − a3 − 3b1 + b2 − b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

4a2 − 4a3 + 5b2 − 6b3 = 0
8a2 − 4a3 + 16b2 − 8b3 = 0
9a2 − 8a3 + 12b2 − 12b3 = 0
18a2 − 9a3 + 36b2 − 18b3 = 0
24a2 − 12a3 + 48b2 − 24b3 = 0

−2a1 + a2 − a3 − 3b1 + b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = −8a1 − 12b1
a3 = −12a1 − 18b1
b1 = b1

b2 = 4a1 + 6b1
b3 = 6a1 + 9b1

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −12x− 18y
η = 6x+ 9y + 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 6x+ 9y + 1−
(
−3y + 2x+ 1
4x+ 6y + 1

)
(−12x− 18y)

= −2x− 3y + 1
4x+ 6y + 1

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2x−3y+1
4x+6y+1

dy

Which results in

S = −2y − ln (2x+ 3y − 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3y + 2x+ 1
4x+ 6y + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2
2x+ 3y − 1

Sy = −2− 3
2x+ 3y − 1
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S.

Since the ode has the form d
dR

S(R) = f(R), then we only need to integrate f(R).∫
dS =

∫
1 dR

S(R) = R + c2

To complete the solution, we just need to transform the above back to x, y coordinates.
This results in

−2y − ln (2x+ 3y − 1) = x+ c2

Which gives

y = −2x
3 +

LambertW
(

2 e
x
3− 2

3−c2

3

)
2 + 1

3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3y+2x+1
4x+6y+1

dS
dR

= 1

–4

–2

0

2

4

y(x)

–4 –2 2 4

x

R = x

S = −2y − ln (2x+ 3y − 1)

–4

–2

0

2

4

S(R)

–4 –2 2 4

R
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Solving for the constant of integration from initial conditions, the solution becomes

y = −2x
3 +

LambertW
(

2 e
x
3 +4

3
3

)
2 + 1

3

–4

–2

0

2

4

6

y(x)

–8 –6 –4 –2 0 2 4 6 8 10

x

(a) Solution plot

y = −2x
3 +

LambertW
(

2 e
x
3 +4

3
3

)
2 + 1

3

–4

–2

0

2

4

6

y(x)

–10 –5 0 5 10

x

(b) Slope field plot
2x+ 3y + 1 + (4x+ 6y + 1) y′ = 0

Summary of solutions found

y = −2x
3 +

LambertW
(

2 e
x
3 +4

3
3

)
2 + 1

3

Solved as first order ode of type dAlembert

Time used: 0.420 (sec)

Let p = y′ the ode becomes

2x+ 3y + 1 + (4x+ 6y + 1) p = 0

Solving for y from the above results in

(1)y = −(4p+ 2)x
3 (1 + 2p) −

p+ 1
3 (1 + 2p)

This has the form

y = xf(p) + g(p) (*)
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Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved.

Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −2
3

g = −p− 1
3 + 6p

Hence (2) becomes

p+ 2
3 =

(
− 1
3 + 6p + 6p

(3 + 6p)2
+ 6

(3 + 6p)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 2
3 = 0

No valid singular solutions found.

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + 2

3

− 1
3+6p(x) +

6p(x)
(3+6p(x))2 +

6
(3+6p(x))2

(3)

This ODE is now solved for p(x). No inversion is needed. Integrating gives∫ 1
(3p+ 2) (1 + 2p)2

dp = dx

3 ln (3p+ 2)− 1
1 + 2p − 3 ln (1 + 2p) = x+ c1

Singular solutions are found by solving

(3p+ 2) (1 + 2p)2 = 0
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for p(x). This is because we had to divide by this in the above step. This gives the
following singular solution(s), which also have to satisfy the given ODE.

p(x) = −2
3

p(x) = −1
2

Substituing the above solution for p in (2A) gives

y = −2x
3 +

− e
RootOf

(
6 ln

(
2 e_Z

3 − 1
3

)
e_Z+2c1 e_Z−6_Z e_Z+2x e_Z−3 ln

(
2 e_Z

3 − 1
3

)
−c1+3_Z−x+3

)
3 − 1

3

2 eRootOf
(
6 ln
(

2 e_Z
3 − 1

3

)
e_Z+2c1 e_Z−6_Z e_Z+2x e_Z−3 ln

(
2 e_Z

3 − 1
3

)
−c1+3_Z−x+3

)
− 1

y = −2x
3 + 1

3

Solving for the constant of integration from initial conditions, the solution becomes

y = −2x
3 +

− e
RootOf

(
6iπ e_Z−3iπ−6 ln

(
2 e_Z

3 − 1
3

)
e_Z+6_Z e_Z−2x e_Z−14 e_Z+3 ln

(
2 e_Z

3 − 1
3

)
−3_Z+x+4

)
3 − 1

3

2 eRootOf
(
6iπ e_Z−3iπ−6 ln

(
2 e_Z

3 − 1
3

)
e_Z+6_Z e_Z−2x e_Z−14 e_Z+3 ln

(
2 e_Z

3 − 1
3

)
−3_Z+x+4

)
− 1

The solution

y = −2x
3 + 1

3

was found not to satisfy the ode or the IC. Hence it is removed.

–3

–2

–1

0

1

2

3

y(x)

–4 –2 0 2 4

x

Figure 2.21: Slope field plot
2x+ 3y + 1 + (4x+ 6y + 1) y′ = 0
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Summary of solutions found

y = −2x
3

+
− e

RootOf
(
6iπ e_Z−3iπ−6 ln

(
2 e_Z

3 − 1
3

)
e_Z+6_Z e_Z−2x e_Z−14 e_Z+3 ln

(
2 e_Z

3 − 1
3

)
−3_Z+x+4

)
3 − 1

3

2 eRootOf
(
6iπ e_Z−3iπ−6 ln

(
2 e_Z

3 − 1
3

)
e_Z+6_Z e_Z−2x e_Z−14 e_Z+3 ln

(
2 e_Z

3 − 1
3

)
−3_Z+x+4

)
− 1

Maple step by step solution

Let’s solve[
2x+ 3y(x) + 1 + (4x+ 6y(x) + 1)

(
d
dx
y(x)

)
= 0, y(−2) = 2

]
• Highest derivative means the order of the ODE is 1

d
dx
y(x)

• Solve for the highest derivative
d
dx
y(x) = −2x−3y(x)−1

4x+6y(x)+1

• Use initial condition y(−2) = 2
0

• Solve for 0
0 = 0

• Substitute 0 = 0 into general solution and simplify
0

• Solution to the IVP
0

Maple trace� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -2/3, y(x)` *** Sublevel 2 ***
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Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
Maple dsolve solution

Solving time : 0.144 (sec)
Leaf size : 20� �
dsolve([2*x+3*y(x)+1+(4*x+6*y(x)+1)*diff(y(x),x) = 0,

op([y(-2) = 2])],y(x),singsol=all)� �
y(x) = 1

3 − 2x
3 +

LambertW
(

2 e
x
3 +4

3
3

)
2

Mathematica DSolve solution

Solving time : 5.576 (sec)
Leaf size : 30� �
DSolve[{(2*x+3*y[x]+1)+(4*x+6*y[x]+1)*D[y[x],x]==0,y[-2]==2},

y[x],x,IncludeSingularSolutions->True]� �
y(x) → 1

6

(
3W
(
2
3e

x+4
3

)
− 4x+ 2

)
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